Plane wave solution for elastic wave scattering
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A plane-wave method for computing the three-dimensional scattering of propagating elastic waves
by a planar fracture with heterogeneous fracture compliance distribution is presented. This method
is based upon the spatial Fourier transform of the seismic displacement-discontiBDiB)
boundary conditions(also called linear slip interface conditionsand therefore, called the
wave-number-domain SDD methotvd-SDD methodl The resulting boundary conditions
explicitly show the coupling between plane waves with an incident wave number component
(specular componentand scattered waves which do not follow Snell’s lawonspecular
components if the fracture is viewed as a planar boundary. For a spatially periodic fracture
compliance distribution, these boundary conditions can be cast into a linear system of equations that
can be solved for the amplitudes of individual wave modes and wave numbers. We demonstrate the
developed technique for a simulated fracture with a stochdstirelated surface compliance
distribution. Low- and high-frequency solutions of the method are also compared to the predictions
by low-order Born series in the weak and strong scattering limit.2@®4 Acoustical Society of
America. [DOI: 10.1121/1.1739483

PACS numbers: 43.20.Gp, 43.20.Px, 43.54.0T | Pages: 2761-2772

I. INTRODUCTION geometry of a fracture, the fracture compliance does not di-
rectly reflect the hydraulic properties. However, in general, a

At microscales, fractures in rocks, metals, and ceramictarge compliance value suggests a more open, permeable
can take many different forms including aligned open cracksfracture. Baik and Thompsoﬁ1984)3 showed that the frac-
two surfaces in imperfect contact and a planar, thin zoneure compliance can be determined analytically for fractures
filled with materials more compliant than the backgroundconsisting of sparsely distributed, co-planar circular cracks
medium! Since a fracture scatters propagating elastic waveand of contact patches between half-spaces. Angel and
as a function of the microscale structure and resulting meAchenbach(1985* showed that elastic wave scattering off a
chanical properties, they can be detected and characterizécture, consisting of aligned microcracks, can be modeled
from the scattering behavior of the waves. The microscaléyy the SDD conditions for long wavelengths. From labora-
properties, including surface roughness and aperture distribgery ultrasonic transmission tests across a synthetic fracture
tion, and connectivity and permeability of the cracks andwith known, regular geometry, Myeet al. (1985° found
gouge material, can also have a large impact on the hydrauligood agreement between measured waves and theoretical
properties of a fracture. prediction by the SDD model.

Unfortunately, the microscale geometry and spatial  Theoretical studies based upon the SDD model on the
property variations of a fracture is difficult to resolve using elastic wave scattering by fractures are limited to, or assume,
elastic waves if these heterogeneous features are mugtactures with a homogeneous distribution of fracture com-
smaller than the wavelengths. Instead, these heterogeneitigance on the fracture plafé~2 This is because the con-
are likely to affect the scattering behavior of the wavesventional SDD model, when used with plane wave theory,
through static, effective mechanical properties of the fracturgequires a “range-independentinaterial properties do not
that are determined at some subwavelength scale larger thgary along the fracture plaindracture compliance distribu-
the heterogeneities themselves. This is one of the basic primion. Naturally occurring fractures are, however, heteroge-
ciples of the seismic displacement—discontinui§DD)  neous, with the microscale properties varying along the frac-
boundary conditiongalso known as linear-slip interface con- ture plane. This gives rise to fracture compliance that is
ditions) commonly used for examining elastic wave scatter-spatially heterogeneous and, possibly, correlated. Since the
ing by fractures. heterogeneity of a fracture has a great impact on the hydrau-

The SDD conditions assume a linear relationship beiic and mechanical properties of the fractdré? understand-
tween the wave-introduced, small relative displacement anghg the effect of the heterogeneity on the scattering of elastic
stress across a fracture, via material parameters called fragraves can provide valuable tools for geophysical and non-
ture stiffness and its inverse, fracture compliah&nce the  destructive characterization of the fracture properties.

SDD model is incapable of discriminating the detailed local  In this paper, we present analytical and numerical tech-
niques to examine the elastic wave scattering by a heteroge-
dAuthor to whom correspondence should be addressed; electronic maill€0Us fracture, based on the “local” SDD boundary condi-
snakagawa@Ibl.gov tions and the plane wave theory. This is achieved by
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applying a spatial Fourier transform to the SDD conditions
with “local” fracture compliance that is a function in space.
For this reason, this method is called the wave number do-
main seismic displacement discontinuity meth@dl—SDD
method. Previously, the local SDD model was used in geo-
metric ray approximations. Pyrak-Nolte and No{992*3 Meiraeis | oft laye
examined the apparent, scattering induced frequency depen-

dence of fracture compliance assuming that the compliance , ‘ '
varied much more slowly compared to the wavelerigigh-

frequency ray approximation Nihei (1989'* and Oliger

et al. (2003'® used Kirchhoff approximations to take into z i

account the diffraction of waves transmitted across a hetero- ; e

geneous fracture. In the Kirchhoff approximations, the am- s o

plitudes and phases of the transmitted waves across a frac-

ture are computed at each location on the fracture, assuming p

that the fracture is planar and has a single value of fracture spatially varying fracture compliance
compliance assigned to that location. In contrast, the wd— (local fracture compliance)

SDD method is not limited to high frequencies and takes int , . ,

. . . . IG. 1. Heterogeneous fractures with a variety of microstructures are mod-
account the interactions _between different locations on th%Ied as a planer interface between half-spaces with spatially varying fracture
fracture. Although numerical methods such as the boundargyompliance(springs in the figure
element metho§ and the finite difference methdd'® can
also be used to examine the scattering of elastic waves at full - [y)(x,y)=u(x,y;z— +0)—u(x,y;z— —0)
range of frequencies, applications of these methods to three-

dimensional problems results in high computational costs, Uy Ux
particularly large computer memory. Further, the analytical = Uy —| Uy , 3
nature of the introduced method can provide clearer insights Uzl o LUzl
into the mechanism of wave scattering by a heterogeneous
fracture. Oxz

o(X,y;z—*=0)=| gy, , 4

Ozz z—*+0
Mxx  TMxy Txz

Il. THEORY W)= Tyx By Tzl (5)
A. Plane wave analysis Nax  Mzy  Mzz

We first hypothesize that the “local fracture compli- It is noted that the stress traction vector is defined via com-
ance” can be defined for a fracture. This means that theonents of stress on planes parallel to #heg plane rather
dynamic behavior of a real fracture is well approximated bythan components of traction the sign of which depends on
the behavior of an interface between half-spaces with a hethe orientation of the surface. However, without confusion,
erogeneous distribution of compliance which is measured lowe shall call this “traction(vecto).” We assume that the
cally at some length scale much smaller than the seismiincident waves insonify the fracture on thie<0O side. By
(elastic wave wavelengths. This approach is commonly directly applying the spatial 2D Fourier transform to these
taken to numerically simulate wave scattering by fractureslocal” SDD conditions given in Eqs(1) and(2), we get
with heterogeneous surface contacts using the boundary ele- ~ ~ ~
ment methc?d and the finite difference met%od. Y (ko ky iz +0)=otke ky ;2= =0)= otk ky),  (6)

In our model, we also assume that the dimension of a  (%* &) (ky,ky) =[U](ky k). (7
fracture in the fracture-normal direction, such as the sun‘ac.fi_.lde
roughness and waviness, is much smaller than considere . ; .
seismic wavelengths, and therefore, the fracture can b8 convolution. It is nOtEd that foraumform fr_acturﬁ(x,y)
treated as a plane. For the local fracture compliance model> a constant matrix, and the convolupon IS reduced to a
the SDD boundary conditions are specified at each spatiépu!t'p“cat'on’ .e., the same relationship as in they do-
location on the fracture on the y plane agFig. 1) main

indicates transformed variables, and *indicates

In this paper, we assume a single plane fracture embed-
ded within a homogeneous background medium with a stiff-
ness tensolC=[C;j,] and a densityp. For a given fre-
quencyw and fracture-parallel wave numbéggsandk, , the

n(x,y)o(x,y)=[ul(x,y), (2)  Christoffel equation is solved to obtain sbdirection wave

numbersk.®, k2=, k3%, where 1, 2, 3 indicate the three
where the displacement—discontinuity vedtot, stress trac- modes of plane waves, and corresponding unit particle dis-
tion vectorse, and the compliance matriy are defined as  placement vectorg; , U, , U3 . Hereafter, the superscripts

o(X,y;z—+0)=0o(X,y;z— —0)=0o(X,Yy), (1)
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“~and “ *” indicate waves propagating in the negatize Wherew is the circular frequency. The traction is computed
direction (reflected wavesand in the positivez direction ~ from the displacement vector using the Hooke’s law as
(incident and transmitted wavesrespectively. For plane .+

waves, the displacement and stress can be related to each (xy;2) (=0 (ke kyi2)

other via single vector variables- containing the displace- Oy,
ment amplitudes of three plane wave modes. Using the wave _ ol
numbers and unit displacement vectors defined in the above, ¥
a single wave number component of the plane wave dis- 2z _
placement is given by =i wS" (ke Ky E™ (K Ky ;2)a" (Ky k)& xRy ot
u=(x,y;2) 9
ur Dependence on the phase teeft** %Y~ is understood
* ~ . At At ns and omitted from the following equations. We will defigé
= u)_,# (=U~(ky,ky;2))={u; u; uz shortly 9¢€q
Uz For an isotropic background medium, the three modes of
[ eikgiz wave propagation are two shg@® waves and one compres-
e sional (P) wave. We label these modes as-$v wave, 2
X ez ? =Sh wave, and 3=P wave, where a convention is taken
ik z such that thesh wave has the particle displacement parallel
- to the fracturgor z) plane. For a plane-parallel wave number
[af k,=k?+k2, the zdirection wave numbers aré}?
x| a3 [ elkecrky=on =+kS=+ k2—Kk? andkZ* = +kD=+ \k2—Kk?, wherekp
a: =wl/cp andks= w/cg are theP- and Swave wave numbers

_ with velocitiescp and cg, respectively. The displacement
=U" (ke Ky E* (Ky Ky ;2)@" (Ky ky) €'k =eb - (8)  and stress matrices in Eq®) and (9) take the forms

FkSlkg k. /kp
U =R" 1 , (10)
k; /Ks +kE/Kp
—(1-2(k, ks)?) 0 + 2k, kE/kpks
S*=pcRT 0 +k3/kg 0 , (11)
+ 2k kSIS 0 (1—2(k, /ks)?)(ks/Kp)
|
whereR is the rotation matrix around theaxis given by ture, the transformed-domain displacement—discontinuity
vector on the fracture is computed from E@3), (8), and
Klke Ky /K, (10) as
1 — e~
- =[U"— (U +Upnd)lz=0

The superscript *” indicates matrix transposition. It is noted L
that the matricedJ™ andR are dimensionless, ar§" has =U"a’—(Ura +U"ano). (13
the dimension of acoustic impedance. Also, all of these maThe traction vectors are given by Eq8) and(11) as
trices are frequency independent for a given wave propaga-
tion direction(or a fracture-parallel slownesbecause wave
numbers in the expressions appear only as a ratio between o(z— —0)=(0 + 0p),—0=10(S a +S"a,).
two wave numbers. . .
Using Egs.(8) and (9), the displacement and traction Using Eqs.(lS) and (14), Eqgs. (6) and (7) are rewritten,
. N L respectively, as
introduced by an incident plane wave propagating in the
positive z direction are U,.=U"ETa,. and o iwS"a"=iw(S a +S an)=0(ky.ky), (15
=iwS"ETaq,., respectively, where,. contains the dis- ~ -
placement amplitudes of the individual plane wave modes. 7' (iwSTa’)=U"a"~U"a — U ay. (16)
Using Eqg.(8), and noting that there are no waves propagat-To simplify the above equations, we choose to use the trac-
ing in the negative direction on thez>0 side of the frac- tion vectoro as our primary variable. This choice leads to an

F(z—+0)=(5"),_=iwS"a",
(14)
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efficient implementation of a numerical algorithm, which we
will discuss later. Using the equalities in the first equation, —

at=(iwS") o,
a =(iwS) Ho—iwS ay).

These are used to eliminate the variatdesanda® from Eq.
(16), resulting in

7 o=U"(ioS") to-U (i0S) Ho—iwS ay)
—U"ay,
=(iw) UT(S") T =UT(S) (o-iwS an)
=(i0) *H(o— 0o (18)

17

or

[(io) *H=7"]o=(i0) "Hoj. (19

Note that the stress introduced by the incident wave is evalut

ated on the fracturez&0). The matrixH is defined as

H=U*(s")"1-u(s )
K3k
2
= RT ksR/k3 R, (20)
pCs R P
k;/Ks
whereR is the dimensionless Rayleigh function

R=[1-2(k, /kg)?1?+4(k, Ikg)?(KFkS/K3). (22)

T=[1+iQ+( Q)%+ 1o =(1—i1Q) op.. (24

| is the identity operator. If the scattering is weak so that the
stress field on the fracture can be approximated by the stress
introduced by the incident wave, thérst-orde) Born ap-
proximation can be used in ER3), resulting in

(29

which can also be obtained by keeping the first two terms in
the Neumann serig8orn seriegin Eq. (24). It is noted that

an alternative approximation that is valid for the strong-
scattering limit can be obtained if the stiffness of the frac-
ture, instead of compliance, is used. The derivation of this
approximation is shown in the Appendix.

Introducing higher-order terms in the Born series in-
creases the applicable range of the approximation for stron-
ger scattering, as long as the series is convergent. However,
he series may converge very slowly, or even may not con-
verge for moderately to strongly scattering fractulésr
weakly to moderately scattering fractures if the formulation
in Appendix is used For these cases, the original system
equation(19) has to be solved numerically.

o= &Inc+ [ Q&Inc: (1+iQ) alnc-

B. Numerical analysis

In order to solve the integral equatidoh9) numerically,
the equation is discretized in wave number to obtain a linear
system of equations by applying the discrete Fourier trans-
forms instead of the continuous Fourier transforms. This in-

It is noted thatH has the dimension of inverse acoustic im- dicates that both the two-dimensional fracture compliance
pedance, and botR andH are frequency independent for a distribution and the resulting waves are treated as periodic,

fixed wave propagation direction.

though the waves are periodic in the dynamic sense as in the

Equation (19) is a Fredholm integral equation of the Floquet boundary conditiofi.e., a phase shift is included in
second kind for the total stregson the fracture, which can the per|0d|c boundary COﬂdlthﬂAlSO for the linear System

be given explicitly as
?r(kx,ky)z?rmc(kx,ky)ﬂwH’l(kx,ky)

+ oo +oc~
xf_‘ f_ Mk~ k) ky—k))

of equations to be finite in size, the spectra of the trans-
formed fracture compliance need to be band limitddcay
away from the origin sufficiently fastThe discrete form of
Eq. (19) is [for computational efficiency, Eq$22) and(23)

are not usefl

~ ’ ' ' M-1 N-1
Xa(kx,ky)dk)(dky. (22) E E [(iw)ilgmm’6nn’Hmn_77m—m’,n—n’]’6'm’n’
The first term on the right-hand side of the equation is then' =0 n’=0
incident wave field, and the second term is the scattered :(iw)_lena'Incmn

wave field. The second term shows that, for a heterogeneous
fracture compliance distribution, different wave number (m=0,1,.M—-1 andn=0,1,.N—1). (26)

components are coupled through the convolution with the5 v and 3, are the Kronecker deltas. All vectors and ma-

Fourier transformed fracture compliance, resulting in ”On‘tnces are evaluated at discrete wave numbeks,,
specular transmission and reflection of an incident plane- /. and ky,=2n/L,, with indicesm and n. Note

wave. For simplicity, we define>33 matrix operatorsd —*
and 7. H™ ! is a “diagonal” multiplication operator(per-
forms multiplication by the matrifd 1), and 7 is a convo-
lution operatol] performs convolution in Eq12) with mul-
tiplication by the matrixz]. The formal solution of Eq(22)
is obtained(Neumann serigshy rewriting Eq. (22) using
these operators as

(23

where Q=wH 1%, and then by applying Eq23) recur-
sively to itself as

5': a|nc+ ioH™ 1 ;]5'5 a'mc"' i Q?r,

2764 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004

that all these |nd|ces are periodic with periddsandN, and
the compliance distribution is spatially periodic with periods
Ly andL,. The length of the periods given byl and N
should be sufficiently long to avoid spectral leakage in the
solution. By grouping the two indicesr(;n) and (m’,n’) to

the vectors and matrices into single indideand |’ (1,1’
=0,1,...MN—1), respectively, Eq.26) are assembled into a
single matrix equation

[(iw) *H-glo=(iw)"
where

(27)

l__
Hone,

Nakagawa et al.: Plane wave solution for heterogeneous fractures



Ho conjugate gradient methbtor the GMRES methdd is
used, it is_sufficient to store only the block diagonal part of
the matrixH and the transformed fracture compliance matri-
ces corresponding to the first . part of the matrix.
An iterative solver requires both fast computation of
_ _ _ matrix-vector productgmat-vec$ and effective precondi-
Mo MN-1 " W-MN+1 tioning of the system matrix. The fully populated structure of
B W1 o M MNe2 the system matrix is usually not suited for fast computation
n= : . . . ; of mat-vecs. Fortunately, Eq26) reveals that the matrix-
7 o ’ B vector product betweety and o is essentially a single con-
L ?MN-1  MMN-2 """ 7o volution between?, (=) and o, ,(=0a;). Therefore,
- (28) this computation can be carried out efficiently by transform-
ing the vectors to the spatial domain and then transforming
back the products between the vectors and the local compli-
_ _ ance matrices to the wave number domain, using fast Fourier
L OMN-1 Tinc,MN-1 transforms. The preconditioning of the matrix is carried out

gand% here are the inverse of multiplication operagfl in the spatial domain using the Kirchhoff approximation of

and convolution operatd in Eq. (23), respectively, defined the_ scatter_ed waves. T_h|s involves first computing th_e scat-
for a finite number of wave numbers. Once the stress vectdfiNg Matrix for the incident plane wave at each location on
o is determined, by solving Eq27), the coefficient vectors the fracture, assuming the fracture is homogeneous and the

for each wave number and wave mode component are Con;f_ompliance distribution is uniform. Subsequently, the result-
ing 3X3 block diagonal matrix is transformed in the wave

|
[

HMNfl

Oy Tinc,0

— o, — Oinc,1
o= : y Oipne™ :

puted via number domain, and then LU decomposition is applied to the
an,=(i0Sh)  1omn, (29  band-diagonal part of the matrix using a small bandwidth

_ g~ - (3-9 are used This LU-decomposed matrix is used for pre-
amn= (10Spn) " (Fmn~ Oinc), (30 conditioning the system matrix during each mat-vec opera-

for transmitted and reflected waves, respectively. From theséi,on- ) o )
the displacement vectors for the transmitted and reflected Fmally, folr a plane incident wave with a wave number
waves are vector (,“,ky), the definition of the wave numbers is

changed 1o Kem.kyn) = (ky°+2mm/L, ky'°+ 2n7/Ly), so

Mo that the nonspecular wave number components close to the
+ . — + 2+t 4t Ql(kgpX+kypy — ot) oo X
ur(x,y;z>0) mE:O nzo UnmnEmp@mn€ > e @, incident wave wave number are preferentially used to repre-
(31)  sentthe scattered waves. This is a reasonable choice because
M1 N1 the partial waves with wave numbers close to the source

_ o wave number are more strongly excited due to the coupling
u”(x.y;2<0)= mE:O nZO (UrnnEmeBmn introduced by the diagonally dominant kernel of the convo-
' lution integral in Eq.(22). The expression for the stress vec-
+ U Emn@ine,mn) € M kyy =Y (32) - tor also changes as

where E,, = Ei(kmx,kny;z) are the discrete forms of the ~ . ~
phase-shift matrices defined in E®). Tinc.mn— om0 Sn0Tinc- (33

C. Computational considerations
. EXAMPLES

The system matrix has a size MX M o Where M.
=MXNXDOF (degrees of freedom, three for three-
dimensional problemswhich grows rapidly as the number In order to check the performance of the numerical tech-
of wave number components increases. However, uniqueique, we compared the numerical results of the wd-SDD
properties of the equation allow an efficient implementationtechnique developed in the preceding sections to the results
of the method in a computer program, which leads to signififrom a two-dimensional, frequency-domain elastodynamic
cant savings in the computer time and memory. boundary element{BE) method of Hirose and Kitahara

First, we discuss the memory considerations. From Eqs(.199]).21 In this test, the results from the two methods were
(26), (27), and(28), notice that the system matrix consists of compared for an incident plarffewave propagating in the
two parts: the X3 block diagonal partH, and the fully direction. For the wd-SDD, we assumed a fracture with sinu-
populated party. The latter matrix has the same structure assoidal compliance distribution,  #(x,y)= ngl(1
the Toeplitz matrix: each element of the matrix, @38sub-  —cos 2mx/\)/2 wherel is a 3X3 identity matrix, 7o=1.33
matrix, appears recursively, with the first entry of the com-x10 1°m/Pa, and periodh=4 m. In contrast, the two-
pliance matrix 7= 73, in the diagonal. This is the direct dimensional fracture in the BE model is finite in extent from
consequence of expressing a convolution operation with a28 m to+28 m.
periodic function using a matrix. Therefore, for this system zdirection displacement waveforms computed for re-
matrix, if an iterative solver such as the stabilized bi-ceivers located on both sides of the fracture are shown in Fig.

A. Comparison with a boundary element code
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FIG. 2. Comparison between waveforms computed using the BEM and the 0

wd-SDD method. A plan® wave is normally incident on the fractures. The x(m)

first-arriving parts of the waves show very good agreement. The results of

the wd-SDD method show long-lasting reverberati¢itdda”) due to the  FIG. 3. Single periodic cell for the compliance distribution of a simulated

waves scattered a long distance away from the receiver. fracture. The distribution is periodic in bothandy directions. The corre-
lation length of the distribution is 4 rtsingle standard deviation of a fitted

. . . Gaussian distributionand the compliance values vary by about an order of
2. The distance of the receivers from the fracture is 20 m, thg, gniwde. o P Yo

incident wave is a plan® wave Ricker wavelei{second
derivative of a Gaussian wavelawith a central frequency

correspondingd 4 m which is also the spatial period of the mogeneous, isotropic, elastic background  wers,

compliance distribution. Compared to the SDD results, the_ 3000 m/s,cs=1731 m/s, ang=2100 kg/ni, respectively.

because the fracture in the BE model is finite. However, thﬁ’f.the. fracture had a homqgeneous fracture corpflllance dis
. . ribution, the mean compliance value of 640 *“m/Pa

waveforms are in good agreement until about 28 ms, for both . o .

: o would give the same normal incidenBewave transmission

reflected and transmitted waveforms, which indicates that the . . ;

i : and reflection coefficients of amplitudes ¥/2~0.71. The

scattering of the waves can be accurately modeled using the " .- ; .

condition for this to occur is that frequeneyc, /.

wave-number-domain SDD technique. The secondary arriv- The snapshots in Figs(a@ and 4b) were computed for
als that also show rather good agreement are due t&the PSNOtS 9 . put
both a normally incidenP wave and an obliquely incideift

waves converted by the fracture. . ) .

wave with a unit propagation vector vy{,vy,v,)

=(1/y/3,14/3,14/3), respectively. To emphasize the scat-
B. Numerical models of a heterogeneous fracture tered waves with small amplitudes, the amplitude scale was

In the following examples, we used a fracture with amagnified by a factor of 4, which caused the saturation of

numerically simulated stochastic compliance distribution.scale for a part of transmitted and reflected waves. In both
For simplicity, the fracture compliance matrix was assumedsnapshots, it can be seen that patches of large and small
to be proportional to an identity matrix, i.e., normal and compliance scatter the incident waves, creating circular
shear compliances are the same, afiet,y)= n(x,y)l. A (spherical diffraction patterns in both sides of the fracture.
distribution of logarithmic compliance, i(x,y), was gener- For the normal incidence case, the amplitude and phase fluc-
ated from a Gaussian correlation function with a correlatiorfuations in the both transmitted and reflected waves can be
length (one standard deviatipnof 4 m and uncorrelated S€en. Itis also noted that incoher&waves were generated.
phase between the Fourier componéhtghe range of a For the oblique incidence case, the diffracted waves gener-
single periodic cell is I(,,L,)=(64m,64m). The resulting atéd horizontally propagating waves in later times, part of
compliancez(x,y), shown in Fig. 3, has a log-normal dis- Which was critically refracted as head waves propagating
tribution with a mean and a standard deviation of the comaway from the fracturémultiple, faint oblique wave fronts
pliance of 6.74 10 'm/Pa and 4.8% 10 1'm/Pa, respec- Propagating symmetrically across the fraciure

tively. The correlation length of the distributiorione Figure 5 shows the amplitude distribution of individual
standard deviation of a fitted Gaussian profie approxi- ~Wave number components for a given frequercg0 Hz
mately 4 m. and angles of incidencénormal and oblique of incident

planeP waves. The axes of the plots show the integral num-
bers (m,n) corresponding to the wave number components
(Kem:Kyn) = (Ky*+ 2mar/L, k) +2n7/L,). Remember that
Waves scattered by the heterogeneous fracture in Fig. ©ie components of wave numbers used in the numerical
were computed for a plane incideRtwave, using a Ricker simulations were distributed around the incident wave num-
wavelet (second derivative of a Gaussian funcliomith a  ber (k!(”c,ki,“c). These diagrams can be used to see if the
central frequency, 750 Hz, corresponding to the correlatiorspectrum leakage occurs due to a premature truncation of the

length of the fracture. The velocities and density of the howave number seriegor undersampling in the spatial do-

C. Exact solutions
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FIG. 4. Three-dimensional snapshots of the waves scattered by a single plane fraztufe aith the heterogeneous fracture compliance distribution shown

in Fig. 4. Bothx andz direction particle displacements are shown on the surfaces of a cube cut out of an infinite medium containing the fracture. The top two
rows are for a normally incider® wave propagating from the bottom of the plots, and the bottom two rows are for an obliquely incident P waves propagating
from the bottom left corner of the cube, in tk&v3,1//3,1#/3) direction.

main). For this example, although the length of the waveThis is because the convolution matrag, and therefore the
number series was rather shpit1,N)=(32,32], the ampli-  system matrix in Eq(27), becomes block diagonal due to the
tudes of the scattered waves became significantly small at tHack of coupling between different wave number compo-
edge of the diagram, showing posteorithat the selected nents. For a plane incident wave, using the vectors and ma-
length of the series was sulfficiently long. It is also noted thatrices in Eq.(28), the “exact” equation(27) reduces to

while the normal-incidence case showed no coupling be-

tween the incidentP wave andSh waves, the oblique- [(i0) *Ho— 7] o=(w) Heay,. oOr
incidence case showed sm&lh waves.
D. Born approximations and low- and high-frequency (I—iwHgy 720) 0= (1 — 1 Qo) Tp= e (34

asymptotic solutions

If the compliance distribution is uniform, only the For a diagonal fracture compliance matrixa,
specular wave number component needs to be examineekdiad 7., 7y, 7, Qo is
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(a) Wave number diagrams for a normally incident P wave

Sv wave Sh wave P wave

15

15 0.01

10

x Ot
L] e
B [0 ] B
Asf
KT 0
0.15
o 01
©
2
a
£
® 005}
0.001
lI 0.1
oL 0 - ol mslmenll
-1 -10 -5 0 5 10 15 <15 10 -6 0 5 10 18 -5 <10 5 0 5 10 15
m m m

(b) Wave number diagrams for an obliquely incident P wave

FIG. 5. Sv, Sh, andP-wave amplitude distributions of wave number components around a unit amplitude, ineidente (m=n=0). Both the normal
incidence caséa) and oblique incidence cagb) are shown. The frequency of the waves is 750 Hz. The color scale is saturated for components with an
amplitude larger than 0.01. The line diagrams are the profiles of the distributions cut along thediiéshown as a dotted lineThe amplitudes of the wave
number components decay quickly away from the cefit@ident wave.

_ [wpcsny wpcsnyy wpCpn,, (2000.% The stiffness based equatiofdefined in Appen-
Q,=Diag > > 5 dix) also reduces to
ED|ag:QSU QSh Qp] (35)

(ioHg ' —Ro)[U]=iwHg [U]jne  OF

Therefore the components of this matrix are the dimension-
less frequencies defined by Haugen and Schoenberg [I—(iw) *Horol[Ulo=(1+iTo)[Ulo=[U]inc. (36)
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Since bothz, and 'k, are constant and diagonal, ahig is  Also, from the Appendix, the stiffness-based Born series is
also diagonal for normally incident Waveﬁoz"r}gl, and . .
Tozﬂ_l. Therefore, the two Born series are — = =
o [u]= 2 [(i@) *H&]"[Uline= 2, (=)™ T [Uline.
5'0: E inﬂg'alnm (37) (40
n=0

These series are convergent|f®|<1 and|T|<1, i.e., the
magnitude of the eigenvalues of the matrices are smaller than
unity. It is desirable to interpret these conditions as the low-
and high-frequency limits, as we saw for a homogeneous
Since the eigenvalues of the matric® and Q,* are the  fracture, so that we can apply the Born approximations to the
Haugen and Schoenberg’'s dimensionless frequencies amslw- and high-frequency scattering problems for a heteroge-
their inverse, the above Born series converge|€dg, sy, p| neous fracture. We will examine these possibilities using nu-
<1 for compliance based series, ajfdls, s,p|>1 for the  merical simulations.
stiffness based series. Therefore compliance and stiffness- For the fracture model used in the preceding section, we
based Born approximations can be applied in the low- andan compute the scattered wavefield from tgeneralizeyl
high-frequency limits, respectively. Physically, the Born series. For simplicity, we assume normally incident,
compliance-based Born series can be viewed as a perturbmonochromatic transmitteB waves, and examine only the
tion of the totally transmitted waves across a welded fracturgpecular component of the waves. The “exact” solutions are
in the static limit by small reflection of nonzero-frequency also computed from Eq27) for a range of frequencies, and
wave energy. In contrast, the stiffness-based Born series iscqompared to the Born approximations of different orders.
perturbation of the totally reflected waves for an open fracFigures 6 shows the comparisons of transmission coefficient
ture in the high-frequency limit by small transmission of amplitudes computed from ttredirection particle motions of
finite-frequency wave energy. P waves. Each curve in the plots is labeled with the order of
For heterogeneous fracture compliance and stiffness disBorn approximation. The low-frequency approximations
tributions, these relationships are more complicated due twere computed using the compliance-based Born series, and
the nonspecular scattering of waves. The matrix-vector formhe high-frequency approximations were computed using the

[mo=n§0 (—1)" Q" [UWinc.- (39)

of the Born series is obtained from E@3) as

M s

n=0

©

(i wH_ilil)nEIncE 20 in(_y]glnc-
n=
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stiffness-based Born series. As can be seen from the plots,
the Born approximations appear to be valid in both low- and
high-frequency limits, respectively, and including higher-
(39 : . . I
order terms in the Born series does improve the applicability
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! I series as a function of frequenglyigs. 8 left and right, re-
spectively. It is noted that the lowest order term of the
stiffness-based Born series®{1/w), because the transmit-
ard order Born ted wave’s displacement computed from the displacement is
Transmitted waves | :Z:;‘:X':‘o";:'t“’:n computed via a relationship” =[U]—[U],,c Which removes
% the Oth order term from the original Born series.
From Fig. 8 left, the second and the higher-order terms
MJReﬂécted waves of the compliance-based Born series all exhi{tw) depen-
05 V’\ e dence, instead of the expect®fw") dependence for a ho-
v mogeneous fracture in E§37), wheren is the order of the
term. This indicates that, although it is still a good approxi-
- mation due to small magnitudes of the terms higher than
0 50 100 150 200 . . . .
tme  (msec) >2, the compliance-based Born approxmapon does not give
the exact low-frequency asymptotic solution. In contrast,
FIG. 7. Comparison betweerdirection particle motions computed by solv- from Fig. 8 right, the terms in the stiffness-based Born ap-

ing the matrix equation in Eq27) and by the third-order, compliance-based proximation areO(l/w”) giving correct high-frequency as-
Born approximation. The central frequency of the incident Ricker wavelet ’

(P wave is 100 Hz, and the receivers are located on both sides, 32 m awaymptqtes' ) .
from the fracture. The results are nearly identical. Since the frequency-independefitmatrices should re-

sult in O(w") dependence of the compliance-based Born se-

of the approximations. For the fracture and background propr-'efc' from Eq.(BQ), the aboye result seems to be incorrect.
erties used for this example, the low-frequency approxima:rh_IS a_ppare_nt discrepancy is due to th~e wave numbe_r convo-
tion is valid below 150 Hz, and the high-frequency approxi-lmIon involving bothH=H(k; /w) and »= (k) for twice
mation is valid above 10 kHz. In Fig. Zdirection particle or more scattered waves in the compll_ance—based Born se-
displacements are compared for both third-order Born ap[i€S- H is frequency independent only if the plane parallel
proximation and the exact numerical solution. The receiverd/ave numbe_rkr is viewed as a function of frequeljcy
are located az=32m (transmitted wavesandz=—32m  (Kr/@=p, p is the plane parallel slowngssHowever, this
(reflected waves and a low frequencya central frequency exghaqge of independent yanables does not mgke thg convo-
of 100 H2 Ricker wavelet was used. For this example, thelution integral frequency independent, becauge which
results of the two methods are indistinguishable. originally is dependent upon only; , is now frequency de-

However, these results do not necessarily guarantee thRgndentn=(k;)=(wp). Therefore, the resulting convo-
the first two terms in the Born serid§irst-order Born ap- ution operators (or matrice3 Q"=(wH *7)" are not
proximations are exactly the leading terms in the series, i.e.O(®"). In contrast, for high-frequencies and the stiffness-
low- and high-frequency asymptotes of the exact solutionsbased Born serieg] is frequency independent without ex-
We examined the low- and high-frequency limit behavior ofchanging ~ the  variables,  because H=H(k, /)
the two Born series more in detail by plotting the displace-=H(kf/ks,kf/ks)aH(cS/cp,l), which  yields T"
ment amplitudes computed from the individual terms of both~O(w ™ ").
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FIG. 8. Displacement amplitude computed from individual terms in the Born series for a unit-amplitude, plane iRcidre. Thez-direction particle
displacements of transmittel wave are shown. Thath-order term of the high-frequency Born serigight) scales a©(1/w"). In contrast, all the terms

except for the Oth-order terrfincident wave in the low-frequency Born serigdeft) scale asO(w). The absolute magnitudes of the higher order terms,
however, are small for this example.
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IV. CONCLUSIONS (= [U]) (Ky ky) = T(Ky k). (A1)

We developed a plane wave method to compute thg is the Fourier transformed fracture stiffness matrix. By
three-dimensional scattering of plane elastic waves by a fraGsing the displacement discontinuity vecfor] as the pri-

ture with a heterogeneous stiffnégempliance distribution.  mary variable, the traction vectar is eliminated from Eq.
This technique allows us to examine the relationships be¢A1), resulting in

tween the characteristics of scattered elastic waves and the =~ . _ = =
microstructural variations along the fracture pldeeg., sur- (foH™ =k [u]=iwH " {ulinc, (A2)
face contact and crack distribution, gouge layer thicknessvhere the incident term for the displacement—discontinuity
variation that are modeled as heterogeneities in the fracturgector is defined as
compliance distribution. ~1 e+

This method is a straightforward extension of the com- [Uline=~HS"anc- (A3)
monly used seismic displacement discontinuit@DD) Equation(A3) is the displacement—discontinuity vector for
method for a homogeneous fracture, to a fracture with a hetan open fracturéfree surfacg The integral equation corre-
erogeneous fracture compliance distribution. Even thouglsponding to Eq(22) is
the developed technique is a full-waveform technique and ~ ~ S

. . . = +

successfully models a variety of wave phenomena involving [ulChe ky) =LUlinelko ky) + (0 @)= “H (ke ky)

a fracture, such as mode converted waves, head waees Hoo (oo ) _—

fracted wavep surface waves and diffracted waves, it does X j . f . wi(ke— k. ky=ky)[u]

not require massive parallel computers as finite difference

methods and boundary element methods would do. X (ky ,ky)dkg dk, (A4)

The current numerical technique can be applied to non- . . .
L : e N and the Neumann seri¢Born serie§ corresponding to Eq.

planar incident waves by simply modifying the incident 24) is
wave vector. In this case, however, a larger number of wavé o . o
number components need to be used in the matrix equation. [U]=[1—iT+(=iT)2+ - ][UWlne=+iT) LUlinc,
It should also be noted that this technique is difficult to apply (A5)
to extremely heterogeneous fractures, because such fractur\?’ﬁere the operato?is defined a3 = w~'H . Note that. in
typically results in a large linear system of equations to solve eneral, the fracture stiffness convolution operatds r;ot

for nk? nspfecul(?;f comtp?nent;sh Of_ sc_fatterted Waver vtvr:th V\;ﬁvgne inverse of the compliance operafprEquation(A4) can
numbers far dierent from the incident wave. FUrter, ey,q \iven in a matrix form to be solved numerically. The

compliance-based equations break down for open cracks an sulting matrix equation is equivalent to the compliance-

voids (infinite compliancg and th_e _sti_ffnes_s -based equations based equatio(26) but shows faster convergence of iterative

break dO.W” for welded surfacemfinite stifines3, because solutions at higher frequencies. This property can be used to

the Fourier trgnsforms cagncr)]t be performec:. . efficiently implement the computer program to solve for the
Last, we demonstrated that two types of Born series Callgxact” solutions: the compliance formulation is used at low

be used to examine the low- and high-frequency limit beh‘"‘\/i‘requencies and the stiffness formulation at high frequencies.
ior of the wave scattering by a heterogeneous fracture. The

low-frequency Born seriescompliance-based formulatign
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