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A plane-wave method for computing the three-dimensional scattering of propagating elastic waves
by a planar fracture with heterogeneous fracture compliance distribution is presented. This method
is based upon the spatial Fourier transform of the seismic displacement-discontinuity~SDD!
boundary conditions~also called linear slip interface conditions!, and therefore, called the
wave-number-domain SDD method~wd-SDD method!. The resulting boundary conditions
explicitly show the coupling between plane waves with an incident wave number component
~specular component! and scattered waves which do not follow Snell’s law~nonspecular
components! if the fracture is viewed as a planar boundary. For a spatially periodic fracture
compliance distribution, these boundary conditions can be cast into a linear system of equations that
can be solved for the amplitudes of individual wave modes and wave numbers. We demonstrate the
developed technique for a simulated fracture with a stochastic~correlated! surface compliance
distribution. Low- and high-frequency solutions of the method are also compared to the predictions
by low-order Born series in the weak and strong scattering limit. ©2004 Acoustical Society of
America. @DOI: 10.1121/1.1739483#
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I. INTRODUCTION

At microscales, fractures in rocks, metals, and ceram
can take many different forms including aligned open crac
two surfaces in imperfect contact and a planar, thin zo
filled with materials more compliant than the backgrou
medium.1 Since a fracture scatters propagating elastic wa
as a function of the microscale structure and resulting m
chanical properties, they can be detected and characte
from the scattering behavior of the waves. The microsc
properties, including surface roughness and aperture distr
tion, and connectivity and permeability of the cracks a
gouge material, can also have a large impact on the hydra
properties of a fracture.

Unfortunately, the microscale geometry and spa
property variations of a fracture is difficult to resolve usi
elastic waves if these heterogeneous features are m
smaller than the wavelengths. Instead, these heterogen
are likely to affect the scattering behavior of the wav
through static, effective mechanical properties of the fract
that are determined at some subwavelength scale larger
the heterogeneities themselves. This is one of the basic p
ciples of the seismic displacement–discontinuity~SDD!
boundary conditions~also known as linear-slip interface con
ditions! commonly used for examining elastic wave scatt
ing by fractures.

The SDD conditions assume a linear relationship
tween the wave-introduced, small relative displacement
stress across a fracture, via material parameters called
ture stiffness and its inverse, fracture compliance.2 Since the
SDD model is incapable of discriminating the detailed lo
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geometry of a fracture, the fracture compliance does not
rectly reflect the hydraulic properties. However, in genera
large compliance value suggests a more open, perme
fracture. Baik and Thompson~1984!3 showed that the frac-
ture compliance can be determined analytically for fractu
consisting of sparsely distributed, co-planar circular cra
and of contact patches between half-spaces. Angel
Achenbach~1985!4 showed that elastic wave scattering off
fracture, consisting of aligned microcracks, can be mode
by the SDD conditions for long wavelengths. From labo
tory ultrasonic transmission tests across a synthetic frac
with known, regular geometry, Myeret al. ~1985!5 found
good agreement between measured waves and theore
prediction by the SDD model.

Theoretical studies based upon the SDD model on
elastic wave scattering by fractures are limited to, or assu
fractures with a homogeneous distribution of fracture co
pliance on the fracture plane.2,6–8 This is because the con
ventional SDD model, when used with plane wave theo
requires a ‘‘range-independent’’~material properties do no
vary along the fracture plane! fracture compliance distribu
tion. Naturally occurring fractures are, however, hetero
neous, with the microscale properties varying along the fr
ture plane. This gives rise to fracture compliance that
spatially heterogeneous and, possibly, correlated. Since
heterogeneity of a fracture has a great impact on the hyd
lic and mechanical properties of the fracture,9–12 understand-
ing the effect of the heterogeneity on the scattering of ela
waves can provide valuable tools for geophysical and n
destructive characterization of the fracture properties.

In this paper, we present analytical and numerical te
niques to examine the elastic wave scattering by a heter
neous fracture, based on the ‘‘local’’ SDD boundary con
tions and the plane wave theory. This is achieved
il:
2761761/12/$20.00 © 2004 Acoustical Society of America



n
e.
d

o

pe
n

o
er
m
fra

i
tu
d

nt
th
a

t f
re
st
ca
h
o

li-
th
b
he
lo

m
ly
re
e

f
ac
er

b
d
at

m-

on
n,

se

a

ed-
tiff-

e
dis-
s

od-
ture
applying a spatial Fourier transform to the SDD conditio
with ‘‘local’’ fracture compliance that is a function in spac
For this reason, this method is called the wave number
main seismic displacement discontinuity method~wd–SDD
method!. Previously, the local SDD model was used in ge
metric ray approximations. Pyrak-Nolte and Nolte~1992!13

examined the apparent, scattering induced frequency de
dence of fracture compliance assuming that the complia
varied much more slowly compared to the wavelength~high-
frequency ray approximation!. Nihei ~1989!14 and Oliger
et al. ~2003!15 used Kirchhoff approximations to take int
account the diffraction of waves transmitted across a het
geneous fracture. In the Kirchhoff approximations, the a
plitudes and phases of the transmitted waves across a
ture are computed at each location on the fracture, assum
that the fracture is planar and has a single value of frac
compliance assigned to that location. In contrast, the w
SDD method is not limited to high frequencies and takes i
account the interactions between different locations on
fracture. Although numerical methods such as the bound
element method16 and the finite difference method17,18 can
also be used to examine the scattering of elastic waves a
range of frequencies, applications of these methods to th
dimensional problems results in high computational co
particularly large computer memory. Further, the analyti
nature of the introduced method can provide clearer insig
into the mechanism of wave scattering by a heterogene
fracture.

II. THEORY

A. Plane wave analysis

We first hypothesize that the ‘‘local fracture comp
ance’’ can be defined for a fracture. This means that
dynamic behavior of a real fracture is well approximated
the behavior of an interface between half-spaces with a
erogeneous distribution of compliance which is measured
cally at some length scale much smaller than the seis
~elastic wave! wavelengths. This approach is common
taken to numerically simulate wave scattering by fractu
with heterogeneous surface contacts using the boundary
ment method and the finite difference method.

In our model, we also assume that the dimension o
fracture in the fracture-normal direction, such as the surf
roughness and waviness, is much smaller than consid
seismic wavelengths, and therefore, the fracture can
treated as a plane. For the local fracture compliance mo
the SDD boundary conditions are specified at each sp
location on the fracture on thex, y plane as~Fig. 1!

s~x,y;z→10!5s~x,y;z→20![s~x,y!, ~1!

h~x,y!s~x,y!5@u#~x,y!, ~2!

where the displacement–discontinuity vector@u#, stress trac-
tion vectorss, and the compliance matrixh are defined as
2762 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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@u#~x,y![u~x,y;z→10!2u~x,y;z→20!

5F ux

uy

uz

G
z→10

2F ux

uy

uz

G
z→20

, ~3!

s~x,y;z→60!5F sxz

syz

szz

G
z→60

, ~4!

h~x,y![F hxx hxy hxz

hyx hyy hyz

hzx hzy hzz

G . ~5!

It is noted that the stress traction vector is defined via co
ponents of stress on planes parallel to thex, y plane rather
than components of traction the sign of which depends
the orientation of the surface. However, without confusio
we shall call this ‘‘traction~vector!.’’ We assume that the
incident waves insonify the fracture on thez,0 side. By
directly applying the spatial 2D Fourier transform to the
‘‘local’’ SDD conditions given in Eqs.~1! and ~2!, we get

s̃~kx ,ky ;z→10!5s̃~kx ,ky ;z→20![s̃~kx ,ky!, ~6!

~h̃* s̃!~kx ,ky!5@ ũ#~kx ,ky!. ~7!

Tilde ‘‘˜’’ indicates transformed variables, and ‘‘* ’’ indicates
a convolution. It is noted that for a uniform fracture,h(x,y)
is a constant matrix, and the convolution is reduced to
multiplication, i.e., the same relationship as in thex, y do-
main.

In this paper, we assume a single plane fracture emb
ded within a homogeneous background medium with a s
ness tensorC5@Ci jkl # and a densityr. For a given fre-
quencyv and fracture-parallel wave numberskx andky , the
Christoffel equation is solved to obtain sixz-direction wave
numberskz

16 , kz
26 , kz

36 , where 1, 2, 3 indicate the thre
modes of plane waves, and corresponding unit particle
placement vectorsû1

6 , û2
6 , û3

6 . Hereafter, the superscript

FIG. 1. Heterogeneous fractures with a variety of microstructures are m
eled as a planer interface between half-spaces with spatially varying frac
compliance~springs in the figure!.
Nakagawa et al.: Plane wave solution for heterogeneous fractures
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‘‘ 2’’ and ‘‘ 1’’ indicate waves propagating in the negativez
direction ~reflected waves! and in the positivez direction
~incident and transmitted waves!, respectively. For plane
waves, the displacement and stress can be related to
other via single vector variablesa6 containing the displace
ment amplitudes of three plane wave modes. Using the w
numbers and unit displacement vectors defined in the ab
a single wave number component of the plane wave
placement is given by

u6~x,y;z!

5F ux
6

uy
6

uz
6
G ~5ũ6~kx ,ky ;z!!5$û1

6 û2
6 û3

6%

3F eikz
16z

eikz
26z

eikz
36z

G
3F a1

6

a2
6

a3
6
Gei ~kxx1kyy2vt !

[U6~kx ,ky!E6~kx ,ky ;z!a6~kx ,ky!ei ~kxx1kyy2vt !, ~8!
d

a
g

e

n
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e
a
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wherev is the circular frequency. The traction is comput
from the displacement vector using the Hooke’s law as

s6~x,y;z!~5s̃6~kx ,ky ;z!!

5F sxz
6

syz
6

szz
6
G

5 ivS6~kx ,ky!E6~kx ,ky ;z!a6~kx ,ky!ei ~kxx1kyy2vt !.

~9!

Dependence on the phase term,ei (kxx1kyy2vt), is understood
and omitted from the following equations. We will defineS6

shortly.
For an isotropic background medium, the three mode

wave propagation are two shear~S! waves and one compres
sional ~P! wave. We label these modes as 15Sv wave, 2
5Sh wave, and 35P wave, where a convention is take
such that theSh wave has the particle displacement paral
to the fracture~or z! plane. For a plane-parallel wave numb
kr5Akx

21ky
2, the z-direction wave numbers arekz

1,26

56kz
S[6AkS

22kr
2 and kz

3656kz
P[6AkP

2 2kr
2, wherekP

5v/cP andkS5v/cS are theP- andS-wave wave numbers
with velocities cP and cS , respectively. The displacemen
and stress matrices in Eqs.~8! and ~9! take the forms
U65RTF 7kz
S/kS kr /kP

1

kr /kS 6kz
P/kP

G , ~10!

S65rcSRTF 2~122~kr /kS!2! 0 62krkz
P/kPkS

0 6kz
S/kS 0

62krkz
S/kS

2 0 ~122~kr /kS!2!~kS /kP!
G , ~11!
ity

rac-
an
whereR is the rotation matrix around thez axis given by

R[F kx /kr ky /kr

2ky /kr kx /kr

1
G . ~12!

The superscript ‘‘T’’ indicates matrix transposition. It is note
that the matricesU6 and R are dimensionless, andS6 has
the dimension of acoustic impedance. Also, all of these m
trices are frequency independent for a given wave propa
tion direction~or a fracture-parallel slowness! because wave
numbers in the expressions appear only as a ratio betw
two wave numbers.

Using Eqs.~8! and ~9!, the displacement and tractio
introduced by an incident plane wave propagating in
positive z direction are ũInc5U1E1aInc and s̃Inc

5 ivS1E1aInc , respectively, whereaInc contains the dis-
placement amplitudes of the individual plane wave mod
Using Eq.~8!, and noting that there are no waves propag
ing in the negativez direction on thez.0 side of the frac-
-
a-

en

e

s.
t-

ture, the transformed-domain displacement–discontinu
vector on the fracture is computed from Eqs.~3!, ~8!, and
~10! as

@ ũ#[ũ~z→10!2ũ~z→20!

5@ ũ12~ ũ21ũInc!#z50

5U1a12~U2a21U1aInc!. ~13!

The traction vectors are given by Eqs.~9! and ~11! as

s̃~z→10!5~s̃1!z505 ivS1a1,
~14!

s̃~z→20!5~s̃21s̃Inc!z505 iv~S2a21S1aInc!.

Using Eqs.~13! and ~14!, Eqs. ~6! and ~7! are rewritten,
respectively, as

ivS1a15 iv~S2a21S1aInc![s̃~kx ,ky!, ~15!

h̃* ~ ivS1a1!5U1a12U2a22U1aInc . ~16!

To simplify the above equations, we choose to use the t
tion vectors̃ as our primary variable. This choice leads to
2763agawa et al.: Plane wave solution for heterogeneous fractures
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efficient implementation of a numerical algorithm, which w
will discuss later. Using the equalities in the first equatio

a15~ ivS1!21s̃,
~17!a25~ ivS2!21~s̃2 ivS1aInc!.

These are used to eliminate the variablesa2 anda1 from Eq.
~16!, resulting in

h̃* s̃5U1~ ivS1!21s̃2U2~ ivS2!21~s̃2 ivS1aInc!

2U1aInc

5~ iv!21@U1~S1!212U2~S2!21#~s̃2 ivS1aInc!

[~ iv!21H~s̃2s̃Inc!. ~18!

or

@~ iv!21H2h̃* #s̃5~ iv!21Hs̃Inc . ~19!

Note that the stress introduced by the incident wave is ev
ated on the fracture (z50). The matrixH is defined as

H[U1~S1!212U2~S2!21

5
2

rcS•R
RTF kz

S/kS

kSR/kz
S

kz
P/kS

GR, ~20!

whereR is the dimensionless Rayleigh function

R[@122~kr /kS!2#214~kr /kS!2~kz
Pkz

S/kS
2!. ~21!

It is noted thatH has the dimension of inverse acoustic im
pedance, and bothR andH are frequency independent for
fixed wave propagation direction.

Equation ~19! is a Fredholm integral equation of th
second kind for the total stresss̃ on the fracture, which can
be given explicitly as

s̃~kx ,ky!5s̃Inc~kx ,ky!1 ivH21~kx ,ky!

3E
2`

1`E
2`

1`

h̃~kx2kx8 ,ky2ky8!

3s̃~kx8 ,ky8!dkx8 dky8 . ~22!

The first term on the right-hand side of the equation is
incident wave field, and the second term is the scatte
wave field. The second term shows that, for a heterogene
fracture compliance distribution, different wave numb
components are coupled through the convolution with
Fourier transformed fracture compliance, resulting in no
specular transmission and reflection of an incident pl
wave. For simplicity, we define 333 matrix operatorsH̄21

and hS . H̄21 is a ‘‘diagonal’’ multiplication operator~per-
forms multiplication by the matrixH21), andhS is a convo-
lution operator@performs convolution in Eq.~12! with mul-
tiplication by the matrixh̃#. The formal solution of Eq.~22!
is obtained~Neumann series! by rewriting Eq. ~22! using
these operators as

s̃5s̃Inc1 ivH̄21hS s̃[s̃Inc1 i V̄s̃, ~23!

where V̄[vH̄21hS , and then by applying Eq.~23! recur-
sively to itself as
2764 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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s̃5@ Ī1 i V̄1~ i V̄!21¯#s̃Inc5~ Ī2 i V̄!21s̃Inc . ~24!

Ī is the identity operator. If the scattering is weak so that
stress field on the fracture can be approximated by the st
introduced by the incident wave, the~first-order! Born ap-
proximation can be used in Eq.~23!, resulting in

s̃5s̃Inc1 i V̄s̃Inc5~ Ī1 i V̄!s̃Inc , ~25!

which can also be obtained by keeping the first two terms
the Neumann series~Born series! in Eq. ~24!. It is noted that
an alternative approximation that is valid for the stron
scattering limit can be obtained if the stiffness of the fra
ture, instead of compliance, is used. The derivation of t
approximation is shown in the Appendix.

Introducing higher-order terms in the Born series
creases the applicable range of the approximation for st
ger scattering, as long as the series is convergent. Howe
the series may converge very slowly, or even may not c
verge for moderately to strongly scattering fractures~for
weakly to moderately scattering fractures if the formulati
in Appendix is used!. For these cases, the original syste
equation~19! has to be solved numerically.

B. Numerical analysis

In order to solve the integral equation~19! numerically,
the equation is discretized in wave number to obtain a lin
system of equations by applying the discrete Fourier tra
forms instead of the continuous Fourier transforms. This
dicates that both the two-dimensional fracture complian
distribution and the resulting waves are treated as perio
though the waves are periodic in the dynamic sense as in
Floquet boundary condition~i.e., a phase shift is included in
the periodic boundary condition!. Also, for the linear system
of equations to be finite in size, the spectra of the tra
formed fracture compliance need to be band limited~decay
away from the origin sufficiently fast!. The discrete form of
Eq. ~19! is @for computational efficiency, Eqs.~22! and ~23!
are not used#

(
m850

M21

(
n850

N21

@~ iv!21dmm8dnn8Hmn2h̃m2m8,n2n8#s̃m8n8

5~ iv!21Hmns̃Inc,mn

~m50,1,...,M21 and n50,1,...,N21!. ~26!

dmm8 anddnn8 are the Kronecker deltas. All vectors and m
trices are evaluated at discrete wave numbers,kxm

52mp/Lx and kyn52np/Ly , with indicesm and n. Note
that all these indices are periodic with periodsM andN, and
the compliance distribution is spatially periodic with perio
Lx and Ly . The length of the periods given byM and N
should be sufficiently long to avoid spectral leakage in
solution. By grouping the two indices (m,n) and (m8,n8) to
the vectors and matrices into single indicesl and l 8 ( l ,l 8
50,1,...,MN21), respectively, Eq.~26! are assembled into a
single matrix equation

@~ iv!21H̄2hS #s̄5~ iv!21H̄s̄Inc , ~27!

where
Nakagawa et al.: Plane wave solution for heterogeneous fractures
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H̄[FH0

H1

�

HMN21

G ,

hS[F h̃0 h̃21 ¯ h̃2MN11

h̃11 h̃0 ¯ h̃2MN12

] ] � ]

h̃MN21 h̃MN22 ¯ h̃0

G ,

~28!

s̄5F s̃0

s̃1

]

s̃MN21

G , s̄Inc5F s̃Inc,0

s̃Inc,1

]

s̃Inc,MN21

G .

H̄ andhS here are the inverse of multiplication operatorH̄21

and convolution operatorhS in Eq. ~23!, respectively, defined
for a finite number of wave numbers. Once the stress ve
s̄ is determined, by solving Eq.~27!, the coefficient vectors
for each wave number and wave mode component are c
puted via

amn
1 5~ ivSmn

1 !21s̃mn , ~29!

amn
2 5~ ivSmn

2 !21~s̃mn2s̃Inc!, ~30!

for transmitted and reflected waves, respectively. From th
the displacement vectors for the transmitted and reflec
waves are

u1~x,y;z.0!5 (
m50

M21

(
n50

N21

Umn
1 Emn

1 amn
1 ei ~kxmx1kyny2vt !,

~31!

u2~x,y;z,0!5 (
m50

M21

(
n50

N21

~Umn
2 Emn

2 amn
2

1Umn
1 Emn

1 aInc,mn!e
i ~kxmx1kyny2vt !, ~32!

where Emn
6 5E6(kmx ,kny ;z) are the discrete forms of th

phase-shift matrices defined in Eq.~8!.

C. Computational considerations

The system matrix has a size Mmat3Mmat where Mmat

5M3N3DOF ~degrees of freedom, three for thre
dimensional problems! which grows rapidly as the numbe
of wave number components increases. However, un
properties of the equation allow an efficient implementat
of the method in a computer program, which leads to sign
cant savings in the computer time and memory.

First, we discuss the memory considerations. From E
~26!, ~27!, and~28!, notice that the system matrix consists
two parts: the 333 block diagonal partH̄, and the fully
populated parthS . The latter matrix has the same structure
the Toeplitz matrix: each element of the matrix, a 333 sub-
matrix, appears recursively, with the first entry of the co
pliance matrixh̃005h̃0 in the diagonal. This is the direc
consequence of expressing a convolution operation wit
periodic function using a matrix. Therefore, for this syste
matrix, if an iterative solver such as the stabilized
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Nak
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conjugate gradient method19 or the GMRES method20 is
used, it is sufficient to store only the block diagonal part
the matrixH̄ and the transformed fracture compliance ma
ces corresponding to the first 33Mmat part of the matrixhS .

An iterative solver requires both fast computation
matrix-vector products~mat-vecs! and effective precondi-
tioning of the system matrix. The fully populated structure
the system matrix is usually not suited for fast computat
of mat-vecs. Fortunately, Eq.~26! reveals that the matrix-
vector product betweenhS and s̄ is essentially a single con
volution betweenh̃m,n(5h̃l) and s̃m,n(5s̃l). Therefore,
this computation can be carried out efficiently by transfor
ing the vectors to the spatial domain and then transform
back the products between the vectors and the local com
ance matrices to the wave number domain, using fast Fou
transforms. The preconditioning of the matrix is carried o
in the spatial domain using the Kirchhoff approximation
the scattered waves. This involves first computing the s
tering matrix for the incident plane wave at each location
the fracture, assuming the fracture is homogeneous and
compliance distribution is uniform. Subsequently, the res
ing 333 block diagonal matrix is transformed in the wav
number domain, and then LU decomposition is applied to
band-diagonal part of the matrix using a small bandwid
~3–9 are used!. This LU-decomposed matrix is used for pr
conditioning the system matrix during each mat-vec ope
tion.

Finally, for a plane incident wave with a wave numb
vector (kx

Inc ,ky
Inc), the definition of the wave numbers i

changed to (kxm ,kyn)5(kx
Inc12mp/Lx ,ky

Inc12np/Ly), so
that the nonspecular wave number components close to
incident wave wave number are preferentially used to rep
sent the scattered waves. This is a reasonable choice bec
the partial waves with wave numbers close to the sou
wave number are more strongly excited due to the coup
introduced by the diagonally dominant kernel of the conv
lution integral in Eq.~22!. The expression for the stress ve
tor also changes as

s̃Inc,mn→dm0dn0s̃Inc . ~33!

III. EXAMPLES

A. Comparison with a boundary element code

In order to check the performance of the numerical te
nique, we compared the numerical results of the wd-S
technique developed in the preceding sections to the res
from a two-dimensional, frequency-domain elastodynam
boundary element~BE! method of Hirose and Kitahara
~1991!.21 In this test, the results from the two methods we
compared for an incident planeP wave propagating in thez
direction. For the wd-SDD, we assumed a fracture with si
soidal compliance distribution, h(x,y)5h0I (1
2cos 2px/l)/2 whereI is a 333 identity matrix,h051.33
310210m/Pa, and periodl54 m. In contrast, the two-
dimensional fracture in the BE model is finite in extent fro
228 m to128 m.

z-direction displacement waveforms computed for
ceivers located on both sides of the fracture are shown in
2765agawa et al.: Plane wave solution for heterogeneous fractures
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2. The distance of the receivers from the fracture is 20 m,
incident wave is a planeP wave Ricker wavelet~second
derivative of a Gaussian wavelet! with a central frequency
corresponding to 4 m which is also the spatial period of th
compliance distribution. Compared to the SDD results,
BE results show much shorter, more compact wavefor
because the fracture in the BE model is finite. However,
waveforms are in good agreement until about 28 ms, for b
reflected and transmitted waveforms, which indicates that
scattering of the waves can be accurately modeled using
wave-number-domain SDD technique. The secondary ar
als that also show rather good agreement are due to tS
waves converted by the fracture.

B. Numerical models of a heterogeneous fracture

In the following examples, we used a fracture with
numerically simulated stochastic compliance distributio
For simplicity, the fracture compliance matrix was assum
to be proportional to an identity matrix, i.e., normal a
shear compliances are the same, andh(x,y)5h(x,y)I . A
distribution of logarithmic compliance, lnh(x,y), was gener-
ated from a Gaussian correlation function with a correlat
length ~one standard deviation! of 4 m and uncorrelated
phase between the Fourier components.22 The range of a
single periodic cell is (Lx ,Ly)5(64 m,64 m). The resulting
complianceh(x,y), shown in Fig. 3, has a log-normal dis
tribution with a mean and a standard deviation of the co
pliance of 6.74310211m/Pa and 4.87310211m/Pa, respec-
tively. The correlation length of the distribution~one
standard deviation of a fitted Gaussian profile! is approxi-
mately 4 m.

C. Exact solutions

Waves scattered by the heterogeneous fracture in Fi
were computed for a plane incidentP wave, using a Ricker
wavelet ~second derivative of a Gaussian function! with a
central frequency, 750 Hz, corresponding to the correla
length of the fracture. The velocities and density of the h

FIG. 2. Comparison between waveforms computed using the BEM and
wd-SDD method. A planeP wave is normally incident on the fractures. Th
first-arriving parts of the waves show very good agreement. The resul
the wd-SDD method show long-lasting reverberations~‘‘coda’’ ! due to the
waves scattered a long distance away from the receiver.
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mogeneous, isotropic, elastic background werecp

53000 m/s,cs51731 m/s, andr52100 kg/m3, respectively.
If the fracture had a homogeneous fracture compliance
tribution, the mean compliance value of 6.74310211m/Pa
would give the same normal incidenceP wave transmission
and reflection coefficients of amplitudes of&/2;0.71. The
condition for this to occur is that frequency5rcp /p.

The snapshots in Figs. 4~a! and 4~b! were computed for
both a normally incidentP wave and an obliquely incidentP
wave with a unit propagation vector (vx ,vy ,vz)
5(1/A3,1/A3,1/A3), respectively. To emphasize the sca
tered waves with small amplitudes, the amplitude scale w
magnified by a factor of 4, which caused the saturation
scale for a part of transmitted and reflected waves. In b
snapshots, it can be seen that patches of large and s
compliance scatter the incident waves, creating circu
~spherical! diffraction patterns in both sides of the fractur
For the normal incidence case, the amplitude and phase
tuations in the both transmitted and reflected waves can
seen. It is also noted that incoherentSwaves were generated
For the oblique incidence case, the diffracted waves ge
ated horizontally propagatingP waves in later times, part o
which was critically refracted as head waves propagat
away from the fracture~multiple, faint oblique wave fronts
propagating symmetrically across the fracture!.

Figure 5 shows the amplitude distribution of individu
wave number components for a given frequency~750 Hz!
and angles of incidence~normal and oblique! of incident
planeP waves. The axes of the plots show the integral nu
bers (m,n) corresponding to the wave number compone
(kxm ,kyn)5(kx

Inc12mp/Lx ,ky
Inc12np/Ly). Remember that

the components of wave numbers used in the numer
simulations were distributed around the incident wave nu
ber (kx

Inc ,ky
Inc). These diagrams can be used to see if

spectrum leakage occurs due to a premature truncation o
wave number series~or undersampling in the spatial do

he

of
FIG. 3. Single periodic cell for the compliance distribution of a simulat
fracture. The distribution is periodic in bothx andy directions. The corre-
lation length of the distribution is 4 m~single standard deviation of a fitted
Gaussian distribution!, and the compliance values vary by about an order
magnitude.
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FIG. 4. Three-dimensional snapshots of the waves scattered by a single plane fracture atz50, with the heterogeneous fracture compliance distribution sho
in Fig. 4. Bothx andz direction particle displacements are shown on the surfaces of a cube cut out of an infinite medium containing the fracture. The
rows are for a normally incidentP wave propagating from the bottom of the plots, and the bottom two rows are for an obliquely incident P waves prop
from the bottom left corner of the cube, in the~1/),1/),1/)! direction.
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main!. For this example, although the length of the wa
number series was rather short@~M,N!5~32,32!#, the ampli-
tudes of the scattered waves became significantly small a
edge of the diagram, showinga posteori that the selected
length of the series was sufficiently long. It is also noted t
while the normal-incidence case showed no coupling
tween the incidentP wave andSh waves, the oblique-
incidence case showed smallSh waves.

D. Born approximations and low- and high-frequency
asymptotic solutions

If the compliance distribution is uniform, only th
specular wave number component needs to be exami
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Nak
he

t
-

d.

This is because the convolution matrix,hS , and therefore the
system matrix in Eq.~27!, becomes block diagonal due to th
lack of coupling between different wave number comp
nents. For a plane incident wave, using the vectors and
trices in Eq.~28!, the ‘‘exact’’ equation~27! reduces to

@~ iv!21H02h̃0#s̃5~ iv!21H0s̃Inc or

~ I2 ivH0
21h̃0!s̃0[~ I2 i V0!s̃05s̃Inc . ~34!

For a diagonal fracture compliance matrixh̃0

[diag@hxx,hyy,hzz#, V0 is
2767agawa et al.: Plane wave solution for heterogeneous fractures
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FIG. 5. Sv, Sh, andP-wave amplitude distributions of wave number components around a unit amplitude, incidentP wave (m5n50). Both the normal
incidence case~a! and oblique incidence case~b! are shown. The frequency of the waves is 750 Hz. The color scale is saturated for components w
amplitude larger than 0.01. The line diagrams are the profiles of the distributions cut along the line,m50 ~shown as a dotted line!. The amplitudes of the wave
number components decay quickly away from the center~incident wave!.
ion
be
V05DiagFvrcShxx

2

vrcShyy

2

vrcPhzz

2 G
[Diag@VSv VSh VP#. ~35!

Therefore the components of this matrix are the dimens
less frequencies defined by Haugen and Schoen
2768 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
-
rg

~2000!.23 The stiffness based equations~defined in Appen-
dix! also reduces to

~ ivH0
212k̃0!@ ũ#5 ivH0

21@ ũ# Inc or

@ I2~ iv!21H0k̃0#@ ũ#0[~ I1 iT0!@ ũ#05@ ũ# Inc . ~36!
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FIG. 6. Real~top! and imaginary~bottom! parts of the
transmission coefficients~the most dominant specula
components ofP wave are compared! computed using
the Born approximations of different orders up ton
55. For comparison, the ‘‘exact’’ numerical solution
are also plotted. The low-frequency~left! approxima-
tions are computed using the compliance-based B
series while the high-frequency~right! approximations
are obtained from the stiffness-based Born series.
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Since bothh̃0 and k̃0 are constant and diagonal, andH0 is
also diagonal for normally incident waves,k̃05h̃0

21, and
T05V0

21. Therefore, the two Born series are

s̃05 (
n50

`

i nV0
n"s̃Inc , ~37!

@ ũ#05 (
n50

`

~2 i !nV0
2n

•@ ũ# Inc . ~38!

Since the eigenvalues of the matricesV0 and V0
21 are the

Haugen and Schoenberg’s dimensionless frequencies
their inverse, the above Born series converge foruVSv,Sh,Pu
,1 for compliance based series, anduVSv,Sh,Pu.1 for the
stiffness based series. Therefore compliance and stiffn
based Born approximations can be applied in the low-
high-frequency limits, respectively. Physically, th
compliance-based Born series can be viewed as a pertu
tion of the totally transmitted waves across a welded fract
in the static limit by small reflection of nonzero-frequen
wave energy. In contrast, the stiffness-based Born series
perturbation of the totally reflected waves for an open fr
ture in the high-frequency limit by small transmission
finite-frequency wave energy.

For heterogeneous fracture compliance and stiffness
tributions, these relationships are more complicated du
the nonspecular scattering of waves. The matrix-vector fo
of the Born series is obtained from Eq.~23! as

s̄5 (
n50

`

~ ivH̄21hS !ns̄Inc[ (
n50

`

i nV̄ns̄Inc . ~39!
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Also, from the Appendix, the stiffness-based Born series

@ ū#5 (
n50

`

@~ iv!21H̄kS #n@ ū# Inc[ (
n50

`

~2 i !nT̄n@ ū# Inc .

~40!

These series are convergent ifiV̄i,1 and iT̄i,1, i.e., the
magnitude of the eigenvalues of the matrices are smaller
unity. It is desirable to interpret these conditions as the lo
and high-frequency limits, as we saw for a homogene
fracture, so that we can apply the Born approximations to
low- and high-frequency scattering problems for a hetero
neous fracture. We will examine these possibilities using
merical simulations.

For the fracture model used in the preceding section,
can compute the scattered wavefield from the~generalized!
Born series. For simplicity, we assume normally incide
monochromatic transmittedP waves, and examine only th
specular component of the waves. The ‘‘exact’’ solutions
also computed from Eq.~27! for a range of frequencies, an
compared to the Born approximations of different orde
Figures 6 shows the comparisons of transmission coeffic
amplitudes computed from thez-direction particle motions of
P waves. Each curve in the plots is labeled with the order
Born approximation. The low-frequency approximatio
were computed using the compliance-based Born series,
the high-frequency approximations were computed using
stiffness-based Born series. As can be seen from the p
the Born approximations appear to be valid in both low- a
high-frequency limits, respectively, and including highe
order terms in the Born series does improve the applicab
2769agawa et al.: Plane wave solution for heterogeneous fractures
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of the approximations. For the fracture and background pr
erties used for this example, the low-frequency approxim
tion is valid below 150 Hz, and the high-frequency appro
mation is valid above 10 kHz. In Fig. 7,z-direction particle
displacements are compared for both third-order Born
proximation and the exact numerical solution. The receiv
are located atz532 m ~transmitted waves! and z5232 m
~reflected waves!, and a low frequency~a central frequency
of 100 Hz! Ricker wavelet was used. For this example, t
results of the two methods are indistinguishable.

However, these results do not necessarily guarantee
the first two terms in the Born series~first-order Born ap-
proximations! are exactly the leading terms in the series, i
low- and high-frequency asymptotes of the exact solutio
We examined the low- and high-frequency limit behavior
the two Born series more in detail by plotting the displac
ment amplitudes computed from the individual terms of b

FIG. 7. Comparison betweenz-direction particle motions computed by solv
ing the matrix equation in Eq.~27! and by the third-order, compliance-base
Born approximation. The central frequency of the incident Ricker wav
~P wave! is 100 Hz, and the receivers are located on both sides, 32 m a
from the fracture. The results are nearly identical.
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series as a function of frequency@Figs. 8 left and right, re-
spectively#. It is noted that the lowest order term of th
stiffness-based Born series isO(1/v), because the transmit
ted wave’s displacement computed from the displacemen
computed via a relationshipũ15@ ũ#2@ ũ# Inc which removes
the 0th order term from the original Born series.

From Fig. 8 left, the second and the higher-order ter
of the compliance-based Born series all exhibitO(v) depen-
dence, instead of the expectedO(vn) dependence for a ho
mogeneous fracture in Eq.~37!, wheren is the order of the
term. This indicates that, although it is still a good appro
mation due to small magnitudes of the terms higher than
.2, the compliance-based Born approximation does not g
the exact low-frequency asymptotic solution. In contra
from Fig. 8 right, the terms in the stiffness-based Born a
proximation areO(1/vn), giving correct high-frequency as
ymptotes.

Since the frequency-independentH matrices should re-
sult in O(vn) dependence of the compliance-based Born
ries from Eq.~39!, the above result seems to be incorre
This apparent discrepancy is due to the wave number con
lution involving bothH5H(kr /v) and h̃5h̃(kr) for twice
or more scattered waves in the compliance-based Born
ries. H is frequency independent only if the plane paral
wave numberkr is viewed as a function of frequenc
(kr /v5p, p is the plane parallel slowness!. However, this
exchange of independent variables does not make the co
lution integral frequency independent, becauseh̃, which
originally is dependent upon onlykr , is now frequency de-
pendent:h̃5h̃(kr)5h̃(vp). Therefore, the resulting convo
lution operators ~or matrices! V̄n[(vH̄21hS )n are not
O(vn). In contrast, for high-frequencies and the stiffnes
based Born series,H is frequency independent without ex
changing the variables, because H5H(kr /v)
5H(kz

P/kS ,kz
S/kS)→H(cS /cP,1), which yields T̄n

;O(v2n).

t
ay
s,
FIG. 8. Displacement amplitude computed from individual terms in the Born series for a unit-amplitude, plane incidentP wave. Thez-direction particle
displacements of transmittedP wave are shown. Thenth-order term of the high-frequency Born series~right! scales asO(1/vn). In contrast, all the terms
except for the 0th-order term~incident wave! in the low-frequency Born series~left! scale asO(v). The absolute magnitudes of the higher order term
however, are small for this example.
Nakagawa et al.: Plane wave solution for heterogeneous fractures
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IV. CONCLUSIONS

We developed a plane wave method to compute
three-dimensional scattering of plane elastic waves by a f
ture with a heterogeneous stiffness~compliance! distribution.
This technique allows us to examine the relationships
tween the characteristics of scattered elastic waves and
microstructural variations along the fracture plane~e.g., sur-
face contact and crack distribution, gouge layer thickn
variation! that are modeled as heterogeneities in the frac
compliance distribution.

This method is a straightforward extension of the co
monly used seismic displacement discontinuity~SDD!
method for a homogeneous fracture, to a fracture with a
erogeneous fracture compliance distribution. Even tho
the developed technique is a full-waveform technique a
successfully models a variety of wave phenomena involv
a fracture, such as mode converted waves, head waves~re-
fracted waves!, surface waves and diffracted waves, it do
not require massive parallel computers as finite differe
methods and boundary element methods would do.

The current numerical technique can be applied to n
planar incident waves by simply modifying the incide
wave vector. In this case, however, a larger number of w
number components need to be used in the matrix equa
It should also be noted that this technique is difficult to ap
to extremely heterogeneous fractures, because such frac
typically results in a large linear system of equations to so
for nonspecular components of scattered waves with w
numbers far different from the incident wave. Further, t
compliance-based equations break down for open cracks
voids ~infinite compliance! and the stiffness-based equatio
break down for welded surfaces~infinite stiffness!, because
the Fourier transforms cannot be performed.

Last, we demonstrated that two types of Born series
be used to examine the low- and high-frequency limit beh
ior of the wave scattering by a heterogeneous fracture.
low-frequency Born series~compliance-based formulation!,
however, should be used with a caution, because the low
order term does not provide the exact low-frequen
asymptotic solution. In contrast, the high-frequency Born
ries ~stiffness-based formulation! is the exact high-frequenc
asymptote, although, in practice, the local SDD conditio
used as a basis of the theory may not be valid for such h
frequencies.
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APPENDIX

As an alternative to using the compliance-based eq
tions, we can use equations based on fracture stiffn
k(x,y)5h21(x,y). In this case, Eq.~7! in the text is re-
placed by
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~ k̃* @ ũ# !~kx ,ky!5s̃~kx ,ky!. ~A1!

k̃ is the Fourier transformed fracture stiffness matrix. B
using the displacement discontinuity vector@ũ# as the pri-
mary variable, the traction vectors̃ is eliminated from Eq.
~A1!, resulting in

~ ivH212k̃* !@ ũ#5 ivH21@ ũ# Inc , ~A2!

where the incident term for the displacement–discontinu
vector is defined as

@ ũ# Inc[2HS1aInc . ~A3!

Equation~A3! is the displacement–discontinuity vector fo
an open fracture~free surface!. The integral equation corre
sponding to Eq.~22! is

@ ũ#~kx ,ky!5@ ũ# Inc~kx ,ky!1~ iv!21H~kx ,ky!

3E
2`

1`E
2`

1`

k̃~kx2kx8 ,ky2ky8!@ ũ#

3~kx8 ,ky8!dkx8 dky8 , ~A4!

and the Neumann series~Born series! corresponding to Eq.
~24! is

@ ũ#5@ Ī2 i T̄1~2 i T̄!21¯#@ ũ# Inc5~ Ī1 i T̄!21@ ũ# Inc ,
~A5!

where the operatorT̄ is defined asT̄[v21H̄kS . Note that, in
general, the fracture stiffness convolution operatorkS is not
the inverse of the compliance operatorhS . Equation~A4! can
be written in a matrix form to be solved numerically. Th
resulting matrix equation is equivalent to the complianc
based equation~26! but shows faster convergence of iterati
solutions at higher frequencies. This property can be use
efficiently implement the computer program to solve for t
‘‘exact’’ solutions: the compliance formulation is used at lo
frequencies and the stiffness formulation at high frequenc
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