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Permeability of a fracture can affect how the fracture interacts with seismic waves. To examine this
effect, a simple mathematical model that describes the poroelastic nature of wave-fracture
interaction is useful. In this paper, a set of boundary conditions is presented which relate
wave-induced particle velocity �or displacement� and stress including fluid pressure across a
compliant, fluid-bearing fracture. These conditions are derived by modeling a fracture as a thin
porous layer with increased compliance and finite permeability. Assuming a small layer thickness,
the boundary conditions can be derived by integrating the governing equations of poroelastic wave
propagation. A finite jump in the stress and velocity across a fracture is expressed as a function of
the stress and velocity at the boundaries. Further simplification for a thin fracture yields a set of
characteristic parameters that control the seismic response of single fractures with a wide range of
mechanical and hydraulic properties. These boundary conditions have potential applications in
simplifying numerical models such as finite-difference and finite-element methods to compute
seismic wave scattering off nonplanar �e.g., curved and intersecting� fractures.
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I. INTRODUCTION

Rock is often permeated by compliant plane discontinui-
ties �such as fractures and faults� that, depending on their
permeability relative to the background, serve as either con-
duits or barriers to subsurface fluid flow �e.g., Aydin, 1978;
Adams and Dart, 1998�. In the following, we shall collec-
tively call these discontinuities “fractures.” The fluid perme-
ability of a fracture is often a key parameter, yet the quanti-
tative relationship between permeability and its effect on
seismic wave scattering is not fully understood. Strong scat-
tering of seismic waves by a fracture is usually related to
large permeability, because an open fracture with partial sur-
face contacts has increased mechanical compliance �deform-
ability� �e.g., Pyrak-Nolte and Morris, 2001�. However, if a
fluid-containing fracture is filled with debris, or a single frac-
ture consists of a large number of microcracks, complex in-
teractions between rock and pore fluid in the fracture result.
In this paper, we will develop a simple mathematical model
that captures the essential nature of solid-fluid interaction
within a fracture, to predict the effect of hydraulic permeabil-
ity and other fracture properties on seismic wave scattering.

One logical tool for probing the hydrological properties
of rocks using seismic waves is Biot’s theory of poroelastic-
ity �Biot, 1956a, b�, which describes the dynamic interac-
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tions of rock and fluid within the pore space. It has been
widely recognized, however, that the dispersion and attenu-
ation of seismic waves predicted by the original Biot’s
theory—which applies to macroscopically homogeneous po-
rous media saturated by a single fluid phase—is often too
small to explain the measured velocity dispersion and attenu-
ation of seismic waves. In recent decades, many researchers
realized that significant velocity dispersion and velocity at-
tenuation can result at field-relevant frequencies if a rock
contains heterogeneity at mesoscale �smaller than seismic
wavelength but larger than pore and grain size�. One such
effect is due to a local fluid-pressure gradient induced at
scales comparable to the pressure diffusion length �or, wave-
length of Biot’s slow compressional waves�. These heteroge-
neities can be, for example, a “patchy” distribution of fluid
and gas within rocks �e.g., White, 1975; Dutta and Odé,
1979a, b; and Johnson, 2001� and stratified sedimentary units
with different mechanical and hydrological properties �Nor-
ris, 1993; Gurevich et al., 1994, 1997; Gelinsky and Shapiro,
1997; Shapiro and Müller, 1999; Pride et al., 2002�. A more
general theory for heterogeneous poroelastic media, with ar-
bitrary distributions of mechanical and hydraulic properties
for both solid and fluid phases, was recently developed by
Pride and Berryman �2003a, b�.

In general, within porous fluid-bearing rocks, the stron-
ger the fluid permeability and mechanical-property heteroge-
neity, the more the velocity and attenuation of seismic waves
are affected. Fractures are a special case of such heterogene-

ity, exhibiting an extremely wide range of mechanical com-
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pliance and hydraulic permeability �for example, open, air-
filled joints to near-rigid, mineral-filled veins�, even though
they typically occupy only a small volume. Berryman and
Wang �1995� examined the mechanical consolidation of me-
dia containing a system of compliant high-permeability frac-
tures within a porous background medium, and then used the
derived elastic moduli to examine the velocity dispersion and
attenuation of low-frequency seismic waves �Berryman and
Wang, 2000�. The results indicated that the mechanical and
hydraulic properties of fractures in a porous host rock affect
the behavior of seismic waves. For one-dimensional P-wave
propagation within a medium containing parallel periodic
fractures, Brajanovski et al. �2005� derived an analytical
model for the dispersion and attenuation of waves. This
model was derived by using a wave propagation model for
alternating poroelastic layers developed by Norris �1993� and
taking the zero-thickness limit of one of the constituting lay-
ers to model fractures. Through numerical experiments, at-
tenuation and dispersion of P wave propagation was found to
be strongly dependent upon the fracture properties �fracture
stiffness and density� and the background porosity.

In contrast to previous research, which focused on the
velocity and attenuation of waves propagating through mate-
rials containing many fractures, in this paper we will develop
a simple mathematical model for single poroelastic fractures
that can be used to study discrete scattering of seismic
waves. The model consists of a set of boundary conditions
that relate the stress and displacement �or particle velocity�
induced on the fracture surface by passing seismic waves.
These boundary conditions are derived using plane-wave
theory, by treating a fracture as a thin poroelastic layer with
an infinite extent and a small finite thickness. Alternatively,
scattering of the plane waves can be examined by using a
propagator-matrix method �e.g., Haskell, 1953� and Ken-
nett’s reflectivity method �Kennett, 1983� to find an exact
relationship between the amplitude of incident and scattered
waves. However, the propagator-matrix method suffers an
instability when the Biot’s slow P wave decays too quickly;
and Kennett’s method results in very complex expressions of
the boundary conditions that are not amenable to simple pa-
rametrization and interpretation of the consequences for
physical acoustics. Further, because both of these methods
require knowledge of incident plane waves on both sides of a
fracture, they are not well suited to use in other numerical
models, such as finite-difference and finite-element methods.

The model developed in this paper provides “jump con-
ditions” that directly relate a wave’s particle motions and
stress across a fracture without the knowledge of the wave
field in the background. Such boundary conditions were ini-
tially developed for elastic and viscoelastic fractures, and
called the “linear-slip interface model” �Schoenberg, 1980�,
which led to a plethora of theories and models describing the
complex interaction between seismic waves and fractures—
e.g., plane-wave scattering theories by Schoenberg �1980�,
Nakagawa et al. �2000�, laboratory experiments by Pyrak-
Nolte et al. �1990�, Hsu and Schoenberg �1993�, fracture-
based anisotropic effective medium theories of Schoenberg
and Sayers �1999�, Bakulin et al. �2000�, fracture guided

wave studies by Pyrak-Nolte and Cook �1987�, and Nihei et
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al. �1999�. More recently, Bakulin and Molotkov �1997� de-
veloped a similar model for poroelastic fractures, but without
including the effect of fracture permeability. These models
can be very simple, because when the relative thickness of a
fracture is much smaller than the seismic wavelengths �Bi-
ot’s fast P waves and S waves�, and inertia-related quantities
�given as a product of density and fracture thickness� can be
ignored, only quasistatic behavior needs to be described
�Rokhlin and Wang, 1991�. Gurevich et al. �1994� also used
this fact to derive simple, computationally stable expressions
describing the transmission and reflection coefficients of nor-
mally incident fast P waves for a thin poroelastic layer. Be-
cause of its simplicity, the linear-slip model can be used in
finite-difference codes to determine the proper effective
anisotropic-elastic-moduli values of the numerical grids on a
fracture, when the thickness of the fracture is much smaller
than the modeling grid spacing �Coates and Schoenberg,
1995�.

One important aspect of the linear-slip interface model
is that it helps to identify important characteristic parameters
of a fracture that control the scattering of seismic waves. An
example of such parameters is the fracture compliance. If a
fracture is modeled as a mechanically equivalent, thin, com-
pliant layer with a finite thickness, the fracture compliance
can be defined as an inverse of the elastic moduli times frac-
ture thickness �e.g., Rokhlin and Wang �1990� defined a frac-
ture stiffness parameter �inverse of the fracture compliance�
in this way�. Coates and Schoenberg �1995� developed a
finite-difference model for fractures and faults, based upon
the finite-thickness approximation of fractures and faults.
Conversely, when physical properties of a fracture are to be
determined using seismic waves, what we can at best deter-
mine are these “phenomenological” model parameters �in-
stead of the original material properties and fracture thick-
ness�. For a fracture viewed as a thin poroelastic layer, we
will show that characteristic parameters similar to the origi-
nal linear-slip interface model can be defined for a poroelas-
tic fracture, along with other dimensionless parameters that
describe its poroelastic properties.

In the following, first we will derive poroelastic seismic
boundary conditions �linear-slip interface model� based upon
the governing equations of linear, poroelastic wave propaga-
tion �Secs. II A and II B�. This will result in two sets of
independent matrix equations relating displacement and
stress across a fracture, which are the primary results of this
work. The critical step in this derivation is an approximation
of the wave-induced pressure field within a fracture—this is
necessary because the exact pressure distribution cannot be
determined only from the boundary values. Subsequently, as-
suming a fracture thickness much smaller than the wave-
length of propagating body waves, the derived boundary
conditions will be simplified to obtain the characteristic frac-
ture parameters �Sec. II C�. The original and simplified
boundary conditions will be used to derive explicit expres-
sions for plane-wave transmission and reflection coefficients
�Sec. II D�. Sections III A and III B will examine the accu-
racy of the derived boundary conditions �both original and
simplified� by comparing the predicted transmission and re-

flection coefficients to the exact results obtained via Ken-
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nett’s reflectivity method. Finally, the sensitivity of the trans-
mission and reflection coefficients to the permeability of a
fracture will be examined using a characteristic fracture pa-
rameter �Sec. III C�.

II. THEORY

In this section, we will derive a set of boundary condi-
tions for a thin, isotropic, homogeneous, poroelastic layer
embedded within a background medium. �A derivation of
boundary conditions assuming a transversely isotropic po-
roelastic layer for a fracture is also presented in Appendix
A.� Subsequently, these boundary conditions are used to de-
rive expressions for transmission and reflection coefficients
of incident plane waves within a poroelastic background me-
dium.

A. Governing equations

The governing equations of seismic wave propagation
within an isotropic, homogeneous, poroelastic medium can
be stated as �e.g., Pride et al., 2002�

� = G��u + u � � + ��KU − 2G/3� � · u + C � · w�I , �1�

− pf = C � · u + M � · w , �2�

� · � = − �2��u + � fw� , �3�

− �pf = − �2�� fu + �̃w�, �̃ � i� f/�k��� , �4�

where u is the locally averaged, solid-frame displacement
vector and w���U-u� is the fluid-volume displacement vec-
tor relative to the solid frame. In this definition of w, U is the
locally averaged �in the pore space� fluid displacement vec-
tor and � is the porosity. Equations �1�–�4� assume that the
displacement and stress variables depend on exp�−i�t�,
where � is the circular frequency. I indicates an identity
tensor, � is the total stress tensor, and pf is the fluid pressure
�positive for compression�. G is the solid-frame shear modu-
lus, KU is the undrained bulk modulus, � is the bulk density,
� f is the fluid modulus, and the parameter �̃ is defined in Eq.
�4� via fluid viscosity � f and the frequency-dependent per-
meability k��� �Johnson et al., 1987�. C and M are the Biot’s
coupling and fluid-storage moduli, respectively. When a
plane harmonic wave field is assumed, these equations result
in the four plane-wave modes of a Biot medium �fast and
slow P waves and two S waves�.

Consider an interface across which certain stress and

displacement �velocity� components are conserved. We as-
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sume this interface to be normal to the 3 direction of Carte-
sian coordinates, and wave propagation parallel to the 1, 3
plane �Fig. 1�. For a homogeneous medium, we can assume a
plane harmonic wave field proportional to exp i���1x1− t�,
where �1 is the slowness in the 1 direction. The plane-wave
displacement and stress are introduced into Eqs. �1�–�4�.
Substituting � /�x1→ i��1 and � /�x2→0 and eliminating
components of the vector and tensor variables w1, w2, �11,
�22, and �12 �which can be discontinuous across the inter-
face�, the following two independent sets of coupled first-
order differential equations are derived:

�

�x3
� u̇2

�23
� = − i�� 0 1/G

− G�1
2 + ���̃ − � f

2�/�̃ 0
�� u̇2

�23
� �

− i�R� u̇2

�23
� , �5�

�

�x3�
u̇1

�33

− pf

�13

u̇3

ẇ3

	 = − i�� 0 QXY

QYX 0
��

u̇1

�33

− pf

�13

u̇3

ẇ3

	 , �6�

where

QXY � �1/G �1 0

�1 � � f

0 ˜
	 , �7�

FIG. 1. Cartesian coordinate system used in this paper.
� f �
QYX � �
− 4G�1

2
1 −
G

HD
� −

� f
2 − ��̃

�̃
�1
1 −

2G

HD
� �1
−

� f

�̃
+ �

2G

HD
�

�1
1 −
2G

HD
� 1

HD
−

�

HD

�1
−
� f

�̃
+ �

2G

HD
� −

�

HD

�2

HD
+

1

M
−

�1
2

�̃

	 . �8�
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Equation �5� is for wave propagation of S waves with par-
ticle motions in the 2 direction, and Eq. �6� is for coupled P
�both fast and slow�-S wave propagation with particle mo-
tions within the 1,3 plane. Note that both �R��1 ,�� � =0 and
�QXY��1 ,�� � =0 yield the dispersion equation for S waves,
and �QYX��1 ,�� � =0 results in the dispersion equation for fast
and slow P waves, where � · � indicates the matrix determi-
nant. The dots over the displacement vector components in
Eqs. �5� and �6� indicate that the related quantity is velocity.
In Eqs. �7� and �8�, HD�KD+4G /3 is the dry P-wave modu-
lus and �= �1−KD /KU� /B is the Biot-Willis effective stress
coefficient �with B as the Skempton coefficient�. Using these
coefficients, C and M in the governing equations can be
expressed as C=BKU and M =BKU /�. Further, if grains in
the porous rock are both isotropic and homogeneous,

� = 1 − KD/Ks, �9�

B =
1/KD − 1/Ks

�1/KD − 1/Ks� + ��1/Kf − 1/Ks�
, �10�

where KD is the dry bulk modulus, Ks is the solid �grain�
bulk modulus, Kf is the fluid bulk modulus, and � is the
porosity of the medium.

B. Derivation of poroelastic boundary conditions for
a fracture

The boundary conditions for a poroelastic fracture are
obtained by integrating the governing equations in Eqs. �5�
and �6� over a small layer or fracture thickness h as

� u̇2
+ − u̇2

−

�23
+ − �23

− � = − i�h� 0 1/G

− G�1
2 + ���̃ − � f

2�/�̃ 0
�� ū̇2

�̄23
� ,

�11�

�
u̇1

+ − u̇1
−

�33
+ − �33

−

− pf
+ − �− pf

−�
�13

+ − �13
−

u̇3
+ − u̇3

−

ẇ3
+ − ẇ3

−

	 = − i�h� 0 QXY

QYX 0
��

ū̇1

�̄33

− p̄f

�̄13

ū̇3

w̄̇3

	 , �12�

where the superscripts + and − indicate quantities on the
boundaries, and the bars above the variables indicate aver-
aged quantities over the thickness of the fracture. At this
point, Eqs. �11� and �12� are without approximations, except
that we assumed homogeneity of the medium and plane-
wave propagation. To derive boundary conditions, the aver-
aged quantities on the right-hand side of the equations have
to be expressed exclusively using quantities on the bound-
aries.

Since the thickness of a fracture h is usually much
smaller than seismic wavelengths, the inertial effect and
complex multiple scattering of the waves within the fracture

can be ignored. This allows us to assume that the solid-frame
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velocity and the total stress within the fracture vary
smoothly, which can be approximated by a linear function.
Also, since the field distribution must be defined by two
boundary values on the fracture surfaces, and since there is
no knowledge of the field’s functional form, a linear function
provides the best guess. For Eq. �11�, therefore, the boundary
condition becomes

� u̇2
+ − u̇2

−

�23
+ − �23

− � = −
i�h

2
� 0 1/G

− G�1
2 + ���̃ − � f

2�/�̃ 0
�

�� u̇2
+ + u̇2

−

�23
+ + �23

− � . �13�

In contrast, for Eq. �12�, if the permeability of the frac-
ture is low and the fluid within the fracture is not allowed to
move freely, excess pore pressure can be induced, which can
be very different from the pressure at the interfaces �as illus-
trated in Fig. 2�. This excess pore pressure also induces rap-
idly changing fluid velocity. Therefore, to provide a better
approximation of the spatially averaged fluid pressure and
velocity on the right-hand side of Eq. �12�, we must examine
the behavior of a diffusing fluid pressure field within a low-
permeability fracture.

Unfortunately, the quantities on the boundaries alone
cannot provide enough information to determine the non-
monotoic profile of the field within the fracture. To overcome
this difficulty, we first assume that the fluid velocity relative
to the frame at the boundaries can be attributed exclusively
to slow P waves. This attribution can be justified if
�k0� f /� f =� f / ��̃�0� � �1, where k0�k�0�, because this factor
essentially provides the amplitude ratio between the fluid
velocity and the solid velocity for fast P waves and S waves.
�For example, if a water-filled fracture has a permeability of
10 mD �10−14 m2�, �k0� f /� f 	0.01 for frequencies less than
100 kHz.� Therefore, if we define −pf

* and ẇ3
* as the pressure

and fluid flow response excluding the contribution of slow P
waves, these are given by an “undrained” fracture �sealed at
the boundaries� �Pride, 2003�. Note that −pf

* can be consid-
ered uniform across the fracture, due to the long wavelengths

FIG. 2. Cartoon representation of pressure induced by seismic waves for
high-permeability �left� and low-permeability �right� fractures. For a high-
permeability fracture, fluid pressure on both sides of the fracture can equili-
brate during a period of oscillation. In contrast, for a low-permeability frac-
ture, the pressure induced within the fracture may not be able to dissipate. If
the pressure field is approximated using a linear function using the boundary
values, this can result in a significant error in evaluating the average fluid
pressure across the fracture.
of the fast P wave and S wave. Further, we assume that the
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spatial average of u̇1 and �33 for this field can be approxi-
mated by the average of the total field u̇1 and �̄33. This as-
sumption can be justified if the incident wave is not a slow P
wave and the frequency is low, which results in amplitudes
of scattered slow P waves much smaller than the sum of the
other waves.

Under these assumptions, the jump condition for fluid
velocity in the matrix equation �the bottom row of Eq. �12��
can be used to obtain the following relationship:

ẇ3
+* − ẇ3

−* = 0 = − i�h��1
−
� f

�̃
+ 2�

G

HD
�u̇1 −

�

HD
�̄33

+ 
 �2

HD
+

1

M
−

�1
2

�̃
��− pf

*�� . �14�

The fluid velocity within the undrained fracture is ẇ3
*=0.

From the above equation,

− pf
* = �1

� f

�̃
− 2�

G

HD

�2

HD
+

1

M
−

�1
2

�̃

u̇1 +

�

HD

�2

HD
+

1

M
−

�1
2

�̃

�̄33 �

− 2GB̃
̃�1u̇1 + B̃�̄33, �15�

where we introduced the following coefficients B̃ and 
̃ for
convenience:

1

B̃
� � +

HD

�M
−

�1
2

�̃

HD

�
=

HU

�M
−

�1
2

�̃

HD

�
, �16�


̃ � 1 −
HD

2�G

� f

�̃
. �17�

The first term on the right-hand side of Eq. �15� indicates a
contribution of the strain induced in the fracture-parallel di-
rection �−�1u̇1=�u1 /�x1�.

Next, we derive an expression for the diffusing pressure
and flow field within a fracture using the pressure and veloc-
ity at the boundaries and the pressure and velocity for the
undrained condition. The solution of diffusing field for slow
waves with a slowness �Ps is expressed as

f�x3� = A1ei��Psx3 + A2e−i��Psx3. �18�

We assume that the direction of the diffusion is in the plane-
normal direction, which is a reasonable assumption if the
velocity of the incoming wave is much faster than the slow
P-wave velocity within the fracture. For a set of boundary
conditions f�0�=0 and f�h�=1, the two unknown coefficients
are determined, resulting in

f�x3� =
ei��Psx3 − e−i��Psx3

ei��Psh − e−i��Psh
. �19�

When integrated over an interval �0, h�, Eq. �19� becomes


0

h

f�x3�dx3 =
h

2
·

tan ��Psh/2

��Psh/2
�

h

2
���� , �20�
where we defined the following dimensionless function:
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���� �
tanh �

�
, � � −

i��Psh

2
=

h

2d
* . �21�

The complex fluid-pressure diffusion length d
* is defined

through i��Ps�−1/d
*. We shall call the dimensionless func-

tion � �Fig. 3� a “fluid-pressure dissipation factor,” which
approaches unity for the low-frequency limit �drained re-
sponse� and approaches zero for the high-frequency limit
�undrained response�. For the aforementioned low frequen-
cies and low-permeability conditions satisfying
�� fk0 /� f�1, the following simple relationship can be used
to compute d

* �e.g., Pride, 2003�:

1

* =
1 − i

d
, �22�

FIG. 3. �Color online� Fluid pressure dissipation factor � as a function of
the dimensionless length parameter h /2d. The behavior of the function
changes when the diffusion length is half of the layer thickness, separating
the low-frequency drained response �left-hand side of the h /2d�1� and the
high-frequency undrained response �right-hand side�. �a� Amplitude; �b�
Phase �Asymptotes to � /4 for the undrained response�.
d
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d =�2D

�
, �23�

D =
k0M

� f

1 −

C2

HUM
� =

k0M

� f

1 −

�2M

HU
� , �24�

where d is the fluid-pressure diffusion length and D is the
fluid-pressure diffusion coefficient. Using the solution for
f�x3�, the pressure and fluid velocity within a fracture is
given by a superposition having the boundary conditions
−pf�x3=0�=−pf

−, −pf�x3=h�=−pf
+, and ẇ3�x3=0�= ẇ3

−,
ẇ3�x3=h�= ẇ3

+. These are

pf�x3� = pf
* − �pf

* − pf
+�f�x3� − �pf

* − pf
−�f�h − x3� , �25�

ẇ3�x3� = ẇ3
* − �ẇ3

* − ẇ3
+�f�x3� − �ẇ3

* − ẇ3
−�f�h − x3�

= ẇ3
+f�x3� + ẇ3

−f�h − x3� . �26�

As an example, pressure amplitude profiles are shown below
in Fig. 4 for assumed boundary values of −pf

−=0.25, −pf
+

=0.75, and −pf
*=1. As seen from the plot, the transition be-

tween the drained response �linear pressure profile� and the
undrained response �constant pressure within the fracture�
occurs approximately when h /2d=1, i.e., the sum of the
wavelength for the two diffusing pressure waves equals the
thickness of the fracture.

Using the result in Eq. �20�, pressure and fluid velocity

averaged across a fracture is
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p̄f =
1

h


0

h

pf�x3�dx3 = pf
* − �2pf

* − pf
− − pf

+�
1

2
· ����

=
pf

− + pf
+

2
· ���� + pf

* · �1 − ����� , �27�

w̄̇ =
1

h


0

h

ẇ3�x3�dx3 =
ẇ3

− + ẇ3
+

2
���� . �28�

Equations �15�, �27�, and �28� are introduced within the ma-

FIG. 4. Amplitude profiles of the pressure field within a fracture for a range
of diffusion lengths d. For very large d’s �i.e., high frequency, low perme-
ability�, the pressure within the fracture can take a value independent from
the pressure on the fracture surfaces.
trix boundary conditions in Eq. �12� to yield
�
u̇1

+ − u̇1
−

�33
+ − �33

−

− pf
+ − �− pf

−�
�13

+ − �13
−

u̇3
+ − u̇3

−

ẇ3
+ − ẇ3

−

	 = − i�h� 0 QXY

QYX 0
��

u̇1
+ + u̇1

−

2

�33
+ + �33

−

2

− pf
− + �− pf

+�
2

· � + B̃
 �33
+ + �33

−

2
− 2G
̃�1

u̇1
+ + u̇1

−

2
� · �1 − ��

�13
+ + �13

−

2

u̇3
+ + u̇3

−

2

ẇ3
− + ẇ3

+

2
· �

	 . �29�

The solid displacement �or velocity� u1, u3 and total stress �13, �33 are assumed to vary linearly, because the field changes
slowly within the fracture. The above equation is recast in the following form:
and Schoenberg: Poroelastic boundary conditions across a fracture



�
u̇1

+ − u̇1
−

�33
+ − �33

−

− pf
+ − �− pf

−�
�13

+ − �13
−

u̇3
+ − u̇3

−

ẇ3
+ − ẇ3

−

	 = −
i�h

2 � 0 Q̃XY

Q̃YX 0
��

u̇1
+ + u̇1

−

�33
+ + �33

−

− pf
+ + �− pf

−�
�13

+ + �13
−

u̇3
+ + u̇3

−

ẇ3
+ + ẇ3

−

	 ,

�30�

where

Q̃XY = QXY�1 0 0

0 1 0

0 0 �
	 = �1/G �1 0

�1 � � f · �

0 � f �̃ · �
	 , �31�

Q̃YX = QYX� 1 0 0

0 1 0

− 2GB̃
̃�1 · �1 − �� B̃ · �1 − �� �
	 . �32�

The components of the matrix Q̃YX are given explicitly as

Q̃YX�1,1� = − 4G�1
2
1 −

G

HD
� −

� f
2 − ��̃

�̃

− 2GB̃
̃�1
2
−

� f

�̃
+ �

2G

HD
� · �1 − �� , �33�

Q̃YX�1,2� = �1�
1 −
2G

HD
� + 
−

� f

�̃
+ �

2G

HD
�B̃ · �1 − ��� ,

�34�

Q̃YX�1,3� = �1
−
� f

�̃
+ �

2G

HD
� · � , �35�

Q̃YX�2,1� = �1
1 −
2G

HD
+ 2B̃
̃�

G

HD
· �1 − ��� , �36�

Q̃YX�2,2� =
1

HD
− �B̃

1

HD
· �1 − �� , �37�

Q̃YX�2,3� = − �
1

HD
· � , �38�

Q̃YX�3,1� = �1�−
� f

�̃
+ �

2G

HD
− 2B̃
̃
�2 G

HD
+

G

M

−
�1

2G

�̃
� · �1 − ��� , �39�

Q̃YX�3,2� = − �
1

HD
+ 
�2 1

HD
+

1

M
−

�1
2

�̃
�B̃ · �1 − �� ,
�40�
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Q̃YX�3,3� = 
�2 1

HD
+

1

M
−

�1
2

�̃
� · � . �41�

Together, Eqs. �13� and �30� are the seismic boundary con-
ditions for a poroelastic fracture.

C. Simplified boundary conditions and characteristic
parameters of a fracture

Mathematically, if the components of the matrices in
Eqs. �13� and �30� remain finite when the fracture thickness
is reduced to zero, the right-hand side of the equations van-
ishes, and all the variables are continuous across the fracture.
However, in reality, a very thin fracture can produce a large
discontinuity in displacement and pressure field if viewed as
a boundary. For our model to properly capture this behavior,
the material properties of a fracture contained in the matrix
boundary conditions in Eqs. �13� and �30� have to take val-
ues that result in significantly large matrix components, even
when multiplied by the small fracture thickness h. To deal
with this situation, we can define composite characteristic
parameters of a fracture as a combination of the material
properties and the fracture thickness, which control the dy-
namic behavior of the fracture. Conversely, when physical
properties of a fracture are to be determined using seismic
waves without the knowledge of the fracture thickness, at
best we can determine these composite or “phenomenologi-
cal” parameters instead of the original material properties,
such as bulk permeability and elastic moduli.

From Eqs. �13� and �30�, following parameters involving
fracture thickness h may be defined:

�T �
h

G
�shear compliance� , �42�

�ND
�

h

HD
�dry or drained normal compliance� , �43�

�̂��� �
k���

h
�membrane permeability� . �44�

If we assume that these parameters are finite for small frac-
ture thicknesses h’s, approximate boundary conditions can be
obtained by replacing the moduli and permeability in the
equations by the parameters and eliminating O�h� terms. For
Sh waves, this reduces the coefficient matrix in Eq. �13� to

h � � 0 1/G

− G�1
2 + ���̃ − � f

2�/�̃ 0
� → �T�0 1

0 0
� . �45�

Therefore, the boundary conditions are

�u̇2
+ − u̇2

− = �− i���T�23
−

�23
+ = �23

− , �46�

which are exactly the same as the original linear-slip inter-
face model �Schoenberg, 1980�.

For the two coupled matrix boundary conditions in Eq.
�30� for fast and slow P waves and an S wave, the coefficient

matrices Q̃XY and Q̃XY in Eqs. �31� and �32�, multiplied by h,

respectively, reduce to
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h � Q̃XY → ��T 0 0

0 0 0

0 0 i� f/��̂��� · �
	 , �47�

h � Q̃YX → �ND�0 0 0

0 1 − �B̃�1 − �� − � · �

0 − � · � �/B̃ · �
	 , �48�

where we used 
̃�1, which resulted from Eq. �17� through
O�h�→0. The Skempton coefficient-like parameter in Eq.
�16� also reduces to

B̃ � �
M

HU
. �49�

Compared to the original Skempton coefficient B, this new
coefficient is defined with the undrained P-wave modulus
HU rather than the bulk modulus KU. Furthermore, the fluid

pressure dissipation factor ���� is simplified by approximat-

to be transversely isotropic, however, the two compliance
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ing the complex diffusion coefficient in Eq. �24� as

D �
k0M

� f

1 −

C2

HUM
� =

k0

� f

MHD

HU
=

B̃�̂0

�� f�ND

h2, �50�

which results in

� =
h

2d
* =

h

2
�1 − i�� �

2D
=

1 − i

2
��

�� f�ND

2B̃�̂0

. �51�

Therefore, for a set of characteristic fracture parameters,
���� also does not depend on the fracture thickness. Note
that in deriving Eq. �48�, the matrix components in Eqs.
�33�–�41� containing h / �̃=�k���h / i� f were ignored, even
for fractures with very high �static� permeability. This is be-
cause the dynamic permeability of a fracture is finite even
when the static permeability of the material within the frac-
ture approaches infinity, which results in an explicit bound
�h / �̃ � �h /� f �Appendix B�.

Using the simplified relationships in Eqs. �47�–�51�, the

boundary conditions are written explicitly as
�
u̇1

+ − u̇1
− = �− i���T�13

−

u̇3
+ − u̇3

− = �− i���ND
��1 − �B̃�1 − ����33

− − �
− pf

+ + �− pf
−�

2
· ��

ẇ3
+ − ẇ3

− = �− i����ND�− �33
− +

1

B̃

− pf
+ + �− pf

−�
2 � · �

�13
+ = �13

−

�33
+ = �33

−

− pf
+ − �− pf

−� =
� f

�̂���
ẇ3

+ + ẇ3
−

2
· �

	 . �52�
An important feature of these boundary conditions is that
they do not explicitly contain the plane-parallel slowness �1.
This allows us to use Eqs. �46� and �52� for plane waves at
any angle of incidence or in the spatial domain of numerical
models, such as finite-difference and finite-element models.
The last equation for pressure discontinuity in Eq. �52� can
be viewed as a generalization of the results from Gurevich
and Schoenberg �1999� for Darcy’s law extended to a single
finite permeability interface. Therefore, from Eqs. �46� and
�52�, the five fundamental characteristic parameters of a po-
roelastic fracture are the dry shear and normal fracture com-
pliances �T, �Nd, membrane permeability �̂���, the fracture
Biot-Willis effective stress coefficient �, and the fracture

Skempton coefficient B̃. From Eqs. �42� and �43�, the dry
normal fracture compliance cannot exceed the shear fracture
compliance because HD=KD+4G /3�G. This restriction
arises because we have assumed that the fracture-filling me-
dium is isotropic. If the layer modeling a fracture is allowed
parameters can be independent, whereas the same five char-
acteristic parameters of a fracture can be used to describe the
boundary conditions in Eqs. �46� and �52� �Appendix A�.

The high-permeability limit �open fracture� of Eq. �52�
is obtained by taking the limit �̂0���̂�0��→� �k0→� for
any h�. Using the result �̃→� f �Appendix B�, �� f / �̂��� �
= ��̃��� ��h→� f�h, which vanishes for small h’s. Because
�→1, the equations reduce to

�
u̇1

+ − u̇1
− = �− i���T�13

−

u̇3
+ − u̇3

− = �− i���ND
��33

− − ��− pf
−��

ẇ3
+ − ẇ3

− = �− i����ND
�− �33

− + �1/B̃��− pf
−��

�13
+ = �13

−

�33
+ = �33

−

− pf
+ = − pf

−

. �53�

This is essentially the same result as the boundary conditions

derived by Bakulin and Molotkov �1997�.
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In contrast, the low-permeability limit �impermeable
fracture� is obtained by �̂0→0 �k0→0 for any h�. Because
�→O�1/��=O���̂0� and 1/ �̂���→1/ �̂0, from the third and
sixth equations in Eq. �52�, ẇ3

+− ẇ3
−→O���̂0� and ẇ3

++ ẇ3
−

→O���̂0�, ẇ3
+= ẇ3

−=0.As a result, we obtain

�
u̇1

+ − u̇1
− = �− i���T�13

−

u̇3
+ − u̇3

− = �− i���NU
�33

−

ẇ3
+ = ẇ3

− = 0

�13
+ = �13

−

�33
+ = �33

−

. �54�

In Eq. �54�, the undrained normal fracture compliance is de-
fined as a derived new fracture parameter by

�NU
�

h

HU
= �ND

�1 − �B̃� . �55�

For a compliant, fluid-saturated fracture, 1 / B̃�1/B��, and
Eqs. �53� and �54� can be simplified even further.

Although assuming a vanishingly small fracture thick-
ness h results in simple boundary conditions, in reality a
finite h may result in non-negligible effects because of the
neglected O�h� terms in the matrices. This error will be ex-
amined briefly in the examples given later in Sec. III B.

D. Plane-wave transmission and reflection
coefficients

In applying the obtained boundary conditions, we will
derive explicit expressions for the transmission and reflection
coefficients of plane waves scattered by a poroelastic frac-
ture. From the velocity and stress components used in the
equation, Eq. �13� can be used for the scattering of S waves
with fracture-parallel particle motions �Sh waves�, and Eq.
�30� can be used for the scattering of fast and slow P waves,
as well as for S waves with particle motions within the plane
of wave propagation �Sv waves�. In the following, we will
first examine the P-Sv case.
stress components of plane waves as in these matrices has
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First, we split the second matrix boundary conditions in
Eq. �30� into the following two coupled equations:

bX�0+� − bX�0−� = − i�
h

2
Q̃XY�bY�0+� + bY�0−�� , �56�

bY�0+� − bY�0−� = − i�
h

2
Q̃YX�bX�0+� + bX�0−�� , �57�

bX � � u̇1

�33

− pf
	 , �58�

bY � ��13

u̇3

ẇ3
	 , �59�

where 0− indicates the incident side of the fracture and 0+ is
the transmitted side of the fracture. For the matrices h

�Q̃XY and h�Q̃YX, either the original boundary conditions
in Eqs. �31� and �32� or simplified conditions in Eqs. �47�
and �48� can be used. The vector variables are decomposed
into incident �I�, transmitted �T�, and reflected �R� fields as

bX�0+� = bX
T�0+� = − i�X+aT, �60�

bX�0−� = bX
I �0−� + bX

R�0−� = − i��X+aI + X−aR� , �61�

bY�0+� = bY
T�0+� = − i�Y+aT, �62�

bY�0−� = bY
I �0−� + bY

R�0−� = − i��Y+aI + Y−aR� . �63�

The vectors bX,Y
I,T,R are expressed via coefficient vectors aI, aT,

and aR containing complex amplitudes of solid frame dis-
placement for fast P wave �Pf�, slow P wave �Ps�, and S
wave �S� as their three components �for example, aI

= �aPf
I ,aPs

I ,aS
I �T, where the superscript T here indicates vector

transpose�. The coefficient matrices containing normalized
displacement and stress components of these waves in each
column are given by
X± � � �1/�Pf �1/�Ps �3
S/�S

− �Pf�HU
B + fPfC

B� + 2�1
2GB/�Pf − �Ps�HU

B + fPsC
B� + 2�1

2GB/�Ps 2�1�3
SGB/�S

− �Pf�CB + fPfM
B� − �Ps�CB + fPsM

B� 0
	, � X �64�

Y± � ± �− 2�1�3
PfGB/�Pf − 2�1�3

PsGB/�Ps − ��S
2 − 2�1

2�GB/�S

�3
Pf/�Pf �3

Ps/�Ps − �1/�S

fPf�3
Pf/�Pf fPs�3

Ps/�Ps − fS�1/�S
	 � ± Y �65�
The expressions for the displacement and stress components
can be found in, for example, Pride et al. �2002�. The super-
scripts + and − indicate waves propagating in the +x3 and
−x3 directions, respectively. Arranging displacement and
been shown to result in particularly simple expressions for
plane-wave transmission and reflection coefficients for mate-
rials with “up-down symmetry” across a plane scattering in-
terface �Schoenberg and Protazio, 1992�. In the matrices X

and Y, all the slowness components are for the background
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medium, and coefficients fPf and fPs and fS are the complex-
valued ratios of the relative fluid displacement to the solid-
frame displacement for fast and slow P waves and the Sv
waves, respectively �e.g., Pride et al., 2002�. To avoid con-
fusion, moduli for the background medium HU

B , MB, and CB

are indicated by a superscript B. Also, all the slowness com-
ponents are associated with the background medium.

Introducing Eqs. �60�–�65� into Eqs. �56� and �57� re-
sults in

X�aT − aI − aR� = − i�
h

2
Q̃XYY�aT + aI − aR� , �66�

Y�aT − aI + aR� = − i�
h

2
Q̃YXX�aT + aI + aR� . �67�

By solving these equations for the unknown coefficient vec-
tors aT and aR, the transmission and reflection coefficient
matrices T, R are determined, respectively, as

aT = �
I +
i�h

2
Y−1Q̃YXX�−1

+ 
I +
i�h

2
X−1Q̃XYY�−1

− I�aI � TaI, �68�

aR = �
I +
i�h

2
Y−1Q̃YXX�−1

− 
I +
i�h

2
X−1Q̃XYY�−1�aI � RaI. �69�

By recognizing the same structure in Eqs. �13� and �30�, the
same procedure can be followed to determine the scattering
coefficients for Sh waves. This can be done by simple sub-

stitutions X→1, Y→−�3
SGB, Q̃XY →1/G, Q̃YX→−G�1

2

+ ���̃−� f
2� / �̃, I→1 in Eqs. �68� and �69�, resulting, respec-

TABLE I. Baseline material properties used for the
values in the table may seem unrealistic for natural fr
free parameters in the study.

Matrix properties Values

Porosity 0.15
Permeability 1.0�10−13 m2

or 100 mD
Solid bulk modulus 36.0�109 Pa
Fluid bulk modulus 2.25�109 Pa
Frame bulk modulus 9.0�109 Pa
Frame shear modulus 7.0�109 Pa
Solid density 2700 kg/m3

Fluid density 1000 kg/m3

Fluid viscosity 1.0�10−3 Pa s
Tortuosity 3
Saturation ratio 1
tively, in
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aT = �
1 +
i�h

2

G�1
2 − � + � f

2/�̃

�3
SGB �−1

+ 
1 −
i�h

2

�3
SGB

G
�−1

− 1�aI � TaI, �70�

aR = �
1 +
i�h

2

G�1
2 − � + � f

2/�̃

�3
SGB �−1

− 
1 −
i�h

2

�3
SGB

G
�−1�aI � RaI. �71�

T and R are the transmission and reflection coefficients for
Sh waves, respectively.

The general expressions for the transmission and reflec-
tion coefficients for poroelastic fractures will be used in the
following examples, to examine the accuracy of both the
original and simplified boundary conditions.

III. EXAMPLES AND DISCUSSIONS

In this section, we will examine the effects of some of
the fracture parameters on seismic wave scattering. The
models for the examples share a set of baseline material
properties shown in Table I, which are intended to be for a
“typical” sandstone �e.g., Berea� containing a compliant frac-
ture. Also, we will focus on the amplitudes of transmitted
and reflected fast and slow P waves and an S wave generated
by an incident fast P wave. No phase responses are exam-
ined.

The accuracy of the derived boundary conditions is as-
sessed by computing the transmission and reflection coeffi-
cients using Eqs. �68� and �69� and comparing the results to
the prediction of the Kennett’s reflectivity algorithm �Ken-
nett, 1983; for poroelastic wave propagation, see Pride et al.,
2002�. Since the Kennett algorithm computes the scattering
coefficients without approximation �Appendix C�, the results

erical examples are shown. Although some of the
es, these values are assumed to reduce the number of

Fracture properties Values

Porosity 0.5

ry normal compliance 1.0�10−11 m/Pa
Shear compliance 3.0�1011 m/Pa

Solid density 2700 kg/m3

Fluid density 1000 kg/m3

Fluid viscosity 1.0�10−3 Pa s
Tortuosity 1
num
actur

D

are considered to be the correct solution.
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A. Impact of pressure diffusion within a fracture

In the first example, we examine the accuracy of the
poroelastic fracture boundary conditions in Eq. �30� and the
impact of the fluid pressure dissipation factor � in Eq. �21�
on wave scattering. For this example, in addition to the prop-
erties shown in Table I, we assume both high fracture per-
meability k0=10−10 m2 �100 D; 1000 times the background
permeability� and low fracture permeability k0=10−16 m2

�0.1 mD; 0.001 times the background permeability�, with a
fracture thickness h=1 mm. The fracture is fully saturated
with the same fluid as the background, and the bulk modulus
of the solid �grains� is also the same as the background.

Both normal-incidence frequency responses for a fre-
quency range of 10 Hz to 1 MHz—Figs. 5�a� and 5�b�—and
angle-of-incidence responses at 1 kHz—Figs. 5�c� and
5�d�—show very good agreement between the Kennett algo-

FIG. 5. Amplitudes of the displacement transmission and reflection coeffic
background� and high-permeability �1000� background� fractures with a thi
coefficient, with subscript Pf=fast P wave, Ps=slow P wave, and S=S wav
dotted curves were computed using the full fracture model in Eq. �30� with an
factor �, respectively. For the high-permeability fracture, the correction is n
by Kennett method. However, for the low-permeability fracture, the model
response. k0=10−10 m2; �b� Normal incidence frequency response. k0=10−1

incidence response. k0=10−16 m2.
rithm �shown in discrete symbols� and the full fracture model
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�shown in thick solid lines�. The errors seen above 100 kHz
for the normal incidence case result primarily from the mul-
tiple scattering of waves within the fracture �layer�, which is
not accounted for by the fracture model. An approximate
frequency corresponding to the lowest-frequency resonance
�reverberation� of the fast P wave within the fracture is in-
dicated in the plots by an arrow.

When the effect of pressure diffusion within a fracture is
ignored by enforcing the fluid-pressure dissipation factor �

=1 in Eqs. �30�–�41�, the fracture model �shown by dotted
lines in Fig. 5� significantly overestimates the reflected fast P
wave �Figs. 5�b� and 5�d�� and scattered slow P waves for a
low-permeability fracture above a frequency near 10 Hz.
This frequency is a transient �critical� frequency that sepa-
rates the drained and undrained response of a fracture. �More
detailed discussion will be given later in Sec. III C.� In con-

for incident fast P waves computed for both low-permeability �1/1000�
s h=1 mm. The labels indicate T=transmission coefficient and R=reflection
iscrete symbols were computed by the Kennett method.� Solid curves and

thout the correction of the pressure diffusion by the fluid pressure dissipation
ible, and both models agree very well with the “correct solution” computed
ut the correction shows significant errors. �a� Normal incidence frequency
�c� 1-kHz angle-of-incidence response. k0=10−10 m2; �d� 1-kHz angle-of-
ients
cknes
e. �D
d wi
eglig
witho
6 m2;
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=1 cm; �c� h=10 cm.
trast, for a high-permeability fracture, ignoring the effect of
pressure diffusion does not result in noticeable errors �Figs.
5�a� and 5�c��.

B. Fracture thickness and the accuracy of fracture
models

We derived the simplified fracture model in Eq. �67� by
assuming that the O�h� terms in the original boundary con-
ditions can be ignored except for the characteristic param-
eters of a fracture. For a finite fracture thickness, however,
this assumption has to be scrutinized.

In the following example, we assume a set of character-
istic fracture parameters �T=3�10−11 m/Pa, �ND

=1

�10−11 m/Pa, �=0.85, B̃=0.29, and �̂0=k0 /h=1�10−13 m,
and examine the effect of fracture thickness on the wave
scattering for three thickness values: h=1 mm, 1 cm, and
10 cm. These characteristic parameters were chosen for the
typical physical parameters in Table I, assuming that the 10-
cm-thick fracture was 100% saturated by the same fluid as
the background. �The bulk modulus of the fluid in the thinner

fractures has to be reduced to maintain the same � and B̃
values, which can be realized physically by introducing a
small amount of gas in the fluid.� Elastic properties of the
material within the fracture are determined from these pa-
rameters as a function of fracture thickness and used in the
full fracture model in Eqs. �30�–�41� as well as the layer
model.

In this example, we also examine the accuracy of the
simplified fracture model in Eq. �52� compared to the full
fracture model and the layer solution of Kennett’s reflectivity
algorithm. Reflection and transmission coefficient ampli-
tudes for fast and slow P waves generated from normally
incident fast P waves are shown in Fig. 6. For thin fracture
thickness h below 1 cm, both full and simplified fracture
models agree very well with the layer model, with the upper
limit of applicable range of frequency reducing with increas-
ing h. The error becomes large near and above the first reso-
nance frequency of the fast P wave within the fracture, as
indicated by a gray vertical line in the plots. The resonance
frequencies for this example are lower than the previous ex-
ample, because the combination of material properties used
here yields large undrained fracture compliance, which re-
sults in slower fast P-wave velocity within the fracture. Fur-
ther, for the h=10-cm case, the reflected fast P wave is in-
accurately predicted by the simplified model, even well
below the resonant frequency. This is probably caused by the
effect of mass within the layer. This effect is neglected in the
simplified model, since the scattering of slow P waves,
which is predominantly governed by the diffusion of fluid
pressure within the pore space, is still accurately predicted.

Because the characteristic fracture parameters are not
dependent on fracture thickness, the simplified model shows
identical responses in Figs. 6�a�–6�c� �shown by thin solid
lines�. The slight differences in the transmitted slow P-wave
response predicted by the model in Fig. 6�c� compared to

Figs. 6�a� and 6�b� result from the complex dependence of
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FIG. 6. Normal-incidence reflection and transmission coefficient amplitudes
for fast and slow P waves for the same characteristic fracture parameters
and three values of fracture thickness. For thin fracture thickness �below
1 cm�, both full and simplified fracture models agree very well with the
layer model, with the upper limit of the applicable range of frequency re-
ducing with increasing h. For the h=10 cm case, the reflected fast P wave is
inaccurately predicted by the simplified model, possibly because of the ef-
fect of mass within the layer, which is not considered. �a� h=1 mm; �b� h
and Schoenberg: Poroelastic boundary conditions across a fracture



dynamic permeability on h at high frequencies for a given
static membrane permeability �defined by Eq. �44�, with a
frequency ��0�.

C. Effect of fracture permeability on seismic wave
scattering

In the third example, we repeat our experiment of the
first example to further examine the effect of fracture hy-
draulic permeability �or membrane permeability�. The mate-
rial properties and fracture thicknesses used here are the
same as in the first example �h=1 mm�, which results in
characteristic fracture parameters �T=3�10−11 m/Pa, �ND

=1�10−11 m/Pa, �=0.998, and B̃=0.98.
The scattering amplitudes are computed using the sim-

plified fracture model in Eq. �52� for a wide range of mem-
brane permeability values �Fig. 7�. To examine the behavior
of the waves more closely, each wave and scattering mode is
shown separately. We also compute the high-and low-
permeability limits of the scattering responses using Eq. �53�

FIG. 7. Scattering amplitude responses �scattering coefficients� for a range o
shown with semi-log scales to clearly show changes at large amplitudes. D
fracture. Different membrane permeability values correspond to different typ
transmission; �b� Fast P-wave reflection; �c� Slow P-wave transmission; �d�
and Eq. �54�, respectively, which are shown in thick dotted
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lines bounding finite-permeability responses �except for the
zero-permeability bound in the slow P-wave reflection in
Fig. 7�d�, for which the scattering response of a low-
permeability fracture is more complicated and undershoots
the low-permeability limit�.

A distinct characteristic of the reflected fast P wave and
both transmitted and reflected slow P waves is that the slope
changes when each frequency response curve departs from
that of the high-permeability limit �labeled as �̂0=��. For
example, for �̂0=10−13 m �corresponding to the case previ-
ously shown in Fig. 5�b��, this occurs near 10 Hz. For a
saturated fracture with high, dry compliance, this transition
�critical� frequency can be evaluated as follows:

From Eq. �51�,

� �
1 − i

2
��

�2� f�ND

2�̂0B̃
. �72�

From the behavior of ���� shown in Fig. 3, the transition
frequency �critical frequency� �d between the drained and

brane permeability of a fracture. Fast P-wave transmission coefficients are
lines are both for a fracture with infinite permeability and an impermeable
es that “saturate” at both low and high permeability values. �a� Fast P-wave
P-wave reflection.
f mem
otted
e curv

Slow
undrained responses of a low-permeability fracture is evalu-
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ated by a frequency corresponding to Re���=1, resulting in

�d =
�̂0

� f

8B̃

�2�ND

, �73�

which is proportional to the membrane permeability of a
fracture and inversely proportional to the dry normal compli-
ance of the fracture. When the parameter values used in this
example are introduced with �̂0=10−13 m, the characteristic
frequency is fd=�d /2�=12.7 Hz, which is close to the
10 Hz observed in both Fig. 5�b� and Figs. 7�b�–7�d�. Also,
�d can be viewed as a critical frequency below which the
reflection of fast P waves and the scattering of slow P waves
become insensitive to the changes in fracture permeability.
Conversely, if the permeability of the fracture is low, for a
given frequency, membrane permeability higher than the fol-
lowing critical permeability cannot be determined using seis-
mic waves from the scattering of plane waves,

�̂0c =
�� f�

2�ND

8
. �74�

At 1 kHz, the critical membrane permeability is �̂0c=7.9
�10−12 m.

IV. CONCLUSIONS

A fluid-filled, flat fracture is a special case of heteroge-
neous poroelastic media, for which the effect of poroelastic
material properties on discrete scattering of seismic waves
can be examined analytically, owing to its simple geometry.
We hypothesize that a compliant fracture can be viewed as a
flat, thin, soft inclusion within a matrix. This simplification
results in sets of boundary conditions relating a finite jump in
the stress and velocity across a fracture to the stress and
velocity at the boundaries �fracture surfaces�.

The key step in the derivation of the boundary condi-
tions is the approximation of the pressure field within a frac-
ture: although the thickness of a fracture can usually be con-
sidered much smaller than the wavelength of an incoming
wave �fast P wave and S wave�, the pressure diffusion length
�or the wavelength of the generated slow wave� within the
fracture can be comparable to the fracture thickness, result-
ing in a rapid change in the pressure distribution. In turn, this
complex pressure distribution due to diffusion affects how
the wave is scattered, as a function of permeability and fluid
properties within the fracture.

For a thin fracture, however, the permeability parallel to
the fracture cannot be resolved from the wave scattering, as
indicated by the results in Appendix A. In this case, the
permeability needs to be inferred indirectly from the dry and
wet fracture compliances—parameters which depend on a
fracture’s internal structure �such as porosity, asperity, con-
tact spacing�, which also affects the permeability. In contrast,
fracture-normal permeability can affect wave scattering if the
permeability is below a threshold value and the wave fre-
quency is above a critical frequency.

Typically, the scattering behavior of a fracture changes
at a frequency where the fluid-solid interaction within the

fracture changes between drained �low frequency and high
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permeability� and undrained �high frequency and low perme-
ability� regimes. In general, for a normally incident fast P
wave, a fracture with higher fracture-normal permeability ex-
hibits larger reflection of fast P waves and generates more
slow P waves. However, amplitudes of slow P waves gener-
ated by a single fracture are generally small. For the effect to
be clearly measurable, high-frequency seismic waves and/or
multiple fractures may be necessary.

The scattering of waves by a fracture is controlled by a
set of characteristic �phenomenological� parameters similar
to the fracture compliance used in the linear slip interface
model �Schoenberg, 1980�. These parameters are shear com-
pliance, drained normal compliance, Biot-Willis effective
stress coefficient, fracture Skempton coefficient, and mem-
brane permeability. For a sufficiently small fracture thick-
ness, fractures having identical parameter values result in the
same observed seismic response.

Finally, throughout the modeling presented in this paper,
a fracture is assumed to be an isotropic and homogeneous
layer. �An extension of the model to anisotropic elastic
moduli and permeability is presented in Appendix A.� The
question remains, can an open fracture with partial surface
contacts and a fault with complex internal geometry be mod-
eled with such a simple model? For example, scattering of
waves may be strongly affected by the local fluid motion
around contacting asperities and within the complex internal
structure of a well-developed fault originating from shearing
�e.g., Sibson, 1977�. For such cases, more complex boundary
conditions, considering the effect of internal heterogeneity of
a fracture, are necessary.
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APPENDIX A: DERIVATION OF SEISMIC BOUNDARY
CONDITIONS FOR A TRANSVERSELY ISOTROPIC
POROELASTIC FRACTURE

Constitutive relationships for a general anisotropic po-
roelastic medium can be written using index notations as
�Cheng, 1997�

�ij = Cijkl
D uk,l + �ij�− pf� = Cijkl

U uk,l + M�ijwk,k, �A1�

− pf = M�wk,k + �ijui,j� , �A2�

where �ij is the symmetric Biot-Willis effective stress coef-
ficient tensor and Cijkl

D and Cijkl
U =Cijkl

D +M�ij�kl are the dry
�drained� and undrained stiffness tensors for the solid frame,
respectively. M is the fluid storage modulus. The momentum
balance equations are

2
�ij,j = − � ��ui + � fwi� , �A3�
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− pf ,i = − �2�� fui + �̃ijwj� , �A4�

where �̃ij is defined via an anisotropic dynamic permeability
tensor k��� through �̃��i� f /��k−1���.

For the following, we will focus on the transversely iso-
tropic case with the axis of symmetry aligned in the 3 direc-
tion �fracture-normal direction�. In the reduced matrix nota-
tion, the above constitutive relationship becomes

�
�11

�22

�33

�23

�31

�12

	 = �
C11

D C12
D C13

D

C12
D C11

D C13
D

C13
D C13

D C33
D

G

G

G�

	�
u1,1

u2,2

u3,3

u2,3 + u3,2

u3,1 + u1,3

u1,2 + u2,1

	
+ �

�1

�1

�3

0

0

0

	�− pf� , �A5�
h
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− pf = M��1u1,1 + �1u2,2 + �3u3,3� + M�w1,1 + w2,2

+ w3,3� , �A6�

where G�= �C11
D −C12

D � /2, and �i �i=1, 3� are the diagonal
entries of the effective stress coefficient tensor �. The mo-
mentum balance equation is the same as the general aniso-
tropic case, except that the permeability tensor also becomes
diagonal: k���=diag�k1��� ,k1��� ,k3����, where each diag-
onal component can be computed using the dynamic perme-
ability model proposed by Johnson et al. �1987�. Following
the same procedure as in the isotropic case, we obtain a
counterpart to the governing equations Eqs. �5� and �6� with
coefficient matrices,

R � � 1/G

− G��1
2 + � −

� f
2

�̃1
	 , �A7�

QXY � �1/G �1 0

�1 � � f

0 � �̃
	 , �A8�
f 3
QYX � �
� −

� f
2

�̃1

− 
C11
D −

C13
D2

C33
D ��1

2 �1
C13

D

C33
D �1
�1 − �3

C13
D

C33
D −

� f

�̃1
�

�1
C13

D

C33
D

1

C33
D −

�3

C33
D

�1
�1 − �3
C13

D

C33
D −

� f

�̃1
� −

�3

C33
D

1

M
+

�3
2

C33
D −

1

�̃1

�1
2 	 . �A9�
Using Eqs. �A7�–�A9�, for a small fracture thickness h, for-
mally identical simplified boundary conditions as in the iso-
tropic case �Eqs. �46� and �52�� are obtained if the definitions
of the characteristic fracture parameters are modified as fol-
lows:

�T �
h

G
, �A10�

�ND
�

h

C33
D , �A11�

� � �3, �A12�

�̂��� �
k3���

, �A13�
B̃ �
�3

C33
D �
 1

M
+

�3
2

C33
D � = �3

M

C33
U . �A14�

Note that only the anisotropic material properties related to
the 3 direction �fracture-normal direction� appear in these
definitions, which indicates that the scattering of waves is
not affected by the quantities related to the fracture-parallel
directions �Specifically, permeability along the fracture�. The
fluid pressure dissipation factor � is the same as the isotro-
pic case if the direction of the slow P-wave propagation
within the fracture is approximately in the fracture-normal
direction. One important difference from the isotropic case,
however, is that the normal and shear fracture compliances
can take arbitrary values independent from each other.

APPENDIX B: THE DYNAMIC PERMEABILITY
OF OPEN AND VERY PERMEABLE FRACTURES

For a highly permeable fracture or an open fracture in
which fluid flow parallel to the fracture can be affected by
the viscous friction along the fracture surfaces, the effective

permeability of the layer representing a fracture in the frac-

hoenberg: Poroelastic boundary conditions across a fracture 845



ture parallel direction must be reduced. As shown in Appen-
dix A, for a transversely isotropic fracture �a layer modeling

the fracture is transversely isotropic�, Q̃XY contains only the

fracture-normal permeability k3��� and Q̃YX contains only
the fracture-parallel permeability k1���. Therefore, for the
isotropic fracture model discussed in the main body of this
paper, the permeability needs to be allowed to be anisotropic.

In discussing the high-permeability case, we are con-

cerned only with fracture-parallel permeability k1��� in Q̃YX

because terms including k3��� in the boundary conditions
appear only as h /k3���, which become negligibly small for
small hs. If fracture-parallel fluid flow within the fracture is
laminar and the flow on the fracture surfaces can be ignored
because of the small permeability in the background, the
maximum possible permeability for this fracture can be
evaluated using Biot’s results for the dynamic permeability
of plane parallel flows �Biot, 1956b�,

�k1���� � �kplane���� = � h2

4�2
1 −
tanh �

�
�� , �B1�

� �
h

2
�� f�

i� f
.

Therefore, the permeability for the flow in the fracture par-
allel direction is bounded by taking the limit of Eq. �B1� for
h→�

�k1���� � � h2

4�2� =
� f

� f�
. �B2�

Equation �B2� gives the maximum possible dynamic perme-
ability of any fracture for a given fluid type. This limit can
also be obtained directly from the momentum balance equa-
tion for an acoustic medium,

��− pf� = − �2� fU . �B3�

This equation can be rewritten as

U̇ =
i

�� f
� �− pf� �

k���
� f

� �− pf� . �B4�

Therefore, we identify the permeability as

k��� =
i� f

�� f
, �B5�

which is identical to Eq. �B2�. The same expression can also
be obtained by bringing the static permeability k0 to infinity
in the expression for in dynamic permeability given by
Johnson et al. �1987�,

k��� = k0�
�1 − i
4

nJ

�

�J
− i

�

�J
� , �B6�

where nJ is a finite parameter determined by the pore geom-
etry �a value of 8 is recommended for common sandstones�,
and �J is the viscous-boundary characteristic frequency
given by �J�� f /� fFk0=� f� /� f��k0, where F is the electri-
cal formation factor and �� is the high-frequency limit pore-
space tortuosity, both of which approach unity for an open

fracture.
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Using Eq. �B2� and the definition in Eq. �4�, we obtain

��̃� � ��̃�k0 → � �� = � f . �B7�

This indicates that the magnitude of terms h / �̃ in Q̃YX is
bounded by a negligibly small value h /� f for small h’s.
Therefore, permeability in the fracture parallel direction does
not appear in the seismic boundary conditions for any static
permeability values of the medium and does not affect the
scattering of seismic waves. Conversely, permeability of a
fracture in the fracture-parallel direction cannot be deter-
mined from measured seismic responses if the fracture thick-
ness is much smaller than the wavelength of propagating
seismic waves.

APPENDIX C: KENNETT’S REFLECTIVITY
ALGORITHM APPLIED TO A SINGLE POROELASTIC
LAYER

Pride et al. �2002� applied Kennett’s reflectivity algo-
rithm �Kennett, 1983� to piecewise-homogeneous layered
poroelastic media. Exact expressions for the transmission
and reflection coefficients of a single poroelastic layer repre-
senting a fracture can be obtained as a special case of the
application.

Kennett method is based upon the following recursive
relationships between the transmission and reflection coeffi-
cients for a group of n parallel interfaces and coefficients, for
the remaining n−1 interfaces after the first interface in the
series is removed:

T�n� = T�n−1�En�I − Rn
−EnR�n−1�En�−1Tn

+, �C1�

R�n� = Rn
+ + Tn

−EnR�n−1�En�I − Rn
−EnR�n−1�En�−1Tn

+, �C2�

where the transmission and reflection coefficient matrices for
the removed interface are given as Tn and Rn, respectively,
with a sign in the superscript indicating the incident wave
direction. T�n�, T�n−1�, R�n�, and R�n−1� are for the n and n
−1 interfaces, as indicated in the parentheses, and for inci-
dent waves propagating in the positive direction. En is the
diagonal-phase advance matrix between the interfaces.

For the case of a single layer �two interfaces�, no recur-
sion is necessary to compute the transmission and reflection
coefficients T and R for the whole system. By setting T�0�

=T0
+, R�0�=R0

+, T=T�1�, and R=R�1�,

T = T0
+E�I − R1

−ER0
+E�−1T1

+, �C3�

R = R1
+ + T1

−ER0
+E�I − R1

−ER0
+E�−1T1

+. �C4�

For in-plane wave propagation �fast and slow P waves and S
waves with particle motions parallel to the plane of wave
propagation�, these matrices correspond to the transmission
and reflection coefficient matrices in Eqs. �68� and �69�. The

phase advance matrix is E�diag�ei��z
Pfh ei��z

Psh ei��z
Sh�. The

transmission and reflection coefficient matrices for the indi-
vidual interfaces are a function of material properties for
both the background and the fracture layer, which results in
very complex expressions for Eqs. �C3� and �C4� �albeit they
are in closed form�. These equations are evaluated numeri-

cally to obtain “correct solutions” in the example presented

and Schoenberg: Poroelastic boundary conditions across a fracture



in this paper. The interface scattering matrices can be com-
puted, for example, using the equations presented by Pride et
al. �2002�.
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