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Geophysical Prospecting 39, 219-240, 1991

LAYERED PERMEABLE SYSTEMS'

MICHAEL SCHOENBERG?

ABSTRACT
SCHOENBERG, M. 1991. Layered permeable systems. Geophysical Prospecting 39, 219-240.

Permeability is a second rank tensor relating flow rate to pressure gradient in a porous
medium. If the permeability is a constant times the identity tensor the permeable medium is
isotropic; otherwise it is anisotropic. A formalism is presented for the simple calculation of
the permeability tensor of a heterogeneous layered system composed of interleaved thin
layers of several permeable constituent porous media in the static limit. Corresponding to any
cumulative thickness H of a constituent is an element consisting of scalar H and a matrix
which is H times a hybrid matrix function of permeability. The calculation of the properties
of a medium equivalent to the combination of permeable constituents may then be accom-
plished by simple addition of the corresponding scalar/matrix elements. Subtraction of an
element removes a permeable constituent, providing the means to decompose a permeable
medium into many possible sets of permeable constituents, all of which have the same flow
properties. A set of layers of a constituent medium in the heterogeneous layered system with
permeability of the order of 1/h as h — 0, where h is that constituent’s concentration, acts as a
set of infinitely thin channels and is a model for a set of parallel cracks or fractures. Con-
versely, a set of layers of a given constituent with permeability of the order of h as h — 0 acts
as a set of parallel flow barriers and models a set of parallel, relatively impermeable, inter-
faces, such as shale stringers or some faults. Both sets of channels and sets of barriers are
defined explicitly by scalar/matrix elements for which the scalar and three of the four sub-
matrices vanish. Further, non-parallel sets of channels or barriers can be ‘added’ and
‘subtracted’ from a background homogeneous anisotropic medium commutatively and
associatively, but not non-parallel sets of channels and barriers reflecting the physical reality
that fractures that penetrate barriers will give a different flow behaviour from barriers that
block channels. This analysis of layered media, and the representations of the phenomena
that can occur as the thickness of a constituent is allowed to approach zero, are applicable
directly to layered heat conductors, layered electrostatic conductors and layered dielectrics.

INTRODUCTION
Permeability is a second rank tensor relating the fluid flow rate vector in a porous
solid to the macroscopic pressure gradient in the medium. It is a fundamental

! Based on a paper read at the 51st EAEG meeting, Berlin, May—June 1989; received Septem-

ber 1989, revision accepted August 1990.
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220 MICHAEL SCHOENBERG

property of a porous medium, indicating how easily fluids move, for example, through
rock in a hydrocarbon reservoir. However, permeability in the earth is almost every-
where anisotropic, sometimes by an order of magnitude or more. Figure 1 shows a
piece of Navajo sandstone for which the horizontal permeability (parallel to the thin
bands) is greater than 250 times the vertical permeability (perpendicular to the
bands). The dark bands are layers with much finer grains and narrower pore throats
than the lighter layers. The layers exhibit very little textural variation.

Basically, measurements are often made over distances large with respect to the
width of individual layers in a finely-layered region, so the permeability observed is
an average of the permeabilities of the individual constituent media (hereafter called
constituents). Each layer is one of those constituents, and one must envisage
perhaps many layers with only several constituents (see Fig. 2). Typically an alter-
nating sequence of layers (not necessarily periodic) consists of many layers of only
two constituents. Generally, each constituent may itself be anisotropic.

This situation was considered by Schoenberg and Muir (1989) with reference to
elastic stiffness moduli. They constructed a calculus to deal efficiently with the calcu-
lation of stiffness moduli and thus plane wave phase velocities of a medium equiva-
lent to the layered medium in the long wavelength limit. In addition, they showed
how the calculus could be used to decompose an equivalent medium into possible
constituents, and to handle in a coherent manner certain constituents, such as paral-
lel fractures, that were limiting cases of layers of a given constituent.

The basic ideas of calculating the properties of equivalent media in the static
limit are applied here to the less complicated situation of analysing the permeability
tensor of a stratified medium under constant or slowly varying pressure gradients.

NAVAJO 212
T v— —

Scin

Fi1G. 1. The Navajo sandstone shown here exhibits highly anisotropic permeability. The per-
meability anisotropy is thought to be caused by the thin dark bands which consist of much
smaller grains. The markings on the specimen denote the location of the cores which were
used in the permeability experiments. Photo courtesy of Stefan M. Luthi, Schlumberger-Doll
Research.
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F1G. 2. A stack of permeable layers, in this case consisting of three constituents. Each constit-
uent may be anisotropic. In any interval of thickness ¢ or larger, where ¢ is much smaller
than a wavelength, the percentage of each constituent is assumed to be stationary with
respect to the vertical coordinate z.

The purpose is to show how the permeability can be analysed in a layered porous
reservoir and to expose the relevant parameters needed to specify flow channels and
flow barriers. A secondary purpose is to show that this approach to layered media is
useful in considering a broad class of linear constitutive relations, and the Appendix
contains results for linear relations of arbitrary dimension. The particular example
of the constitutive relation of a permeable solid, where a 3D vector field is linearly
related to another vector field by a real symmetric second rank tensor is only one
example of a class of problems including those of : (1) heat conducting solids where
the heat flux vector is related to the temperature gradient by the heat conductivity
tensor; (2) electrical conductors in the static limit where the conduction current
density is related to the gradient of the potential (which is the electric field) by a real
conductivity tensor; and (3) dielectrics in the static limit where the charge displace-
ment vector is related to the electric field vector by the permittivity matrix. In
general, heat conductivity, electrical conductivity and electrical permittivity tensors
are anisotropic. All the ideas developed with the use of the calculus for permeable
layered media have their exact analogue in the areas of heat conductivity and static
electrical properties of layered media. In addition, a set of parallel low channels in a
rock mass, which may be modelled as a set of very thin layers of high permeability
can perhaps be identified with very thin layers of high conductivity if the fluid
flowing in the channels is an electrolyte, and with long parallel fractures or micro-
cracks if they are open enough to change substantially the overall elastic compliance
of the medium (Crampin 1984).
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A porous medium is obviously extremely inhomogeneous at a level of the grain
and pore size. However, for a porous medium homogeneous down to a scale cover-
ing many grains, the generalized Darcy’s law states that the macroscopic pressure
gradient Vp and vpq are linearly related by a second rank permeability tensor K of
dimension length?. v is the kinematic viscosity; g is fluid density; q is the flow rate of
dimension velocity defined so that pq is the volume integral of the point-wise
momentum of the fluid over the pore space in a volume divided by the volume.
Thus pq is porosity times the volume average, in the Biot sense, of pv over the pore
space, where v is the point-wise fluid velocity. Therefore the generalized Darcy’s law
may be written as

1
or in matrix notation,
qx 1 Kxx ny sz p.x
Q| =~ E K, K,, K, ||[p,]}
q, K,. K, K_.llp,.

with the comma [, ] denoting partial differentiation.

In the very long wavelength, low-frequency range (quasi- steady state), the
assumptions that the permeability matrix K be real and that the fluid be incom-
pressible, i.e. V - ¢ = 0, are very good approximations even for gas-saturated media
(Biot 1956; Schoenberg and Sen 1987). The condition that —Vp - q be positive (thus
assuming there is always some flow given sufficient pressure) implies K is positive
definite. 1 further assume that reciprocity holds, which is equivalent to K being
symmetric. Under these conditions, there is always a rectangular coordinate system
in which K is diagonal, the diagonal elements being the eigenvalues which are real
and positive. In general all three eigenvalues are different. The two more restrictive
cases are when two eigenvalues are the same and when all three are the same, the
isotropic case.

Note that the pressure gradient Vp can be expressed in terms of q using the
inverse of the permeability matrix, L = K~ !. L is the flow resistivity matrix, or the
impermeability matrix, or simply the impermeability. As K has dimension length?, L
has dimension length™2, and it too is symmetric, positive definite with eigenvalues
equal to the inverses of those of K. Equation (1) inverted is

Vp= —vwL - q 2

Its use greatly simplifies the insertion and removal of flow barriers, while fractures
are easier to handle permeability. This is analogous to the fact that the elastic effects
of fractures are much easier to analyse using elastic compliance instead of elastic
stiffiness moduli, a fact that was not appreciated in the original Schoenberg-Muir
paper, but that has been used subsequently by Nichols, Muir and Schoenberg (1989)
for elastic layers.

In addition to a constitutive relation, interface conditions on the field variables
between homogeneous regions must be posited. Perfect contact at an interface z = 0
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is defined as: (a) pressure p is continuous across z = 0 implying that any tangential
derivative of p is continuous, or in vector form V;p(0~) = V1 p(0*); and (b) there are
no sources or sinks for fluid in the interface between the different media so that the
normal component of q is continuous across the interface, i.e. g,(07) = ¢,(0"). Inter-
face condition (a) holds for temperature in the heat conduction problem and for the
electric potential in the electrical conductivity problem, while (b) holds for the heat
flux vector and the conduction current density vector. In all cases with constitutive
relations and interface conditions of this same form, the analysis below applies.

In Section 1, the properties of a homogeneous medium equivalent to a layered
permeable medium are formulated using submatrices of the permeability and imper-
meability matrices following the approach used in the Appendix of Helbig and
Schoenberg (1987) which was for elastic equivalent medium properties. For any set
of n constituent media, there exists a homogeneous anisotropic medium that
behaves, in the quasi-static limit, exactly as does the finely-layered medium consist-
ing of many layers, each layer being one of the n constituents. This means, in this
case, that on a scale much larger than the scale of the layering, the equivalent
medium flows exactly as does the layered medium under the same applied pressure
gradients. The derivation and the appearance of the formulae for the equivalent
medium properties are not dependent on the number of variables in the constitutive
relation or the sizes of the submatrices. The approach, applicable to a broad range
of problems of arbitrary dimension, is presented in the Appendix, which also
includes a discussion of matrix inversion using submatrices and general equivalent
media formulae.

In Section 2 the ideas of the Schoenberg—Muir calculus (1989) are applied, devel-
oped for elastic layers, to the problem of permeable layers under consideration here.
Essentially, one mirrors the physical construction of a section of a given thickness of
a layered medium composed of several constituents by associating with each constit-
uent an element consisting of the cumulative thickness of the constituent and that
thickness times the hybrid matrix function, its permeability. Then as one constructs
the physical model by interleaving thin layers of each of the constituents, mathe-
matically all one does is simply add these elements, giving a new element corre-
sponding to the total thickness of the homogeneous medium equivalent, in the static
limit, to the section of layered media just constructed. The order or way in which
the constituents are inserted does not affect the result. The advantage of this
approach is that removal of an amount of a given constituent is mathematically
equivalent to subtraction of the element corresponding to that amount of the con-
stituent, thereby providing the means to decompose a section of a permeable
medium into a set of permeable constituents and their thicknesses. As each of the
elements is merely a scalar and a matrix with certain specifiable properties, the set of
all such elements is a commutative group under addition, called G, formalizing the
operations that are allowed, both mathematically and physically.

The constituent properties which always carry over to the equivalent medium
properties, i.e. for which properties is the set of all elements corresponding to layers
with those properties a subgroup of G, is discussed in Section 3. Special attention is
devoted to symmetry properties of the permeability tensor.
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In Section 4, parallel cracks or fractures are characterized as infinitesimally thin,
but free flowing, channels, while conversely, thin but highly impermeable layers,
such as shale stringers or faults at which the pores are misaligned and clogged, are
characterized as planar barriers to flow. Both these phenomena have simple explicit
representations in the group domain. The insertion or removal of channels or bar-
riers at any orientation becomes a simple arithmetic order-independent operation.
Only when there are intersecting sets of channels and barriers, does the order in
which they were introduced influence the properties of the equivalent medium. In
addition, an arbitrary anisotropic permeable medium is shown to be equivalent to
an isotropic background with a single set of flow channels, or, to an isotropic
medium with two sets of flow barriers intersecting at right angles. In some sense
these are minimal representations for an arbitrary medium.

1. SYSTEMS OF ANISOTROPIC PERMEABLE LAYERS

Consider a region of porous, homogeneous (over a scale much larger than pore or
grain size), but in general anisotropic layers, composed of n constituents, each with
concentration h;, so that Y ', h; = 1, and permeability K, saturated with the same
single fluid in all layers. Set Cartesian coordinates so that the z-axis is perpendicular
to the layering, and the x- and y-axes lie in the plane of the layering (Fig. 2).

Assumption (1) is that the concentrations h; of the finely-layered constituents are
approximately the same in any interval in z of width £ or larger, i.e. the layered
medium is stationary down to length scale £, the stationarity length.

Assumption (2), that of slow variation over a length scale L » 7, is that all layers
of the same constituent encounter the same environment and thus have the same
values of the field variables, Vp and q.

At any boundary between layers, which must be a plane of constant z, q, (expressing
the flow per unit area across the boundary) must be continuous, and the pressure p,
and hence the derivatives of p parallel to the layering, must be continuous. Thus g,
p.,and p , are constant throughout the region while the components of q parallel to
the layering and the derivative of p perpendicular to the layering depend on the
local properties of the layered permeable system. Equation (1) in the ith constituent
can be rewritten to separate field variables that are constant over long distances
from those that vary. with i as

1
qr, = — — [Kyp, Vop + kyn, 2, 1),
e 3)

1
= — — [kyr V KanD 2,
q. vp[ nt; Y1 P + Knn P, 2]

where

dx, Px
qr; = “ v D= [ ' :I’
T [qn] ™ ip,
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and

K. K,. K.,
KNNi = KzZi > kTNi = I: le], kNT.‘ = k!er_ N KTT.‘ = I: xxi xYl:I'
K K i KYYI'

Yzi Xyi

qr, is the velocity tangent to the layering and Vyp is the tangential gradient of the
pressure. Superscript t denotes the transpose. The convention used is that simple
italics denote a scalar or a 1 x 1 submatrix, bold face, lower case denotes a vector
oral x 2 or 2 x 1 submatrix, and boldface capital denotes a matrix or a 2 x 2
submatrix.

Before these equations can be averaged to find an equivalent permeable medium,
one has to solve for the variables that vary from layer to layer. Solving the second of
(3) for p_,, and substituting into the first of (3) gives

- quT.- = (KTT. - kTNi KYGNI. kNT.’)vT 14 + kTN.‘ KP;NI.( - quz)’
P = — KY;I\}. l‘NT.' VT p+ KIGP}.( - quz)'

This is the hybrid form of the flow—pressure gradient relation, and the coefficients of
V.p and (—vpq,) on the right-hand side of (4) are the submatrices of the hybrid
modulus matrix (for short, the hybrid submatrices) of the ith permeable medium in
terms of the submatrices of the permeability matrix.

Due to assumptions (a) and (b), the pressure drop for the equivalent homoge-
neous medium in the z-direction over any width H > / but smaller than L must
equal the sum over all the constituents of their z derivatives of pressure times their
respective cumulative thickness in the width H. Dividing such a sum by H implies
that p , is given by the thickness-weighted average of the p ., ie. Y7, hp ., =
{p,,>. A similar argument about the horizontal flow through a vertical section of
width H implies that ¢y is given by the thickness-weighted average of the q,, ie.
Y71 hi@r, = {qr). Thus thickness-weighted averagmg of (4) gives, at length scales
at least of the order of 7,

—vp<gr) = (Kpr) — <kyn Knn knt))Vrp + kpn Knn X(—vpg.),
p,.> = —<Knn knpdVrp + (K X(—vpq.). %

This is the hybrid form of the averaged anisotropic flow—pressure gradient relation
in the layered medium, which is precisely the flow—pressure gradient relation of the
homogeneous medium that is equivalent to the heterogeneous layered medium at
length scales of the order of ¢ or larger. The coefficients on the right-hand side of (5)
are the hybrid submatrices of the equivalent medium, which are only the thickness-
weighted averages of the hybrid submatrices of the constituents. From the hybrid
submatrices, the permeability matrix of the equivalent medium is returned by
solving (5) for {q;) and ¢, and identifying the coefficients of V p and {p ,> with the
appropriate permeability submatrices, yielding

Krpd — ki Kok ke L
[Kﬂ km]= + (ko Kt 9Kt > ™ K gy KTv K> (KD

k K
N CKk> ™ K knr) (Kb ™2

)

(6)
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Equation (6) is the full anisotropic equivalent of the fact that, when layers are
stacked together, permeability normal to the layering is the harmonic average of the
constituent permeabilities (connection of conductors in series) while permeability
tangential to the layering is the arithmetic average (connection of conductors in
parallel).

The above analysis using (3) to (6) can be carried out in the same way using the
impermeability rather than the permeability. Analogous to (3), L can be broken into
submatrices for the purpose of separating variables which change from layer to
layer from those that are constant over may layers, yielding for the ith constituent,

Vip = —vp[Lrr g, + ITN.' 9.},
p, 2 = vp[lNTi qT.’ + LNN.’ qz] (7)

The definitions of the submatrices of L are analogous to those of K of (3). Now
solving (7) for the quantities which vary with i yields

—vpqr, = Lfrli Vip— L’l_‘Tl.' bnd—vpq.),
P.z= Iny, L‘I:Tl. Vip + (LNN.- ~ Iy, LT_TI.- lTN,»)("VPQJ (8)

This is the hybrid form of the flow-pressure gradient relation as is (4), but here the
hybrid submatrices of the ith permeable medium are expressed in terms of the sub-
matrices of the impermeability matrix. As above, the hybrid submatrices of the
equivalent medium are the average of the hybrid submatrices of the constituents.

Then solving for V;p and {p ,> and identifying the coefficients of {q;) and g,
with the appropriate impermeability submatrices, yields for the impermeability
matrix of the equivalent homogeneous medium, in submatrix form,

L™t Ly > 7 Lgy b
(Lan) — Anr Ly bend , e
+ hr Lo D L) "L b

the impermeability of the equivalent medium in terms of the impermeabilities of the
constituent media. It is just as easy to find the permeability of the equivalent
medium in terms of the impermeabilities of the constituent media, and the imperme-
ability of the equivalent medium in terms of the permeabilities of the constituent
media.

Since the hybrid submatrices are expressed both in terms of permeability and
impermeability, they are a convenient point to derive a matrix inversion in terms of
submatrices, which is shown in the Appendix for an m-dimensional linear constitu-
tive relation in terms of p- and g-dimensional submatrices, where p + q¢ = m.

[Ln b } _
lNT LNN <|NT L';Tl ><L';T1> -t

2. MODEL BUILDING BY ADDITION AND SUBTRACTION

The Schoenberg-Muir calculus is a formal way of examining the elastic quantities
that are unchanged in the replacement of a section of thickness H of one stratified
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medium by a section of another stratified medium of the same thickness when both
stratified media are equivalent in the long wavelength limit. Applied to permeability,
two stratified media equivalent means that in the static limit, they both have the
same tangential flow, Y ¢y, and the same normal pressure drop, ) p, ., when g,
and V;p are the same across both sections. From (4) or (8), it is clear that, in
addition to thickness being the same to preserve the geometry, the sums of thickness
times hybrid submatrices must be the same. Thus associated with a homogeneous
section of thickness H and permeability K will be an element consisting of a scalar
and a matrix ’

G = {H H[KTT — kynKan Enr kpn K§1~}]}

— Kyn knr KN

Ly — Lt by ]}
=<H, H _ _ . 10
{ [INT Lt Lyn — e L by (19

If that homogeneous section is to be equivalent to a stratified section composed of n
constituents, each of cumulative thickness H;,

G=) G, (11)
i=1
where G, is the element corresponding to the ith constituent. If an element G, is
subtracted from G, a new element is generated

Gb = G - Gﬂ’ (12)

corresponding to the section G with the thickness H, of constituent a removed. The
set of all such elements, i.c. the set of all elements consisting of a scalar of dimension
length, a 3 x 3 matrix with its upper left (UL) 2 x 2 submatrix symmetric and of
dimension length?, its lower right (LR) 1 x 1 submatrix of dimension length™ !, its
upper right (UR) 1 x 2 submatrix of dimension length, and its lower left (LL) 2 x 1
submatrix equal to the negative transpose of the UR submatrix, is closed under
addition, and is a commutative group, called G; and hence, the elements are called
group elements. This means nothing more than that the addition is associative
and commutative; there exists a zero element {0, 0}; and every element G has its
inverse —G.

Clearly, dividing the 3 x 3 matrix by the constant gives the hybrid submatrices
from which either the permeability, following the general derivation (AS5), or the
impermeability, following (A6), is easily found. The components g(1) to g(5) used by
Schoenberg and Muir (1989) were the thickness, the mass (thickness times density),
and the thickness times the 3 x 3 LR, 3 x 3 UR and 3 x 3 UL hybrid submatrices,
respectively, the hybrid submatrices having been derived from the 6 x 6 elastic
modulus matrix.

Summarizing: to combine sections with one another, add their group elements;
to remove a given thickness of a constituent from a section, subtract its group
element from that of the section. It is proved (see (A4)) that positive definite K is
equivalent to positive definite UL and LR hybrid submatrices so, for a group
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element to correspond to a positive thickness of a realizable permeable medium, the
scalar and the 1 x 1 LR submatrix must be positive, and the UL submatrix must be
positive definite. Thus, combining constituents always yields a realizable medium, as
can be seen both from physical grounds and mathematically, as the sum of positive
numbers is positive and the sum of positive definite matrices is positive definite. If
after removal (subtraction) of a constituent medium, one or more of these conditions
is violated, the remaining group element does not correspond to a positive thickness
of a realizable medium.

3. SUBGROUPS OF G

A subset of G may be defined by a set of distinguishing properties. When such a
subset is closed, i.e. a subgroup, the sum of any elements in the subgroup retains the
distinguishing properties of the subgroup. These distinguishing properties are
reducible to the vanishing of a set of linear combinations of quantities in the group
element, i.e. the leading scalar and the matrix components. But what quantities
exactly? From dimensional considerations, any linear constraint in the specification
of a subgroup must be either:

(a) a linear combination of H and the elements of the UR submatrix vanishing, i.e.
¢ HKn K + ¢ HKn, Kan + ¢3 H
=c,HK /K, +c;HK ,/K,, + c;H=0;
(b) a linear combination of the elements of the UL submatrix vanishing, i.e.
d H(K+r,, — K#n,Knn) + d; H(Kpr,, — Kin, Kan)
+ dy H(Kyr,, — Kn,Kon, Knn)
=d,H(K,, — K} /K.) + d, HK,, - K}, /K,)) + d; HK,, — K. K,,/K;,) = 0;

or (c) the 1 x 1 LR submatrix vanishing, ie. HKgn = 0.

All such constraints can equally well be written in terms of components of L. Four
subgroups corresponding to permeable layers with certain symmetry properties are:

(i) The group elements corresponding to constituents that have one of their
eigenvectors of the permeability tensor in the z-direction normal to the layering. The
permeability of these constituents is symmetric with respect to the plane of the lay-
ering. For this to occur, kyy must vanish leaving four independent permeability
components instead of six for the general permeable medium. The vanishing of kyy
can be written as two linear homogeneous linear constraints of type (a),
HK,,/K,, =0and HK,, /K., = 0, proving that such constituents form a subgroup,
call it EZ < G (EZ for eigenvector in z-direction) and if all constituents in a section
have one of their eigenvectors normal to the layering, the equivalent medium does
too. This is easily seen also from (6), which reduces, for constituents in subgroup EZ,
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to

[KTT kTN] - [(KTT> 0 :' (13)
kNT KNN 0 <Kl;b}>_l .

Since kpy = 0, there is no coupling between the normal and tangential permeability,
and the normal permeability is given, as always, by the harmonic average of the
normal permeabilities whereas the tangential permeability components are given by
the arithmetic averages of their corresponding components.

(ii) The group elements corresponding to constituents that not only have one of
their eigenvectors of the permeability tensor in the z-direction, and thus are already
in EZ, but have their xy-plane eigenvectors in fixed directions, with no loss of gener-
ality, say the x- and y-directions. Then not only must kpy vanish but K¢y must be
diagonal leaving only three independent permeability components. Constraints of
type (b) for elements in EZ reduce to d,HK,, + d, HK,, + dy HK,, = 0 and Ky
diagonal can be written as a constraint of type (b), HK,, = 0, proving such elements
form a subgroup, call it OR < EZ (OR for ‘orthorhombic’). If each constituent of a
section has one of its eigenvectors perpendicular to the layering and the other two
parallel to some fixed in-plane directions, then so does the equivalent medium.

(iii) The group elements corresponding to constituents that not only have one of
their eigenvectors of the permeability tensor in the z-direction but have equal in-
plane (xy-plane) eigenvectors. For this to occur, not only must kyy vanish and Kt
be diagonal but K must be proportional to I,, the 2 x 2 identity matrix, leaving two
independent permeability components. This additional condition can be written as a
constraint of type (b), HK,, — HK,, = 0, proving that such elements form a sub-
group, denoted by TI = OR (TI for ‘transversely isotropic’). The permeability is
rotationally symmetric about the z-axis.

(iv) The group elements corresponding to constituents that have an eigenvector
in a fixed direction in the plane of the layering. Without loss of generality, let that
direction be the y-axis. This requires that Kpy, = 0 and K, be diagonal leaving
four independent permeability components. These can be written as two linear
homogeneous linear constraints, one of type (a), HK, /K, = 0, and one of type (b),
H(K,, — K,.K,./K,,) =0, which, due to the first constraint, becomes HK,, =0,
again proving that such constituents form a subgroup, call it EY c G (for eigen-
vector in y-direction).

These relationships between these subgroups connected to the symmetry of the
permeability matrix can be written as

EZ
TIc OR {Ey} =G, OR=EYnEZ (14)

If a constituent is isotropic, K is proportional to I, where I, is the 3 x 3 iden-
tity matrix. Thus any isotropic constituent belongs to subgroup TI. From (13),
noting the difference between arithmetic and harmonic means, it is clearly seen that
even if all constituents in a section are isotropic, the equivalent medium is not iso-
tropic but transversely isotropic. This is of course reinforced by the fact that the
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isotropy constraint (beyond those required for a constituent to be a member of T1)
is that K — K,, = 0 which is not a constraint of either type (a), (b) or (c), and thus
the set of elements corresponding to isotropic constituents does not form a sub-
group of T1. It can also be shown that elements corresponding to constituents with
a principal direction parallel to the layering but arbitrarily aligned in that plane
also do not form a subgroup. The coefficients in the linear constraints specifying a
given direction depend on the direction so different layers would satisfy different

constraints.

4. FLow CHANNELS AND FLOW BARRIERS

Parallel fractures as sets of flow channels

Consider a particular constituent denoted by subscript ¢, of a layered region of
total thickness H, that has cumulative thickness H_. and hence relative thickness
h. = H_/H and let the permeability become large while the thickness of this constit-
uent, H_, becomes small, allowing an infinitesimally small thickness of this constitu-
ent to flow a finite amount of fluid. The layers of this constituent can be thought of
as a set of parallel free-flowing interfaces or open long planar cracks, called here
‘channels’. Across each layer, g, and V1 p are continuous, as across any single layer
in the long wavelength limit. It is clear from the first of (4) that at least some com-
ponents of qr, will become infinite but the total flow along the channels, h. Hqy_,
will remain finite. Parallel fractures in a rock mass, a set of open parallel faults, a set
of aligned microcracks, or the set of fractures generated by a ‘hydrofrac’ could all
be modelled by a set of such channels.

Instead of letting the permeability of the ¢ medium become large, it is more
convenient to let the impermeability, or in particular the TT submatrix of the
impermeability, tend to zero as h, — 0, i.e. Ly;_must be order h_ as h, — 0 and the
positive definiteness of L requires that lyy_ be of order h_ also. Define Ly, = h Ly
and by = h I;y. Clearly, L = (1/h)Lr,! . The group element of such channels,
i.e. the thickness and the thickness times the matrix of the hybrid submatrices, is,
from (10),

G. = lim {h H[ HE;T: 'h“Hf‘T_TIiEN s ]}
¢ he—0 ¢ ’ hc HiNT L;Tl hc H[LNNC - hc i'NT L'FTI lTN]

_( [HY o
= {0’ [ 0 0]} (13)

where Y = L', a 2 x 2 symmetric submatrix characterizing the set of channels and
which I call the ‘excess permeability matrix’. All group elements of the form (15) are
a subgroup of G, implying that combining parallel sets of channels yields a set of
channels.

To introduce a set of channels with flow behaviour specified by excess per-
meability matrix Y, into a background rock, with group element G, of thickness H
and permeability K, add group elements G, and G_, yielding the group element of
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the model of the cracked rock,

HXK iy — kinKnn knr + Y)  Hkon Knn
G. ={H, . 16
G + G {H [ — HK ke HK 19

Then, from (A5), given the hybrid matrix, the permeability of the cracked rock is
given by

R 17
[ kne  Knn @)

Only the TT submatrix of the permeability is changed due to the addition of the
channels, and the change is independent of the background. The change of the full
permeability matrix due to the channels may be written

AK = E;YE;, where E;= [1 0 0]. (18)
010

Note that the change in impermeability due to the channels is
AL = (K + AK)"! — K™! which is strongly dependent on the background per-
meability and in general has no vanishing submatrices, which is why it is preferable
to work with permeability when adding or subtracting channels.

Flow channels in other directions can easily be added by rotating the coordinate
system to a primed coordinate system, with the z'-axis normal to the channels. In
this coordinate system, the background permeability tensor is given by AKA', where
A is the direction cosine matrix of the primed coordinates relative to the original
unprimed coordinates. Thus, assuming the channels have excess permeability matrix
Y’, the permeability of the rock with channels in the primed coordinates is, accord-
ing to (18),

AKA' + EL YE,, (19)

and rotating back to the original coordinates gives)the permeability as
Yl
AYVAKA'+ E;YE A =K + [E-A]'Y[E;A] =K + A' [ 0 g] A (20)

From (20), it is clear that the change in permeability due to channels at any orienta-
tion is independent of the properties of the background. Thus any number of sets of
channels with arbitrary non-parallel orientations can be inserted into (by addition)
or removed from (by subtraction) any background and in any order without ambi-
guity. The permeability of a medium with #n sets of intersecting channels is given by

K+ Y [ErAJY,[EfA)] (2
j=1
where A; is the direction cosine matrix of the coordinate system associated with the

Jjth set of channels.
Figure 3 is a representation of two intersecting sets of channels in an otherwise
isotropic medium of permeability KI;. The thick channels are parallel to the
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xy-plane and are assumed to have excess permeability matrix L;;* = Y;I,. The thin
channels are at angle 6 to the thick channels and are assumed to have excess per-
meability matrix L'r;! = Y,1,. The permeability of this system, provided flow dis-
ruption at the intersecticns can be neglected, is

1 00 Lol ot o o
kK]o 1 ol+vylo 1

O 110 1 O
0 0 1 0 0
v COSO 0 1 Offcos® 0O siné
0 Ml o 0 o
sinf 0
1 00 1 00 cos? 6 0 cos@Osin 8
~klo 1 o|+¥jo 1 o]l+v| o 1 0
0 01 0 00 cosfsinf O sin? 6
K+Y, +Y,cos* 6 Y, cos 0 sin
- 0 K+n+n 0 . 22)
Y, cos 6 sin 6 0 K + Y, sin? 6

Because of the thin channels, kry # 0 unless 6 = 0, n/2. The group element of this
medium is in subgroup EY. To provide numbers for this example, let the back-
ground permeability K = 0.1, the thick channel Y; = 0.6 and the thin channel ¥, =
0.3. Then, referring to (22), the permeability has an eigenvalue equal to 1.0 with a
corresponding eigenvector in the y-direction for all . The larger eigenvalue in the
xz-plane, the ratio of the larger to smaller of the two xz-plane eigenvalues, and the
angle between the principal direction corresponding to the larger eigenvalue and the
x-axis are shown as a function of 8 in Table 1 for this example. The maximum value
of the angle for this example is 15° when § = 60°.

TaBLE 1. Flow in xz-plane as a function of 8, corresponding to Fig. 3.

g° 0 10 20 30 40 50 60 70 80 90

Larger eigenvalue 100 099 098 095 091 086 081 076 072 0.70
Ratio larger/smaller 1000 9.37 7.87 6.18 473 361 279 222 187 175
Angle ° from x-axis 00 33 65 96 123 142 150 138 89 00

Note that the vanishing of the determinant of the excess permeability matrix Y
implies the channels can flow in one direction only, thus simulating the flow behav-
iour of a set of parallel needle-like cracks, or flow tubes.

Planar flow-impeding interfaces as sets of flow barriers

Consider a particular permeable constituent, denoted by subscript r (for resist-
ance to flow), of a layered region of total thickness H having a cumulative thickness
H, and hence relative thickness h, = H,/H. Let the permeability become small as
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FI1G. 3. A representation of a set of thick channels roughly parallel to the xy-plane (y-axis out
of the paper), intersected by a thinner set of channels at an angle 6.

the total thickness of this constituent becomes small, so that a smaller and smaller
thickness can still impede flow normal to the layering. Such impermeable planar
interfaces can be thought of as relatively impermeable membranes or barriers to
flow, called here simply *barriers’. From the second of (4), any flow across a barrier
must be accompanied by a pressure jump, ie. p , approaches infinity, but h Hp
will remain finite. A set of closed parallel faults across which tangential slip has
taken place in an otherwise homogeneous porous medium may act as flow barriers
due to pore misalignment or pore clogging that occurred at the time of slip. Thin
parallel shale stringers can also be modelled as a set of flow barriers. Barriers occur
commonly in tidal flats. Due to tidal deposition, thin sheets of fine clay are embed-
ded in the sand often separated by as little as several centimetres. Such structures
can continue to depths of tens of metres.

To model a set of barriers, let the 1 x 1 submatrix K, of the permeability tensor
of this constituent be of order h, as h, — 0. Positive definiteness requires that kyy,_ be
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also of order h,. Define Ky, = A, Ky and kyy = b, k. The group element of the
barriers are, from (10),

h H hr H[KTTr - hriT‘]:l Kr:h} RNT] hr HRTN Kr;h}
" h, HR o knr HRW

0 0O
R

where Z = K is a scalar characterizing the set of barriers, and which I call the
‘flow impedance . All group elements of this form are a subgroup of G.

To introduce barriers specified by flow impedance Z into a background rock,
denoted by subscript b, of thickness H and impermeability matrix L, add the group
elements of the background and of the barriers, yielding the group element of the

rock with barriers

HL=! —HLH 1
G, + G, = { H, [ ol 7 b ]} 24
° Hly; L7t H[Lny — Iy Lpr ben + Z]

and using (A6), from the hybrid matrix, L of the rock with barriers is

Lyr I ] (25)
e Lawt+ZJ

Only the NN submatrix of L, a scalar, is changed by the addition of barriers, and
the change is independent of the background. The total change in the imperme-
ability due to the barriers may be written in matrix form,

G, = lim
he—0

AL = E\ ZEy, where Ey=[0 0 1], (26)

analogous to the changes of the permeability tensor due to the channels given in
(18). I have used the impermeability here because the permeability change due to the
barriers, AK = (L + AL)"! — L™, is again dependent on the properties of the back-
ground and in general has no vanishing submatrices.

As above with flow channels, a set of barriers with arbitrary orientation can be
added to any background by rotating to a primed coordinate system with its z'-axis
normal to the barriers to be added. Let the flow impedance of the barriers be Z'.
Then the total flow impedance in the primed system is

ALA' + E{ Z'E, 27
and rotating back to the original coordinates gives the flow impedance as
0 0
AYALA' + Ey ZEYA = L + [EyA)'Z'[EyA] =L + A! [0 Z’] A. (28)

Note that [Ey A] depends only on the direction cosines of the z'-axis. As with chan-
nels, the change in impermeability due to the barriers is independent of the proper-
ties of the background. Thus sets of barriers with arbitrary orientation can also be
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introduced to any background in any order. The impermeability of a medium with n
sets of intersecting barriers is given by

L+ _}:l [ExAJ'Z[ExA;L (29)
j=
where A; is the direction cosine matrix of the coordinate system associated with the
jth set of barriers. As with channels, removal of a set of barriers is carried out by
subtraction.

Channels and barriers that are parallei can be added and subtracted to a back-
ground rock in any order because they are representable by group elements.
However, the medium equivalent to a background with intersecting sets of channels
and barriers depends on the order in which they are introduced. To see this, con-
sider only changes in permeability due to inclusion of channels or barriers. The
change due to the introduction of channels at an orientation defined by A, is, from
(20), AK_ = [E;+ A J'Y'[ErA_]. The change of permeability due to the introduction
of barriers at an orientation defined by A, is, from (28), AK,=[L +
[ExAJZ[ExA.J]™ ! — L™, a matrix function, not only of Z’ and A,, but also of
the background, call it AK(K). Thus the total change due to the introduction of
channels and then barriers is AK_ + AK (K + AK_), and this is not equal to the total
change due to the introduction of barriers and then channels, AK (K) + AK_, except
when the channels and barriers are parallel. This corresponds to the physical notion
that if there are channels in a rock mass and subsequently the rock develops bar-
riers intersecting the channels, the barriers will block the channels, and this is differ-
ent from the case when there are barriers in a rock mass and subsequently the rock
develops channels intersecting the barriers which allow flow through the barriers.

To illustrate the difference between (a) fracturing a rock with barriers, and (b)
developing barriers in an already fractured rock, consider the following simple
example. Let the background permeability be given by Kl,, let the fractures be
vertical in the yz-plane and have an excess permeability matrix I/7# = Y1,, and let
the barriers be horizontal with flow impedance Kgi = Z. Then for (a), the back-
ground rock with barriers has a diagonal impermeability matrix, diag[K ™', K/,
K~! + Z] and the addition of the vertical fractures gives the diagonal permeability
matrix, diag[K, K + Y, K/(1 + KZ) + Y]. For (b), the background rock with verti-
cal fractures has a diagonal permeability matrix, diag[K, K + Y, K + Y. The addi-
tion of the horizontal barriers gives a diagonal impermeability matrix, diag[1/K,
1/K+Y), 1K+ Y)+ Z], and thus a diagonal permeability matrix diag[K,
K+ Y, (K + Y)/[1 + (K + Y)Z]]. Horizontal permeabilities are the same in the
two cases. The permeability in the z-direction is bigger for case (a) (fractured
barriers) than for case (b) (blocked fractures) by the ratio

1+—-——YZ 1+ Yz
1+Y/K 1+KZ ][

showing that, if the background permeability K becomes bery small or very large
compared to Y and 1/Z, the ratio approaches 1 + YZ. For large Z, fracturing the
barriers changes the vertical permeability from almost zero to Y and increases the
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permeability horizontally along the fractures an amount Y. Once the barriers are
fractured, their presence does not have a big effect. For large Y, blocking the
fractures with even a small Z (the order of Y ~!) changes the vertical permeability
considerably.

To illustrate this example numerically, select a background permeability
K = 0.1, with vertical channel Y = SK and horizontal barrier Z = 025K ~!. The
horizontal permeabilities in the x- and y-directions are 0.1 and 0.6, respectively. The
vertical permeability for (a) (fractured barriers) is 0.58 showing that the presence of
the fractured barriers has but a small effect because they only serve to decrease the
already small contribution of the background permeability to the overall vertical
permeability. For (b) (blocked fractures), the vertical permeability is 0.24 and both
the barriers and the blocked fractures have a big effect.

Minimal representations

Minimal representations are useful to visualize flow in the quite complex per-
meable structures discussed above. Since the permeability tensor is a relatively
simple mathematical object compared, for example, to an elastic modulus tensor
which is fourth rank, there are some simple physical representations for the most
general anisotropic permeability. In a coordinate system along the principal direc-
tions, the permeability matrix is diagonal and may be written diag[K,,, K,,, K. ].
Assume K,, < K, < K,,. Clearly, from (17), this permeability is equivalent to an
isotropic background of permeability K,, with channels perpendicular to the z-axis
specified by excess permeability matrix Y = diag[K,, — K., K, — K_.].

The impermeability matrix is diag[K !, K,,!, K;'] with K_,'! < K ' < K
From (25), introducing, into an isotropic medium of impermeability K !, barriers
perpendicular to the z-axis with flow impedance Z, = K_,;! — K_! and barriers per-
pendicular to the y-axis with flow impedance Z, = K ' — K.,! gives a medium
having the desired impermeability matrix.

These are minimal representations for a general anisotropic permeable medium
in terms of, first, an isotropic medium with a single set of channels with non-axial
symmetry, and second, an isotropic medium with two perpendicular sets of flow
barriers (each of which has axial symmetry by definition).

SUMMARY

The overall anisotropic permeability of a layered medium is easily determined
knowing the anisotropic permeability of its constituent layers. The insertion or
removal of a constituent can be accomplished by simple addition or subtraction of a
group element consisting of the cumulative thickness of the constituent, and the
matrix constructed from thickness times its hybrid submatrices. The result when
many different constituents are added or subtracted is independent of the order in
which these operations are carried out. The analysis involved in trying to find a
model of a layered permeable reservoir that agrees with data and is in accord with
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some a priori information on the nature of the constituent layers becomes very
straightforward.

In the domain of group elements, sets of parallel channels and sets of parallel
flow barriers have convenient representations, and this implies that when such ele-
ments are parallel they can also be inserted in any order. A set of channels is charac-
terized by its 2 x 2 excess permeability matrix. A set of barriers is characterized by
its flow impedance, a scalar. In addition, because the changes in permeability due to
the addition of a set of channels at any orientation is independent of the back-
ground permeability, successive sets of non-parallel channels can be introduced, in
any order without ambiguity, to any background medium. Similarly, since changes
in impermeability due to the addition of barriers at any orientation is independent
of the background impermeability, successive sets of non-parallel barriers can also
be introduced, in any order without ambiguity, to any background medium. .

However, intersecting sets of channels and barriers can not be introduced
without specifying whether the channels, or the barriers, are to be introduced first.
This has been shown algebraically and by a simple example, and corresponds to the
physical notion that if there are channels in a rock mass and subsequently the rock
develops barriers intersecting the channels, the barriers will block the channels, and
this is different from the case when there are barriers in a rock mass and subse-
quently the rock develops channels intersecting the barriers which allow flow
through the barriers.

These concepts have their exact analogue in the case of electrical or heat con-
ductors, or dielectrics. For example, channels would correspond to highly-
conductive very thin layers (relative to the background), whereas barriers
correspond to insulating thin layers.
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APPENDIX

Matrix partitioning and hybrid coefficient matrices

Consider a linear constitutive relation of the form y = Ax, where Aisanm x m
positive definite symmetric matrix relating field variables which are components of
the vectors x and y of length m. Positive definiteness is equivalent to x'y > 0 for all
non-trivial x, y satisfying y = AxX. A partition of the vectors x and y,

L3 Lz
¥~ XN
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with p the length of the vectors with subscript T and g the length of the vectors with
subscript N, p + ¢ = m, implies a partitioning of matrix A into submatrices so that

[YT] _ [ATI' ATN][XT] (A2)
¥n Anr AnnJLXn .

The p x p A;r and g x g Axy are themselves symmetric and positive definite, and
Ant = Ain. Subscript reversal always denotes a matrix transpose. Note that
B = A~ ! s itself symmetric and positive definite.

Solving for yr, Xy in terms of X, ¥n by solving the second of (A2) for x,
substituting the result into the first of Xy and collecting terms, gives

[YT] _ [Arr — ArnAnn Ant An Aﬁr}}[xi‘ - [ Lrr FTN][XT] (A3)
XN —Ann Ant AN yad  L—Tnr Tndlyn]

The vectors [y, XxJ' and [Xy, yx]' are hybrid vectors which are linearly related by
the hybrid matrix I'. Backus (1990) suggested that the hybrid moduli can themselves
be thought of as moduli of the medium, because they can be found from A, and vice
versa. Useful as the hybrid moduli will be seen to be in simplifying the derivation of
the equivalent medium properties of a stratified medium, they are strange quantities

because the dimensions of the various submatrices are different, and because, even if
A is a tensor, the hybrid matrix T is not. However, note that

X'y = xtyr + Xy yx = X{Trr X7 + Frnyn) + (= Tnr X + Ty yn)'Yn
=x;CrrXr + YnIanyn > 0, (A4)

implying that Ty and I'rr = Arr — Arn Ay Anr are positive definite. Similarly,
(A2) could have been solved for yr and xy in terms of x; and yy and then x'y > 0
would imply that Ay — Any Arr Aqn is also positive definite. In addition, by inspec-
tion of (A3), the submatrices of A, in terms of the submatrices of T, are

[ATT ATN] - [FTT + Ty Fanlne Tin U :‘
Anr Ann | ey B | e |

(AS)
Matrix inversion using submatrices

Sglve (A3) for x; and xy in terms of y; and yy, by solving the first of (A3) for xr,
substituting the result in the second of (A3) and collecting terms, giving

[XT]___[ I‘T_'rl “Fﬁlrm ][YT]= Brr B | ¥r A6)
XN Tt Tan+ Tae T Ddlyn] [ Bar Bandlynd (

where B = A~!. By inspection of (A6), the submatrices of I' can be expressed in
terms of the submatrices of B giving

= [ Trr rTN:‘ = [ Brr —Br'Byy
—Inr Tn BurBri  Bun + BB Bm]' (A7)
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It only remains to eliminate the submatrices of I from (A6) and (A3) giving the
submatrices of B in terms of those of A, thereby completing the inversion in terms of
submatrices. Substitution of (A3) into (A6) yields

BTT = (ATT - ATN AﬁhleNT)— 1,
BTN = “‘(ATT - ATN Al’:h} ANT)— 1ATN Aﬁh}a
N = ARn + A Anr(Arr — Ay A AnD AN AR

= (Anny — Ant A’l_'l': A~ . (A8)
This last identity can be proved as follows. Substitution of
(Ayr — A AnnAny)” 'Arn A§1~} = AT_TIATN(ANN — Ant A’;TIATN)— ' (A9)

(which is seen to be an identity by post-multiplying by Axy — Ant A'Ary and
premultiplying by At — Ay Ay Any) into the first expression for By in the third
of (A8) gives

Bux = Ann + Ann Ant At Arn(Ann — Ay AftA)!
= Amn + Ann[Ann — (Any — ANt ATP A)](Ann — Anr AT A !
= (ANN - ANT A1—'r1 ATN)_ L (Al())

Similarly, substitute (A7) into (A5) and use identity (A9) but with B instead of A to
give the analogous expressions for the submatrices of A in terms of those of B,

Ann = (Ban — By BFTI By~ Y
ATN = — B’l:rl BTN(BNN - BNT B’FTI BTN) 1 ’
Aqr = (Brr — By Bt Bap) 7 (A1)

Equivalent medium moduli

With these tools in hand, the procedure for finding the moduli of the homoge-
neous medium equivalent to a stationary finely-layered medium is straightforward.
In such a medium, of stationarity thickness ¢, assume yy and x; consist of field
variables that are ‘constant’ over a thickness much larger than ¢, and that y; and
xy consist of variables that change markedly from layer to layer. Further assume
that for a homogeneous medium to be equivalent to the finely-layered medium, the
integrals of yr and xy over any depth range larger than ¢/ must be the same in the
layered medium and in the equivalent homogeneous medium. Then the equivalent
medium properties are found by thickness-weighted averaging of the constitutive
relations, y = Ax. However, to do the averaging, those relations must be rearranged
so that yr and xy are isolated on one side of the equal sign. This is because products
of changing field variables (the unknowns of the problem) and changing moduli
(which are known) cannot be thickness-averaged, while products of constant field
variables (also unknowns) and changing moduli can be averaged because the
average of a constant times a variable modulus is merely the constant times the
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average of the modulus. This rearrangement to isolate the changing variables y; and
Xy is shown in (A3), and the hybrid moduli I’ are given in terms of A and B= A"
in (A3) and (A7), respectively. Averaging (A3) gives

o |_[ T <Fm>][xT]
[<XN>] [—(Fm T Ny I (A12)

the hybrid moduli of the equivalent media, which are merely the thickness-weighted
averages of the hybrid moduli of the individual constituents present in the finely-

layered medium.
Matrices A, and/or B, are returned by applying (A5) and/or (A6), respectively,
to {I'>. The results of these operations for A, are,

[An Am] [ (Trp) + T T~ <Trd <Fm><FNN>"]

Ant A (Fawy ™ N> T ™!
(Arr) — (AN ARN ANy A ASISCAZIT- 1
|+ Ary At AR A Ay VAT Ann] :
CApn) ' CARN ANt (Ann> ™!
(A13)
for B, they are
I:Brr BTN:I =[_ Cypp ™! — > :,
Byt Baneq | — X7 T + O T~
[ (B>t — (B ) (BB

. VA S (Ban) — {Bnr B Bry)
i <BNT BTT ><BTT > + <BNT B‘ITT1><B‘;’1‘1>_ x<B1TTlBTN>
(A14)
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LAYERED PERMEABLE SYSTEMS'

MICHAEL SCHOENBERG?

ABSTRACT
SCHOENBERG, M. 1991. Layered permeable systems. Geophysical Prospecting 39, 219-240.

Permeability is a second rank tensor relating flow rate to pressure gradient in a porous
medium. If the permeability is a constant times the identity tensor the permeable medium is
isotropic; otherwise it is anisotropic. A formalism is presented for the simple calculation of
the permeability tensor of a heterogeneous layered system composed of interleaved thin
layers of several permeable constituent porous media in the static limit. Corresponding to any
cumulative thickness H of a constituent is an element consisting of scalar H and a matrix
which is H times a hybrid matrix function of permeability. The calculation of the properties
of a medium equivalent to the combination of permeable constituents may then be accom-
plished by simple addition of the corresponding scalar/matrix elements. Subtraction of an
element removes a permeable constituent, providing the means to decompose a permeable
medium into many possible sets of permeable constituents, all of which have the same flow
properties. A set of layers of a constituent medium in the heterogeneous layered system with
permeability of the order of 1/h as h — 0, where h is that constituent’s concentration, acts as a
set of infinitely thin channels and is a model for a set of parallel cracks or fractures. Con-
versely, a set of layers of a given constituent with permeability of the order of h as h — 0 acts
as a set of parallel flow barriers and models a set of parallel, relatively impermeable, inter-
faces, such as shale stringers or some faults. Both sets of channels and sets of barriers are
defined explicitly by scalar/matrix elements for which the scalar and three of the four sub-
matrices vanish. Further, non-parallel sets of channels or barriers can be ‘added’ and
‘subtracted’ from a background homogeneous anisotropic medium commutatively and
associatively, but not non-parallel sets of channels and barriers reflecting the physical reality
that fractures that penetrate barriers will give a different flow behaviour from barriers that
block channels. This analysis of layered media, and the representations of the phenomena
that can occur as the thickness of a constituent is allowed to approach zero, are applicable
directly to layered heat conductors, layered electrostatic conductors and layered dielectrics.

INTRODUCTION
Permeability is a second rank tensor relating the fluid flow rate vector in a porous
solid to the macroscopic pressure gradient in the medium. It is a fundamental

! Based on a paper read at the 51st EAEG meeting, Berlin, May—June 1989; received Septem-

ber 1989, revision accepted August 1990.
2 Schiumberger-Doll Research, P.O. Box 307, Ridgefield, CT 06877-4108, U.S.A.
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property of a porous medium, indicating how easily fluids move, for example, through
rock in a hydrocarbon reservoir. However, permeability in the earth is almost every-
where anisotropic, sometimes by an order of magnitude or more. Figure 1 shows a
piece of Navajo sandstone for which the horizontal permeability (parallel to the thin
bands) is greater than 250 times the vertical permeability (perpendicular to the
bands). The dark bands are layers with much finer grains and narrower pore throats
than the lighter layers. The layers exhibit very little textural variation.

Basically, measurements are often made over distances large with respect to the
width of individual layers in a finely-layered region, so the permeability observed is
an average of the permeabilities of the individual constituent media (hereafter called
constituents). Each layer is one of those constituents, and one must envisage
perhaps many layers with only several constituents (see Fig. 2). Typically an alter-
nating sequence of layers (not necessarily periodic) consists of many layers of only
two constituents. Generally, each constituent may itself be anisotropic.

This situation was considered by Schoenberg and Muir (1989) with reference to
elastic stiffness moduli. They constructed a calculus to deal efficiently with the calcu-
lation of stiffness moduli and thus plane wave phase velocities of a medium equiva-
lent to the layered medium in the long wavelength limit. In addition, they showed
how the calculus could be used to decompose an equivalent medium into possible
constituents, and to handle in a coherent manner certain constituents, such as paral-
lel fractures, that were limiting cases of layers of a given constituent.

The basic ideas of calculating the properties of equivalent media in the static
limit are applied here to the less complicated situation of analysing the permeability
tensor of a stratified medium under constant or slowly varying pressure gradients.
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Fi1G. 1. The Navajo sandstone shown here exhibits highly anisotropic permeability. The per-
meability anisotropy is thought to be caused by the thin dark bands which consist of much
smaller grains. The markings on the specimen denote the location of the cores which were
used in the permeability experiments. Photo courtesy of Stefan M. Luthi, Schlumberger-Doll
Research.
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F1G. 2. A stack of permeable layers, in this case consisting of three constituents. Each constit-
uent may be anisotropic. In any interval of thickness ¢ or larger, where ¢ is much smaller
than a wavelength, the percentage of each constituent is assumed to be stationary with
respect to the vertical coordinate z.

The purpose is to show how the permeability can be analysed in a layered porous
reservoir and to expose the relevant parameters needed to specify flow channels and
flow barriers. A secondary purpose is to show that this approach to layered media is
useful in considering a broad class of linear constitutive relations, and the Appendix
contains results for linear relations of arbitrary dimension. The particular example
of the constitutive relation of a permeable solid, where a 3D vector field is linearly
related to another vector field by a real symmetric second rank tensor is only one
example of a class of problems including those of : (1) heat conducting solids where
the heat flux vector is related to the temperature gradient by the heat conductivity
tensor; (2) electrical conductors in the static limit where the conduction current
density is related to the gradient of the potential (which is the electric field) by a real
conductivity tensor; and (3) dielectrics in the static limit where the charge displace-
ment vector is related to the electric field vector by the permittivity matrix. In
general, heat conductivity, electrical conductivity and electrical permittivity tensors
are anisotropic. All the ideas developed with the use of the calculus for permeable
layered media have their exact analogue in the areas of heat conductivity and static
electrical properties of layered media. In addition, a set of parallel low channels in a
rock mass, which may be modelled as a set of very thin layers of high permeability
can perhaps be identified with very thin layers of high conductivity if the fluid
flowing in the channels is an electrolyte, and with long parallel fractures or micro-
cracks if they are open enough to change substantially the overall elastic compliance
of the medium (Crampin 1984).
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A porous medium is obviously extremely inhomogeneous at a level of the grain
and pore size. However, for a porous medium homogeneous down to a scale cover-
ing many grains, the generalized Darcy’s law states that the macroscopic pressure
gradient Vp and vpq are linearly related by a second rank permeability tensor K of
dimension length?. v is the kinematic viscosity; g is fluid density; q is the flow rate of
dimension velocity defined so that pq is the volume integral of the point-wise
momentum of the fluid over the pore space in a volume divided by the volume.
Thus pq is porosity times the volume average, in the Biot sense, of pv over the pore
space, where v is the point-wise fluid velocity. Therefore the generalized Darcy’s law
may be written as

1
or in matrix notation,
qx 1 Kxx ny sz p.x
Q| =~ E K, K,, K, ||[p,]}
q, K,. K, K_.llp,.

with the comma [, ] denoting partial differentiation.

In the very long wavelength, low-frequency range (quasi- steady state), the
assumptions that the permeability matrix K be real and that the fluid be incom-
pressible, i.e. V - ¢ = 0, are very good approximations even for gas-saturated media
(Biot 1956; Schoenberg and Sen 1987). The condition that —Vp - q be positive (thus
assuming there is always some flow given sufficient pressure) implies K is positive
definite. 1 further assume that reciprocity holds, which is equivalent to K being
symmetric. Under these conditions, there is always a rectangular coordinate system
in which K is diagonal, the diagonal elements being the eigenvalues which are real
and positive. In general all three eigenvalues are different. The two more restrictive
cases are when two eigenvalues are the same and when all three are the same, the
isotropic case.

Note that the pressure gradient Vp can be expressed in terms of q using the
inverse of the permeability matrix, L = K~ !. L is the flow resistivity matrix, or the
impermeability matrix, or simply the impermeability. As K has dimension length?, L
has dimension length™2, and it too is symmetric, positive definite with eigenvalues
equal to the inverses of those of K. Equation (1) inverted is

Vp= —vwL - q 2

Its use greatly simplifies the insertion and removal of flow barriers, while fractures
are easier to handle permeability. This is analogous to the fact that the elastic effects
of fractures are much easier to analyse using elastic compliance instead of elastic
stiffiness moduli, a fact that was not appreciated in the original Schoenberg-Muir
paper, but that has been used subsequently by Nichols, Muir and Schoenberg (1989)
for elastic layers.

In addition to a constitutive relation, interface conditions on the field variables
between homogeneous regions must be posited. Perfect contact at an interface z = 0
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is defined as: (a) pressure p is continuous across z = 0 implying that any tangential
derivative of p is continuous, or in vector form V;p(0~) = V1 p(0*); and (b) there are
no sources or sinks for fluid in the interface between the different media so that the
normal component of q is continuous across the interface, i.e. g,(07) = ¢,(0"). Inter-
face condition (a) holds for temperature in the heat conduction problem and for the
electric potential in the electrical conductivity problem, while (b) holds for the heat
flux vector and the conduction current density vector. In all cases with constitutive
relations and interface conditions of this same form, the analysis below applies.

In Section 1, the properties of a homogeneous medium equivalent to a layered
permeable medium are formulated using submatrices of the permeability and imper-
meability matrices following the approach used in the Appendix of Helbig and
Schoenberg (1987) which was for elastic equivalent medium properties. For any set
of n constituent media, there exists a homogeneous anisotropic medium that
behaves, in the quasi-static limit, exactly as does the finely-layered medium consist-
ing of many layers, each layer being one of the n constituents. This means, in this
case, that on a scale much larger than the scale of the layering, the equivalent
medium flows exactly as does the layered medium under the same applied pressure
gradients. The derivation and the appearance of the formulae for the equivalent
medium properties are not dependent on the number of variables in the constitutive
relation or the sizes of the submatrices. The approach, applicable to a broad range
of problems of arbitrary dimension, is presented in the Appendix, which also
includes a discussion of matrix inversion using submatrices and general equivalent
media formulae.

In Section 2 the ideas of the Schoenberg—Muir calculus (1989) are applied, devel-
oped for elastic layers, to the problem of permeable layers under consideration here.
Essentially, one mirrors the physical construction of a section of a given thickness of
a layered medium composed of several constituents by associating with each constit-
uent an element consisting of the cumulative thickness of the constituent and that
thickness times the hybrid matrix function, its permeability. Then as one constructs
the physical model by interleaving thin layers of each of the constituents, mathe-
matically all one does is simply add these elements, giving a new element corre-
sponding to the total thickness of the homogeneous medium equivalent, in the static
limit, to the section of layered media just constructed. The order or way in which
the constituents are inserted does not affect the result. The advantage of this
approach is that removal of an amount of a given constituent is mathematically
equivalent to subtraction of the element corresponding to that amount of the con-
stituent, thereby providing the means to decompose a section of a permeable
medium into a set of permeable constituents and their thicknesses. As each of the
elements is merely a scalar and a matrix with certain specifiable properties, the set of
all such elements is a commutative group under addition, called G, formalizing the
operations that are allowed, both mathematically and physically.

The constituent properties which always carry over to the equivalent medium
properties, i.e. for which properties is the set of all elements corresponding to layers
with those properties a subgroup of G, is discussed in Section 3. Special attention is
devoted to symmetry properties of the permeability tensor.
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In Section 4, parallel cracks or fractures are characterized as infinitesimally thin,
but free flowing, channels, while conversely, thin but highly impermeable layers,
such as shale stringers or faults at which the pores are misaligned and clogged, are
characterized as planar barriers to flow. Both these phenomena have simple explicit
representations in the group domain. The insertion or removal of channels or bar-
riers at any orientation becomes a simple arithmetic order-independent operation.
Only when there are intersecting sets of channels and barriers, does the order in
which they were introduced influence the properties of the equivalent medium. In
addition, an arbitrary anisotropic permeable medium is shown to be equivalent to
an isotropic background with a single set of flow channels, or, to an isotropic
medium with two sets of flow barriers intersecting at right angles. In some sense
these are minimal representations for an arbitrary medium.

1. SYSTEMS OF ANISOTROPIC PERMEABLE LAYERS

Consider a region of porous, homogeneous (over a scale much larger than pore or
grain size), but in general anisotropic layers, composed of n constituents, each with
concentration h;, so that Y ', h; = 1, and permeability K, saturated with the same
single fluid in all layers. Set Cartesian coordinates so that the z-axis is perpendicular
to the layering, and the x- and y-axes lie in the plane of the layering (Fig. 2).

Assumption (1) is that the concentrations h; of the finely-layered constituents are
approximately the same in any interval in z of width £ or larger, i.e. the layered
medium is stationary down to length scale £, the stationarity length.

Assumption (2), that of slow variation over a length scale L » 7, is that all layers
of the same constituent encounter the same environment and thus have the same
values of the field variables, Vp and q.

At any boundary between layers, which must be a plane of constant z, q, (expressing
the flow per unit area across the boundary) must be continuous, and the pressure p,
and hence the derivatives of p parallel to the layering, must be continuous. Thus g,
p.,and p , are constant throughout the region while the components of q parallel to
the layering and the derivative of p perpendicular to the layering depend on the
local properties of the layered permeable system. Equation (1) in the ith constituent
can be rewritten to separate field variables that are constant over long distances
from those that vary. with i as

1
qr, = — — [Kyp, Vop + kyn, 2, 1),
e 3)

1
= — — [kyr V KanD 2,
q. vp[ nt; Y1 P + Knn P, 2]

where

dx, Px
qr; = “ v D= [ ' :I’
T [qn] ™ ip,
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and

K. K,. K.,
KNNi = KzZi > kTNi = I: le], kNT.‘ = k!er_ N KTT.‘ = I: xxi xYl:I'
K K i KYYI'

Yzi Xyi

qr, is the velocity tangent to the layering and Vyp is the tangential gradient of the
pressure. Superscript t denotes the transpose. The convention used is that simple
italics denote a scalar or a 1 x 1 submatrix, bold face, lower case denotes a vector
oral x 2 or 2 x 1 submatrix, and boldface capital denotes a matrix or a 2 x 2
submatrix.

Before these equations can be averaged to find an equivalent permeable medium,
one has to solve for the variables that vary from layer to layer. Solving the second of
(3) for p_,, and substituting into the first of (3) gives

- quT.- = (KTT. - kTNi KYGNI. kNT.’)vT 14 + kTN.‘ KP;NI.( - quz)’
P = — KY;I\}. l‘NT.' VT p+ KIGP}.( - quz)'

This is the hybrid form of the flow—pressure gradient relation, and the coefficients of
V.p and (—vpq,) on the right-hand side of (4) are the submatrices of the hybrid
modulus matrix (for short, the hybrid submatrices) of the ith permeable medium in
terms of the submatrices of the permeability matrix.

Due to assumptions (a) and (b), the pressure drop for the equivalent homoge-
neous medium in the z-direction over any width H > / but smaller than L must
equal the sum over all the constituents of their z derivatives of pressure times their
respective cumulative thickness in the width H. Dividing such a sum by H implies
that p , is given by the thickness-weighted average of the p ., ie. Y7, hp ., =
{p,,>. A similar argument about the horizontal flow through a vertical section of
width H implies that ¢y is given by the thickness-weighted average of the q,, ie.
Y71 hi@r, = {qr). Thus thickness-weighted averagmg of (4) gives, at length scales
at least of the order of 7,

—vp<gr) = (Kpr) — <kyn Knn knt))Vrp + kpn Knn X(—vpg.),
p,.> = —<Knn knpdVrp + (K X(—vpq.). %

This is the hybrid form of the averaged anisotropic flow—pressure gradient relation
in the layered medium, which is precisely the flow—pressure gradient relation of the
homogeneous medium that is equivalent to the heterogeneous layered medium at
length scales of the order of ¢ or larger. The coefficients on the right-hand side of (5)
are the hybrid submatrices of the equivalent medium, which are only the thickness-
weighted averages of the hybrid submatrices of the constituents. From the hybrid
submatrices, the permeability matrix of the equivalent medium is returned by
solving (5) for {q;) and ¢, and identifying the coefficients of V p and {p ,> with the
appropriate permeability submatrices, yielding

Krpd — ki Kok ke L
[Kﬂ km]= + (ko Kt 9Kt > ™ K gy KTv K> (KD

k K
N CKk> ™ K knr) (Kb ™2

)

(6)
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Equation (6) is the full anisotropic equivalent of the fact that, when layers are
stacked together, permeability normal to the layering is the harmonic average of the
constituent permeabilities (connection of conductors in series) while permeability
tangential to the layering is the arithmetic average (connection of conductors in
parallel).

The above analysis using (3) to (6) can be carried out in the same way using the
impermeability rather than the permeability. Analogous to (3), L can be broken into
submatrices for the purpose of separating variables which change from layer to
layer from those that are constant over may layers, yielding for the ith constituent,

Vip = —vp[Lrr g, + ITN.' 9.},
p, 2 = vp[lNTi qT.’ + LNN.’ qz] (7)

The definitions of the submatrices of L are analogous to those of K of (3). Now
solving (7) for the quantities which vary with i yields

—vpqr, = Lfrli Vip— L’l_‘Tl.' bnd—vpq.),
P.z= Iny, L‘I:Tl. Vip + (LNN.- ~ Iy, LT_TI.- lTN,»)("VPQJ (8)

This is the hybrid form of the flow-pressure gradient relation as is (4), but here the
hybrid submatrices of the ith permeable medium are expressed in terms of the sub-
matrices of the impermeability matrix. As above, the hybrid submatrices of the
equivalent medium are the average of the hybrid submatrices of the constituents.

Then solving for V;p and {p ,> and identifying the coefficients of {q;) and g,
with the appropriate impermeability submatrices, yields for the impermeability
matrix of the equivalent homogeneous medium, in submatrix form,

L™t Ly > 7 Lgy b
(Lan) — Anr Ly bend , e
+ hr Lo D L) "L b

the impermeability of the equivalent medium in terms of the impermeabilities of the
constituent media. It is just as easy to find the permeability of the equivalent
medium in terms of the impermeabilities of the constituent media, and the imperme-
ability of the equivalent medium in terms of the permeabilities of the constituent
media.

Since the hybrid submatrices are expressed both in terms of permeability and
impermeability, they are a convenient point to derive a matrix inversion in terms of
submatrices, which is shown in the Appendix for an m-dimensional linear constitu-
tive relation in terms of p- and g-dimensional submatrices, where p + q¢ = m.

[Ln b } _
lNT LNN <|NT L';Tl ><L';T1> -t

2. MODEL BUILDING BY ADDITION AND SUBTRACTION

The Schoenberg-Muir calculus is a formal way of examining the elastic quantities
that are unchanged in the replacement of a section of thickness H of one stratified
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medium by a section of another stratified medium of the same thickness when both
stratified media are equivalent in the long wavelength limit. Applied to permeability,
two stratified media equivalent means that in the static limit, they both have the
same tangential flow, Y ¢y, and the same normal pressure drop, ) p, ., when g,
and V;p are the same across both sections. From (4) or (8), it is clear that, in
addition to thickness being the same to preserve the geometry, the sums of thickness
times hybrid submatrices must be the same. Thus associated with a homogeneous
section of thickness H and permeability K will be an element consisting of a scalar
and a matrix ’

G = {H H[KTT — kynKan Enr kpn K§1~}]}

— Kyn knr KN

Ly — Lt by ]}
=<H, H _ _ . 10
{ [INT Lt Lyn — e L by (19

If that homogeneous section is to be equivalent to a stratified section composed of n
constituents, each of cumulative thickness H;,

G=) G, (11)
i=1
where G, is the element corresponding to the ith constituent. If an element G, is
subtracted from G, a new element is generated

Gb = G - Gﬂ’ (12)

corresponding to the section G with the thickness H, of constituent a removed. The
set of all such elements, i.c. the set of all elements consisting of a scalar of dimension
length, a 3 x 3 matrix with its upper left (UL) 2 x 2 submatrix symmetric and of
dimension length?, its lower right (LR) 1 x 1 submatrix of dimension length™ !, its
upper right (UR) 1 x 2 submatrix of dimension length, and its lower left (LL) 2 x 1
submatrix equal to the negative transpose of the UR submatrix, is closed under
addition, and is a commutative group, called G; and hence, the elements are called
group elements. This means nothing more than that the addition is associative
and commutative; there exists a zero element {0, 0}; and every element G has its
inverse —G.

Clearly, dividing the 3 x 3 matrix by the constant gives the hybrid submatrices
from which either the permeability, following the general derivation (AS5), or the
impermeability, following (A6), is easily found. The components g(1) to g(5) used by
Schoenberg and Muir (1989) were the thickness, the mass (thickness times density),
and the thickness times the 3 x 3 LR, 3 x 3 UR and 3 x 3 UL hybrid submatrices,
respectively, the hybrid submatrices having been derived from the 6 x 6 elastic
modulus matrix.

Summarizing: to combine sections with one another, add their group elements;
to remove a given thickness of a constituent from a section, subtract its group
element from that of the section. It is proved (see (A4)) that positive definite K is
equivalent to positive definite UL and LR hybrid submatrices so, for a group
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element to correspond to a positive thickness of a realizable permeable medium, the
scalar and the 1 x 1 LR submatrix must be positive, and the UL submatrix must be
positive definite. Thus, combining constituents always yields a realizable medium, as
can be seen both from physical grounds and mathematically, as the sum of positive
numbers is positive and the sum of positive definite matrices is positive definite. If
after removal (subtraction) of a constituent medium, one or more of these conditions
is violated, the remaining group element does not correspond to a positive thickness
of a realizable medium.

3. SUBGROUPS OF G

A subset of G may be defined by a set of distinguishing properties. When such a
subset is closed, i.e. a subgroup, the sum of any elements in the subgroup retains the
distinguishing properties of the subgroup. These distinguishing properties are
reducible to the vanishing of a set of linear combinations of quantities in the group
element, i.e. the leading scalar and the matrix components. But what quantities
exactly? From dimensional considerations, any linear constraint in the specification
of a subgroup must be either:

(a) a linear combination of H and the elements of the UR submatrix vanishing, i.e.
¢ HKn K + ¢ HKn, Kan + ¢3 H
=c,HK /K, +c;HK ,/K,, + c;H=0;
(b) a linear combination of the elements of the UL submatrix vanishing, i.e.
d H(K+r,, — K#n,Knn) + d; H(Kpr,, — Kin, Kan)
+ dy H(Kyr,, — Kn,Kon, Knn)
=d,H(K,, — K} /K.) + d, HK,, - K}, /K,)) + d; HK,, — K. K,,/K;,) = 0;

or (c) the 1 x 1 LR submatrix vanishing, ie. HKgn = 0.

All such constraints can equally well be written in terms of components of L. Four
subgroups corresponding to permeable layers with certain symmetry properties are:

(i) The group elements corresponding to constituents that have one of their
eigenvectors of the permeability tensor in the z-direction normal to the layering. The
permeability of these constituents is symmetric with respect to the plane of the lay-
ering. For this to occur, kyy must vanish leaving four independent permeability
components instead of six for the general permeable medium. The vanishing of kyy
can be written as two linear homogeneous linear constraints of type (a),
HK,,/K,, =0and HK,, /K., = 0, proving that such constituents form a subgroup,
call it EZ < G (EZ for eigenvector in z-direction) and if all constituents in a section
have one of their eigenvectors normal to the layering, the equivalent medium does
too. This is easily seen also from (6), which reduces, for constituents in subgroup EZ,
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to

[KTT kTN] - [(KTT> 0 :' (13)
kNT KNN 0 <Kl;b}>_l .

Since kpy = 0, there is no coupling between the normal and tangential permeability,
and the normal permeability is given, as always, by the harmonic average of the
normal permeabilities whereas the tangential permeability components are given by
the arithmetic averages of their corresponding components.

(ii) The group elements corresponding to constituents that not only have one of
their eigenvectors of the permeability tensor in the z-direction, and thus are already
in EZ, but have their xy-plane eigenvectors in fixed directions, with no loss of gener-
ality, say the x- and y-directions. Then not only must kpy vanish but K¢y must be
diagonal leaving only three independent permeability components. Constraints of
type (b) for elements in EZ reduce to d,HK,, + d, HK,, + dy HK,, = 0 and Ky
diagonal can be written as a constraint of type (b), HK,, = 0, proving such elements
form a subgroup, call it OR < EZ (OR for ‘orthorhombic’). If each constituent of a
section has one of its eigenvectors perpendicular to the layering and the other two
parallel to some fixed in-plane directions, then so does the equivalent medium.

(iii) The group elements corresponding to constituents that not only have one of
their eigenvectors of the permeability tensor in the z-direction but have equal in-
plane (xy-plane) eigenvectors. For this to occur, not only must kyy vanish and Kt
be diagonal but K must be proportional to I,, the 2 x 2 identity matrix, leaving two
independent permeability components. This additional condition can be written as a
constraint of type (b), HK,, — HK,, = 0, proving that such elements form a sub-
group, denoted by TI = OR (TI for ‘transversely isotropic’). The permeability is
rotationally symmetric about the z-axis.

(iv) The group elements corresponding to constituents that have an eigenvector
in a fixed direction in the plane of the layering. Without loss of generality, let that
direction be the y-axis. This requires that Kpy, = 0 and K, be diagonal leaving
four independent permeability components. These can be written as two linear
homogeneous linear constraints, one of type (a), HK, /K, = 0, and one of type (b),
H(K,, — K,.K,./K,,) =0, which, due to the first constraint, becomes HK,, =0,
again proving that such constituents form a subgroup, call it EY c G (for eigen-
vector in y-direction).

These relationships between these subgroups connected to the symmetry of the
permeability matrix can be written as

EZ
TIc OR {Ey} =G, OR=EYnEZ (14)

If a constituent is isotropic, K is proportional to I, where I, is the 3 x 3 iden-
tity matrix. Thus any isotropic constituent belongs to subgroup TI. From (13),
noting the difference between arithmetic and harmonic means, it is clearly seen that
even if all constituents in a section are isotropic, the equivalent medium is not iso-
tropic but transversely isotropic. This is of course reinforced by the fact that the
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isotropy constraint (beyond those required for a constituent to be a member of T1)
is that K — K,, = 0 which is not a constraint of either type (a), (b) or (c), and thus
the set of elements corresponding to isotropic constituents does not form a sub-
group of T1. It can also be shown that elements corresponding to constituents with
a principal direction parallel to the layering but arbitrarily aligned in that plane
also do not form a subgroup. The coefficients in the linear constraints specifying a
given direction depend on the direction so different layers would satisfy different

constraints.

4. FLow CHANNELS AND FLOW BARRIERS

Parallel fractures as sets of flow channels

Consider a particular constituent denoted by subscript ¢, of a layered region of
total thickness H, that has cumulative thickness H_. and hence relative thickness
h. = H_/H and let the permeability become large while the thickness of this constit-
uent, H_, becomes small, allowing an infinitesimally small thickness of this constitu-
ent to flow a finite amount of fluid. The layers of this constituent can be thought of
as a set of parallel free-flowing interfaces or open long planar cracks, called here
‘channels’. Across each layer, g, and V1 p are continuous, as across any single layer
in the long wavelength limit. It is clear from the first of (4) that at least some com-
ponents of qr, will become infinite but the total flow along the channels, h. Hqy_,
will remain finite. Parallel fractures in a rock mass, a set of open parallel faults, a set
of aligned microcracks, or the set of fractures generated by a ‘hydrofrac’ could all
be modelled by a set of such channels.

Instead of letting the permeability of the ¢ medium become large, it is more
convenient to let the impermeability, or in particular the TT submatrix of the
impermeability, tend to zero as h, — 0, i.e. Ly;_must be order h_ as h, — 0 and the
positive definiteness of L requires that lyy_ be of order h_ also. Define Ly, = h Ly
and by = h I;y. Clearly, L = (1/h)Lr,! . The group element of such channels,
i.e. the thickness and the thickness times the matrix of the hybrid submatrices, is,
from (10),

G. = lim {h H[ HE;T: 'h“Hf‘T_TIiEN s ]}
¢ he—0 ¢ ’ hc HiNT L;Tl hc H[LNNC - hc i'NT L'FTI lTN]

_( [HY o
= {0’ [ 0 0]} (13)

where Y = L', a 2 x 2 symmetric submatrix characterizing the set of channels and
which I call the ‘excess permeability matrix’. All group elements of the form (15) are
a subgroup of G, implying that combining parallel sets of channels yields a set of
channels.

To introduce a set of channels with flow behaviour specified by excess per-
meability matrix Y, into a background rock, with group element G, of thickness H
and permeability K, add group elements G, and G_, yielding the group element of
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the model of the cracked rock,

HXK iy — kinKnn knr + Y)  Hkon Knn
G. ={H, . 16
G + G {H [ — HK ke HK 19

Then, from (A5), given the hybrid matrix, the permeability of the cracked rock is
given by

R 17
[ kne  Knn @)

Only the TT submatrix of the permeability is changed due to the addition of the
channels, and the change is independent of the background. The change of the full
permeability matrix due to the channels may be written

AK = E;YE;, where E;= [1 0 0]. (18)
010

Note that the change in impermeability due to the channels is
AL = (K + AK)"! — K™! which is strongly dependent on the background per-
meability and in general has no vanishing submatrices, which is why it is preferable
to work with permeability when adding or subtracting channels.

Flow channels in other directions can easily be added by rotating the coordinate
system to a primed coordinate system, with the z'-axis normal to the channels. In
this coordinate system, the background permeability tensor is given by AKA', where
A is the direction cosine matrix of the primed coordinates relative to the original
unprimed coordinates. Thus, assuming the channels have excess permeability matrix
Y’, the permeability of the rock with channels in the primed coordinates is, accord-
ing to (18),

AKA' + EL YE,, (19)

and rotating back to the original coordinates gives)the permeability as
Yl
AYVAKA'+ E;YE A =K + [E-A]'Y[E;A] =K + A' [ 0 g] A (20)

From (20), it is clear that the change in permeability due to channels at any orienta-
tion is independent of the properties of the background. Thus any number of sets of
channels with arbitrary non-parallel orientations can be inserted into (by addition)
or removed from (by subtraction) any background and in any order without ambi-
guity. The permeability of a medium with #n sets of intersecting channels is given by

K+ Y [ErAJY,[EfA)] (2
j=1
where A; is the direction cosine matrix of the coordinate system associated with the

Jjth set of channels.
Figure 3 is a representation of two intersecting sets of channels in an otherwise
isotropic medium of permeability KI;. The thick channels are parallel to the
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xy-plane and are assumed to have excess permeability matrix L;;* = Y;I,. The thin
channels are at angle 6 to the thick channels and are assumed to have excess per-
meability matrix L'r;! = Y,1,. The permeability of this system, provided flow dis-
ruption at the intersecticns can be neglected, is

1 00 Lol ot o o
kK]o 1 ol+vylo 1

O 110 1 O
0 0 1 0 0
v COSO 0 1 Offcos® 0O siné
0 Ml o 0 o
sinf 0
1 00 1 00 cos? 6 0 cos@Osin 8
~klo 1 o|+¥jo 1 o]l+v| o 1 0
0 01 0 00 cosfsinf O sin? 6
K+Y, +Y,cos* 6 Y, cos 0 sin
- 0 K+n+n 0 . 22)
Y, cos 6 sin 6 0 K + Y, sin? 6

Because of the thin channels, kry # 0 unless 6 = 0, n/2. The group element of this
medium is in subgroup EY. To provide numbers for this example, let the back-
ground permeability K = 0.1, the thick channel Y; = 0.6 and the thin channel ¥, =
0.3. Then, referring to (22), the permeability has an eigenvalue equal to 1.0 with a
corresponding eigenvector in the y-direction for all . The larger eigenvalue in the
xz-plane, the ratio of the larger to smaller of the two xz-plane eigenvalues, and the
angle between the principal direction corresponding to the larger eigenvalue and the
x-axis are shown as a function of 8 in Table 1 for this example. The maximum value
of the angle for this example is 15° when § = 60°.

TaBLE 1. Flow in xz-plane as a function of 8, corresponding to Fig. 3.

g° 0 10 20 30 40 50 60 70 80 90

Larger eigenvalue 100 099 098 095 091 086 081 076 072 0.70
Ratio larger/smaller 1000 9.37 7.87 6.18 473 361 279 222 187 175
Angle ° from x-axis 00 33 65 96 123 142 150 138 89 00

Note that the vanishing of the determinant of the excess permeability matrix Y
implies the channels can flow in one direction only, thus simulating the flow behav-
iour of a set of parallel needle-like cracks, or flow tubes.

Planar flow-impeding interfaces as sets of flow barriers

Consider a particular permeable constituent, denoted by subscript r (for resist-
ance to flow), of a layered region of total thickness H having a cumulative thickness
H, and hence relative thickness h, = H,/H. Let the permeability become small as
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FI1G. 3. A representation of a set of thick channels roughly parallel to the xy-plane (y-axis out
of the paper), intersected by a thinner set of channels at an angle 6.

the total thickness of this constituent becomes small, so that a smaller and smaller
thickness can still impede flow normal to the layering. Such impermeable planar
interfaces can be thought of as relatively impermeable membranes or barriers to
flow, called here simply *barriers’. From the second of (4), any flow across a barrier
must be accompanied by a pressure jump, ie. p , approaches infinity, but h Hp
will remain finite. A set of closed parallel faults across which tangential slip has
taken place in an otherwise homogeneous porous medium may act as flow barriers
due to pore misalignment or pore clogging that occurred at the time of slip. Thin
parallel shale stringers can also be modelled as a set of flow barriers. Barriers occur
commonly in tidal flats. Due to tidal deposition, thin sheets of fine clay are embed-
ded in the sand often separated by as little as several centimetres. Such structures
can continue to depths of tens of metres.

To model a set of barriers, let the 1 x 1 submatrix K, of the permeability tensor
of this constituent be of order h, as h, — 0. Positive definiteness requires that kyy,_ be
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also of order h,. Define Ky, = A, Ky and kyy = b, k. The group element of the
barriers are, from (10),

h H hr H[KTTr - hriT‘]:l Kr:h} RNT] hr HRTN Kr;h}
" h, HR o knr HRW

0 0O
R

where Z = K is a scalar characterizing the set of barriers, and which I call the
‘flow impedance . All group elements of this form are a subgroup of G.

To introduce barriers specified by flow impedance Z into a background rock,
denoted by subscript b, of thickness H and impermeability matrix L, add the group
elements of the background and of the barriers, yielding the group element of the

rock with barriers

HL=! —HLH 1
G, + G, = { H, [ ol 7 b ]} 24
° Hly; L7t H[Lny — Iy Lpr ben + Z]

and using (A6), from the hybrid matrix, L of the rock with barriers is

Lyr I ] (25)
e Lawt+ZJ

Only the NN submatrix of L, a scalar, is changed by the addition of barriers, and
the change is independent of the background. The total change in the imperme-
ability due to the barriers may be written in matrix form,

G, = lim
he—0

AL = E\ ZEy, where Ey=[0 0 1], (26)

analogous to the changes of the permeability tensor due to the channels given in
(18). I have used the impermeability here because the permeability change due to the
barriers, AK = (L + AL)"! — L™, is again dependent on the properties of the back-
ground and in general has no vanishing submatrices.

As above with flow channels, a set of barriers with arbitrary orientation can be
added to any background by rotating to a primed coordinate system with its z'-axis
normal to the barriers to be added. Let the flow impedance of the barriers be Z'.
Then the total flow impedance in the primed system is

ALA' + E{ Z'E, 27
and rotating back to the original coordinates gives the flow impedance as
0 0
AYALA' + Ey ZEYA = L + [EyA)'Z'[EyA] =L + A! [0 Z’] A. (28)

Note that [Ey A] depends only on the direction cosines of the z'-axis. As with chan-
nels, the change in impermeability due to the barriers is independent of the proper-
ties of the background. Thus sets of barriers with arbitrary orientation can also be
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introduced to any background in any order. The impermeability of a medium with n
sets of intersecting barriers is given by

L+ _}:l [ExAJ'Z[ExA;L (29)
j=
where A; is the direction cosine matrix of the coordinate system associated with the
jth set of barriers. As with channels, removal of a set of barriers is carried out by
subtraction.

Channels and barriers that are parallei can be added and subtracted to a back-
ground rock in any order because they are representable by group elements.
However, the medium equivalent to a background with intersecting sets of channels
and barriers depends on the order in which they are introduced. To see this, con-
sider only changes in permeability due to inclusion of channels or barriers. The
change due to the introduction of channels at an orientation defined by A, is, from
(20), AK_ = [E;+ A J'Y'[ErA_]. The change of permeability due to the introduction
of barriers at an orientation defined by A, is, from (28), AK,=[L +
[ExAJZ[ExA.J]™ ! — L™, a matrix function, not only of Z’ and A,, but also of
the background, call it AK(K). Thus the total change due to the introduction of
channels and then barriers is AK_ + AK (K + AK_), and this is not equal to the total
change due to the introduction of barriers and then channels, AK (K) + AK_, except
when the channels and barriers are parallel. This corresponds to the physical notion
that if there are channels in a rock mass and subsequently the rock develops bar-
riers intersecting the channels, the barriers will block the channels, and this is differ-
ent from the case when there are barriers in a rock mass and subsequently the rock
develops channels intersecting the barriers which allow flow through the barriers.

To illustrate the difference between (a) fracturing a rock with barriers, and (b)
developing barriers in an already fractured rock, consider the following simple
example. Let the background permeability be given by Kl,, let the fractures be
vertical in the yz-plane and have an excess permeability matrix I/7# = Y1,, and let
the barriers be horizontal with flow impedance Kgi = Z. Then for (a), the back-
ground rock with barriers has a diagonal impermeability matrix, diag[K ™', K/,
K~! + Z] and the addition of the vertical fractures gives the diagonal permeability
matrix, diag[K, K + Y, K/(1 + KZ) + Y]. For (b), the background rock with verti-
cal fractures has a diagonal permeability matrix, diag[K, K + Y, K + Y. The addi-
tion of the horizontal barriers gives a diagonal impermeability matrix, diag[1/K,
1/K+Y), 1K+ Y)+ Z], and thus a diagonal permeability matrix diag[K,
K+ Y, (K + Y)/[1 + (K + Y)Z]]. Horizontal permeabilities are the same in the
two cases. The permeability in the z-direction is bigger for case (a) (fractured
barriers) than for case (b) (blocked fractures) by the ratio

1+—-——YZ 1+ Yz
1+Y/K 1+KZ ][

showing that, if the background permeability K becomes bery small or very large
compared to Y and 1/Z, the ratio approaches 1 + YZ. For large Z, fracturing the
barriers changes the vertical permeability from almost zero to Y and increases the
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permeability horizontally along the fractures an amount Y. Once the barriers are
fractured, their presence does not have a big effect. For large Y, blocking the
fractures with even a small Z (the order of Y ~!) changes the vertical permeability
considerably.

To illustrate this example numerically, select a background permeability
K = 0.1, with vertical channel Y = SK and horizontal barrier Z = 025K ~!. The
horizontal permeabilities in the x- and y-directions are 0.1 and 0.6, respectively. The
vertical permeability for (a) (fractured barriers) is 0.58 showing that the presence of
the fractured barriers has but a small effect because they only serve to decrease the
already small contribution of the background permeability to the overall vertical
permeability. For (b) (blocked fractures), the vertical permeability is 0.24 and both
the barriers and the blocked fractures have a big effect.

Minimal representations

Minimal representations are useful to visualize flow in the quite complex per-
meable structures discussed above. Since the permeability tensor is a relatively
simple mathematical object compared, for example, to an elastic modulus tensor
which is fourth rank, there are some simple physical representations for the most
general anisotropic permeability. In a coordinate system along the principal direc-
tions, the permeability matrix is diagonal and may be written diag[K,,, K,,, K. ].
Assume K,, < K, < K,,. Clearly, from (17), this permeability is equivalent to an
isotropic background of permeability K,, with channels perpendicular to the z-axis
specified by excess permeability matrix Y = diag[K,, — K., K, — K_.].

The impermeability matrix is diag[K !, K,,!, K;'] with K_,'! < K ' < K
From (25), introducing, into an isotropic medium of impermeability K !, barriers
perpendicular to the z-axis with flow impedance Z, = K_,;! — K_! and barriers per-
pendicular to the y-axis with flow impedance Z, = K ' — K.,! gives a medium
having the desired impermeability matrix.

These are minimal representations for a general anisotropic permeable medium
in terms of, first, an isotropic medium with a single set of channels with non-axial
symmetry, and second, an isotropic medium with two perpendicular sets of flow
barriers (each of which has axial symmetry by definition).

SUMMARY

The overall anisotropic permeability of a layered medium is easily determined
knowing the anisotropic permeability of its constituent layers. The insertion or
removal of a constituent can be accomplished by simple addition or subtraction of a
group element consisting of the cumulative thickness of the constituent, and the
matrix constructed from thickness times its hybrid submatrices. The result when
many different constituents are added or subtracted is independent of the order in
which these operations are carried out. The analysis involved in trying to find a
model of a layered permeable reservoir that agrees with data and is in accord with



LAYERED PERMEABLE SYSTEMS 237

some a priori information on the nature of the constituent layers becomes very
straightforward.

In the domain of group elements, sets of parallel channels and sets of parallel
flow barriers have convenient representations, and this implies that when such ele-
ments are parallel they can also be inserted in any order. A set of channels is charac-
terized by its 2 x 2 excess permeability matrix. A set of barriers is characterized by
its flow impedance, a scalar. In addition, because the changes in permeability due to
the addition of a set of channels at any orientation is independent of the back-
ground permeability, successive sets of non-parallel channels can be introduced, in
any order without ambiguity, to any background medium. Similarly, since changes
in impermeability due to the addition of barriers at any orientation is independent
of the background impermeability, successive sets of non-parallel barriers can also
be introduced, in any order without ambiguity, to any background medium. .

However, intersecting sets of channels and barriers can not be introduced
without specifying whether the channels, or the barriers, are to be introduced first.
This has been shown algebraically and by a simple example, and corresponds to the
physical notion that if there are channels in a rock mass and subsequently the rock
develops barriers intersecting the channels, the barriers will block the channels, and
this is different from the case when there are barriers in a rock mass and subse-
quently the rock develops channels intersecting the barriers which allow flow
through the barriers.

These concepts have their exact analogue in the case of electrical or heat con-
ductors, or dielectrics. For example, channels would correspond to highly-
conductive very thin layers (relative to the background), whereas barriers
correspond to insulating thin layers.
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APPENDIX

Matrix partitioning and hybrid coefficient matrices

Consider a linear constitutive relation of the form y = Ax, where Aisanm x m
positive definite symmetric matrix relating field variables which are components of
the vectors x and y of length m. Positive definiteness is equivalent to x'y > 0 for all
non-trivial x, y satisfying y = AxX. A partition of the vectors x and y,

L3 Lz
¥~ XN
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with p the length of the vectors with subscript T and g the length of the vectors with
subscript N, p + ¢ = m, implies a partitioning of matrix A into submatrices so that

[YT] _ [ATI' ATN][XT] (A2)
¥n Anr AnnJLXn .

The p x p A;r and g x g Axy are themselves symmetric and positive definite, and
Ant = Ain. Subscript reversal always denotes a matrix transpose. Note that
B = A~ ! s itself symmetric and positive definite.

Solving for yr, Xy in terms of X, ¥n by solving the second of (A2) for x,
substituting the result into the first of Xy and collecting terms, gives

[YT] _ [Arr — ArnAnn Ant An Aﬁr}}[xi‘ - [ Lrr FTN][XT] (A3)
XN —Ann Ant AN yad  L—Tnr Tndlyn]

The vectors [y, XxJ' and [Xy, yx]' are hybrid vectors which are linearly related by
the hybrid matrix I'. Backus (1990) suggested that the hybrid moduli can themselves
be thought of as moduli of the medium, because they can be found from A, and vice
versa. Useful as the hybrid moduli will be seen to be in simplifying the derivation of
the equivalent medium properties of a stratified medium, they are strange quantities

because the dimensions of the various submatrices are different, and because, even if
A is a tensor, the hybrid matrix T is not. However, note that

X'y = xtyr + Xy yx = X{Trr X7 + Frnyn) + (= Tnr X + Ty yn)'Yn
=x;CrrXr + YnIanyn > 0, (A4)

implying that Ty and I'rr = Arr — Arn Ay Anr are positive definite. Similarly,
(A2) could have been solved for yr and xy in terms of x; and yy and then x'y > 0
would imply that Ay — Any Arr Aqn is also positive definite. In addition, by inspec-
tion of (A3), the submatrices of A, in terms of the submatrices of T, are

[ATT ATN] - [FTT + Ty Fanlne Tin U :‘
Anr Ann | ey B | e |

(AS)
Matrix inversion using submatrices

Sglve (A3) for x; and xy in terms of y; and yy, by solving the first of (A3) for xr,
substituting the result in the second of (A3) and collecting terms, giving

[XT]___[ I‘T_'rl “Fﬁlrm ][YT]= Brr B | ¥r A6)
XN Tt Tan+ Tae T Ddlyn] [ Bar Bandlynd (

where B = A~!. By inspection of (A6), the submatrices of I' can be expressed in
terms of the submatrices of B giving

= [ Trr rTN:‘ = [ Brr —Br'Byy
—Inr Tn BurBri  Bun + BB Bm]' (A7)
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It only remains to eliminate the submatrices of I from (A6) and (A3) giving the
submatrices of B in terms of those of A, thereby completing the inversion in terms of
submatrices. Substitution of (A3) into (A6) yields

BTT = (ATT - ATN AﬁhleNT)— 1,
BTN = “‘(ATT - ATN Al’:h} ANT)— 1ATN Aﬁh}a
N = ARn + A Anr(Arr — Ay A AnD AN AR

= (Anny — Ant A’l_'l': A~ . (A8)
This last identity can be proved as follows. Substitution of
(Ayr — A AnnAny)” 'Arn A§1~} = AT_TIATN(ANN — Ant A’;TIATN)— ' (A9)

(which is seen to be an identity by post-multiplying by Axy — Ant A'Ary and
premultiplying by At — Ay Ay Any) into the first expression for By in the third
of (A8) gives

Bux = Ann + Ann Ant At Arn(Ann — Ay AftA)!
= Amn + Ann[Ann — (Any — ANt ATP A)](Ann — Anr AT A !
= (ANN - ANT A1—'r1 ATN)_ L (Al())

Similarly, substitute (A7) into (A5) and use identity (A9) but with B instead of A to
give the analogous expressions for the submatrices of A in terms of those of B,

Ann = (Ban — By BFTI By~ Y
ATN = — B’l:rl BTN(BNN - BNT B’FTI BTN) 1 ’
Aqr = (Brr — By Bt Bap) 7 (A1)

Equivalent medium moduli

With these tools in hand, the procedure for finding the moduli of the homoge-
neous medium equivalent to a stationary finely-layered medium is straightforward.
In such a medium, of stationarity thickness ¢, assume yy and x; consist of field
variables that are ‘constant’ over a thickness much larger than ¢, and that y; and
xy consist of variables that change markedly from layer to layer. Further assume
that for a homogeneous medium to be equivalent to the finely-layered medium, the
integrals of yr and xy over any depth range larger than ¢/ must be the same in the
layered medium and in the equivalent homogeneous medium. Then the equivalent
medium properties are found by thickness-weighted averaging of the constitutive
relations, y = Ax. However, to do the averaging, those relations must be rearranged
so that yr and xy are isolated on one side of the equal sign. This is because products
of changing field variables (the unknowns of the problem) and changing moduli
(which are known) cannot be thickness-averaged, while products of constant field
variables (also unknowns) and changing moduli can be averaged because the
average of a constant times a variable modulus is merely the constant times the
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average of the modulus. This rearrangement to isolate the changing variables y; and
Xy is shown in (A3), and the hybrid moduli I’ are given in terms of A and B= A"
in (A3) and (A7), respectively. Averaging (A3) gives

o |_[ T <Fm>][xT]
[<XN>] [—(Fm T Ny I (A12)

the hybrid moduli of the equivalent media, which are merely the thickness-weighted
averages of the hybrid moduli of the individual constituents present in the finely-

layered medium.
Matrices A, and/or B, are returned by applying (A5) and/or (A6), respectively,
to {I'>. The results of these operations for A, are,

[An Am] [ (Trp) + T T~ <Trd <Fm><FNN>"]

Ant A (Fawy ™ N> T ™!
(Arr) — (AN ARN ANy A ASISCAZIT- 1
|+ Ary At AR A Ay VAT Ann] :
CApn) ' CARN ANt (Ann> ™!
(A13)
for B, they are
I:Brr BTN:I =[_ Cypp ™! — > :,
Byt Baneq | — X7 T + O T~
[ (B>t — (B ) (BB

. VA S (Ban) — {Bnr B Bry)
i <BNT BTT ><BTT > + <BNT B‘ITT1><B‘;’1‘1>_ x<B1TTlBTN>
(A14)
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