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ELASTIC WAVE PROPAGATION IN MEDIA WITH 
PARALLEL FRACTURES AND ALIGNED CRACKS' 

M .  SCHOENBERG2 and J .  D O U M A 3  

ABSTRACT 
SCHOENBERG, M. and DOUMA, J. 1988. Elastic wave propagation in media with parallel frac- 
tures and aligned cracks. Geophysical Prospecting 36,571-590. 

A model of parallel slip interfaces simulates the behaviour of a fracture system composed 
of large, closely spaced, aligned joints. The model admits any fracture system anisotropy : 
triclinic (the most general), monoclinic, orthorhombic or transversely isotropic, and this is 
specified by the form of the 3 x 3 fracture system compliance matrix. The fracture system 
may be embedded in an anisotropic elastic background with no restrictions on the type of 
anisotropy. To compute the long wavelength equivalent moduli of the fractured medium 
requires at most the inversion of two 3 x 3 matrices. When the fractures are assumed on 
average to have rotational symmetry (transversely isotropic fracture system behaviour) and 
the background is assumed isotropic, the resulting equivalent medium is transversely iso- 
tropic and the effect of the additional compliance of the fracture system may be specified by 
two parameters (in addition to the two isotropic parameters of the isotropic background). 
Dilute systems of flat aligned microcracks in an isotropic background yield an equivalent 
medium of the same form as that of the isotropic medium with large joints, i.e. there are two 
additional parameters due to the presence of the microcracks which play roles in the stress- 
strain relations of the equivalent medium identical to those played by the parameters due to 
the presence of large joints. Thus, knowledge of the total of four parameters describing the 
anisotropy of such a fractured medium tells nothing of the size or concentration of the 
aligned fractures but does contain information as to the overall excess compliance due to the 
fracture system and its orientation. As the aligned microcracks, which were assumed to be 
ellipsoidal, with very small aspect ratio are allowed to become non-flat, i.e. have a growing 
aspect ratio, the moduli of the equivalent medium begin to diverge from the standard form of 
the moduli for flat cracks. The divergence is faster for higher crack densities but only becomes 
significant for microcracks of aspect ratios approaching 0.3. 

Presented in part at the 49th EAEG meeting, Belgrade, June 1987; revision accepted Feb- 
ruary 1988. 
Schlumberger-Doll Research, Ridgefield, CT 06877-4108, USA. 
Institute for Earth Sciences, Department of Geophysics, PB 80021, 3508 TA Utrecht, The 
Netherlands. 

571 



512 M .  SCHOENBERG AND J .  DOUMA 

INTRODUCTION 
It is now clear that there are many regions of the subsurface (some say everywhere) 
showing azimuthal velocity anisotropy and this has been attributed to the presence 
of aligned vertical microcracks that arise because of tectonic stresses (see e.g. 
Crampin 1985; Crampin and Atkinson 1985; Willis, Rethford and Bielanski 1986; 
Crampin and Bush 1986). That this Crampin model is the actual mechanism causing 
the azimuthal velocity anisotropy is difficult to say as drilling and coring in such a 
region distort the stress field locally and perhaps distort and close the cracks that 
existed in the undeformed rock. A set of robust parameters is needed to give (1) the 
orientation of the cracks and/or fractures in the subsurface, and (2) a measure of 
crack density times strength which could be called excess compliance due to the 
presence of cracks. Such a parameter set could be a valuable indicator of overall 
stress orientation, and the orientation and strength of the anisotropic part of the 
permeability tensor. Crack orientation, when cracks are vertical, can be simply 
determined by the splitting of vertically propagating shear waves. This occurs 
because of the azimuthal anisotropy induced by microcracks and fractures. The 
polarization of the faster propagating shear wave according to current theory is 
parallel to the fractures; the polarization of the slower propagating shear wave is 
perpendicular to the fractures. 

We compare theories that predict elastic anisotropy due to the presence of filled 
or empty ellipsoidal inclusions with one another and with a theory that predicts 
elastic anisotropy due to long (compared to wavelength) parallel joints or fractures. 
For inclusions with small aspect ratios (almost flat cracks), all the models agree with 
one another and in fact they are indistinguishable from the fracture model. The 
fracture model is exactly derivable as the limiting case of wave propagation through 
a region composed of alternating elastic layers. The results for anisotropic layers are 
reviewed in Section I and the derivation of the fracture model in its most general 
form and for special cases is presented in detail in Section 11. In Section 111, the 
simplest anisotropy attributable to ' transversely isotropic ' fractures in an isotropic 
background is compared in detail with the anisotropy due to systems of aligned flat 
microcracks. In both the anisotropy is characterized by two, positive, dimensionless 
parameters that play the same roles in the stress-strain relations. The first depends 
on the tangential compliance of the joints or cracks and the second depends on the 
normal compliance. From a phenomenological point of view the behaviour of such 
systems of aligned flat cracks or parallel joints can be reduced to two numbers 
which, with the isotropic background moduli, determine the five elastic moduli of a 
transversely isotropic elastic medium. From the elastic moduli themselves nothing 
more specific concerning crack density, individual crack compliance or crack size 
can be found. 

However, in Section IV it will be shown that for the ellipsoidal inclusions, as the 
aspect ratio becomes large (up to l.O), the moduli derivable from the theory of 
ellipsoidal inclusions (Nishizawa 1982) deviate from those obtainable from the flat 
crack or joint theories. This occurs at aspect ratios of about 0.3 for gas- or liquid- 
filled inclusions at the highest values of crack density of such inclusions for which 
the theory is thought to be valid. 
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I .  ELASTIC M O D U L I  O F  STRATIFIED M E D I A  
Consider a stratified medium made up of perfectly bonded homogeneous, but not 
necessarily isotropic, layers. Let the x3-axis be perpendicular to the layering and 
assume that there are n different constituent layers, arranged so that in each suff- 
ciently large interval one finds the same proportion of each medium. The simplest 
arrangement that satisfies this requirement is a periodic sequence of layers. Each 
anisotropic constituent has a relative thickness hi i = 1, . . . , n so that hl + . . . 
+ h, = 1, a density p i ,  and an elastic modulus tensor cpqrsi, relating stress opqi with 

strain E , , ~ .  In condensed notation, for which subscripts 11 + 1, 22 -+ 2, 33 -+ 3, 
23 + 4, 31 + 5 and 12 -+ 6, the stress-strain relation may be written 

. -  
cJ1 

cJ2 

cJ3 

cJ4 

cJ5 

06- 

where 

and 

The elastic moduli for the homogeneous, anisotropic medium equivalent, in the long 
wavelength (or quasistatic) limit, to a layered medium composed of anisotropic con- 
stituent layers, can be expressed in terms of thickness-weighted averages of functions 
of the moduli of the constituents. The long wavelength assumption on stress is that 
all stress components acting on surfaces parallel to the layering are the same in all 
layers, i.e. 033i = c~~~ = c3 ,  ~ ~ 2 3 ~  = 04i = o4 and 013i E oSi = 0 5 .  The long wave- 
length kinematic assumption is that over many layers, the layers move together (so 
that derivatives of in-plane displacements with respect to in-plane coordinates, x1 
and x2, are the same) implying that all strain components lying in the plane of the 
layering are the same in all layers, i.e. c l l i  = = cZi = e2 and 2~~~~ = 
&gi = & 6 .  The other stress and strain components, cll i  = oli ,  oZzi o Z i ,  o lZi  = usi, 

esi, may vary from layer to layer. In each layer, 
such a component may be taken as its average value across the thickness of that 
layer. 

A concise way to pose the problem of finding the effective moduli, even when the 
constituent layers are anisotropic, is through a matrix formulation which dis- 
tinguishes components that are constant over many layers from the other com- 
ponents which can vary from layer to layer. Following the procedure first outlined 

= el, 

c g i ,  2~~~~ = zqi and 2~~~~ 
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by Helbig and Schoenberg (1987) for general anisotropic layers, define the following 
vectors 

Sli = bZi , Ezi = , layer dependent [::I [::I 
and 

S, = [I:], E, = [!:I, layer independent 

which allow the stress-strain relations in any layer to be rewritten as 

Sii = MiE, + PiE2i, 

S2 = PTE, + Ni E,, . 

with superscript T denoting the matrix transpose. Mi and Ni are symmetrical 
matrices. Then premultiplying (3b) by N; gives 

Nlr1S2 = Nr'PTE, + ( 5 )  

Sli = MiE, + Pi(NlF1S2 - Nr1PTE1). (6) 

and solving this for E,i and substituting into (3a) yields 

n 

Now let the thickness-weighted average over all the constituent layers, 1 hi(.i), 
be denoted as ( .  ). Then taking first, the thickness-weighted average of (6), and 
second, the thickness-weighted average of (5 )  and premultiplying this second result 
by (N-')-'  gives 

i = l  

(S,) = [(M) - (PN-'PT)]E, + (PN-')S,, 

S, = (N-')-'(N-'PT)E1 + (NP1)-'(E2). 
(74 

(7b) 
Finally substituting the expression for S, from (7b) into (7a) allows us to write the 
elastic moduli for the media equivalent to the stratified medium in the long wave- 
length limit, in matrix form as 

(S,) = Me E, + Pe(E2) 9 

S2 = P,TE, + Ne(E2) 9 

(84  

(8b) 
with 

N, = (N-')-', Pe = (PN-')N,, 

Me = (M) - (PN-'PT) + (PN-')N,(N-'PT). (9) 
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If the ith constituent is transversely isotropic with the x,-axis, the axis of sym- 
metry, then, from the expressions for Mi , Ni and Pi in (4), we have 

cl l ; -2c66;  :], 
C l l i  

0 c66; 

[rgl : 1, Pi= "13' ~ 1 3 ~  0 "1 0 I Ni = 0 c~~~ 
0 c44; 0 0 0  

Note that when the ith constituent layer is isotropic, c44i = c66i = pi, c l l i  = c,,~ = 
,Ii + 2pi and cl3; = ,Ii where ,Ii and pi are Lamb parameters. If all the constituent 
layers are transversely isotropic, the equivalent homogeneous medium is trans- 
versely isotropic and from (9) the moduli are given by 

0 0  

cl, cl, -2c6, 0 1 cl ,  cll -2(c66) 1, 
0 = c11 - XC,,) C l  1 

1 0  0 c66 1 1  O 0 (C6.5) 

c l l  - 2 c 6 6  cll 

C i i  = ( C i i )  - <c:3/c33) + (c13/C33>~/(1/~33>, 

identical to the results of Backus (1962). 
Note that the combination rules (9) are commutative in layer order. If, instead of 

considering the relative thickness hi of each constituent, the combination operation 
is thought of as the folding together of a total thickness Hi of each constituent, 
albeit divided into fine layers, then the combination rules (9) are also associative 
(Schoenberg and Muir 1988). Thus, if there are three constituents of total thickness 
H , ,  H ,  and H ,  , the properties of the combined medium of thickness H ,  + H ,  + H ,  
can be determined by first finding the properties of the medium equivalent to con- 
stituent 3 mixed with constituent 1, and then stirring in amount H ,  of constituent 2. 
The resulting equivalent medium is independent of the order of combination. 

11. GENERAL MODEL F O R  LONG T H I N  PARALLEL FRACTURES 
The behaviour of long parallel fractures or joints in an otherwise homogeneous 
anisotropic background medium may be modelled as a set of thin constituent layers, 
not necessarily isotropic, embedded in the background. The above derived formal- 
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ism is used and the fractures are modelled by taking the limit as the thickness and 
the elastic moduli of the embedded thin layers go to zero together. The formalism 
enables us to identify the effect of even the most anisotropic fractures on the most 
anisotropic background, and to see the variation in anisotropic behaviour permitted 
by sets of large parallel fractures. The fracture behaviour is at its simplest if the 
material inside the fracture is assumed to be transversely isotropic; the assumption 
of full isotropy implies no further simplification. This type of fracture behaviour is 
discussed and compared with the behaviour of dilute concentrations of aligned 
inclusions that may be assumed to model a medium with internal cracks where the 
cracks have a preferred orientation. 

For now, the material inside the fracture is allowed to have arbitrary anisotropy. 
The fracture-filling material is assumed to be soft by letting the moduli of the frac- 
ture layer, Cjkl  be much smaller than a typical non-zero background modulus, say 
c~~~ (the effect of a hard fracture-filling material would tend to vanish as the fracture 
widths approached zero). In particular, the moduli are assumed to be of the order of 
the volume ratio of the fractures h,, i.e. C j k J / C 3 3 *  = O(h,). Here h, may be thought of 
as the total fracture thickness in an interval of width H divided by H .  The interval 
width H must satisfy two criteria. It must be sufficiently large so that the fractured 
medium has the same total thickness of fractures h, H in any interval of thickness H .  
Yet H must be much smaller than the smallest wavelength of interest for the frac- 
tured medium to be replaced by a long wavelength equivalent homogeneous 
medium. The assumption on the CjkJ means that, in the limit, as.h, + 0 the c j k J  may 
be replaced by h , z j k  and, from (9) as h , + 0, 

Ne = (N-')-' = [(l - hf)Nb' + h, Ny']-' +(Nbl + R-')-' 
= Nb(I + N-'Nb)-' (12) 

pe + (pb Nb 'lNe > Me Mb - pb Nb lpb' + (Pb Nb l)Ne(Nb lpb'), ( p )  --* P b  2 

where I is the 3 x 3 identity matrix. The fracture parameters enter only through R, 
a symmetrical 3 x 3 submatrix of the full 6 x 6 modulus matrix, so that in general 
there are at most six fracture parameters, the six independent components of m. To 
see why this must be so, consider (3b) for the fracture medium, which gives the 
components of the stress traction across the fracture. They are 

S, = hf( pT[ + .[:::I). 
Since the fractures are soft, strain components in the fracture layers are large and 
can be approximated by - Au3/h, H ,  - Au,/h, H and - AuJh, H where 
h, H is the total fracture width in an interval of width H and Aui are the com- 
ponents of the total slip displacement across all the fractures in that interval of 
width H .  The other strain components in the fracture layers are constrained by the 
long wavelength assumption to be the same as the corresponding components in the 
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background medium and thus are not large. Then, in the limit as h, + 0, 

AU3/hf H 
= h, P; cZ + R Auz/h,H +N Auz/H . (14) 

" = [ 3f] = [ (- [.:] [ Au,/h, A) [:I:::] 
In subsequent development the 'fracture system compliance matrix' Z = m-' will 
be used instead of m as small slip or vanishing of some components of the fracture 
system slip-strain will cause m to be very large or undefined, while causing Z merely 
to have some small or zero components. Thus (14) becomes 

Define the vector on the left, the slip-displacement vector of the fractures in width H 
divided by H, as the 'fracture system slip-strain.' Then Z gives the fracture system 
slip-strain as a linear function of the traction on any x3 =constant surface 
(Schoenberg, 1980). Note that it is perfectly acceptable that some of the components 
of N, + 0 as h, + 0 and for others to remain finite. This is accounted for in the 
evaluation of the term h,Nj', which approaches Z, occuring in the first equation of 
(12) for N,. 

Rewriting the first equation of (12) as 

N, = Nb(1 ZNb)- ', (16) 

enables us to write the matrices of the changes from the background moduli due to 
the fractures, from (12), as 

AN = Nb[(I + ZNb)-l - I], 

AP = (Pb Nb ')AN, AM = (Pb Nb ')AN(N, 'Pr). (17) 

When Z is so small that all terms of ZNb 6 1, we see that N, w Nb - NbZNb and 

As an aside, note that had we begun with a compliance formulation, writing 
strain as an elastic compliance matrix times stress, i.e. c j  = s j k  (Tk , the strain-stress 
relations could be written analogously with (3) as 

AN % -NbZNb. 

E, = AiSli + CiSz, 
Ezi  = CTSli + BiSz , 

then the matrices of the changes from the background compliances due to the pre- 
sence of the fractures are AA = 0, AC = 0 and AB = Z. 

From the associativity of the process of combining layers, even when there are 
many types of parallel fractures in the medium, it is the overall compliance of all of 
them that can be combined to form an 'effective fracture behaviour' which is the 
average of the different types of fractures weighted by the respective fracture density. 
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FIG. 1. A schematic of a fracture (a) with monoclinic behaviour and (b) with orthorhombic 
behaviour. In both cases the ridges cause the tangential traction and tangential slip not to be 
parallel unless they are either parallel or perpendicular to the ridge axis. In (a), additionally, 
closure or opening of the fracture will cause tangential slip in the x,-direction and vice versa 
but is uncoupled from tangential motion in the x,-direction. 

In general, from (15), all three components of the fracture system slip-strain are 
coupled to all three components of the traction across the fractures. This is the case 
of triclinic fracture system anisotropy. For this most general behaviour, six param- 
eters are needed to fully describe fracture behaviour within an otherwise homoge- 
neous medium, the six independent components of the fracture compliance matrix 
Z. However, there are three symmetry classes that apply to fracture systems that 
reduce the number of independent fracture system parameters. 

The monoclinic fracture system. Let the fracture system be invariant under reflec- 
tion about a plane containing the x3-axis, say the x I - x ~  plane, implying that Z has 
the form 

This shows that fracture slip in the x,-direction is uncoupled from normal slip and 
tangential slip in the x,-direction. The x,-tangential slip is not uncoupled from 
normal slip. Tangential fracture displacement and the tangential component of the 
stress traction are not colinear. Such fracture system behaviour need not be due to 
the anisotropy of the infilling material, but could be due to slight micro-corrugation 
of the fracture surfaces, which then must have its peaks and troughs slightly offset, 
top to bottom, to couple normal and tangential components. This is shown by the 
schematic diagram in Fig. la. 
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The orthorhombic fracture system. Let the fracture system be invariant under 
reflection about the x1-x2 plane uncoupling the fracture system displacement 
normal to the fractures from the tangential fracture system displacement. Then Z 
has the form 

Z =  

but there is always a rotation about the x,-axis which diagonalizes Z giving 

-zN 0 z; O q. 
0 0 z; 

Here, Z; and 2; are the tangential compliances in the xi- and xi-directions respec- 
tively. The tangential fracture displacement and the tangential component of the 
stress traction are not colinear but the normal compliance is uncoupled from the 
tangential compliance. This can be visualized as a micro-corrugated interface with 
peaks and troughs aligned, top to bottom (see Fig. lb). Tangential slip compliance 
along the corrugation is larger than the tangential slip compliance against the cor- 
rugation. 

The transversely isotropic fracture system. This most symmetrical case occurs 
when the fracture system behaviour is invariant with respect to rotation about the 
x,-axis. In this case Z must have the form 

Z ,  and Z ,  are normal and tangential compliances respectively of an average frac- 
ture of dimension length/stress. The tangential fracture displacement and the 
tangential component of the stress traction are colinear and the normal and tangen- 
tial compliances are uncoupled. The form of Z given here is independent of whether 
the fracture medium is isotropic or transversely isotropic. However, if the fracture 
medium were isotropic, stability requires that Z ,  2 4zN/3 2 0. However, if the frac- 
ture medium is merely transversely isotropic the stability requires only that Z ,  and 
Z ,  be non-negative. 

The long wavelength equivalent medium to the fractured medium is transversely 
isotropic only if the fracture system is transversely isotropic, i.e. with Z given by 
(22), and it is embedded in a transversely isotropic background medium which has 
its symmetry axis perpendicular to the fractures. Then, from (16), and (9) 
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(23) 

c11 
0 

where 

E ,  E c ~ ~ ~ Z N ,  ET E ~ 4 4 ~ 2 T .  

E ,  and ET are dimensionless compliances that give the fracture system compliances 
relative to the background medium compliances, normal and tangential to the frac- 
ture system respectively. The modulus matrix depends on seven parameters, the five 
of the background plus the normal and tangential fracture system compliances. 
When the background medium is isotropic, the resulting medium is still transversely 
isotropic, but now depends on four parameters, pb , & , E, and ET. The moduli are 

matrices of the changes from the isotropic moduli due to the presence of the frac- 
given by (23) with C l l b  = C3sb = 1, + 2&, C 1 3 b  = & and C44b = C6(jb = pb. The 

tures are 

AN= - 

This is the very simple model for the behaviour of large joints in an isotropic back- 
ground. These results agree with those of Morland (1974) and have been used to 
describe reflectivity from a jointed half-space by Schoenberg (1983). 
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An isotropic background medium with a transversely isotropic fracture system, 
as described in (24), is a restricted class of transversely isotropic media. To examine 
the behaviour of such media, let uqp be the phase speed of the quasi-compressional 
wave (the fast wave which is purely longitudinal for propagation parallel and per- 
pendicular to the fractures), uqs be the phase speed of the quasi-shear wave (the 
in-plane wave which is purely transverse for propagation parallel and perpendicular 
to the fractures) and U ,  be the phase speed of the pure shear wave that is always 
polarized parallel to the fractures. The dimensionless compliances are directly 
related to the differences between parallel ( 1 1 )  and perpendicular (I) propagation of 
the squares of the phase speeds normalized by the isotropic background speeds as, 
from (24), 

Cuz11 - u,?ll - c66 - c44 E T  

pb/Pb pb 1 + ET 
- - 

W 4 ~ b ( l  - yb)EN for E ,  4 1, 
where Y b  is the square of the ratio of the background shear speed to compressional 
speed, i.e. Y b  = pb/(& + 2&). Further, substitution of the perturbations to the elastic 
moduli from (24) for small ET and E ,  (neglecting O(E’) terms) into the Christoffel 
equations for the phase velocity (e.g. see Musgrave 1970) gives 

U : ( 8 )  % lb [1 - cos’ BE,], 
P b  

where 8 is the angle between the wavenumber vector and the x3-axis. It is clear from 
(26)  that all the phase speeds at all angles are non-increasing with increasing ET or 
E, .  Note that terms depending on sin’ 28  or cos’ 2 8  are actually cos 48 terms 
which have period 7c/2 and are symmetrical about 8 = 44.  Thus for small tangential 
and normal compliances, uqs is 48-dependent and is symmetrical about 8 = n/4 
whereas for uqp,  the tangential compliance yields a 48 term symmetrical about 
8 = 744 while the normal compliance yields a 28  term necessarily not symmetrical 
about 8 = n/4. Note that tangential compliance by itself, even when it is large, yields 
only 48-dependence to both uqp and ugs (Schoenberg 1983). Tangential compliance 
contributes a maximum speed decrease for uqs at 8 = 0 and 742 and no decrease at 
8 = n/4. For u q p ,  tangential compliance gives maximum decrease at 8 = 7114 and no 
decrease at 8 = 0 and 4 2 .  Normal compliance decreases uqs in exactly the same way 
as tangential compliance decreases uqp while normal compliance decreases uqp with 
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maximum decrease at 8 = 0 and minimum decrease at 0 = 4 2 .  The pure shear wave 
is uncoupled (in the Christoffel equations) from the other two waves. Its greatest 
speed decrease is at 8 = 0 and there is no decrease at 8 = 4 2 .  

This is a simplified picture due to the assumptions of (1) small fracture compli- 
ance relative to the compliance of the unfractured medium, ( 2 )  isotropy for the 
unfractured medium, and (3) transverse isotropy for the behaviour of the fracture 
system. None the less, (26) indicates the qualitative effects of the presence of large 
aligned fractures (and, as will be seen below, also of the presence of aligned 
microcracks) on wave speeds in much more general circumstances. 

Equations (24), and the resulting ( 2 6 ) ,  can be compared with the formulation of 
Thomsen (1986). His three dimensionless anisotropy parameters for weak transverse 
isotropy, Y T h ,  &Th and 6 T h  (the subscript Th refers to Thomsen’s parameters) along 
with the shear and compressional wave speed along the symmetry axis of the 
medium are derivable from the elastic moduli. The three dimensionless parameters 
express, in general, the deviation of the weakly transverse isotropy from full iso- 
tropy. For a fractured medium, the three parameters can be expressed in terms of 
E T  and ENas 

Thus, the three are not independent for a fractured medium and, until the 
assumption of microcrack flatness is relaxed, the anisotropy depends only on two 
parameters, E T  and E,.  

111. JOINTS A N D  MICROCRACKS 
The anisotropy described by the changes of the moduli from an isotropic back- 
ground, (24), defines a restricted class of transversely isotropic media. Hudson 
(1981) pointed out that “although the geometry ofjoints is rather different from that 
of circular cracks . . . under certain conditions, the results are very similar.” To see 
this, we shall examine results from Hudson (1981) and Thomsen (1988) to show that 
under simple conditions of dilute concentration of very flat microcracks (those 
where one of the ellipsoidal semiaxes is much less than the other two) in an isotropic 
background, we can always find joint compliances that give identical values for all 
the anisotropic elastic moduli. This implies that a seismic experiment giving esti- 
mates of the moduli for a Crampin model (azimuthal anisotropy due to the presence 
of a vertical system of aligned microcracks in an isotropic background which cause 
the medium to be transversely isotropic with a horizontal axis of symmetry) does 
not distinguish very well between various types of crack systems. Refinements in the 
theory of scattering due to flat microcracks will not help in inverting for the crack 
system’s characteristic properties, such as crack size, crack density or the contents of 
the cracks. Only properties that systems of cracks have in common with those of 
systems of large vertical joints (such as orientation, excess compliance, relative 
tangential to normal compliance) have a chance of being determined, but in many 
instances these could be very informative. 
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Hudson (1981) gives the general form of the 6 x 6 change of moduli matrix for an 
isotropic background medium permeated with aligned flat ellipsoidal microcracks 
to lowest order in wavenumber times mean crack radius U.  For ease of comparison 
we can express Hudson's matrix (denoted by subscript H) using our formulation of 
three 3 x 3 matrices, giving 

where e is the crack density which is equal to the crack number density (number of 
cracks per unit volume) times u3. Note that crack porosity, which is crack number 
density times the mean crack volume is given by $c  = 47cea/3 where CI is the (very 
small) mean aspect ratio of the flat ellipsoidal inclusions. The terms U , ,  and U 3 ,  
appearing in (28) arise in the derivation of the scattered field from a single small 
crack. Essentially Uij is the integral over the face of the crack of the ith component 
of the displacement discontinuity due to unit stress Q~~ imposed infinitely far from 
the crack in the f x3-directions. 

Comparing (24) and (28) shows that both flat microcracks and large joints in the 
same isotropic background give exactly the same moduli if, assuming a dilute con- 
centration of inclusions, we let 

eUl l  =- E T  % E T  for E , Q  1, e - = -  % E ,  for E ,  Q 1. 
1 + E T  Yb ' + E h '  

Thomsen (1988) points out that the derivations for dilute concentrations of flat 
aligned microcracks are valid for e only as large as about 0.05. However, even if 
second-order terms in e are included (Crampin 1984), the slip-joint model still con- 
forms to the microcrack model except that there are additional terms proportional 
to e2 on the left-hand sides of (29). 

Hudson (1981) gives results for U I 1  and if,, for three examples which we will 
write in terms of E ,  and E, .  Example 1 is for fluid-filled cracks under the assump- 
tions that (a) the tangential component of the traction on the internal crack surfaces 
is zero (no shear stress) and (b) the crack is so thin that the normal displacement 
discontinuity across the crack is zero (only tangential displacement discontinuity 
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across the crack). Then 

e ,  E ,  = 0. 
1 6  

ET = 
3[3 - 2Ybl  

Example 2 is for dry cracks under the assumption of zero traction (both normal and 
tangential) on the internal crack surfaces. These cracks are assumed thick enough to 
allow non-zero normal displacement discontinuity across the crack. ET remains the 
same but E ,  is non-zero : 

Example 3 is for cracks filled with a weak solid with small bulk and shear moduli 
again allowing non-zero normal displacement discontinuity across the crack. Now 

where p‘ and K‘ are the shear and bulk moduli of the inclusion medium respectively. 
Here terms of order a, t12p,,/,d and a2&/K‘ have been neglected relative to tl&/p’ and 
tl&,/d (Hudson 1 9 8 1 ) .  Note that for the moduli of the weak solid to affect the values 
of ET and E ,  in (32), the values of p’ and K’ must go to zero as the value of the 
aspect ratio a goes to zero. This is analogous to the requirement for large joints that 
the moduli of the infilling material in the joints be proportional to h, as h, tends to 
zero. As p’ and K‘ actually go to 0, the compliances of ( 3 2 )  go to those of ( 3 1 )  for dry 
cracks. 

For d / p b  and PI/&, not small (of order larger than that of CI as a --t 0), E ,  and 
E T - + O .  For d/&, not small but $ / f i b  - + O  as for fluid-filled cracks, ( 3 2 )  go to (30). 
However, letting d/&, be small, of order a but with p’ = 0, approximating cracks 
filled with weak fluid, gives 

where K b  = (3  - 4Yb)pL,/3Yb is the background bulk modulus. Substituting (33 )  into 
( 2 6 )  and (27) gives ( 3 )  of Thomsen ( 1 9 8 8 )  for his three anisotropy parameters and 
resulting phase speeds. 

Thomsen ( 1 9 8 8 )  then presented modified results [his ( 4 ) ]  based on the work of 
Hoenig ( 1 9 7 9 ) .  These results are similar to (33 ) ;  ET is unchanged but d / K b  is 
replaced by (K’ /k&) / [ l  - ( d / K b ) ]  in E , .  When K ‘ / K b u  is 0 ( 1 ) ,  d / K b  < 1 ,  there is no 
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difference between the two sets of results. In the stiff fluid limit, when d / K b  (and 
hence J C ' / ~ ~  also) is O(1), E, is O(a) and hence tends to zero in both (32) and (33). 
Thus there is no significant difference between the two sets of results. 

Further results are derived by Thomsen (1988) for when the background 
uncracked medium has equant (non-directional) porosity 4 p ,  i.e. porosity in which 
the pore space has no dimension significantly larger or smaller than any other and 
so the pore space can be modelled by spherical pores. His results, again in terms of 
the dimensionless compliances, ET and E,,  are that E, is unchanged due to the 
presence of equant porosity but E,, from [derived by substituting (A34b) into 
(A16a) Thomsen (1988)l becomes 

K' 
1 -  

(34) 
4 Kb(1 + 4,/43 

Ie. E,  = 
- 4Yb 

+ - ICfhb ICf/Icb " 4Yb + 3nayb(1 - Yb) + 4 p / 4 c  

3Yb(1 - Yb) 

As 4,,+0, E, of (34) goes to Thomsen's (1988) modified result for E ,  with no 
equant porosity, that is, (33) with K'/Kb replaced by (K'/Kb)/[l - (d/Kb)]. This may be 
seen as even when +,,/4, is 0(1) or less, the second term within the brackets of the 
denominator of (34) dominates the first term due to the presence of the small U, the 
aspect ratio, in the denominator of that second term. When cjP/4, is large (which it 
is in typical sedimentary rocks), so that multiplication by a gives a term of order 
unity, the two bracketed terms are of the same order of magnitude. Then in the 
weak fluid limit, d / K b  < 1, the right-hand fraction of (34) tends to unity and E,  
tends to the value given for it in (31). For a stiff fluid when d/q, --+ 1, the presence of 
the 1 - d / K b  term implies that E ,  becomes small. 

IV.  NON-FLAT ELLIPSOIDAL INCLUSIONS 
For all the models discussed so far, an underlying assumption has been that the 
cracks are flat, i.e. that they can be modelled by ellipsoids with aspect ratio a 4 1. 
These models have all been shown to be identical in behaviour with the medium 
with large joints (itself an extreme case of aspect ratio --+ 0). Nishizawa (1982) calcu- 
lated the anisotropy due to small concentrations of aligned rotationally-symmetrical 
ellipsoidal inclusions of any aspect ratio, even including prolate spheroidal inclu- 
sions which have an aspect ratio greater than unity. As this is an iterative method 
using only small increments in crack density at each step, Nishizawa claimed that 
the method is valid even for large concentrations of inclusions. 

Following Nishizawa (1982), the effects of a given crack density e of ellipsoids 
are calculated in an iterative way. First the moduli for an isotropic background 
medium with a crack density of e/n is calculated, with n the total number of 
iterations. Then the moduli for this new ' anisotropic background medium' with 
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additional crack density e/n is calculated giving the moduli for the original medium 
with crack density 2e/n. This is repeated another n - 2 times eventually giving the 
moduli for the original medium with crack density e, the desired result. Results can 
be checked by repeating the calculation with larger values of n until no change due 
to increasing n occurs. The resulting medium is transversely isotropic and we denote 
the changes in the elastic moduli due to Nishizawa’s procedure by AcC cz - cijb . 
To see how well these moduli, and thus the Nishizawa model, can be approximated 
by the model of large joints in an isotropic background, we construct D2,  defined to 
be one-fifth of the sum of the squares of the differences between the dimensionless 
moduli changes (over the five independent elastic moduli) from the Nishizawa pro- 
cedure, AcC/cijb, i j  = 11, 33, 13, 44, 66 and the dimensionless moduli changes from 
the joint model, Ac$/cijb, ij = 11, 33, 13, 44, 66, from (24). The root mean square of 
the differences of the five elastic moduli D satisfies 

The values of E, and E, that minimize D2,  in terms of the Nishizawa moduli CC = 
cijb + AcC , are given by 

These values of E, and E, give the elastic moduli of the joint model that best fit 
those of the Nishizawa’s ellipsoids model in a least-squares sense. Also note that 
these values of E, and EN are independent of c“, so that the last term of (35) gives a 
minimum value to D2 below which no combination of E, and E ,  can cause the 
value of D2 to fall. However, as the aspect ratio a + 0 for any small value of e, Ac& 
and D approach zero. This becomes clear when we calculate the c; over a wide 
range of aspect ratio (from 10-3 to 1) for gas-filled ellipsoidal inclusions. In a homo- 
geneous isotropic background, with yb = 113 (Poisson’s ratio = 1/4), the gas is 
assumed to have a vanishing shear modulus and a bulk modulus equal to 0.0128 
x pb. For this model, Fig. 2 shows D as a function of a while e is held constant at 

three values, 0.001 0.01 and 0.05. D is very small for small values of a and only 
exceeds 0.05 (which we consider the point where meaningful difference between the 
joint model and the ellipsoid model begins) for e = 0.05 when a > 0.316 for which 
crack porosity 6, > 0.066. The same calculations have been carried out for empty 
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FIG. 2. The root mean square difference D (in %) between the five elastic moduli computed 
according to Nishizawa (1982) and those five moduli computed from values of E ,  and E ,  
which minimize D as functions of aspect ratio GI holding e (the crack number density x the 
mean crack radius cubed) constant. The curve (-) is for e = 0.001, (----) for e = 0.01 
and (-.-.-.- ) for e = 0.05. The background medium has a Poisson’s ratio of 1/4 and the 
ellipsoids are filled with gas assumed to have vanishing shear modulus and a bulk modulus 
equal to 0.0128-the shear modulus of the background medium. 

(dry) inclusions and for liquid-filled inclusions (vanishing shear modulus and bulk 
modulus equal to 0.0385 x pb)  giving almost the same results for D. The values of D 
become smaller with the shrinking of the acoustic contrast between the background 
medium and the material filling the inclusions. The high contrast between the back- 
ground and the inclusion medium shown here may be thought of as a worst case for 
matching with the jointed model. 

Figure 3 shows D as a function of a for the same gas-filled inclusions while crack 
porosity 4 (equal to 47me/3) is held constant for four values of porosity, 4 = 0.01, 
0.03, 0.05 and 0.07. To avoid values of e larger than 0.05, an approximate upper 
limit for single scattering theory, each curve starts at the aspect ratio corresponding 
to e = 0.05, i.e. at astart = 34/(4x x 0.05). Each curve continues to larger aspect 
ratios for which the values of e necessary to maintain constant porosity shrink 
accordingly. D increases with increasing aspect ratio whether crack density is held 
constant or whether porosity is held constant. For these gas-filled inclusions, a 
porosity of at least 0.05 is required for D to exceed 5% and that occurs for 4 = 0.05 
at aspect ratio a = 0.44 (see Fig. 3). 
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FIG. 3. As for Fig. 2 except here D is shown as a function of aspect ratio GI holding crack 
porosity 4 constant. The curve (-) is for 4 = 0.01, (--------) for 4 = 0.03, (----) for 
4 = 0.05 and (-.-.-.- ) for 4 = 0.07. 

DISCUSSION A N D  CONCLUSIONS 

The behaviour of parallel linear-slip interfaces has been used to model the long 
wavelength propagation characteristics of a medium with a set of large parallel 
joints or fractures much larger than the largest wavelength but spaced much closer 
than the smallest wavelength. This model gives geometrical insight into the mecha- 
nical properties of such a fractured medium by letting us visualize the action of the 
planes of weakness in a solid. In addition, we have shown that the linear-slip inter- 
face model exactly describes the behaviour of systems of aligned flat microcracks 
according to Hudson (1981). However, as the aspect ratio of the microcracks grows, 
i.e. the microcracks become less flat, the results of Nishizawa's (1982) iterative 
method to compute moduli for a solid with aligned ellipsoidal inclusions deviate 
increasingly from the linear-slip interface model. But this linear-slip interface model 
is a good approximation even for aspect ratios as large as 0.3 when e = 0.05 (which 
is about as large a value of e as one can assume and still hope that single scattering 
theory is valid). 

All possible types of fracture system anisotropy : triclinic, monoclinic, orthorhom- 
bic or transversely isotropic, and all anisotropic elastic backgrounds are included in 
the model. To compute the elastic moduli of the equivalent medium, once the frac- 
ture system compliance matrix is given, requires at most the inversion of two 3 x 3 
matrices. 
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Azimuthal anisotropy has been assumed to be caused by aligned sets of vertical 
fractures and microcracks. It has been shown that large joints are indistinguishable 
from dilute systems of flat microcracks. Assuming rotationally isotropic fractures 
(which is suspect, but perhaps a good first approximation) means that azimuthal 
anisotropy may be characterized by three scalar quantities, the orientation of the 
normal to the system and the two compliances, 2, and 2,. A good approximation 
to a vertically cracked earth, for which conventional transverse isotropy is often an 
order of magnitude larger than the azimuthal anisotropy, might be a transversely 
isotropic (with vertical axis) background with a rotationally isotropic vertical frac- 
ture system. Such a model allows for the additional compliance due to the presence 
of fractures or cracks in a physically meaningful way even when the underlying 
fracture mechanism is not fully understood. The values of 2, and 2, , dimensionless 
with respect to the appropriate background modulus, quantify in the simplest way 
the azimuthal anisotropy. In many situations it has been shown that the normal 
compliance can be very small. Assuming that 2, vanishes leaves only one parameter 
quantifying azimuthal anisotropy but this is a key parameter as it still allows for 
shear-wave splitting for shear waves propagating parallel to the fractures. 
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