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REFLECTION OF ELASTIC WAVES FROM 
PERIODICALLY STRATIFIED MEDIA WITH 

INTERFACIAL SLIP* 

M .  SCHOENBERG** 

ABSTRACT 
SCHOENBERG, M. 1983, Reflection of Elastic Waves from Periodically Stratified Media with 
Interfacial Slip, Geophysical Prospecting 31,265-292. 

A periodically stratified elastic medium can be replaced by an equivalent homogeneous 
transverse isotropic medium in the long wavelength limit. The case of a homogeneous 
medium with equally spaced parallel interfaces along which there is imperfect bonding is a 
special instance of such a medium. Slowness surfaces are derived for all plane wave modes 
through the equivalent medium and reflection coefficients for a half-space of such a medium 
are found. The slowness surface for the SH mode is an ellipsoid. The exact solution for the 
reflection of SH-waves from a half-space with parallel slip interfaces is found following the 
matrix method of K. Gilbert applied to elastic waves. Explicit results are derived and in the 
long wavelength limit, shown to approach the results for waves in the equivalent homoge- 
neous medium. Under certain conditions, a half-space of a medium with parallel slip inter- 
faces has a reflection coefficient independent of the angle of incidence and thus acts like an 
acoustic reducing mirror. The method for the reflection of P- and SV-waves is fully outlined, 
and reflection coefficients are shown for a particular example. The solution requires finding 
the eigenvalues of a 4 x 4 transfer matrix, each eigenvalue being associated with a particular 
wave. At higher frequencies, unexpected eigenvalues are found corresponding to refracted 
waves for which shear and compressional parameters are completely coupled. The two eigen- 
values corresponding to the transmitted wavefield give amplitude decay perpendicular to the 
stratification along with up- and downgoing phase propagation in some other direction. 

INTRODUCTION 
Geophysical media often exhibit anisotropic behavior due to alternating strata of 
material, each stratum itself being isotropic. This can occur over a wide range of 
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length scales. When probed with radiation of a wavelength much larger than the 
width of the strata, such stratified regions exhibit mechanical properties that appear 
to be space-independent but direction-dependent depending only on the elevation 
angle with respect to the axis perpendicular to the plane of stratification. Such a 
medium is said to be transversely isotropic and has five independent elastic moduli. 
Waves in periodically stratified elastic media have been considered from two points 
of view, that of the long wavelength approximation for which an equivalent homo- 
geneous transversely isotropic medium is found, and that of the exact solution valid 
for all wavelengths (Rytov 1956). In this paper, the problem of reflection from a 
periodically stratified half-space will be considered from both points of view. 
In the first section, elastic moduli will be easily derived following Helbig (1958) 

from quasistatic considerations for a periodic medium with an arbitrary number of 
constituent layers per period. The field is assumed to vary slowly with respect to H, 
the spatial period of the layer aggregate. All moduli of the equivalent transverse 
isotropic medium are shown to depend only on thickness-weighted averages of 
various parameters of the individual layers. Because this is a quasistatic analysis, the 
effective density is not determined. It will be shown from the exact solution for 
SH-wave propagation that the correct effective density for the SH-wave is the 
thickness-weighted average of the layer densities. Slowness surfaces in the equivalent 
transverse isotropic media and plane wave reflection from equivalent half-spaces are 
discussed. 

The second approach using an exact solution employs an adaptation of the 
matrix methods for layered media (Thomson 1950, Haskell 1953)-the propagator 
matrix method of Aki and Richards (1980). The exact solution of the problem of 
reflection from a periodically stratified half-space is found following the suggestions 
of Gilbert (1979). This is valid for all wavelengths, and it may be seen how the exact 
solution approaches the approximate long wavelength solution. 

The particular periodic medium for which results are shown is one which is 
homogeneous except for periodically spaced parallel slip interfaces. Along these 
interfaces linear tangential slip may occur, i.e. there is a tangential displacement 
discontinuity across the interface that is, at each frequency, proportional to the 
corresponding shear stress across the interface. Such a model has but one density, p, 
and this is also the density of the equivalent medium. This may be used as a model 
for many types of laminates, and leads to relatively simple expressions. However, the 
techniques presented here are applicable to any periodic media made up of homoge- 
neous layers. 

The second section deals with plane wave slowness surfaces in the transverse 
isotropic medium equivalent to the medium with slip interfaces. Plane wave speeds 
are either decreased or unchanged but never increased due to elastic tangential 
linear slip. 

Section 3 addresses the problem of the reflection of SH-waves from a half-space, 
the boundary of which is parallel to the slip interfaces. First, the long wavelength 
approximation is used, and then the exact solution is derived. Results are shown for 
the case when the half-space in which the incident and reflected waves reside is the 
same mechanically (same shear modulus and same density) as the half-space from 
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which reflection occurs, except for the presence of the slip interfaces. In the long 
wavelength limit, the reflection coefficient in this case is independent of angle of 
incidence and thus the half-space appears as a reducing mirror at low frequencies. 
This phenomenon also occurs between two media of the same speed but with 
different densities. 

Section 4 considers SH-wave propagation in a general stratified periodic 
medium. It is proved that for the SH-wave reflection coeficient of the equivalent 
medium to be precisely the zero frequency limit of the exact reflection coeficient it is 
necessary to set the density of the equivalent medium to be the thickness-weighted 
average density (which is the average density) of the periodic medium. 

The method of solution for the reflection of P- and SV-waves is outlined in 
section 5. The exact solution requires evaluating the eigenvalues and eigenvectors of 
a 4 x 4 matrix, and then solving a pair of linear equations for the two unknown 
reflection coefficients. The condition of perfect tangential slip is also considered in 
that section. This is analogous to considering a periodic medium composed of 
alternating solid and ideal fluid layers. It is shown how in this case the 4 x 4 matrix 
reduces again to a 2 x 2 matrix. 

1. EQUIVALENCE O F  TRANSVERSE I S O T R O P Y  TO P E R I O D I C  
STRATIFICATION 

Consider an infinite linear elastic medium made up of plane homogeneous layers. 
Let xg be the axis perpendicular to the layering and let the layering be periodic with 
period H (fig. 1). Assume that one period is made up of N homogeneous layers, each 
with shear modulus pi, Poisson ratio vi , and thickness hi H, i = 1, . . . , N .  Let y i  be 
defined as the square of the ratio of shear speed, p i ,  to compressional speed ai, so 
that 

yi = p?/a? = (1/2 - Vi)/(1 - Vi). (1) 

. 
t 

4 
t H 

I 

. . 
Fig. 1. Model of a periodically stratified elastic medium. 
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For stress and strain fields whose scale of variation (wavelength) is much greater 
than H ,  effective transverse isotropic moduli can be derived in terms of the p i ,  y i  and 
hi. There are five independent elastic constants for a transverse isotropic medium, 
and using condensed notation 

01 = 011 

0 2  = 0 2 2  

0 3  = 033 

€1 = €11 

€2  = €22 

€3 = €33 

04 = 0 2 3  € 4  = €23 

0 5  = 0 3 1  

0 6  = O12 

€ 5  = € 3 1  

€6  = €12 9 

the stress-strain relations are 

where 

Stresses which act on a face perpendicular to the x3-axis, i.e. 0 3 ,  c4, and 05, are 
assumed constant across a set of layers of width H due to quasistatic or low- 
frequency equilibrium requirements. Strains that lie in a plane parallel to the layer- 
ing, i.e. et, e2 and € 6 ,  are assumed constant due to the layers being constrained to 
having the same in-plane motion in a medium of infinite extent in the xl- and 
x2-directions. 

The other strains over a full spatial period H can be written in terms of the 
strains of the individual layers. For example, let displacement be indicated by ul ,  u 2 ,  
and u 3 .  The strain cJi  is given by u3 at the top of the ith layer minus u3 at the 
bottom of the ith layer (call this A3i)  divided by h i H ,  the thickness of the ith layer. 
The average strain e3 over a full spatial period is given by 

+ H )  - u3(x3) 
H €3 = 

where ( ) denotes the thickness-weighted average. Similarly, the average strains, e4 
and eS,  across a full period can be found, using displacements u2 and ul, respec- 
tively, to be given by 

€4 = (E4), € 5  = ( € 5 ) .  (6) 
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The in-plane average stresses may be derived in a similar way. For example, Ogi 

is given by the force per unit length in the x,-direction on an x,-face (call it!,,> or 
equivalently in the x,-direction on an x,-face divided by h i H .  The average stress 
across the full width H is given by 

1 

Similarly, using the force in the xl-direction on the x,-face and the force in the 
x,-direction on the x,-face gives the average stresses 0, and 0, , respectively: 

01 = <01>, 0 2  = ( 0 2 ) .  (8) 
Now consider the relations between shear stress and shear strain. In each layer 

A comparison of these equations with the last three equations shown in matrix form 
in (3)  yields the effective transverse isotropic moduli C 4 ,  and c66 for the periodically 
layered medium as 

(1 1) 
Now consider the relation between the normal stress 0, and the normal strains 

(12) 

- 1  - 1  
c 4 4 = ( P  ) 9 c 6 6 = ( p > *  

el, E ,  and E , .  In each layer 

0 3  = 0 3 i  C(1 - 2Yi)(E1 + €2) + ~ 3 i l ~ i / ~ i  

and multiplying this equation by y i / p i ,  averaging, and then dividing by ( y / p )  gives 

0 3  = ( 1  - 2(Y))(Y/P)  - YE1 + €2) + <Y/P) - l E 3 .  (13)  

Comparison of this with the third equation of (3)  gives the effective elastic moduli 
C, ,  and C13 as 

c 3 3  = (Y/P>-' ,  c l ,  = (l - 2<y))<y/p)-1* (14) 

Now consider finally the relation between the normal stress o1, and the normal 
strains. In each layer, 

0 l i  = C E ~  + ( 1  - 2 ~ i ) ( ~ 2  + d I ~ i / ~ i  (15) 

and into this equation substitute for pi  e3Jyi  the expression obtained from (12),  
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Comparison of this with the first equation of (3) gives 

which checks with (4) and thus such a periodic medium behaves as a transverse 
isotropic medium with the above derived elastic moduli for fields whose character- 
istic scale of variation is much larger than H .  These elastic constants, following 
Helbig (1958) were derived according to a quasistatic approximation. 

A special case of some geophysical interest is when Poisson’s ratio is the same 
for all layers so that 

(Y) = Y, 
(Yp) = Yc66 9 (19) 

(Y/P)Y1 = C44/% 
This is a transverse isotropic media whose elastic modulus matrix depends on C4, 
and C6, as given in (1 1) and y. The other moduli are given by 

c33 = c44/y, cl ,  = (l - 2Y)c44/y, cl, = 4(1 - Y)c66 + (l - 2Y)2c44/Y* 

(20) 

Now suppose the layering is such that one period is made up of only two layers 
and let layer 2 be very thin and very soft so that h, + 1, h2 -, 0 and p z  -+ 0 such that 

h, H / P ~  -+ VT 3 Y 2 hz H / P Z  + VN + (21) 

Let p1 p and y1 = y. This is equivalent to postulating a homogeneous medium 
with equally spaced plane linear slip interfaces, all parallel to the xl, x,-plane, and 
each with tangential and normal compliance given by qT and qN,  respectively 
(Schoenberg 1980). Across such an interface, stresses are continuous but displace- 
ment discontinuities are allowed so that 
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Then from (ll), (14), and (18), the elastic moduli of the equivalent transverse iso- 
tropic medium are given by 

ET = Y ] T d H ,  = V N d H *  

There are four independent elastic parameters, the shear modulus p, the nondimen- 
sional ratio y,  and the dimensionless compliances E ,  and E,. 

A physically reasonable simplification is the case in which there is only tangen- 
tial slip and the normal compliance E ,  vanishes. Then all coefficients are as in the 
isotropic case except for C,, , which is given in (23). 

It should be noted here that we can relax the requirement that we have equally 
spaced identical cracks. As the slip is manifest in the two dimensionless compliances 
ET = pqT/H and E, = pqN/H, a homogeneous material with irregularly spaced 
parallel slip interfaces behaves identically as long as qT/H and qN/H are the same 
(where qT is the total tangential slip of all the cracks in distance H due to unit shear 
stress, and qN is the total normal slip due to unit normal stress). Thus a rock with 
arbitrary closely spaced parallel linear slip interfaces can be modeled as a homoge- 
neous transverse isotropic solid as long as the average slip per distance normal to 
the system of cracks is independent of x3.  

2. SLOWNESS SURFACES I N  A MEDIUM W I T H  PLANE PARALLEL 
SLIP INTERFACES 

The transverse isotropic elastic moduli derived above under the quasistatic, slowly 
varying field approximation may be used to derive slowness surfaces and other 
parameters of dynamic wave propagation for wavelengths much larger than the 
average spacing between slip interfaces. Let p be the uniform density and 
/? = (p/~/p)’/~ be the shear speed of the material between the slip interfaces. Allow a 
plane wave to propagate through the medium at an angle 8 to the x3-axis. With no 
loss of generality, let the plane of the propagation vector be the xl, x3-plane, so that 
the displacement is not a function of x2 .  

If one allows all terms with partial derivatives with respect to x, to vanish, the 
displacement equations of motion for a homogeneous transverse isotropic medium 
are 

cllul , l l  + ‘13 ‘3.31 + 
‘66  

13 + ul, 33) = pCl? 

11 + ‘44U2, 33 = pu2 9 

11 + ul, 31) + ‘13 ul, 13 + c 3 3 U 3 . 3 3  = pi3 * 
As is well known, the second equation of (24F in  terms of U,-is not coupled to 

the others-in terms of ul, U~-SO that the “antiplane strain” slowness surface, 
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which depends only on qT is uncoupled from the “plane strain” slowness surfaces 
which depend on qN and qT . 

For “ antiplane strain ”, let 

u1 = u3 = 0, U, = U, exp io[S(x, sin 8 + x3 cos 8) - t ] ,  (25) 
where the slowness S is a function of 8. Substitution of (25) into (24) gives 

1 COS, e 
S2 sin2 8 +- = p-,. [ l + E T  

This is the polar coordinate S- &representation of an ellipse, a quarter of which is 
shown in fig. 2, for ET = 3.0, labeled SH. By letting S ,  = S sin 8, S ,  = S cos 8, (26) 
is converted to a rectangular Cartesian (Sl, S,) representation: 

(27) 

From this it is clear that the semi-major axis is in the x,-direction and has length 
(1 + ET)’I2/P and the semi-minor axis is in the x,-direction and has length 1/8. The 
shape of the wavefront is the polar reciprocal of the slowness surface (26), and this is 
given by 

0.5 1 .o 1.5 2.0 

SP 

Fig. 2. Slowness surfaces, normalized by the shear speed, for the transverse isotropic medium 
equivalent, for the long wavelength approximation, to a homogeneous medium with equally 
spaced plane interfaces along which tangential elastic slip occurs. Poisson’s ratio is 1/4 and 
the nondimensional slip compliance, E,, is 3. The polar plot shows S/3 as a function of the 
angle of propagation. 
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Clearly, the plane wave propagating normal to the layering is slowed up by an 
amount (1 + ET)-’/’ relative to a plane wave propagating parallel to the layering 
which propagates at the shear speed. 

For plane strain, 

u2 = 0, [::I = [ F:] exp io[s(x, sin e + x, cos e) - tl. 

The slowness surfaces resulting from such a plane wave in a transverse isotropic 
medium have been discussed by several authors. We shall consider the special case 
for which qN = 0, i.e. on the interfaces normal slip vanishes but tangential slip is 
finite.,Then substitution of (29) into (24), using isotropic values for C, except for C,, 
[which is given by (23)], yields 

sin’ e cos2 e 1 - 2y 

(30) 

l + E T  

sin2 

e, 1 P(- 1-2y  + -) 1 sin e cos eu, + [s’(- + - - p - 2  u, = 0. 
l + E T  

For a nontrivial solution to exist, the determinant of the displacement amplitudes 
U,, U, must vanish, giving 

1 
(s’p’)2 y(1 + ET) [l + (1 - y)E,  sin’ 201 - S2p2 (i +A) + 1 = 0. (31) 

Figure 2 shows, for E,  = 3 and y = 1/3, the two slowness surfaces which are solu- 
tions of (31) labeled P for the compressional-type solution and SV for the shear-type 
solution. It may be seen that a plane wave can only be slowed by the presence of 
closely spaced slip interfaces, never speeded up. At the angles 8 = 0,744, and 4 2 ,  the 
P-wave displacement is parallel to the slowness vector and the SV-wave displace- 
ment is perpendicular to the slowness vector. The values of the slownesses squared 
of the P-, SV-, and SH-waves are given in table 1 .  

Table 1. B2S2 for plane waves in a medium with slip inter- 
faces. 

e P SV SH 

0 Y 1 + ET 1 + ET 

ET l + -  
2 + ET 

‘I4 Y [ L + 1 + ( l - y ) E T  ] 1 

nl2 Y 1 + E, 1 

The slip interfaces cause the P-wave to be slowed the most at an angle of 7114. At 
this angle, the SV-wave is not slowed at all. However, for positive Poisson’s ratio 
(y < 1/2), the P-wave is faster than the SV-wave for all real values of E, .  For 
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negative Poisson's ratio (3/4 > y > 1/2), the P-wave may be slowed enough to be 
slower than the SV-wave. This occurs when E, > (1 - y)/(2y - 1). Note that results 
given by Brekhovskikh (1960) for speeds parallel and perpendicular to the layering 
agree with the slownesses obtained above with C ,  ,, C,,  , C,, , and c66 given by the 
general expressions of (ll),  (14), and (18) and the density given by ( p ) .  

3 .  REFLECTION OF SH-WAVES F R O M  A N  ELASTIC HALF-SPACE 
W I T H  PLANE PARALLEL S L I P  INTERFACES 

An elastic homogeneous medium with parameters po , po , PO = (po/po)1/2 occupies 
the region x, < 0. A medium with parameters p, p, p = (p /p) ' / ,  occupies the region 
x, > 0 and this medium is assumed to contain plane slip interfaces, parallel to the 
xl, x,-plane spaced a distance H apart with dimensionless tangential slip com- 
pliance E,. A plane SH-wave is incident from medium 0 on the boundary between 
the two media x, = 0 (fig. 3). The wavefield in the region x3 < 0 has the form 

u2 = exp (iws,, x,) + R exp ( - i d , ,  x3), 

o4 = ,uo ioS3,[exp (ioS,, x3) - R exp (- ios,, xg)], 

s,, = ( p i 2  - s:)1'2, 

I R 

x = 3 H  I 3 

t 
x 3  . . 

Fig. 3. Plane wave reflection from a medium with plane parallel slip interfaces. 

where R is the plane SH-wave reflection coefficient. These equations can be put into 
a matrix form for later use: 

Do(~3)  = diag [exp ioS,, x, , exp -ioSjo x,], (33) 

Note that Do(0) is the identity matrix. 
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3.1. Long wavelength, eflective transverse isotropic medium application 

In this case the wavelength is assumed much longer than H so the effective trans- 
verse isotropic medium theory described above is applicable. In the region x3 > 0, 
one has from (27) 

u2 = T exp [io(l + E,)’/’(P-’ - SI)liZx3], 

o4 = C44u2, = Tp(1 + ET)-1/2io(P-2 - s:)ll2 

x exp [iw(l + - S:)”2x,]. 

Continuity of u2 and o4 at xj = 0 gives 

1 + R = T ,  

1 - R = xT, 

which have the usual solution 

(34) 

(35) 

Note that x depends on the angle of incidence, B0 = arcsin (fioS,), and that 
PO S, ,  = cos 8,. From the expression for x in (39 ,  it follows that the same function 
of 8, would be obtained for a homogeneous medium ( P h ,  &, P h  = P h p ; )  occupying 
region x, > 0 if it had a shear modulus p h  = p(1 + ET)-1/2 without changing the 
value of the shear speed; i.e. a homogeneous medium with shear speed P h  = p and 
density p h  = p(1 + E,)-’/’ would be indistinguishable from the medium with plane 
parallel slip interfaces through its long wavelength reflection and transmission coef- 
ficients R and T, provided the compliance E ,  is frequency-independent for small 
frequency. However, the transmission angle 8 from (26) is given by 

sin B0 sin 8 -- - S(8) sin 8 = 
P O  P[sin2 8 + (1 + E,)-’ cos2 e p ’  

or 

(37) 

whereas the homogeneous medium with B h  = p and P h  = p(1 + has a trans- 
mission angle given by (38) but with E ,  = 0; i.e. this homogeneous medium and the 
medium with plane parallel slip interfaces, for long wavelength, have identical reflec- 
tion and transmission coefficients but different transmission angles. 

When the shear speed ratio is unity, we obtain from (35) and (38) 

tan 8, , 8 = arctan 
P(1 + 

(1 + ET)”’ ’ x =  
P O  

(39) 
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zT 

Fig. 4. Real long wavelength reflection coefficient R as a function of the elastic slip com- 
pliance E ,  (- - -); amplitude and phase of R as a function of the viscous slip compliance 
Z ,  = I T p / / o H  for SH-waves from an elastic medium incident on a half-space of the same 
medium with equally spaced slip interfaces. 

and now the reflection and transmission coefficients are independent of angle of 
incidencein particular, when the medium occupying x3 > 0 is the same medium as 
that occupying x3 < 0 except for the slip interfaces, x = (1 + E,)-'/' and R for this 
case is represented by the dashed line in fig. 4 plotted as a function of E , .  For 
E ,  4 1, R - E,/4 and as E ,  grows, R grows very gradually to unity. The case of 
E T +  00 corresponds to the surface (x3 = 0) being stress-free, in which case R = 1. 

A long wavelength reflection coefficient R, independent of angle of incidence 
with absolute value less than unity, implies that the interface x3 = 0 acts like a 
reducing mirror, i.e. the reflection of a point source located at x3 = - d  appears to 
come from its image point at x3 = + d  but with its strength multiplied by the factor 
R. 

If the slip interfaces behave as a viscous fluid tangentially (so that h, H divided 
by the viscosity is given by cT), we have Air, = cTo4 or Au = (icT/m)a4 for both the 
viscosity and h,  approaching zero (Schoenberg 1980). Thus the dimensionless 
tangential compliance has the form 

E T  = icT /.i /wH iZT . (40) 

Let the material occupying the region x3 > 0 be the same as that occupying x3 c 0 
between the thin interfaces. Then x = (1 + iZT)-'/', magnitude and phase angle of R 
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as a function of Z ,  are shown by the solid line in fig. 4. Note that ZT increases as 
the fluid viscosity or the frequency decrease. For Z ,  4 1,l R 1 N 2T/4 and the phase 
of R - 4 2 .  As Z ,  grows, R approaches unity gradually. 

3.2. Exact theory 

In this case, the wavefield in the region x 3  > 0 is analyzed for all wavelengths. The 
slip interfaces with tangential compliance qT are located at x 3  = nH, n = 0, 1, 2, 3, 
. . . The wavefield in the homogeneous region is given by (33), and the wavefield in 
the region H > x3 > 0 has the form 

where A,, A2 are the coefficients of the down- and upgoing waves, respectively. B 
and D are as given in (33) but for medium parameters p, B. Then 

Due to slip at x 3  = 0 

and thus 

[cos A -ET A sin A -ups3  sin A 1  

sin A i- ET A COS A 
COS A 

’ 

Q is the transfer matrix for stress and displacement across a complete cycle of width 
H. The determinant of Q is unity. Across n such cycles one has 

The matrix Q may be decomposed by means of the following similarity transform- 
ation : 
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where 1, and 1, are the eigenvalues, the first column of V is the eigenvector 
belonging to A', and the second column is the eigenvector belonging to 1,. Then 

Qn = VA"V-' = - 1 {A~[u11][u2z -u lz ]  + 1~[u'2][-u,l U'']}, (46) I V I  U21 U 2  2 

where I V I is the determinant of V. The product of the eigenvalues is equal to unity. 
The introduction of an infinitesimal amount of loss (Gilbert 1979) leads to the 
requirement that the field must vanish at infinity, i.e. 

lim ["'I = 0. (47) 
n-tm x 3 = n H -  

This enables us to solve for the reflection coefficient R. If the eigenvalues are 
complex conjugates, then I 1' 1 = I 1, I = 1, but with the introduction of a small 
amount of loss, one eigenvalue, say AI, has an absolute value less than unity; 
correspondingly, I 1, I > 1. Thus, in the limit as n+ CO, 1; + 0. If the eigenvalues are 
real, one will have absolute value less than unity, say A,, and one has an absolute 
value greater than unity, say 1,. Equations (46) and (47), with Ay + 0 substituted 
into (44), yield one independent equation for R : 

or 

(49) 
1 - x  R = -  
1 + x '  x = V11/i~~oS,,vz, = (11 - Qzz)/imPoS30Qz1, 

and the problem is reduced to finding the real eigenvalue with an absolute value less 
than unity or the complex eigenvalue which, with the introduction of a small loss, 
has an absolute value less than unity. 

The transfer matrix Q given in (43) has the eigenvalues tr Q/2 f [(tr Q/2)' - 13, 
where " tr " denotes the trace. These are given by 

cos A - (ETA/2) sin A & iK'/' sin A, 
cos A - (ETA/2) sin A & (-K)'/'sin A, 

K > 0, 
(50) K c 0, 

A* = {  
K = 1 + ETA cot A - E;A2/4. 

For K > 0, the absolute values of the eigenvalues are unity. Letting E T +  ET(1 + ie), 
0 < E 4 1 gives, to first order in E ,  

= 1*(1 f EE~A/~K'") ,  
6 

which shows that 1' is 1'. This follows from the fact that with ET+O one has 
1' + exp (iA) corresponding to the wave propagating in the +x,-direction, while 
1 - 4  exp (-iA) corresponds to the wave propagating in the -x,-direction. In the 
presence of loss, the first wave decays as x3+ CO while the second wave grows. The 
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requirement that the coefficient of the growing wave must vanish identically gives 
(48) on R. The eigenvalues (50) are real when K < 0. In this case, A1 is A+ when 
cot A > ET A12 and 1, is 1- when cot A < ETA/2. Again, the coefficient of the 
growing wave must vanish giving (48) on R. Thus, for any frequency and angle of 
incidence 

P s 3  Sgn ( E T  A12 - Cot A)( - K)'" + ET A/2 (52) 
x = i -  , K < 0 ,  

P O  '30 1 + ETA cot A 

and R is given by substituting (52) into (49). Note that for K < 0, I R I = 1 and for 
K > 0, I R I < 1. 

For purely viscous interfaces, with ET given by (40), ET A = iCTpS3 is indepen- 
dent of frequency, and the only dependence of x on frequency is through cot A. 
Thus, for any angle of incidence, x and thus R are periodic functions of frequency. 
Again one must determine which eigenvalue corresponds to the wave that vanishes 
at infinity. 

To show the behavior of the transmitted waves in the periodic medium, note 
that substitution of (46) into (44) along with the condition that the coefficients of A; 
vanish (see (48)) gives 

Using the values for B, and R gives 

The displacement field in the nth layer may be written with (41) and (54) as 

u2 = A?) exp ioS3(x, - (n - 1)H) + A',) exp -ioS3(x3 - (n - 1)H) 

Thus we see that the coefficient ratio of the upgoing to downgoing wave in each 
layer is just the reflection coefficient for the half-space when the medium occupying 
x3 < 0 is identical with that occupying x3 > 0 between the slip interfaces. From 
layer to layer the only change is that the field is multiplied by Al. With no loss, when 
the eigenvalues are a complex conjugate pair, K > 0, then I A l l  = 1 which corre- 
sponds to propagation into the periodic medium with just a phase change from 
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layer to layer. When the eigenvalues are real, K < 0, then I ,  is real and I I l l  < 1. 
The sign of I, is the same as the sign of tr Q. When I, is positive the waves undergo 
an exponential decay but with no phase change from layer to layer. When I, is 
negative in addition to decay there is R phase shift from layer to layer. Thus, real 
eigenvalues correspond to the stop bands of propagation in periodic media, for 
which even with no loss, only decaying and growing waves are possible. 

The limit of long wavelength compared to H is approached as A- 0. From (52) 
and the fact that as A +  0, K is positive and A cot A +  1, we have 

lim x = - ps3 (1 + ET)-,/’, 
A + O  p O S 3 o  

which agrees with the approximate result obtained in (35) for reflection from the 
equivalent transverse isotropic medium. As K is positive, there is no stop band in 
the low-frequency limit. In this exact case, when the shear speeds PO and /3 are equal, 
pS3/po S,, becomes p/po ,  but x is still dependent on the angle of incidence through 
its dependence on A = OS, H. 

I I I I 
20 15 10 0 5 

A = wS3H 

Tt2  

-77 

0 5 10 15 20 

A = wS3H 

Fig. 5.  The exact reflection coefficient for SH-waves from an elastic medium incident on a 
half-space of the same medium with plane parallel slip interfaces as a function of A = U S ,  H 
with the nondimensional elastic slip compliance, E ,  = q T p / H ,  equal to 3. 
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The high-frequency limit is approached as A +  00. In this case, for S3  real, K is 
negative, and I R I = 1 except when A = k.n + e2, k B 1, e2 < 4/.nkET so that the size 
of the regions for which there is propagation into the periodic medium shrinks with 
increasing A.  Figure 5 shows the amplitude and phase of R as a function of the 
nondimensional parameter A for ET = 3 when the media occupying x, > 0 and 
x, < 0 are identical so that p S 3 / p 0 S 3 0  = 1. Note that for large A the pass bands 
become vanishingly small and R is approximately equal to exp ( - 2iA), independent 
of E T .  This is the reflection coefficient found if the surface x, = - H were stress-free. 

When p > PO and the angle of incidence is greater than critical, S ,  and A are 
imaginary. Letting 

S, = if,  = i(S: - p-2) ,  A = iuf,  H = iA (57) 
gives positive K and 

so that I R I is equal to unity for all frequencies, as expected. As A+ 00, ~4 0 and 
R+ 1. 

4.  EFFECTIVE DENSITY IN THE LONG WAVELENGTH 
APPROXIMATION 

The question of the density of the effective medium does not arise in the case of 
periodically spaced slip interfaces because the density of the medium is essentially 
uniform. However, in the general case in which one period is made up of N layers, 
each with its own elastic parameters and its own density, the question that arises is: 
What is the effective density to be used in a model whose effective elastic parameters 
were derived using a quasistatic approximation? The analysis of the previous sec- 
tion for the exact solution can be carried out for the periodic medium with N layers, 
retaining only terms of second order in CO, and then we can examine the reflection 
coefficient in the limit as frequency approaches zero. In this case the matrix Q, 
analogous to that given in (43),  may be written 

(59) I COS A,  - upi S,i sin Ai 

cos Ai 

N i - 1  N 

i =  1 j =  1 1 
1 - W ~ H ~  sZi hi (: + pi hj p; ' )  + O(04) CO p i  SJi Ai + O(u4) 
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noting that Ai = hi H. This expansion is used because, although the exact coeffi- 
cients for any value N may easily be found, the author knows of no exact analytical 
expression for arbitrary N .  The expression in (61) may be proved to be valid for all 
N by induction. The eigenvalues of Q are found by noting that, from Q as given in 
(59), det Q = 1 to order o4 and 

( G P )  = ( P >  - S:(P).  

Thus, the eigenvalues are given explicitly by 

For less than critical incidence, i.e. S: less than ( p ) / ( p ) ,  A *  are a complex conju- 
gate pair and there is propagation into the periodic medium. Again, a small amount 
of loss in any of the p i  implies that A1 = A'. Then, from (49), x is given by 

/ N  L -  1 \ 

j = i + l  j =  1 

To find the reflection coefficient using the effective transverse isotropic medium in 
the region x3 > 0 with C,, and C,, as given in (ll), the second of (24) must be used. 
That equation requires a given effective value of the density. Then, analogous to 
(34), for x 3  > 0, 
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and continuity of u2 and o4 at x3 = 0 [where u2 and o4 for x3 < 0 are given by (32)] 
yields the solution (36) with 

This agrees with the leading term for x in (62) if, and only if, peff for the effective 
medium is the thickness-weighted average density ( p ) .  From (64) it can also be seen 
that for long wavelength X-and thus the reflection coefficient-is independent of 
the angle of incidence if, and only if, PO is equal to ( ( , ~ ) / ( p ) ) ' / ~ .  

5 .  REFLECTION OF P- A N D  SV-WAVES F R O M  A MEDIUM W I T H  
PLANE PARALLEL S L I P  INTERFACES 

The geometry is assumed the same as in section 3 but now the plane strain case is 
considered. The compressional speed in the region x3 < 0 is a, = PO y; 'I2 and the 
wavefield in this region, denoted with subscript 0, may be written as 

where J = 1 for an incident P-wave of unit amplitude, J = 0 for an incident SV- 
wave of unit amplitude and R, and R, are the reflection coefficients for the reflected 
P- and SV-waves in either case, respectively. The matrices B, and Do are given by 

Do(x3) = diag [exp ioS3, x3 ,  exp ioS,, x3 ,  exp ( -ioS3, x3), exp (- ioS,, x,)], 

Note that Do(0) is the identity matrix I, and that To = cos (2 sin-' PO S , ) .  

5.1. Long wavelength, efective transverse isotropic approximation 

For an incident P-wave at an angle of incidence B0, S ,  = y$/2pi1 sin 8, is given. 
For an incident SV-wave, S ,  = PO sin 8,. The determinant of the displacement 
amplitudes, U,, U ,  of (30) must vanish, but now S, = S sin 8 is the given quantity 
and S 3  = S cos 8 is the unknown slowness in the z-direction. This gives rise to the 
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following quadratic equation on S ;  . 

which always has a positive discriminant. For S1 < J y  there are two positive roots, 
corresponding to the transmitted P- and SV-waves. For J(y)  < S1 < J(1 + ET) 
there will be one positive and one negative root corresponding to a transmitted 
evanescent P-wave and a transmitted propagating SV-wave. For S1 > J(l + ET) 
there will be two negative roots corresponding to the transmitted evanescent waves. 
The positive real or positive imaginary square roots must always be chosen for 
propagation or decay in the qdirection. 

For each wavenumber S,, a displacement vector is now found from (30) to 
within an arbitrary complex constant, the transmission coefficient, so that the dis- 
placement field has the form 

where f:, S: are the roots of (67) and Sl: < S: for positive Poisson's ratio. The 
stresses are obtained from (3), and in this case of tangentially slipping interfaces, 

P 
Y 

0, = - [(l - 2y)iwSlul + u3, ,I, 

f s5  = - (ioS,u, + ul,,). 
1 + ET 

Thus, at x, > 0, from (68) and (69) 

03 

Y(x3)- [;;I - B + [  
exp iwSj x, 0 

exp ios, x J [  :] 9 

x3 

Y 
imp imp wSB + s3 us,i 1 + E T  

CSIUP3 + s; UP,l 1 + ET B + = l  - 
UP1 

UP3 

us1 

us3 

The boundary conditions at x, = 0 are that Y(O-) = Y(O+) giving four equations on 
RP, Rs, TP, T,: 
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(71) 

which may be solved identically for an incident P- or an incident SV-wave. 

5.2. Exact theory 

The method of solution for the exact reflection coefficient is described in this sub- 
section. The wavefield in each layer between slip interfaces is composed of down- 
going P- and SV-waves and upgoing P- and SV-waves. Thus, for each layer there 
are four unknown constants Ai, i = 1, . . . , 4, which can be thought of as the 
components of a constant vector A. The stress and displacements on a constant 
x,-plane in the first layer occupying the region H > x, > 0 can be written in matrix 
form 

Y(x,) = BD(x,)A, (72) 
where B and D are as given in (66) but with the material parameters p, p, y, and 
hence S; and S ,  of the layering medium rather than the parameters of the medium 
occupying x, < 0 (subscript 0). From (72) 

Y(H-) = BD(H)B-'Y(O+) = PY(O+) (73) 
and the transfer matrix, P depends only on the width H of the layer and the material 
elastic properties p = p p 2 ,  p, y. Thus, this transfer matrix is the same for any of the 
layers occupying the region x, > 0. It is written explicitly as 

2jZs:cs + rc ,  -i 2p2s,s3 ss - - 2 i o p ~ , ~ ( c ,  - cp) - u p s ,  

P =  

r 5 ..) s; 

O P  

r = 1 - 2pzs:, cs = cos H, 

ss = sin OS, H ,  

pz 1 

cP = COS OS; H, 

sp = sin OS; H .  

Pl z 

p11 

(74) 
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Again, assuming no normal slip but nonzero tangential slip with compliance qT,  

and thus across one period of this periodically layered medium 

Y(H-) = P(I + ~ T J ~ ~ ) Y ( O - )  E QY(O-). (76) 

Note that Q is the same as P except that the second column of Q is given by the 
second column plus qT times the third column of P. For n such periods 

Again, Q may be expressed as a similarity transformation on the diagonal eigen- 
value matrix 

where the jth column of V is the eigenvector of Q belonging to , I j .  When qT is real, 
the quartic equation for the eigenvalues has real coefficients. The four eigenvalues 
are 

,I = 6+ k [(6+)2 - 11112, 6- f - 1 p ,  

112 [(- + f i y  - cscp - 2 VT (P1,Pz3 - PZIPl3)] . 
2 4 f 

Not only does the product of the four eigenvalues equal unity, but the four may be 
broken into two pairs, each pair having a product of unity. The necessary and 
sufficient condition for this to hold is that the quartic equation on the eigenvalues 
have the coefficient of A3 equal to the coefficient of I ,  i.e. tr Q equal to the third 
invariant of Q. This condition can be shown explicitly to be true for the elastic slip 
problem and it has been proven to be true for n layered propagation matrices Q of 
the form of a product of n homogeneous layer propagation matrices, P, - P,- . . . 
. P ,  . P , ,  by noting that (1) for any 4 x 4 matrix Q of determinant unity, tr Q-' 
equals the third invariant of Q, and (2) that tr Q = tr (P, . . . * PI) is invariant when 
H is replaced by - H ,  and from the properties of propagator matrices, replacing H 
by -H inverts the matrix, so that tr Q = tr Q-'. [The proof outlined here was 
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developed in a series of communications in 1981 between I. Kaplansky of the 
University of Chicago and the author.] 

The eigenvalues of absolute value less than unity tend to zero when raised to the 
nth power. The eigenvalues of absolute value unity are considered by introducing a 
small amount of loss into any of the parameters. Those that then have an absolute 
value less than unity are dropped when raised to the nth power. Let A 3  and 1, be the 
two eigenvalues that are retained. Then, substituting (78) into (77) and taking the 
limit as n +  CO gives 

The independence of the eigenvectors belonging to A 3  and A,, with (80), gives two 
equations on the reflection coefficients, R ,  and R,: 

and 

where J = 1 for an incident P-wave and J = 0 for an incident SV-wave in the 
homogeneous medium. Figure 6 shows the amplitude and phase of the reflection 
coefficient as a function of angle for an incident SV-wave at several frequencies. The 
incident medium occupying the region x3 -= 0 is identical to the elastic medium 
between the slip interfaces. The nondimensional slip compliance is set equal to 3 and 
y is set equal to 1/3 (Poisson's ratio of 1/4). The case of an incident SV-wave is 
chosen because it contains the interesting feature at the critical angle for P-waves 
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0 30.0 60.0 90.0 

Angle of Incidence 

Fig. 6. The long wavelength, zero frequency reflection coeficients and the exact reflection 
coefficients for incident SV-waves at o H / p  = 0.01 (which overlays the w = 0 curve), 1, 2, and 
3.5 given as a function of angle of incidence. The incident medium and the medium with the 
slip interfaces have the same elastic properties. Poisson’s ratio is 1/4 and E ,  is 3. 

which is arcsin (1/,/3) and at 7114, whereas the case of an incident P-wave with these 
parameters is fairly uninteresting. The calculation of the reflection coefficient in the 
long wavelength limit using the effective medium theory agrees perfectly with the 
calculation of the reflection coefficient using the exact theory with w = 0.01 or less. 
At the incident angle of 7114 for which r = 0 and S ,  = S , ,  Rs and R, are both zero 
at any frequency with any value of y and E , .  For about 3 or larger, there are angles 
for which 6 * becomes complex leading to four complex roots of the form exp iw( f a 
- + ib)H. These correspond to a downward-propagating and decaying wave (+, +), 
a downward-propagating and growing wave (+ , -), an upward-propagating and 
growing wave (which decays downward) (-, +), and an upward-propagating and 
decaying wave (which grows downward) (-, -). These waves completely couple 
shear and longitudinal parameters and in no sense can any of them be thought of as 
quasishear or quasilongitudinal. A, and A, must be taken as those waves which grow 
in the +x,-direction, namely the (+, -) and the (-, -) roots. 

5.3. Exact theory for the case of perfect tangential slip, qT -+ CO 

In this case, at each interface 0 5 ,  the shear stress is set identically equal to zero and 
there is no condition at all on the value of the tangential displacement ul. This 
models the case where the interfaces are assumed to be filled with an ideal fluid. For 
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each layer, (73) still holds but now Y2 = o5 vanishes at both x3 = 0 and x3 = H, so 
we may write 

= p21 yl(o) + p23 y3(0) + p24 y4(0)9 (82) 
which is a condition on the value of Y3(0) = ul(0). Substituting the value of Y3(0) 
obtained from (82) into the first and fourth of the equations of (73), gives-as Y, and 
Y4 must be continuous across each interface- 

p21p13 

p23 

p21p43 
p41 -- 

p23 

P I 1  -- 
(83) 

p44  - - 

The procedure is then identical to that in the 2 x 2 antiplane strain case discussed 
above, giving 

The first and fourth parts of (65 )  substituted into (85 )  give one equation in R, and 
R,  , and the condition that Y2(0) vanishes gives the second. These two equations are 

Letting J = 1 gives Rip) and Rip). Thus, we find that 

RJP' = 1 - 2r; /D,  Rip) = 4r0 a0 Do SIS;,/D, 

Letting J = 0 gives Rf) and Ri?. We find 

Rf) = - 1 + 88: S I  S3, S3,/D, Rp) = -4r0 /3: S,S3,/ao D. (88) 

Thus, for this reflection problem everything is determined except u1 1/u21 which is 
found as in the case of SH-waves. 
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Specifically, from the matrix P 

411 = q22 = ‘1, - p21‘13/‘23 = [4pzs,s;cssp + (r2/p2s1s3)cpss]/K, 

q l 2  ‘14 - p?3/p23 

= - wpS1[8r2(l - cscp) + (16p4StS3 S; + r4/p4S:S3 S3)ss sp]/K, 

qZ1 = ‘41 - pi1/p23 = (s3/S3)sSsP/wpS1K, 
K = 4p2S1S3sp + (T2/pzS,S3)~s. (89) 

The determinant of q is unity. The eigenvalues are q,, f ,/(q:, - 1). For I q l l  I > 1, 
the eigenvalues are real and 

21 = 411c1 - JCl - 4 3 1 ,  

~ 1 1 / ~ 2 1  = -41,,/(1 - 4;:)/421. (90) 
This is a value of (w, S,) that is in the stop band of this periodic medium. For 
lql,l < 1, (w, S,) is a point in the pass band, and the eigenvalues are a complex 
conjugate pair with 

I *  = q l l  k iJ(1 - qt,). (91) 
Upon including a small amount of loss, one root, say I,, will have I I, I -= 1 and the 
other, say I,, will have II, I > 1. So for I, = I*, ul,/uZ1 = +i,/(l - qfl)/q2,. Loss 
can be most easily introduced by holding p-’ real and letting 
a-2 = j?-’y- j-’y(l + ic). 

For w--, 0, I ,  = I + ,  and 

Note that 4(1 - y)/p2 is the velocity of extensional waves in a plate. 
Substitution of this expression into (87) gives 

PS; 
P O  s3 

D = r; + 4p;: s:s3, s3, + + J [ i  - qi - y)pZs:], (93) 

thus giving the long wavelength reflection coefficients. 

6 .  CONCLUSIONS 
An elastic medium, homogeneous but for equally spaced parallel slip interfaces, is a 
special case of a periodically stratified medium. For the purposes of long wavelength 
elastic wave propagation, such a medium may be modeled by an equivalent trans- 
verse isotropic medium. Thus the theory of wave propagation in homogeneous 
anisotropic media can be applied to find slowness surfaces and reflection and trans- 
mission coefficients. 

An interesting result occurs when plane equally spaced slip interfaces are em- 
bedded in an otherwise infinite homogeneous medium in a region x3 > 0. Then the 



REFLECTION OF ELASTIC WAVES 291 

plane wave reflection coefficient for SH-waves incident in the region x3 < 0 will be 
independent of angle of incidence and the surface x3 = O  will appear, to SH- 
radiation, as a reducing mirror. 

The exact solution of the problem of reflection and transmission of SH-waves 
from a periodically stratified half-space was found for all frequencies and angles of 
incidence. In the long wavelength limit, the exact reflection coefkient approaches 
that of the equivalent anisotropic half-space. The density of the equivalent half- 
space must be taken as the thickness-weighted average density of the periodic 
half-space. In the high-frequency limit, the exact solution showed that the amplitude 
of the SH-plane-wave reflection coefficient of the half-space with equally spaced 
parallel elastic slip interfaces becomes unity except for narrow frequency bands 
centered slightly above the frequencies that correspond to H, the period of the 
medium, being an integral number of half-wavelengths in the x3-direction. These 
narrow frequency bands correspond to the pass band of the periodic medium and 
they shrink as frequency increases. Energy at all other frequencies is totally reflected. 
The phase of the SH reflection coefficient for high frequency becomes periodic. 
When the material between the interfaces is the same as that occupying x3 < 0, the 
phase approaches - 2A. With parallel viscous slip interfaces the reflection coefficient 
is a purely periodic function of frequency. 

For the plane strain case of incident P- and SV-waves, the approximate long 
wavelength reflection coefficient and the exact reflection coefficient valid for any 
frequency were derived formally. Numerical computations have shown that as the 
frequency tends to zero, the exact reflection coefficient approaches the long wave- 
length reflection coefficient for the incident medium the same as the layered 
medium. The usual pure propagating and pure decaying modes were found but, in 
addition, for higher frequencies, waves that decay as they propagate are found and 
these cannot be identified either with shear or longitudinal speeds but instead with a 
single speed and a single attenuation parameter. Explicit expressions for the reflec- 
tion coefficients for the case when the tangential slip compliance goes to infinity 
(perfect tangential slip or zero shear stress on the interfaces) are derived. This is also 
a special case of a periodically layered medium of alternating solid and fluid layers 
where the fluid layer thickness is much smaller than the solid layer thickness. 
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