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Appendix A Numerical fractional derivatives

The SEIR equations (1) are of the form

Dνf(t) = g[f(t)], with f(0) = f0, (A.1)

where f and g are functions of time and we omit the spatial variable.

A.1 Euler derivative

The most simple time approximation in fractional calculus is the Euler method,

fn+1 = f0 + hν
n∑
j=0

aj(n+1)g(fj), (A.2)

where

aj(n+1) =
1

Γ (1 + ν)
[(n− j + 1)ν − (n− j)ν ] (A.3)

(e.g., Hassouna et al., 2018).

A.2 Grünwald-Letnikov derivative

A widely used time approximation in fractional calculus is the backward Grünwald-

Letnikov (GL) derivative. The GL fractional derivative of a function f is

hνDν ∼
n+1∑
k=0

ckf
n+1−k = fn+1 +

n+1∑
k=1

ckf
n+1−k ck = (−1)k

(
ν

k

)
(A.4)

where h is the time step and t = (n + 1)h. The derivation of this expression can be

found, for instance, in Carcione et al. (2002). The binomial coefficients can be defined

in terms of Euler’s Gamma function as(
ν

k

)
=

Γ (ν + 1)

Γ (k + 1)Γ (ν − k + 1)

and can be calculated by a simple recursion formula(
ν

k

)
=
ν − k + 1

k

(
ν

k − 1

)
,

(
ν

0

)
= 1.
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If ν is a natural number, we have the classical derivatives. The GL approximation is of

order O(h). The fractional derivative of f at time t depends on all the previous values

of f . This is the memory property of the fractional derivative. In our calculations we

consider the whole memory history since for ν < 1 it is not possible to use the short-

memory principle, i.e., less terms in the sum of equation (A.1), as can be used in the

simulation of wave propagation (Carcione et al., 2002). Waves “forget” the past but

diffusion fields “remember” it.

A.3 CL method

A time discretization of equation (A.1) using the GL derivative is given in Murillo and

Yuste (2009), called the CL method (Ciesielski and Leszczynski, 2003). Scherer et al.

(2011) [Eq. (4.3)] re-propose this method. It has the form

fn+1 = −
n+1∑
k=1

ckf
n+1−k + hν [rn+1f0 + g(fn)], (A.5)

where

rn+1 =
(n+ 1)−ν

Γ (1− ν)
. (A.6)

We have solve the SEIR equations using this method, but it does not conserve the

population at short times, even if µ = α = 0, i.e., it introduces “negative deaths”.

A.4 GMMP method

Murillo and Yuste (2009) compare the CL method to the so-called GMMP method

(Gorenflo et al., 2002). The algorithm is

fn+1 = −
n+1∑
k=1

ckf
n+1−k + f0

n+1∑
k=0

ck + hνg(fn), (A.7)

This algorithm conserves the population and yields the same results of the most precise

ABM method (see next section). The purpose for introducing several algorithms is
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proper testing of the solution and show that some methods, used in the literature

without testing, do not work for the epidemic equations.

A.5 Adams-Bashforth-Moulton scheme

Baleanu et al. (2012) report the predictor-corrector Adams- Bashforth-Moulton scheme

(Eqs. 2.3.7, 2.1.7 and 2.1.9) to solve equation (A.1). For 0 < ν ≤ 1 and one corrector

iteration, the method is

fnp = f0 + hν
∑n−1
j=0 ajng(fj), predictor,

fn = f0 + hν
∑n−1
j=0 bjng(fj) + hνbnng(fnp), corrector,

(A.8)

where ajn is given by equation (A.3), and

bjn =
1

Γ (2 + ν)


(n− 1)1+ν − (n− ν − 1)nν j = 0,

(n− j + 1)1+ν + (n− j − 1)1+ν − 2(n− j)1+ν 1 ≤ j ≤ n− 1,

1 j = n.
(A.9)

Equation (A.2) is the predictor in the Adams-Bashforth-Moulton scheme. For instance,

Abdullah et al. (2017) solve the SEIR model using this methodology.

A.6 Simple examples

A.6.1 Example 1

Let us consider the particular case

Dνf(t) = αf(t), with f(0) = f0, (A.10)

whose exact solution is

f(t) = f0Eν,1(αtν) = f0Eν(αtν) (A.11)

(Garra and Polito, 2010; Scherer et al., 2011), where E denotes the Mittag-Leffler

function.
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A.6.2 Example 2

We consider the following differential equation

Dνf(t) =
Γ (6)t5−ν

Γ (6− ν)
− 3Γ (5)t4−ν

Γ (5− ν)
+

2Γ (4)t3−ν

Γ (4− ν)
. (A.12)

The exact solution for 0 < ν < 1 and f(0) = 0 is

f(t) = t5 − 2t4 + 2t3. (A.13)

Appendix B SEIR semi-analytical solution

We consider the solution obtained by Abdullah et al. (2017), neglecting their metapop-

ulation terms, spatial diffusion and natural births and deaths. Then, the governing

differential equations (1) at t = tn become

DνSn = −βνSn I
n−1

N
,

DνEn = βνSn
In−1

N
− ενEn,

DνIn = ενEn − γνIn,

DνRn = γνIn,

(B.1)

whose solution is

Sn = S(0)[1− βνtνnIn−1Eν,ν+1(−tνnβνIn−1)],

En =

∫
tn

0
βνIn−1Snτν−1Eν,νdτ + E(0)[1− ενtνnEν,ν+1(−ενtνn)],

In =

∫
tn

0
ενEnτν−1Eν,νdτ + I(0)[1− γνtνnEν,ν+1(−γνtνn)],

Rn = R(0) +

∫
tn

0
γνInτν−1Eν,νdτ.

(B.2)

Equations (B.1) and (B.2) are particular case of equations (26)-(29) and (40)-(43) in

Abdullah et al. (2017), respectively.
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Fig. 1 SEIR model. The total population,N , is categorized in four classes, namely, susceptible,
S, exposed E, infected I and recovered R (Chitnis et al., 2008). Λ and µ correspond to births
and natural deaths independent of the disease.


