kkhkkkhkkhkhkkhhkkhkhhkhhkhkhhkhhkhkhhkhhhkhhkhhhkhhkhdhhkhhkhkhhkhhhkhhkhkhhkhhkhdhkkhhkhkk hkhkhhkhhikkikhrkhkkx*
R R b Ak S b b S b S S b S b b S b b b S bk S b S b R R R Sk S b S b S b S b S b b S b b S i b i b b S b S SR R I b

Docunent -1 D: 393641
Pat r on:

Not e:

NOTI CE

R R b Ak S b Sk S b S S b S b Sk S b b b S bk S b S b S IR R S Ak S b S b S b S S b S b b S b b b i b i b b S b S S b
kkhkkkhkkhkhkkhhkkhkhhkhhkhkhhkhhkhkkhhkhhhkhhkhhhkhhkhdhhkhhkhdhhkhhkhkhhkhkhhkhhkhdhhkhhkhkk ki khrkhhikkikhrkhkkx*

Pages: 10 Printed: 03-29-04 13:38:10
Sender: Ariel /W ndows



Journal Title: journal of chemical physics call#: QD1 .J94
Volume: 77 Location: evans
Issue:

Month/Year: 1982

Pages: 15311539 Not Wanted Date: 09/24/2004

Article Author: D. L. Johnson Status: Faculty

Article Title: elastodynamics of gels Phone: 2-2716
E-mail: santos@isc.tamu.edu

Name: juan santos

Pickup at Evans

3404 -TAMU
College Station, TX 77843

Texas A&M University Campus Libraries
Courier

iLLiaa Tn: 303641 |INININHINTAAIEER AN

N




-alues [i.e.,
tence curve,
Jixed total
stence

nere the

4 sign re-~
.ong wave-
Taiy

d ho is a

é:ates to
52, 1670

172 (1973).
il, and D. L.

B91 (1972).
R. Nelson
1J. Rudnick

positive

! reduced
Bn expo-~
iytic coun-

1980);
lished),
@ase dia-
iy fluctua-~

livan,

Elastodynamics of gels

David Linton Johnson

Schlumberger-Doll Research, Ridgefield, Connecticut 06877
{Received 8 October 1981; accepted 16 April 1982)

The mechanical properties of gels are analyzed in terms of models which treat the three-dimensional
displacements of the solid and fluid parts separately and on an equal footing, with no assumptions regarding
smaliness of concentration or even weakness of the solid skeleton frame. Thus, a unified description of the
normal modes in a gel is presented; parameters deduced from measurement on a given mode are shown to
influence the properties of the others. It is still assumed, however, that the fluid and solid components can be
described by their bulk densities, elastic moduli, etc. This picture is discussed in light of experimental results.

1. INTRODUCTION

“A gel is a form of matter intermediate between a
solid and a liquid. It consists of polymers, or long
chain molecules, cross linked to create a tangled net-
work and immersed in a liquid medium. The properties
of the gel depend strongly on the interaction of these
two components., The liquid prevents the polymer net-
work from collapsing into a compact mass; the network
prevents the liquid from flowing away. Depending on
chemical composition and other factors, gels vary in
consistency fromviscous fluids to fairly rigid solids,
but typically they are soft and resilient or, in a word,
jellylike, !

There has been a substantial recent increase in the
understanding of gels, both theoretically and experi-
mentally, One of the most useful means of probing
gel properties is via their mechanical normal modes
of damped vibration. Tanaka ef al.?® have clearly
observed a longitudinal mode which is diffusive and
which corresponds roughly to the overdamped mo-
tion of the polymer network through the (stationary)
fluid; in addition there is, of course, the usual
acoustic longitudinal mode, which is propagatory.
Although it is possible under some circumstances to
describe a given mode independently of the other(s), it
is clearly desirable to establish a unified formalism
in which all normal modes are simultaneously (and cor-
rectly) described. It is obvious that the theory must
keep track of the motions of the two components sepa-
rately, and on equal footing, at least in some average
sense, Such treatments of the gel problem have been
presented but they are oversimplified in the sense that
they are specialized to (i) one-dimensional (e.g.,
longitudinal) motion only (ii) small concentration of
polymer, (iii) weak elastic moduli of the polymer
skeletal frame, and (iv) incompressible polymer strands.
It is the purpose of this paper to demonstrate that none
of these simplifications is necessary. Indeed, many
“plastics” consist of polymer networks in a liquid
plasticizer; by varying the polymer concentration, one
can continuously span the range from gels (small con-
centration) to plastics (large concentration). Thus it is
useful to have results for an arbitrary concentration,

It will be presumed that the gel can be conceptualized
as a porous medium consisting of two interpenetrating
macroscopic substances (fluid and solid) which are
characterized by their pertinent densities, elastic con-
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stants, etc. Section II is devoted to a brief view of the
Biot theory*~" of acoustics in porous media and it is
then applied to the gel problem. This theory has been
applied to a wide variety of acoustic problems in porous
media including porous rocks, ® ocean sediments, ®

loose and fused glass beads, 1! and fourth sound in
superfluid/superleak systems, !*'2 Thus, in the larger
context of acoustic propagation in porous media it is
particularly instructive to examine the predictions of
the theory as applied to gels. One of the drawbacks of
the Biot theory is that attenuation is ascribed solely to
the relative motion of fluid against solid; attenuation
within fluid or solid components is neglected. Since
most gels consist mainly of fluid, it may be supposed
that attenuation due to rate of change of macroscopic de-
formation of the fluid is important; this is included in a
model developed in Sec. III. Here “macroscopic” means
on the size scale of a wavelength as opposed to the size
of a pore. (A pore is a characteristic fluid volume en-
trained by the network.) Theoretical predictions are
discussed in light of experimental results in Sec. IV;
although the theory gives a good account of the data,
there is some evidence that the elastodynamic prop-
erties of the gel cannot be modeled simply as two inter-
penetrating media each of which is characterized by its
own frequency independent bulk properties.

Throughout the article, I have imagined that the nor-
mal modes are driven at some known frequency « which
is real valued, and I have solved for the complex-
valued wave vector g(w). This is particularly useful for
most acoustics applications but there are situations in
which ¢ is known and is real valued (e.g., Brillouin
scattering) and w is complex. It is, of course, possible
to solve the differential equations either way but I have
chosen to present the results using the first method.
The application of this model to inelastic light scattering
is discussed in another article. !®

Il. THEORY

In a series of papers, ‘-7 Biot proposed a simple phe-
nomenological theory of acoustic propagation in porous,
fluid filled, macroscopically homogeneous and isotropic
media, It is assumed that there exist volumes large
compared to pore/grain sizes but small compared to
a wavelength and that each volume element is describ-
able by the average displacement of the fluid U(r, #) and
of the solid u(r, f). The equations of motion are

© 1982 American Institute of Physics 1531
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8%u 8*U
i3 TP S =PY(V.0) +QV(V.U) -NVXVxu
oU ou
+ bF(w) (a_t —¥> , (2.1a)
ER 8%u
P HF tPuGE =Rv(V.U) +QVv(Vv.u)
:19) au
_bF(w)<8_t_§> . (2.1b)

Here I have used the notation of Ref. 4 as it is simpler
than (although equivalent to) that of the later articles.
The motions of the solid and of the fluid parts are
treated on an equal footing except that the fluid neither
creates nor experiences a shear restoring force.
Equations (2. 1a) and (2. 1b) represent a significant de-
parture from the work of DeGennes'* and of Bacri and
Rajaonarison15 (BR) who assumed one-dimensional
motion only for a dilute concentration of polymer. They
also differ from the model of Tanaka et al.? (THB) for
the diffusive motion of the polymer network through the
fluid, which is presumed to be stationary. The quanti-
ties P, @, and R are generalized elastic coefficients
which can be related,’ via gedanken experiments, to the
bulk modulus of fluid K,;, the bulk modulus of solid K,,
the bulk modulus K, of the skeletal frame, and to N
which is the shear modulus of both the skeletal frame
and of the composite:

P__(1—¢)[1—¢-(Kb/K.)]K_+ VKK | 4
= 1-¢ —(K,/K,) + $(K,/Ky) 3N
[ ( ] (2.2a)
1-¢-(K,/K,) | 0K,
9= 1—¢—(K.,/I;,)+¢(K,/K‘) ’ (2. 2b)
R= oKy (2.2¢)

1-¢ - (K/K,) + 0(K,/Ky)

¢ is the porosity (fluid volume fraction); it is related
to the gel concentration Cy by C;=1~¢. For many
gels, Cy< 1 but Egs. (2.1) and (2. 2) are equally ap-
plicable for arbitrary ¢. In the so-called “jacketed
and drained” gedanken experiments® the solid com-
ponent is stressed by a permeable jacket surrounding
the sample but the fluid in the pores is allowed to escape
(tbrough the jacket) as needed in order to remain at
ambient pressure. Therefore, K, and N are the elastic
constants of the skeletal frame; K, (sometimes called
the “osmotic modulus of compression” K, or simply
“the bulk modulus of the skeletal network”) des¢ribes
the response of the solid skeleton when it is uniformly
compressed externally, and N the shear modulus (some-
times denoted by “u” or “G”) describes the shear re-
sponse. The quantities K,, N can therefore be mea-
sured independently by static means.? For gels, these
frame moduli are intimately dependent upon various
electrochemical interactions with the host fluid as well
as the “rubber elasticity” of the cross-linked, long
chain molecules which is highly temperature depen-
dent.!~® Therefore it is not true that K,, N are inde-
pendent of pore fluid as is frequently the case in more
commounly encountered porous media having larger pore
dimensions (e.g., fused glass beads). Indeed, Patter-
son'®~1% has argued that K, (in the band width accessed

David Linton Johnson: Elastodynamics of gels

by photon correlation spectroscopy, 0-10° Hz) is largely
independent of whether the polymers are cross linked

to each other or not, at least for his gels. For purposes
of this article, it is assumed that K,, N, K,, and K, are
all frequency independent (but see Sec, IV). It is also
assumed that the solid material is isotropic.!® The
combination K, + (4/3)N is the longitudinal modulus of the
frame and is equal to quantities introduced by others for
the gel problem: K,+(4/3)N=K+(4/3)y (THB?)=E
(DeGennes!*) = E, (BRY) = K,, + (4/3) G (Patterson).™1®

I will show that K, and N appear separately in an im-
portant result (the speed of sound) and not simply in this
one combination. Equations (2.2) are equivalent to
those given in e.g., Stoll,® or Geertsma and Smit.?°
The power of this formalism derives from the existence
of the gedanken experiments that lead to Egs. (2.2). In
particular, I will be able to derive results for an arbi-
trary gel concentration, and not just the dilute limit
considered by others.

The density terms p;; are related to the density of
solid g, and fluid p; by

(2.33)

P2y + P1a=0ps . (2. 3b)

the total density is pp=¢p, + (1 = p)p,. It is worth
pointing out that p, and p, may not equal their bulk
values p?, pg; if, e.g., the polymer molecules “fit
into” the spaces between the solvent molecules, so that
the total density is py =p2 +(1 - ¢)p2, then obviously p,
>p2. We return to this point in the discussion follow-
ing Eqs. (2.14), where it is shown to account for some
of the differences between my results and those of
others. The term p,, describes the inertial (as opposed
to viscous) drag that the fluid exerts on the solid as the
latter is accelerated relative to the former and vice
versa.?! The equation of motion of the solid part, e.g.,
Eq. (2.1a), may be rewritten using Eq. (2. 3a):

P11 +p=(1=9)p, ,

(1-0) o' _ (82U o*u
=0y o =—Pul| 37T -a—tr)
aU  au

+bF(w)<—87—§)

+ (spatial derivative terms) . (2.1a")

That is, even for a nonviscous pore fluid [bF(w) =0],
there is a reactive force per unit volume on the solid
[whose mass is (1 - ¢>)p,] whenever one component is
accelerated relative to the other. The proportionality
constant p,, represents the induced mass tensor®! per
unit volume, assumed to be diagonal in the coordinate
indices for a homogeneous isotropic system,; it is al-
ways proportional to the fluid density and, because of
Newton’s Third Law, it is always negative:

pr=-(a-1)¢p;, (2.3c)

where a>1 is a purely geometrical quantity indepen-
dent of solid or fluid densities. Berryman® has con-
sidered the case of isolated spherical solid particles in
the fluid to derive a=%[¢"!+1], for example. The
remaining parameter governs attenuation; b=n¢2/k,
where 7 is the fluid viscosity and % is the fluid per-
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gely meability,! The permeability is defined through Darcy’s  The fast wave is the usual acoustic compressional mode
4 law which relates the volume flow rate of fluid  (in and it corresponds to fluid and solid moving in phase with

loses em’s™) through a sample of area A due to an applied respect to each other whereas the slow wave corre-
are static pressure gradient VP, sponds to out of phase relative motion of the two. On
. the other hand, there is only one nontrivial transverse
fbo Q=-(k/n)AVP . mode whose phase velocity is
I the The permeability % is a geometrical quantity presumed - N
1 for to be independent of fluid viscosity; obviously, it can V¥(shear) = T-dpr1-als . (2.5)
be measured by monitoring the static flow due to a pres- Pa Pt
sure gradient.? It has the dimension of area and is The other shear mode is the trivial mode w=0 for
indicative of the flow channel sizes; for a permeable all wave vectors, These two transverse modes will be
'this solid consisting of cylindrical pores of radius # drilled altered by the inclusion of an additional absorption
straight through the sample, the permeability is simply mechanism considered in the next section, the com-
k=¢7*/8, for example.?® The quantity b is equal to - pressional modes less so. It will prove instructive to
nce similar quantities introduced by others for the gel analyze the results of the theory presented thus far.
In problem: b=f(THB or BR)=¢& (DeGennes). F(w) al- '
. lows for the fact that the effective damping changes The nature of the normal modes predicted by the theory
bi- when the viscous skin depth (v37/p, @) becomes smaller depends upon whether one is in thi high frequency or
than the pore size as the frequency w increases. It low frequency limit of the theory.? The crossover be-
is normalized by F(0) =1. Note that, in the model tween the two occurs when the viscous skin depth,
presented so far, attenuation is ascribed solely to the 6= \/:21;] (_p, f"’) » 18 equal to an effective flow channel size,
relative motion of fluid and solid; we return to this point @ Which is indicative of the pore sizes):
ba) in Sec. III. It is also w9rth noting Fhat.pl2 and b?’“(w) w, = (2n)/(pa?) .
always appear together in the combination p;, - [i0F(w)/
Bb) ] That is, Eq. (2.1a’) can be rewritten as A. High frequency limit
u 3’U _ o’u If w> w,, the attenuation mechanism has little effect
1-¢)p, Kl = Pualw) (W W) on the veloccities of the normal modes which are derived
+(spatial derivative terms) , (2.1a") from Eqs. (1); according to Biot, 4 one has lim,., F(w)
at « !'/? and, therefore lim, ., G(w) = a (a constant x5
Dy where equal to 1), Thus, each Pi; is real valued and frequency
- ) 3 ibF(w) independent and so all three velocities are real and non-
ne | Pra(w) =pyy - ° ’ dispersive. Although the slow wave, in this high fre-
. quency regime, was first observed by Plona, 1 it was
sed and similarly for Eq. (2.1b). By analogy with Eqs. subsequently shown that 4th sound®” in a superfluid/
he (2.3a) and (2. 3b), it is convenient to define p,y(w) =(1 superleak system is the paradigm of the acoustic slow-
= 0)p, = Bya(w) and Pys(w) = ppy = Fyp(w). wave.'? In 4th sound, the superfluid component has
Zes Although the linear term in the Taylors series expan- ic.ientically zero viscosity (w,=0) and one is always in the
sion of F(w) mimics the effects of Py (i.€., both terms high frequency limit of the theory, If, in addition, the
: describe an «’ dependence of the force on the relative skeletal frame is much stiffer than the pore fluid (K,
! displacement), they are of different physical origin and N>K,), the two.modes decouple; the fast wave cor-
t’ it is not valid to put a =1 (i.e., p;;=0) as has been responds to motion of the solid part and the slov.v wave
: done, 25+26 Equivalently, one could define &(w) by corresponds to motion of the fluid. The velocities in
'_ analogy with Eq. (2.3¢), viz: pylw) = =[&(w) - 1] dp,. this limit (high frequency, stiff frame) are
%h’) Therefore, Vigast) = [ K,+%N ] 1/2 (2. 63)
), &(w)=a+@&) . (2.301) - (1_¢)p’+(1_a-l)¢p‘ ’ )
' wops _ Vislow) =V, /Va . (2. 6b)
: The plane wave normal mode solutions to Egs. (2.1a) Vi = VE;/p, is the speed of sound in the bulk fluid,
and (2. 1b) are describable by a wave vector g(w) which . h . . . :
- . . . the quantity va is a kind of index of refraction of this
: is complex valued because of the attenuation mechanism. . . . .
! It is convenient to define a complex phase velocity by mode (since it is the ratio of two speeds) and is due to
;' - . the tortuous nature of the pore space. See Refs. 11
the usual: V(w)=w/q(w). Equations (2. 1a) and (2. 1b) L. ’
; - e 12, and 28 and references within for a more complete
have two independent longitudinal modes (because there . . .
are two degrees of freedom) which are called the “fast” discussion of these points.
: wave and the “slow” wave; their phase velocities are -
c) given by B. Low frequency limit
2 S 2 9 For sufficiently low frequencies w << w, the viscous
szfast, slow) = axla ;(‘-l-(pgpzz :zpm)(PR -9 )]“2 s skin depth is much larger than a charactceristic pore
4 PuPaz = Piz) 2.4) size. Therefore, the quantity & is large and imaginary
'-‘ vhere ) &(w) =in¢/(wkp,) from Eq. (2.3¢'). The fast compres-
sional and the shear modes are propagatory with small
A= PPy, +Rpyy = 2D1,Q . attenuation; in this low frequency limit their wave vec-
J. Chem. Phys., Vol. 77, No. 3, 1 August 1982
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tors can be shown, from Eqs. (2.4) and (2.5), to be of
the form

[=w/ V()] (2.7

where V, the phase velocity,is constant and the attenua-
tion y is proportional to o Basically, the viscosity

of the fluid locks it onto the skeletal frame so that fluid
and solid oscillate together, with equal amplitudes, and
there is little dissipation because there is little relative
motion. In this low frequency limit the slow compres-
sional wave is diffusive, rather than propagatory, and
its motion is described by a diffusion equation,

g(W)=w/V+iy

i (2. 8a)

Cp V2 =351

where £ is a normal mode coordinate and €, is given by

=45 (1+ smsm
x {1+ITI[-§-N( —g—:)—Kb-¢(Kb+§-N)]})-l.

(2. 8b)

Equivalently, the phase velocity is complex valued as
can be seen in a straightforward manner from Eq. (2. 4);

lim V(slow) = = iwCp . (2.9)

w=0
A commonly observed example of this low frequency
diffusive slow wave occurs in media having a very stiff
frame (K,, N> K,) such as a porous sedimentary rock
saturated with water.3? The diffusivity, Eq. (2.8b),
simplifies greatly:

1:9
np

In this limit the mode consists of a fluid pressure pulse

diffusing through a rigid matrix, %

lim CD = (2. 10)

Kp N»Ky

C. The gel limit

We now consider the application of the theory to the
gel problem, Because the pores in a gel are so small
(typically ~100 A) the crossover frequency is very high
(w, ~10' s7) and one is essentially always in the low
frequency limit of the theory w << w,, Thus, the real
parameter a, Eq. (2.3c’), drops out of all the relevant
expressions. Equivalently, one could set have p,=0
in Eqs. (2.1). (Indeed, the pores are so small that
the low frequency limit of the theory applies up to fre-
quencies where incoherent scattering of the elastic
waves dominates, See Ref. 11 for details.) Further-
more, the skeletal frame is generally very much more
deformable than the pore fluid (K,, N <K,) and this
simplifies the results greatly. It is obviously not at all
necessary to make this assumption but it is particularly
informative to do so. First, the diffusivity of the slow
wave, Eq. (2.8b) becomes

lim ¢ = AEatiN)
Ky N <Ky n

(2.11)

It is straightforward to show that this mode corre-
sponds to the diffusion of the compressed matrix through
the fluid, which remains essentially stationary in this

*ﬁg
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low frequency limit. Equation (2.11) is to be com-
pared with a result derived independently by THB? and
by DeGennes! using several ad hoc simplifying assump-

tions. Their result, in the present notation, is
(K, +4N)
C, = . (2.12
D n¢ )

(In the original notation, Cp =[K +# u)/f(THB)
=E/&(DeGennes). | Equation (2.12) is essentially cor-
rect because it was assumed in both derivations that the
gel concentration was small, ¢ =1, but Eq. (2.11) is ap-
plicable regardless of the concentration as long as the
frame moduli are small. It is presumably applicable
to the case of loose beads (¢ = 0. 38) saturated with fluid
and subjected to a confining pressure. (See Ref. 11.)
Both Tanaka and DeGennes assumed that, for the mo-
tion of the gel networks, one could consider the fluid

as stationary, which is true but which need not be as-
sumed at the beginning.

One powerful consequence of treating the displace-
ments of the fluid and of the solid on an equal fotting
through this unified theory is that all modes are de-
scribed by the same set of parameters. Gels are
formed by dissolving the polymer molecules in an ap-
propriate solvent, usually with some reagent that in-
duces polymer cross linking; it not infrequently hap-
pens that the growth of the matrix forms slowly enough
as time progresses that the values of k/n and K,, N
can be monitored throughout gelation, e.g., by light
scattering of the diffusive mode, Eq. (2.8a) ff. As K,
N grow from their initial value of zero in the “sol”
phase (appropriate to a suspension), presumably the
velocities of the fast compressional and shear modes
also change. Similarly, the attenuation changes as k
changes, upon gelation. (It is less widely recognized
that the solvent properties also change; see Sec. IV.)

Consider, first, the fast compressional mode. By
expanding Eq. (2.4) as a function of w, K, and N all
considered as small parameters, it is straightforward,
if tedious, to show that the dispersion relation is of the
form of Eq. (2.7) with a velocity given by;

lim ~ V(fast) = V,[1 + (£, + £N)/(2K,) ],
Ky, N «Kp

(2.13a)
wkwe

where V, is given by Wood’s formula, * an exact result
for the velocity of a suspension (K,=N=0) in the low
frequency limit:

Vo= i , (2.13p)
P
where K* is the bulk modulus of the suspension,
1%; - K% II;—"’ , (2. 13c)
and p, is the total density
pr=0p,+(1=9)p, . (2.134d)

Deviations from Wood’s formula due to the finite
stiffness of the frame are described by {¢;}:
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The attenuation y is obtained by expanding the complex
valued phase velocity, Eq. (2.4) to first order in fre-
. quency and using Eq. (2.7):

Bl =) p —p)?
w” .
Voo
(2.13g)

These expressions for the longitudinal acoustic mode
are to be compared with similar expressions derived by

7(‘-0):% ——T——'—k(p —p)2 (4)2=

Bacri and Rajaonarison!® (BR) from a one-dimensional

. model of the gel acoustics. Equation (2) of Ref. 15 may

be rewritten in the present notation as -

Vltast) = V' [1+ (K, +$ N /(2K,)] (2. 14a)

' where V', the speed in the “sol” phase is simply

v X ] e 2.14
_[Pf+(1—¢)P. ) (2. 145)
Equation (2. 14b) may be considered equivalent to Eq.
(2.13b) simply by considering “the fluid” of Eq. (2.14b)
to be “the suspension” of Eq. (2.13b). Thus, K, in Eq.
(2.14b) is actually K* of (2. 13b). Similarly, the total
densities appearing in the denominator of Eqgs. (2.13b)
and (2. 14b) may be considered to be the same depending
on the definition of p,. [cf. the discussion following

Eq. (2.3b) above] I do, however, dispute the expres-
sion, Eq. (2.14a), for the change in velocity due to gela-
tion. Presumably the compressibility of individual
strands of the polymer network is comparable to that

of the fluid; if they are exactly equal (K, =K,) then one
has, from Eqs. (2.13e) and (2. 13f);

gi(Klsz) =0 b)
§2(Kl =Kf) =§' ’

as opposed to £y =1, £, =% as implied by Eq. (2. 14a).
If, on the other hand, the individual polymer strands
are completely incompressible, one has

gI(Ks »K!) =¢,
EZ(K- »K() =§'¢ ’

which is in essential agreement with BR in the dilute
limit (¢=1). Finally, if the polymer is very compres-
sible K, <K, then one may have £, > 1 and a small in-
crease in Ky, N can lead to a large change in V. It may
prove quite difficult to measure K, independently, In-
deed, at this point one may well Speculate on the validity
of treating the gel as two interpenetrating elastic media
which are describable by bulk moduli K, and K;. How-
ever, all previous treatments have implicitly assumed
that the polymer molecules are incompressible (K,

-») which is not true either.

Bacri and Rajaonarison!’ also derived an expression
[their Eq. (3)] for that part of the attenuation due to the
relative motion of fluid and solid components. In the
aurrent notation, this expression is

y= -;- -—-—-T‘-k(l = ¢)of w?

. (2.14¢)
nVoor ¢

***** - L
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Again, if one can assume pp=p, +(1 = ¢)p, and ¢ =1,
this expression agrees with Eq. (2.13g) derived here-
in.

As mentioned earlier, there is only one nontrivial
shear mode whose phase velocity Eq. (2.5) is real in
both the high and low frequency limits, according to
the theory presented so far. In particular, in the low
frequency limit the velocity and attenuation of the shear
mode is

V(shear) = [m N ( . 153)
2
y(shear) = ko 2 (2. 15b)

2 pV(shear)p, w

This is in radical disagreement with the derivation of
THB, which was based on the assumption that the fluid
remains stationary for the relevant gel network motion.
They claim that this shear mode is much like the slow
compressional mode considered here; diffusive at low
frequencies but propagatory at high, They also claim
an additional mode (“Type IV, ” a fluid based mode)
which is propagatory at all frequencies. In order to
comment on their result it is necessary to enlarge the
scope of the basic theory, which is done in the next
section,

Ill. EFFECTS OF MACROSCOPIC VISCOSITY

In the basic model presented so far in Sec. II, at-
tenuation is ascribed solely to the relative motion of
fluid against solid and is ultimately due to the viscosity
of the fluid acting on the scale of the pore size, a micro-
scopic effect. It has been assumed explicitly that the
fluid, the solid, and the skeletal frame are themselves
nonattenuative (K,, K,, K,, and N are all real valued).
This approximation is obviously not strictly true. It
can in principle be amended®” though in practice there
are in general no known gedanken experiments to relate
the additional parameters to independent measure-
ments; it is not valid simply to use the measured com-
plex values of K, K,, K, and N in Eqs. (2.2) because
those relations are derived from gedanken experiments
in which the sample is statically stressed in a known
manner and then allowed to equilibrate. In this section,
I will explore the consequences of a particular additional
model absorption mechanism on the normal modes pre-
dicted by the theory.

In many cases of interest the attenuation is indeed
dominated by the relative fluid-solid motion essentially
because of the smallness of the pores. Since a gel con-
sists almost entirely of fluid, however, it is conceiv-
able that the intrinsic attenuation in the fluid is com-
parable to that induced by the relative fluid-solid mo-
tion. By analogy with the case of a normal viscous
fluid, one perhaps might also expect an additional fluid
based shear mode, ** g =viwp/7 (1f is an effective fluid
viscosity) to replace the trivial zero frequency mode
predicted in the last section.

In order to systematically investigate these kinds of
effects, it is informative to postulate, by analogy with
normal fluids, a transverse attenuation mechanism
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— 1 vxVx(8U/8f) and a longitudinal attenuation mech-
anism (¢ +(4/3)y')v[v.(8U/81)] which act on the fluid
part only, in addition to the attenuation mechanism
considered previously. The parameters n and {’; are,
then, effective shear and compressional fluid viscosities
which are presumably (for the case of dilute gels) ap-
proximately equal to the viscosities of the pore fluid
(~0.01 gm/(cm s) for water). [See Landau and Lifshitz,?!
Eq. (15.6) for a discussion of the two viscosities. ]
This, then, is a kind of macroscopic viscosity effect in
which the attenuation is due to distortions that occur

on the size scale of the wavelength, rather than that of
the pores. This amended model continues to neglect
any attenuation within the frame itself. The equations.
of motion, are, therefore:

o%u 8*U
PSR P T =PV(v.u)+QV(V.U) -NVX VXU

aU au
+bF(w)<—a—t ——a—t—> B (3.1&)
8%U ?%u
pr G +Pr 5 =RV(V-U)+QV(V.1)

(e +§-n’)v(\7- %)
: oU oU _ou
- VXVX Y —bF(w)<8t - at)
(3.1b)

The quantities P, @, and R are still given by Egs. (2. 2)
because the static gedanken experiments are unaffected
by this additional mechanism.

Equations (3. 1) are similar to those considered by
Marqusee and Deutch® who specialized to the case
where it is assumed that: (i) p;, =0 and (ii) P, R are
given by their values in the limit of a dilute concentra-
tion (¢ ~1) of incompressible polymer strands (K, - «),
namely P=K,+%N, R=K,. The parameter @ (=3 in
their notation) is left as a free parameter although it is
clear from E4. (2.2b) that the appropriate value in this
limit is @ =(1 — $)K,.

It is straightforward to derive the dispersion relations
from Eqs. (3.1) which I shall do for the limits appro-
priate to the gel problem, namely small frame moduli
(K,, N<K,, K,) and low frequency (w< w,) so that the
viscous skin depth is large compared to the pore sizes.

A. Longitudinal modes

The complex phase velocities are still given by Egs.
(2. 4) except that the quantity R is replaced by R(w),
where

R(w) =R -iu(¢ +%1),

as is obvious from Eq. (3.1b). It is implicitly assumed
that R » w({’ +%#') which is reasonable since R =K,
~10" dyn/cm? and (¢’ +4#') 107 poise, for water based
dilute gels.

1. Slow compressional wave

To lowest order in frequency the slow wave is still
diffusive with the same diffusivity as before, i.e.,
Egs. (2.8a) and (2. 8b) are unaffected. Therefore, the
diffusivity in the weak frame limit applicable to the gel
problem, Eq. (2.11), is unaffected.

2. Fast compressional wave

The wave vector of the fast compressional wave is
still of the form g(w) = w/V +iy(w) in the low frequency
limit. The speed V of the fast wave in the low fre-
quency, weak frame, limits, Egs. (2.13a)-(2.13f), is
unaffected by the additional attenuation mechanism. The
attenuation, however, is modified from that given by
Eq. (2.13g) by the inclusion of an additional term:

1 & +47 1 (pr—pi)’k
(w)== W4z I L T2 (3.2)
4 2 Vipr 2 Vyomm

This result, though formally similar to that derived
by Bacri and Rajaonarison, 15 giffers in the first term
in that: (i) the speed V, is the speed in the suspension
and, (ii) the longitudinal viscosity ¢ +41 need not be
the same as that of the solvent; the differences in the
second term have already been discussed in connection
with Eq. (2. 13g).

B. Shear modes

The nature of the shear modes is radically changed
from that discussed in the previous section; there are
two nontrivial modes where there had only been one
and their dispersion relations are given by

1/2

7= BN = in' By o £[(BpaNw? — inf pyy ) + 4’ @° N(Byy Bap — 535)] (3.3)

~ 27" wN

As stated in the introduction to this section, it is as-
sumed that the viscous skin depth is much larger than
the pore size, i.e., w< w, and so F(w)=1. There is,
however, another crossover frequency in the problem
which occurs when the macroscopic viscous skin depth
8= V21 /ppw is comparable to the shear wavelength
predicted by Eq. (2.15a), 2/27=(1/w)(N/pg)'/?. Ignor-

r

ing factors of order unity, this crossover occurs at a
frequency w,=N/7'(< w,). I should point out that the
added attenuation terms basically represent a Taylor’s
series expansion in frequency; for frequencies com-
parable to w,, it is really not valid to neglect terms
with higher order time derivations, (e.g., V(v - 8%/
3#%) etc.) as has been done here.
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TABLE I, Shear modes of a porous medium in the low and in
the high frequency limit as derived from Eq. (3.3). In all cases
it is assumed that the viscous skin depth is much larger than a
typical pore size. The displacement of the fluid component is
U(r,#) whereas that of the solid is u(r,f). The complex wave-
vector is g(w),

W<KN/n’ w<N/n'
(6<<A/2m) (6>>A/2m)
2_PT o 2, P
A mode =y q° =i 77
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2 2 2
a_=n¢-  .(ng agpf) 2_.1¢
B mode q 'k +% BN + 7 w g=iprw
_.Nw : _Nw
u=g N U u=g N U
lul < |UI lul > | U|

In Table I, I have presented the low frequency and
high frequency limits (relative to w,) of the shear
modes, which are derivable in a straightforward, if
tedious, manner from Eq. (3.3). These results are in
disagreement with those of THB who assumed that, for
the relevant motion of the solid matrix, the fluid can be
assumed stationary; their dispersion relation [Eq. (12)
of Ref. 2 but in the present notation] is

2 ¢’ N 2

et [k(l - &b, ]“" T-gp, 170"
THB predict that the shear mode is diffusive at low
frequencies (¢> = ~iwC) and propagatory at high (g
=w?/V?). According to Table I, the “A” branch has
exactly the reverse behavior. At low frequencies, the
two components are locked together by the viscosity of
the fluid and so the mode is propagatory, identical in
all respects with the shear mode derived in the pre-
vious section, Eq. (2.15a). On the other hand, this
branch is in fact diffusive at high frequencies, with a
diffusivity n'/p, characteristic of the usual diffusive
shear mode present in any viscous fluid, at high fre-
quencies. (See Landau and Lifshitz?! Sec. 24.) The
other, Bbranch, has adiffusivity #N/n¢? identical to that
of THB (= pc?/f in their notation) at high frequencies
(relative to w,); in this case the fluid part is essentially
immobile by virtue of its inertia, This same branch
has the unusual characteristic that it tends to a static,
permanent distortion at low frequencies. This dis-
tortion, however, applies essentially to the fluid com-
ponent only and occurs on a distance scale (%!/2) which
is comparable to the pore size and so the continuum
treatment of the dynamics breaks down. In fact, in the
high frequency limit this branch has much the same
problem because if w > w, then

(3.4

> % &
n k
and the distance scale on which this model varies is
also of the order of a pore size. Thus, only the A
branch appears to have physical significance. Whether
the other branch has physical significance or is simply
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an artifact of the approximations that went into Eq.
(3.1) is unclear at present; it is clear that it violates
the long wavelength assumption upon which Eqs. (3.1)
are based. Because the wavelength of this branch is
small on the scale of the pore size, the microscopic
flow pattern of the fluid around the polymer strands is
clearly altered® [F(w) is not constant]. At the very
least, other terms that are second order derivatives
in position and first order in time {V X v x(8u/3t) and
v[v.(su/88]} should also be included in Eqs. (3.1).

I should like to point out that, regardless of the actual
mechanisms that are operative, any additional shear
branch (such as the “B-mode” of Table I) must have the
property that the wave vector ¢ tends to a finite limit
as w tends to zero. Otherwise the number of hydro-
dynamic modes would exceed the number of hydro-
dynamic variables.® Following Ref. 34, there is a total
of nine hydrodynamic variables: density, gel concentra-
tion, total momentum (3), displacement of the gel net-
work from equilibrium (3), and energy density. Hy-
drodynamic modes are those for which the characteris-
tic frequency tends to zero in the limit of long wave-
lengths i.e., lim ., w(g) =cq” for some =1, The
hydrodynamic modes for the gel are: thermal diffusion
(not explicitly considered in this article); two longitudi-
nal fast waves w=+ V(fast)q; one longitudinal slow wave
w=iCpq*; and four shear waves w=1(N/p)!/? (two dif-
ferent polarizations). In addition, the model presented
in this article predicts another hydrodynamic mode!?
w(g) =0 corresponding to a static deformation in gel
density; were a realistic model for vacancy diffusion
in the gel network included in our analysis, this mode
would acquire a nonzero diffusivity. In all, then, there
are nine hydrodynamic modes, as expected. If the B
branch (or any other) had the property lim,,.qg(w)=Kwo™
for some nonzero m, this would be an additional hydro-
dynamic mode (both w and ¢ tending to zero together)
which is not allowed.

It should be emphasized that the propagatory shear
mode with speed VN/{1 = ¢)p, claimed by THB [high
frequency limit of Eq. (3.4)] is not physically realize-
able. This limit occurs mathematically when the fre-
quency is so high that the viscous skin depth is small
compared to a pore size w> w, and lim,, . &(w)=a
[ef. Eq. (2.3c¢’)]. For a dilute concentration of scat-
terers (polymer strands) the real parameter ¢ is nearly
unity®® i.e., lim,_lim,,, &w)=1. Thus, in this
double limit the speed of the shear mode is, indeed,
VN/(1 =~ $)p, as can be seen from Eq. (2.5). This re-
sult also follows from the B branch of Eq. (3. 3) in the
limit w> w, (> w,) as can be checked. It has already
been pointed out, however, that this limit is unphysical
in that the wavelength of the mode is small compared
to the average pore size.

IV. COMPARISON WITH EXPERIMENTAL DATA .

A. Slow compressional wave

Using static techniques, Tanaka and co-workers (THB)
have independently measured the two parameters » and
K, +#% N needed for a description of the diffusive slow
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wave in the low frequency, weak frame limit. Their
results for two polyacrylamid gels of volume concentra-
tion 1 = ¢ =0,025 and 0.05 are listed in Table II, as
are the diffusivities calculated from Eq. (2.11). This
expression is clearly appropriate because K, =2.2x10'
dyncm-? is indeed much larger than K,, N. By light
scattering techniques THB observed a mode which was
clearly diffusive in nature and whose diffusivity is also
included in Table II. That the two diffusivities agree to
within experimental uncertainties is gratifying con-
firmation of the theory. [THB noted that their result,
Eq. (2.12), is also in essential agreement. ]

1 should mention that Patterson and co-workers!?!8

have also reported diffusivities in the range 10-'-10°
cm?®s™! on polymer gels and on (noncrosslinked) polymer
solutions of the same concentrations as the gels. They
have not reported independent measurements of K,

+#N and k/n, however. Because their values for dif-
fusivities are independent of whether the polymer is
cross linked into a gel or remains as a solution, they
have concluded that: (i) Since the value of N is obviously
very different in a gel as compared to a solution (for
which N=0), it is apparent that K, is much larger than
N and (ii) the value of K, does not depend on whether

the polymer chains are cross linked or not. Thus,
Tanaka’s argument? that K, and N are comparable to
each other (Poisson’s ratio for the gel network is zero)
may not be borne out by Patterson’s gels. Inparticular,
the static measurement of the Youngs modulus of the

gel (E=3N) is not enough information to deduce K,, in
such systems.

In Table III, I have summarized those porous systems
in which the slow wave has been observed in one form or
another. Because the mode has been observed in such
disparate systems as 4th sound and gels, it is clear
that the mode is a fairly common one. According to the
theory, the additional compressional mode, whether
propagatory or diffusive, exists in any permeable, fluid
saturated system, except for special values of the pa-
rameters, an example of which occurs when K,=N=0.

It remains to be explained why this mode is not always
observed in every porous fluid saturated solid.

B. Shear mode

Measurements of the shear moduli have been reported
on a variety of gels. Probably the most extensive mea-
surements are those of Ferry and Fitzgeralds5 on gels
consisting of polyvinyl chloride (the solid) in dimethyl-

TABLE II, Experimental data on the diffusive mode in polya-
crylamid/water gels as determined by steady state macro-
scopic methods and by dynamic light scattering. From Ref. 2,

1-¢ 0.05 0. 025
b=n¢"/k(dyns ecm™)

Ky+ %N (dyncm™)

Cplcal) =(K,+ £ N)k/n (em® &™)

Cplexptl) (cm? ™)

3.5+0,1x10°
4,4+0,9x10?
1.2+0,2x1077
1.6+0,1x 1077

2,2+0,3x 10!
5.2+0,3% 10
2,1+0,3%10°7
2.4+0,1x1077
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TABLE III, Systems in which the slow wave has been observed,

(dominance of py)

Weak fra:ﬁe Stiff frame
Low freq. Polymer gels? Rocks®
(diffusive) Fused glass beads®

(dominance of 7,)

4th sound in He r®
Fused glass beads?
Other artificial mediad

High freq.
(propagatory)

°References 12 and 27,
YReference 10.

2Present article and Ref. 2.
PReferences 29 and 30,

thianthrene (the fluid) at concentrations of 1 - ¢ =0.10
and 0. 40 (the latter is considered a “plastic” rather
than a “gel”). They measured the complex shear modu-
lus N(w) as a function of frequency (30 Hz~5 kHz) and
temperature (—23 °C to +25 °C). '

Their analysis of the data indicates that the room
temperature shear modulus is highly frequency depen-
dent and could vary from 10° (dyn cm™?) at 30 Hz to 10'°
(dyncm™) at 10° Hz, if their scaling hypothesis proves
correct by extending the measurements to higher fre-
quency. The imaginary part of N can also be quite
large. These effects do not appear to be describable
by Eq. (3.3) and, indeed, seem to lie outside the realm
of this article because it has been explicitly assumed
here that the shear modulus is frequency independent.
It would appear that there is direct evidence that the
modulus in a gel can be highly frequency dependent.

C. Fast compressional wave

Bacri and co-workers!®'3® have measured the ultra-
sonic (~10% HZ) properties of gels similar to Tanaka’s.
The measured change in attenuation upon gelation agrees
with Eq. (2.13g) [or (2.14c)] in the sense that the (1 - ¢)*
dependence was observed and the deduced values of the
damping n/k were comparable to those measured by
THB. Left unexplained is why 7/k deduced ultrasonical-
ly from Eq. (2. 14c) does not appear to depend on gel
concentration, (i.e., 1= ¢) although this dependence
was clearly seen by THB, Furthermore, Jarry and
Patterson'® reported essentially no change in attenua-
tion (deduced from Brillouin scattering widths) on their
gels and they attribute attenuation as due to the first
term of Eq. (3.2), at least at hypersonic frequencies.

More puzzling is the change in velocity due to gelation
which BR!% observed to be a few percent. (This is too
small to be seen by Brillouin scattering.) Eq. (2.13a)
with £, of order unity implies that K,, N are ~10°
dyn cm™? which is at least four orders of magnitude
larger than K, +§-N measured by THB. BR offer the
explanation that the difference could be due to a large
dependence of K, +§-N on frequency similar to that
which apparently occurs in the shear modulus of some
gels (Sec. IVB above). Although this is possible, it
should be verified experimentally, There are also two
other possibilities: (i) If [(1 - ¢)/¢]) K; <K, <K, (dilute
gel of very compressible molecules) then £ > 1 and a
small K, can have a large effect on V. This is not a
large enough effect, however, to explain the data. (ii)
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Upon gelation the concentration of monomer in the fluid
obviously decreases. It is known that a 1% change in the
salt concentration of seawater can change the velocity
by almost one percent, albeit in the wrong direction for
our purposes. ®’ Thus it is at least conceivable that the
change in velocity upon gelation is due largely to a
change in V, and not K, or N. It will be difficult to
monitor the properties of the pore fluids because they
are thought to consist of a fairly large concentration of
free carriers, preferentially of one sign (+), which
balances the bound changes (-) on the gel networks. !
Thus it will be difficult to study a pore fluid separate
from a polymer network.

V. SUMMARY

The elastodynamic modes of a porous and permeable
fluid saturated system have been analyzed in terms of
models which treat the motions of the two components
separately, The models were Specialized to the cases
of interest for most gels, namely small frame moduli
of the solid skeleton, but with arbitrary polymer con-
centration and with arbitrary compressibility of the
polymer strands. Difficulties encountered in these
models are due to the apparently large frequency de-
pendence of the frame moduli which, in turn, are pre-
sumably due to internal degrees of freedom in the poly-
mer network not considered here,
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