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dic, a periodic expansion would Spectrum of light scattered from a viscoelastic gel*
fromial expansion. At this point C g
4o €08y which gives exactly Toyoichi Tanaka, Lon O. Hocker, and George B. Benedek
Department of Physics and Center for Material Science and Engineering, Massachusetts Instityte of Technology, Cambridge, Massachusetts
fun (Eds.), Natl. Bur. Std. (U.S), 02139
Equation (9.1.21), with (Received 31 May 1973)

ed. (b) Natl. Bur. Std. (U
, s), We report measurements of the spectrum of light scattered from thermally excited displacement

-{wing easily derivable fluctuations in polyacrylamide gels. These measurements have been carried out on the polarized scattered
V(0 and J' B light as a function of scattering angle and temperature for 5% and 2.5% polyacrylamide gels using the

: methods of optical mixing spectroscopy. We also present a theory for the amplitude and time dependence of

;lletltods of Theoretical Physics the thermally excited longitudinal and transverse displacements of the gel fiber network. These

'} p- 393 displacements are responsible, respectively, for the polarized and depolarized scattered light. The correlation
Chgm. Phys. 45, 4556 (1966). function for the displacements having wave vector q is predicted for these gels to have the form of an

‘ ublished). exponential decay: exp(— I't). The decay rate is given by I' = G,¢2/f or G,g?/f, where f is the frictional

p force per unit volume on the fiber network as it moves with unit velocity relative to the gel liquid. G, is the
: longitudinal compressional modulus for longitudinal displacements and G, is the shear modulus for
transverse displacements of the fiber network. We have measured, using macroscopic methods, the friction
factor f, and the elastic moduli G,, G, and compared the numerical predictions of the theory with the
experimental measurements of the correlation function of the scattered light intensity. The theory is quite
successful in predicting the size and q dependence of the decay rate of the time correlation function of the
scattered light. Conversely, these experiments demonstrate that the correlation function of the light scattered
from thermal fluctuations of the gel fiber network provides a detailed quantitative characterization of the
viscoelastic properties of gels.

INTRODUCTION chanical devices., Measurements of the shear
modulus® and birefringence* of gels have been made
by static methods. The only dynamic measure-
ments that have been made measure the propaga-
tion of shear waves through gels.® In these mea-
surements the liquid in the gel moves with the fiber
network not against it and accordingly the damping
is largely due to the inelastic flexing of the poly-
mers in the fiber network. These measurements
of shear damping give information about the mo-
tions of the individual polymers that form the fiber

A gel looks like a crystal when it is stationary,
but when it is subject to shear it deforms easily.
x However, when subject to hydrostatic pressure it
is quite incompressible. These half-liquidlike and
half-solidlike properties can be understood if we
consider its structure—that of a liquid held in a
fibrous network of polymers by the extremely
large friction between the liquid and the fiber or
polymer network.

Understanding the viscoelastic properties of gels network rather than about the collective motion of
has substantial medical and biochemical impor- the network structure. From the shear wave ve-
+ tance. In the eye, for example, the lens and vit- locity we get the shear modulus of the gel as a
reous humor are gels. Changes in the viscoelastic whole,

properties of the lens leads to the loss of accom-
modation range.! Also the “liquefaction” of the
vitreous is believed to play an important role in
retinal detachment.'! In both cases the ability to
measure the viscoelastic properties of gels in situ
would have substantial clinical applicability.

In this paper we present measurements of the
correlation function of the light scattered from
thermally excited density fluctuations in the fiber
network of the polyacrylamide gel. The correla-
tion times are long, typically 103-10"* sec, so that
we have employed the technique of optical mixing

Gels are also extensively used in biochemistry spectroscopy to measure the correlation function of
as matrices for gel chromatography and electro- the scattered light. Prins has previously reported
phoresis. They are also adopted as matrices for measurements of the spectrum of light scattered

crystalization of many substances because the rates  from agarose and poly(vinylalcohol) gels.
of crystalization are greatly enhanced if the reac-
tions are performed in gel matrices.? To quantita-
tively characterize such gel matrices, the know-
ledge of the viscoelastic properties of gels would
be very valuable.

We also present a detailed theory which permits
the calculation of the correlation function of the
scattered light, This theory predicts the exis-
tence, characteristic time constant, and intensity
of collective excitations of the fiber network.

T ML

: Traditional methods for measuring the visco-
; elastic properties of gels generally depend on me- The gel is characterized by two kinds of bulk
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coefficients: (a) the elastic constants of the fiber
network and (b) the friction factor connecting the
velocity of the network relative to the gel liquid
and the resistive force provided by the gel liquid.
We have been able to measure these coefficients
macroscopically and have compared the results
with the values determined from the time correla-
tion functions of the scattered light. The agree-
ment between the spectroscopic and the macro-
scopic determinations of these coefficients is very
encouraging.

We find that the measurements of the correlation
and the intensity of light scattered from gels can
provide detailed and accurate information on the
elastic properties of the fiber network alone and on
the viscous interaction between the network and the
gel liquid. We believe that the light scattering
spectroscopy of gels can be used as a convenient
diagnostic tool for the accurate characterization

of gels both in biochemical and medical applications.

THEORY

Let us consider that gels consist of: (a) a fiber
network which gives elasticity to gel, and (b) a
liquid which occupies the rest of the space in the
gel (the gel liquid). We are concerned with struc-
tural fluctuations of the fiber network rather than
that of the gel liquid. Of course, the gel liquid
undergoes thermal fluctuations in its structure and
these affect the fiber network. Thus we can con-
sider four kinds of modes in the structural fluctua-
tions of the fiber network: the fiber network can
move with (44) or against (44) the gel liquid in the
form of either a longitudinal or a shear wave (see
Table I). Because of the large differences between
the characteristic times of these modes, we can
separate them in such a scheme as Table I: First,
let us consider the longitudinal modes. In our
light scattering experiments on polyacrylamide
gels, we observe modes of type I with relaxation
times 7~ 103 sec for fluctuations with wave vector
Iql =10° cm™, The time of the corresponding
fluctuation of type III can be estimated by the fre-
quency and the damping time of sound waves in
pure water. This frequency and damping time can
be measured from the line shift and the linewidth
of Brillouin scattered light in pure water,” The
times are about 10*® sec for the frequency and 1077
sec for the damping in 90° scattering. Thus if we
are concerned with the time evolution of type I
modes, the fluctuations of type III modes in the gel
liquid are averaged out, and we can consider the
gel liquid to be a nonfluctuating medium,

In the case of shear waves, type II modes have
about the same relaxation time as type I modes as
will be shown later (7~10" sec, for Iql=10° cm™).
On the other hand, the corresponding type IV shear

wave propagates with a frequency w =10 MHz which
can be calculated from w=vyu/p,q, using the gel
density (p,,~1 g/ml) and the shear modulus
(u~10* dyn/cm? by our measurements),

Thus these four modes can be separated if we
adopt an appropriate time region. We shall not
concern ourselves with type III modes (longitudinal
sound waves in liquids), since their properties are
decided by the complex compressibility of the gel
liquid rather than by that of the fiber network,
Type IV modes have been discussed by other au-
thors.® We would like to study in this paper the
other two modes, I and II, which give us informa-
tion about the viscoelastic properties of gels much
more directly than modes III and IV in which the
gel liquid and fiber network move together.

Since we are only concerned with modes where
the fiber network moves against the gel liquid, we
may assume that the viscous properties of gels
are due to the friction between the fiber network
and the gel liquid. Compared to this the damping
caused by the inelastic flexing of the fiber network
is considered to be negligible. We also consider
the fiber density to be uniform, and treat the gel
as a continuous medium since the distance between
cross-linked points is generally much shorter than
the wavelength of the probing light,

The fiber network consists of a cross-linked
polymer which is treated as a Gaussian network
where Hooke’s law is valid over a certain range of
deformation, ® It has been shown that in such a
Gaussian network the bulk modulus and the shear
modulus are proportional to the absolute tempera-
ture.® An example of a Gaussian network is a
rubber. However, it is interesting to observe the
elastic constant of the 5% polyacrylamide fiber net-
work is between 10° and 10° times smaller than that
of a rubber,

Let us introduce a displacement vector ul(r, ¢)
which represents the displacement of a point r in
the fiber network from its average location at time
t. The ensemble average value of the vector is
zero,

Qu(r,t))=0. (1)

The state of a gel is uniquely determined if one

TABLE I. Modes of the structural fluctuations of gels.
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knows the vector u for every point r in the gel. One

can calculate the space time correlations of the
displacement vector (u,(r, u¥(x’, #)) and its
Fourier transform (u,(q, t)u,(q, ¢')) where ji=x, y,
zand q is the wave vector of the fluctuation, and we
used the fact that u is real and that 4, @=u}(-q).
As will be shown in the Appendix, (uy(q, thu,(q, 0))
=0, if j#%k. With these space—time correlations
one can calculate the time correlation resulting
from any linear response experiment if the rela-
tion between displacement vector u and the applied
physical quantity is known. °

We consider a small deformation of a unit cube
of the fiber network with density p. The displace-
ment vector obeys the following linear equation:

p(6%/82)u=v-5 - fo /at)u, (2)

where § is a stress tensor whose component g,,

gives the force along the % axis on a unit plane per-

pendicular to the i axis. Equation (2) is nothing but
| the representation of Newton’s second law. The
term on the left represents the mass times the ac-
celeration of a unit cube of the fiber network., The
terms on the right-hand side represent the forces
exerted on the cube. The first one is the net force
of the internal stresses and is expressed as the dif-
ference of two internal stresses on the two oppos-
ing walls of the cube. Thus it is given by the di-
vergence of the stress tensor, The second term is
the drag friction by the gel liquid, In analogy with
the Stokes’ formula F=~ 67R7(5u/5¢) for a sphere
with a radius R, we may assume that the force is
proportional to the relative velocity du/8¢ between
the fiber network and the gel liquid and that the
friction constant f is proportional to the viscosity
nof the gel liquid, The quantity f can be measured
by fixing the fiber network and measuring the
 liquid flow rate through the fiber network for a
given pressure applied to the liquid alone. Indeed

§ this method was used to measure macroscopically
| the constant £ as will be shown later (Fig. 1).

The stress tensor § is related to the displace-
‘ment vector u as follows?®:

O1p =KV + U0, + 20 (04 - 3 V- 15,,), (3)
vwhere
Uy =z [Buy/0x,) + (Bu /2,)]. (4)

The first term in Eq. (3) shows the stress produced

1 by a volume change, and the second term is the

stress caused by shear deformation. The coef-
ficients X and p are the bulk and shear modulus of

~{| e fiber network alone, respectively. These co-
.f| Hfficients are expected to be proportional to the
i wsolute temperature as mentioned above.

As will be shown later, the relaxation time of a

LIGHT SCATTERED FROM A VISCOELASTIC GEL

CAPILLARY
WATER ——— |12
i h
RUBBER —t
SLEEVE \EJ::
Al
GEL |
— A
RESERVOIR

FIG. 1. Measurement technique for determining the
friction between the fiber network and the gel liquid.
The volume flow rate of water was measured in the cap~
illary tube.

density fluctuation of the fiber network has the

same form [7, = (D,¢*)] as that of thermal diffusion

7r=(Drg®)™. Here q is the wave vector of the
fluctation. Since the thermal diffusion constant
is Dr=1.4X10" cm?/sec for water while D,=2
x10"" em?/sec for polyacrylamide gels, the ther-
mal diffusion can be seen to be much faster than
the relaxation rate of the fiber network structure.
Thus in the time scale characteristic to the den-
sity fluctuation of the fiber network, the tempera-
ture can be assumed to be constant and the process
is isothermal. Accordingly, we can adopt iso-
thermal values for X and Ko

Substituting Eqs. (3) and (4) into Eq. (2), we ob-
tain an equation for the displacement vector,

p(%/8:%u= pau+ (Kfé pIv(v-u) - flau/at). (5)

At this point let us introduce the Fourier trans-
form of the displacement vector,

ula, w)=[(2n)(@n) 22 f_: J ulr,?)
Xexp - i(q - r + wt)] drdt, (6)

and seek an equation for it. Since the gel is iso-
tropic the fluctuation should not depend on the di-
rection of the vector q. Thus, we can choose the
z axis in q space as a direction of q without loss
of generality,

a=(0,0,q). (n
Substituting Eq. (6) into Eq. (5), we find

pwzun = ifwu,— pclzqzu:= 0 (8)

5153

e




5154 TANAKA, HOCKER, AND BENEDEK

and
pw?u; — ifwu; — pcigu; =0, (9)

where j=x, y and ¢; and c, are defined by

Cy =‘W (10)
and
¢ =vu/p. (11)

These correspond to the longitudinal and transverse
sound velocities, respectively, in the fiber net-
work. Ina 5% polyacrylamide gel the velocity c;,

is very slow (about 10 m/sec) because of its very
small elastic constants.

From now on we need not write the suffices ! and
t of c; and ¢,, since Eqs. (8) and (9) have the same
forms. In order to get nontrivial solutions for
u;’s the following relation should exist between w
and q:
pw? - ifw - pcig?=0. (12)

This gives

iw=— (f/20)1 £y1 - 4 p%c%¢%/f?) (13)
=~ (11 -3 1), (14)

where

To=2p/f (15)
and

wo=cq. (16)

The meaning of 74 and w, can be easily understood
if we consider a case where wy7,> 1. In this case
we obtain from the equation (14) two frequencies,

iw=2iwy— (1o, a7

This shows that wy=cq is a sound frequency with

a wave vector ¢, and 7, is the relaxation time of
the wave due to the friction between the fiber net-
work and the gel liquid. Generally iw is a complex
number. If it has an imaginary part the wave
propagates, but if it is purely real the wave does
not propagate. Equation (14) shows that if wyTo>1,
we obtain propagating sound waves, and if w,7,

<1, we get nonpropagating waves,

In the case of polyacrylamide gels wy7g~10"*
as will be shown later, and Eq. (14) becomes

2/7o=(1,)!

; Tows=(7,)? (18)

and accoraingly there are no propagating modes,
The faster decay time 7, in Eq. (18) could have
been obtained from Eq. (5) by neglecting the elas-
tic term. In this way we recognize that 7, is the
velocity relaxation given by Stokes’ formula pi:
=F=—fu. The slower decay time 7, could have

been obtained if we had eliminated the acceleration
term in Eq. (5). Noticing ucx ¢!, we get from
Eq. (5) with pd%u/a¢ set equal to zero that

flou/at)= G(o%u/a22), (19)

where G is K +§— u for a longitudinal wave and p for
a transverse wave. Equation (19) shows that the

2T fwoY s
c c 4

xexp(— =

o

for polarized s

displacement diffuses along the z axis with a dif- (Eson@, 1)E 4, (q,
fusion constant D, = G/f. This constant has a form ] .
similar to that of the diffusion coefficient of a = —Q( %0-) !
macromolecule in solution: D,=%T/¢, where ¢

£=6mna (a is the radius of the molecule, 7 is the
viscosity of the medium, and T is the temperature),
The denominators are similar for both D’s, but
the numerators are the elastic constant G in gels
and the temperature 27 in the macromolecule.
While the movement of a macromolecule is caused
by the collisions with small molecules in solution
and is directly related to temperature, the move-
ment of the fiber network is due to its own elastic-
ity. On taking the Fourier transform of Eq. (19),
we see that a fluctuation of wave vector q dies
away with a time constant 1/7, = G¢%/f, as is given
in Eq. (18), since wity/2=Gg%/f.

for the depolari
cident intensity
length, and ¢ is
tion of the incid
tion, €and ¢ :
elements of the

(0€/3p)r can be

refraction # of z
tration p, since
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u,, to a gel and 1
light passing thr
ratio of the depo
measured in the
ID/IP = (GD/E)Z, a

a function of u,,,

In general, we find that the time correlation has
the form,

s @, 1oy @, O) = (@D [A, exp(~ t/7,)
+Agexp(-t/7,)], (20)

where A, +A,=1. Using the values of A, A;, and
{u;(@)) calculated in the Appendix, we find that
| A,/A;| >1 and that

In homodyne n
¢ for our measure
| obtain a time cor
f tric field but of t
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X exp (— — ) (21)

for longitudinal fluctuations and

;@ thuy(q, O) = [VET/(27) 1](1/¢%) exp( - ug®t/f)
(22)

for transverse ones, where q=(0,0,q) and j=x,

R

In the heterodyne spectrum of the polarized light
and depolarized light, one measures the time cor-
relation functions of the electric field scattered by
the longitudinal and transverse fluctuations, re-
spectively. The calculation of the correlation func-
tion of the scattered electric field can be made in
the same way as for Brillouin scattering.” We
should note, however, that the processes we con-
sider are isothermal rather than adiabatic as in the
case of Brillouin scattering. At a point of a dis-
tance R from the illuminated volume, we obtain
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E light, in principle
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for polarized scattering and
<Edev(q! t)E*p(q’ 0»

YA sinzg dep \ LeT - ugtt
i (?ﬂ) 4R <au,y)r r e"p( f )
(24)
for the depolarized scattering. Here I, is the in-
cident intensity of the light, L is the illuminated

. length, and ¢ is the angle between the polariza-

- tion of the incident light and the scattering direc-
tion, € and ¢, are the diagonal and off-diagonal
elements of the dielectric tensor. The quantity
(9¢/8p)y can be obtained by measuring the index of
refraction » of a gel while changing the gel concen-
tration p, since €=n% The quantity (o €0/0u,,)p

| can be obtained by applying a shear deformation
u,, to a gel and measuring the depolarization of a
light passing through the gel along the z axis. The
ratio of the depolarized vs polarized light intensity
measured in the forward direction ig given by

- Io/Ip=(ep/e)?, and therefore we can obtain €p as

| 2 function of 4,

In homodyne mixing spectroscopy which we used
for our measurements of polyacrylamide gels, we
' obtain a time correlation function not of the elec-
tric field but of the intensity of the scattered light,
However, because of the Gaussian properties of
the electric field, the correlation function of the
intensity is given by the square of the correlation
- functions in Eq. (23) or (24) of the field.™ Thus
. the decay constants I'=1/7 become 2[(K+% p)/flg?
' and (21/f )g® for polarized and depolarized scat-
tering, respectively,

Thus from the time correlations of the scattered
light, in principle we can obtain the ratios
(K+% u)/f and w/f. From the intensity measure-
ments of the scattered light, which can be obtained
by putting #= 0 in Eqs, (23) and (24), we can obtain
the quantities K +§— K and u, Of course, there are
inhomogeneities in the structure of a polymer net-
- work which scatter light. This scattered light in-
!tensity, however, is time independent and has no
, contribution to the time dependent part of the cor-
relation function, Thus the contribution to the
botal intensity expressed in Eqs. (23) and (24) can
be determined from the intercept of the correla-
tion function at ¢=0, Consequently, by using only
polarized and depolarized scattering techniques,
ve can in principle determine all the viscoelastic
Parameters of a gel: X, u, and J. However, in
the present experiments the depolarized Scattering
Intensity was quite small because (9 €p/8u,)y is

LIGHT SCATTERED FROM A VISCOELASTIC GEL 5155
_ Iy (we sinzg(g)z a_ LET
Tc (c) 47R* \ap Tp K+4/3u

Xexp <—- (KLJ/'B“)EE) (23)

very small for our gel, and we could not observe
the depolarized scattered light spectrum.

EXPERIMENTS
Macroscopic Measurements

In order to obtain values for the bulk parameters
used in the theory, we made measurements of the
frictional and elastic constants for 2. 5% and 5%
polyacrylamide gels prepared from Canalco pre-
mixed reagents,

Friction Constarit

The system drawn in Fig. 1 permits the macro-
scopic determination of the friction factor £, Itis
designed to determine both the force per unit
volume on the gel liquid and the velocity w (or
equivalently the volume flow rate V) of the gel liquid
relative to the fiber network. From' examinations
of Fig. 1 and the definition of f as appeared in Eq.
(2) we obtain

_Pugln-n")A/(LA)
I

The quantity .in the numerator is the net force
per unit volume on the gel liquid. Here p, is the
water density, g is the acceleration of gravity, i
is the height of the water column above the regs-
ervoir level, and 4’ is the distance the water is
pulled up the capillary by surface tension alone.
L and A are the length and the cross-sectional
area of the gel, respectively, Since the volume
flow rate V is wA, we obtain

f=puglh-n"A/LV, (25)

The flow rate V is measured by observing the rate
at which the level falls in the calibrated capillary.

In our experiments with 5% and 2. 5% poly-
acrylamide gels we found that |

Pug(h~1')s=5.6x10* (dyn/cm?),
Puglh—h)y 5=7.0x10 (dyn/cm?),
A=0.20 (cm?),

L=2,0 (cm),

Vs=2.5x10"® (em®/sec), “
Va.5=2.0x10"7 (cm®/sec), i

where the subscripts 5 and 2. 5 denote the 5% and
2.5% gels, respectively. From these parameters
Eq. (25) gives f;=2.2x10" dyn- sec/cm* and
Sa.5=3.5%10° dyn - sec/cm*,

Elastic Constants g

There are two elastic constants involved in the
fiber network. In polarized light scattering one
needs to know the longitudinal elastic constant




e

e V. (LS Sl ETL]

Nl otiis, it NS een .

5156 TANAKA, HOCKER, AND BENEDEK

K+% u as has been shown in Eq. (21). However,
because of the large viscosity between the fiber
network and the gel liquid, when a gel is com-
pressed uniaxially only a very small amount of
water is expected to flow out of the fiber network.
Indeed for pressures low enough to avoid damaging
the gel, it would take about a month to get a 20%
contraction. Thus, for practical purposes one can
only measure the elastic constant under the condi-
tion of no change in volume. One can get from any
elastic measurement with zero volume change only
the shear modulus u. Despite this we can make

a deduction as to the value of K because of the very
weak structure of the fiber network, The shear
modulus of the fiber network is about 10%-10°
times smaller than that of rubber, and indeed is
similar to that of a sponge. If we compress a
sponge uniaxially, its length decreases along the
direction of compression, but the sides do not move
out, Without its fluid to help it maintain a con-
stant volume, a gel is much like a sponge, and ac-
cordingly a uniaxial compression applied to the
fiber network alone would be expected to make it
shrink along the direction of compression, and not
to make it spread out. The above reasoning leads
us to expect that for the fiber network in a gel the
Poisson’s ratio is nearly zero.

The Poisson’s ratio ¢ of a uniaxially compressed
material is defined by

. Ad/d
N/

where [ and d are the length and the diameter of the
compressed cylinder (see Fig. 2), If0=0, a
single elastic constant, the Young’s modulus

AP

LNy

of the fiber network determines its elasticity.
Since K and u are related to E and ¢ by the equa-
tions*®

K=E(1-0)/3(1 +o)1 - 20)
and
p=E/2(1-0), (26)

we conclude that when 0 =0, K=E/3, and p=E/2.
Thus by measuring pu alone we can also obtain K.
The longitudinal elastic constant K+4% u can readily
be shown to be 2.

The measurement of 1 was made by pressing on
a cylinder of gel and measuring the contraction
Al/l. Since there is no volume change

al/1=2(ad/d) 27

which was easily checked in our experiment. Here
we should notice that the condition of no volume
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and optical mixin,
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FIG. 2. Method for determining the elastic constant p.
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change does not mean that the Poisson’s ratio ¢ of
the polymer network is 3, but that ¢ of the whole
gel, including the gel liquid, is 3 because of the
enormous friction mentioned above.

The work done by the pressure AP in compress-
ing the gel is given by

L aP(rd®/4)al, (28)
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there will be a linear relation between the contrac-
tion / and the pressure AP. The elastic energy
Hg in a deformation in which there is no volume
changeisthethirdterm of Eq. (Al)inthe Appendix.
In obtaining this relation we used the fact that for
the deformation shown in Fig. 2, V.u=0 and u,
=Oyat4yy. Also the values of u,; are u,, =u,, = Ad/d
and u,, = Al/l. Thus

Hy = dulnd [(a1/0% 20/ aF), @)

where Ind®/4 is the volume of the gel. Using Egs.
(27)-(29), we find

w=3AP(I/Al), (30)
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In our measurements we find the value of gz and
Lz.5 to be 2,6x10* and 2.2x10% (dyn/cm?), respec-
tively.

The comparisons of the values of fand p for 5%
and 2. 5% gels are made in Table II. It is interest-
ing that by changing the concentration by a factor
of 2, the bulk parameters change by about two
orders of magnitude. The large changes in bulk
coefficients are probably due to the decrease in the
number of cross links between polymers.
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Optical Mixing Spectroscopy

Polyacrylamide gels were prepared in the same
way as for the gels in the macroscopic measure-
ments, After mixing, the gels were allowed to
stand at room temperature for at least 1 day to al-
low sufficient time for the gelation process to come
to completion. Only one gel was used for each set
of measurements reported in this paper.
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TABLE II. Experimental data by macroscopic methods
and optical mixing spectroscopy.

———
5% Gel 2.5% Gel
£ ldynsec/cm?) 2.210,3x104 3.5+0.1 x10°
24 {dyn/em?) 5.2£0.3x10¢ 4.4£0,9x10°
Deye=2u/f (107 em?¥/sec) 2.410.4 1.30,3
Dt =I/2¢* (107 em?/sec) 2.420.1 1.6£0,1

The risk of damaging the samples was minimized
by measuring them in the cells in which they were
prepared. For the light Scattering measurements

- the cells were placed in a cell holder whose tem-
perature could be maintained at any temperature

¢ in the range 5-70°C, Light from a few coherence
areas was collected at the desired angle and imaged
onto a photomultiplier. A 18- channel double-
scaled autocorrelator was used to measure the

correlation function of the photocurrent from the
photomultiplier.

The data from the autocorrelator were analyzed
- by the method of cumulants.™ This method allows
 for a distribution of decay rates I" and makes it
| possible to calculate some of the lowest-order
cumulants of the distribution. In our casge we were
able to measure the average decay rate T, the

variance V=yr?_ r2/T, and sometimes higher-
L order cumulants of thig distribution, In order to
; simplify the discussion in this paper, we will con-
- tern ourselves with T only, The significance of

the variance and higher-order moments is related
to the inhomogeneities in the gel and will be de-
scribed in a subsequent publication, It ig important
to note that the data could be fit to one exponential
quite well, with the largest deviation of the data

| generally less than 1% of the initial value of the
torrelation function,

Figure 3 shows the measured correlation function
for a 5% polyacrylamide gel at 90° Scattering angle
and 25°C. The line represents the best single ex-
Ponential fit to the data, By making a two cumulant
fit,  we found T/24%=2, 38x 10" cm?®/sec. This
| value is also given in Row 4 of Table II. The vari-
jace V of the fit for the data in Fig. 1 is
§7=0.43. The rms error of this two-cumulant form
| ot the correlation function (not shown in Fig, 3)

# is expected to be about one-third the diameter of
the points shown in Fig, 3.

The last row in Table 11 is a summary of our
jasurements of D, =T/2¢° for a 2. 5% and a

i 5% polyacrylamide gel from the decay rate of the
correlation function of the photocurrent fluctua-

il ins. These measurements were made with a

§ scattering angle of 90° (¢*~3.5x10" ¢m?) anqg a

8 temperature of 25°C, The temperature was chosen
to coincide with the temperature at which the bulk
neasurements were made, There are two con-
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tributions to the error in D,y Whereas the vari-
ation of any measurement made on any given gel
sample was about 1%, we found that the gel-to-gel
variations of the measurements made for a par-
ticular polyacrylamide concentration varied by
about 5%. In Row 3 of Table II are the calculated
values of Degre=2u/f using the elastic constant u
and the friction factor S which we measured macro-
Scopically and listed in Rows 1 and 2 of Table II,
The agreement between Deaye and D, obtained by
optical mixing spectroscopy is very good and pro-
vides strong support of the theory.

In order to further check the theory, we inves-
tigated the validity of the equation I'- 4(u/f)g® by
measuring the dependence of the decay rate I" on
scattering angle. The results of these measure-
ments are shown in Fig. 4 where the mean decay
rate of the gel fluctuation T ig plotted against the
square of the scattering vector q for a polyacryl-
amide gel at 25°C. The straight line on the figure
shows the values predicted by the theory 1"/2q2
=24/f and the bulk measurements of f and u. One
can conclude that indeed the decay rate is propor-
tional to the square of the scattering vector ag
anticipated in the theory section.

We also have measured the temperature depen-
dence of the decay rate T in a 5% polyacrylamide
gel. The results of the measurements are shown
in Fig. 5, The circles represent measurements
made as the temperature of the gel was increased

C(t) (ARBITRARY UNITS)
EN

8 10 12 14 HO 412
CHANNEL NUMBER

FIG. 3, The measured correlation function of g 5%
polyacrylamide gel at 25°C with a scattering angle of
90°. The line represents the best single exponential fit
to the data. One channel corresponds to 10 usec,

=
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by steps from 15 to 65°C. The squares show the
measurements made as the temperature was then
reduced from 65 to 15°C. The lack of hysteresis
implies that no structural changes are occurring
in the fiber network over this temperature range.
The dashed line represents theoretical variations of
the decay rate divided by ¢°. This line was ob-
tained from the following considerations: Accord-
ing to the theory of the elasticity of Gaussian
polymers, ® the elastic constants & and u of the gel
fiber network are expected to be directly propor-
tional to 2T, provided that no structural changes
occur in the fiber network. The friction factor f
is taken to be directly proportional to the viscosity
of pure water. Thus, we can compute the temper-
ature variation of 2u/f from its value at 25°C
using the relation D(T)=2u(7)/f(T)=(2u/f)ssoc
x(1/298)[n(25°CYn(T)].

We observe that the experimental results for
D(T) agree qualitatively with the theory, How-
ever, the data do significantly depart from the the-
oretical prediction as the temperature rises above
~40°C. This suggests that 1 may not be strictly
proportional to 2T or that f is not strictly propor-
tional to the viscosity of pure water.

I'/2 (x103sec™!)
[¢]
j
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[4)
T
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q2(x10%cm™2)

FIG. 4. ¢’ dependence of the relaxation rate I'/2=(2yu/

fd* of the time correlation of scattered light in a 5%
polyacrylamide gel at 25°C. Dotted line shows the pre-
dicted curve by the theory using the bulk coefficients p
and f.
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FIG. 5. Temperature dependence of diffusion constant
D= r/2q2 in 5% polyacrylamide gel. The circles show the
points taken with temperature increasing, while squares
show those taken with temperature decreasing, The dot-
ted line is the predicted D=2p/f by the theory using the
measured bulk coefficients 4 and f at 25°C and their pre-
dicted temperature dependences.

CONCLUSION

From these measurements we can see that op-
tical mixing spectroscopy can be used to provide
detailed and accurate measurements of the elastic
properties of the fiber network and on the viscous
interaction between the fiber network and the gel
liquid for simple gels.

Whereas u and f can be measured separately by
macroscopic means, these measurements are
time consuming and relatively inaccurate. Ac-
curate measurements of 2u/f can be made using
optical mixing spectroscopy in less than 2 min,
This opens the door to the possibility of watching
the time evolution of the gel structure during gela-
tion. :

Extensions of the theory and the experiments to
cover other gels, the process of gelation, and to
discover the precise meaning of nonexponentiality

of the correlation function are currently under way,
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APPENDIX

Here we calculate the same time correlation
(u(q, thuy(q, 2)) and Guy(q, t)u,(q, 1)), where j=x, v,
| 2, and q is the wave vector of the fluctuation. The
factors 4, and A, in Eq. (20) are calculated using
(u,(@h;(@)) as will be shown later. \

The Hamiltonian of the gel has the form, !°

H=§p§flz;,(r)azdr
+§Kf|V-u[zdr

+p ffu,,,—%V'uG,k Zar
Ik

+Hlnt+Hsolv b4 (Al)

 where the first represents the kinetic energy of the
| fiber network, the second the bulk energy, the

third the shear energy. H,,,, is the energy of the
gel liquid and Hy,, is the interaction energy between
 the fiber network and the liquid. Let us Fourier-
transform the deformation vector u,,

60 70

bion constant
Fles show the

ile squares uy(r)= (2n)¥ 2 f Uy @) expliq- r) dq (A2)
fe. The dot-
using the | Then,

their pre~ =z [(0u/0x,) + (0w, /0x,)]

= [i/z(z'”)s/ 2] f [‘Ii“k(q) +qrly (q)]
x expliq- r) dq. (A3)

i The Hamiltonian becomes
H=(3p/z f u(@)dq
+%Kle [¢;%: (@) dq

+Uu ‘Zk f [%Qh“kﬂhuf) - %(Z‘ thux)éig,qu
+lev+Hlnt ’ (A4)

since u is real so that u(q) = u*(-q).

that op-
{ provide

Ac- Since the energy of the interaction between the
e using fiber network and the gel liq?id is a function of
2 min. oly their relative velocity, u, and is independent
atching of.their absolute position u, we may assume that
ring gela- Hy, is independent of u, Thus there is no term
7 vhich contains the product of w,(q) and #,(g), and
] there is no correlation between u,(q) and x, (q), so
}E‘ments to @, (@u;(@)) = 0. (A5)
i, and to
Inentiality From Eq. (20) in the text and Eq. (A5) we obtain
‘Junder way. (Ag/Tg + Ag/T)ulq)? =0, (A6)
b
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Also, A;+A,=1. Thus we find

Ap=1y/(7,~7,) and A,=7,/(7,- 7,), amn
where
[A,] > | 4] ~ 1079 4, (A8)

in the case of 5% polyacrylamide gel and one can
neglect the term with the fast decay.

Next let us calculate (%,(q)%. In order to com-
pute (u;(@)%), we have to find the energy H(j,q) as-
sociated with a single value of ¢ in reciprocal
space. The volume in q space associated with the
point q is |dql = (27)%/V, where V is the illuminated
volume of the gel. If we integrate the expression
(A4) over one such volume, we obtain

H(j,@)=[@n)P/2V][(&+ 1/3)g? + nfu,(@?  (A9)
and we can calculate

(@)% = [ u¥(@) exp[ - BH(j, q)] du;(q)/
Jexp[ - BH(j, q)]du, @)

=VeT/AQ@nP[(K+3u)gi+ug?l},  (Al0)

where =%T. Thus for q=(0,0,q), '
@) = VRT/ [0 (K +% 1)g?], (A11)
(s or @) = VET/ [@7) pg?]. (A12)

There is no term which is a product of two dif-
ferent components of the displacement vector, be-
cause in each term qu,g,u; with j #%, at least one
of the g, or ¢, is zero.
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