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Abstract 
 
We perform a time-lapse seismic characterization of the Sleipner aquifer due to 

CO2 injection and storage. It is essential to built a suitable geological model based 

on a porous-media constitutive equation. This model considers a poroelastic 

description of the Utsira formation (a shaly sandstone), based on porosity and clay 

content, and takes into account the variation of the properties with pore pressure 

and fluid saturation. Moreover, the model considers the geometrical features of the 

formations, including the presence of shale seals and fractures. We also model 

fractal variations of the petrophysical properties. The numerical simulation of the 

CO2-brine flow is based on the Black-Oil formulation, which uses the Pressure- 

Volume-Temperature (PVT) behavior as a simplified thermodynamic model. The 

corresponding equations are solved using a finite difference IMPES formulation. 

Then, we compute synthetic seismograms on the basis of the resulting saturation 

and pore-pressure maps. Wave attenuation and velocity dispersion, caused by 

heterogeneities formed of gas patches, are described with White’s mesoscopic 

model to obtain an equivalent viscoelastic medium at the macroscale. The wave 

equation is solved in the space-frequency domain with a finite-element iterative 

domain decomposition algorithm. 

The fluid simulator properly models the CO2 injection, obtaining accumulations 

below the mudstone layers as injection proceeds. We are able to identify the time-

lapse distribution of CO2 from the synthetic seismograms, which show the typical 

pushdown effect. 

*Abstract
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The proposed methodology constitutes an important tool to monitor the CO2 plume 

and analyze storage integrity, providing an early warning in the case any leakage 

may occur. 
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Abstract

We perform a time-lapse seismic characterization of the Sleipner aquifer due

to CO2 injection and storage. It is essential to built a suitable geological model

based on a porous-media constitutive equation. This model considers a poroe-

lastic description of the Utsira formation (a shaly sandstone), based on porosity

and clay content, and takes into account the variation of the properties with pore

pressure and fluid saturation. Moreover, the model considers the geometrical

features of the formations, including the presence of shale seals and fractures.

We also model fractal variations of the petrophysical properties. The numerical

simulation of the CO2-brine flow is based on the Black-Oil formulation, which

uses the Pressure-Volume-Temperature (PVT) behavior as a simplified thermo-

dynamic model. The corresponding equations are solved using a finite difference

IMPES formulation.

Then, we compute synthetic seismograms on the basis of the resulting satura-

tion and pore-pressure maps. Wave attenuation and velocity dispersion, caused

by heterogeneities formed of gas patches, are described with White’s mesoscopic
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model to obtain an equivalent viscoelastic medium at the macroscale. The wave

equation is solved in the space-frequency domain with a finite-element iterative

domain decomposition algorithm.

The fluid simulator properly models the CO2 injection, obtaining accumula-

tions below the mudstone layers as injection proceeds. We are able to identify

the time-lapse distribution of CO2 from the synthetic seismograms, which show

the typical pushdown effect.

The proposed methodology constitutes an important tool to monitor the

CO2 plume and analyze storage integrity, providing an early warning in the

case any leakage may occur.

Keywords Multiphase fluid flow, CO2 injection and storage, synthetic seis-

mograms, finite differences, finite elements

1. Introduction

Capture and storage of carbon dioxide in deep saline aquifers and aging oil

reservoirs is a valid alternative approach for reducing the amount of greenhouse

gases in the atmosphere [1]. Saline aquifers are suitable as storage sites due to

their large volume and their common occurrence in nature. The first industrial

scale CO2 injection project is the Sleipner gas field in the North Sea, where

CO2 separated from natural gas, is being injected in the Utsira formation, a

highly permeable porous sandstone 800 m below the sea bottom. Within the

formation, there are several mudstone layers which act as barriers to the vertical

flow of the CO2. Injection started in 1996 at a rate of about one million tonnes

per year [1]-[2].

Nevertheless, very little is known about the behavior of stored CO2 over

very long periods. Numerical modeling of CO2 injection and seismic monitoring

are important tools to understand the long term behavior after injection and

to test the effectiveness of CO2 sequestration. Recent papers [3]-[5] successfully

apply seismic modeling for monitoring the spatio-temporal distribution of CO2

using assumed saturation maps. Instead, we introduce a methodology to model

2
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the gas flow and monitor the storage. For this purpose, we perform numeri-

cal simulations of CO2-brine flow and seismic wave propagation. We build a

petrophysical model of the Utsira formation based on fractal porosity and clay

content, taking into account the variation of properties with pore pressure and

saturation [6]. This model also includes embedded mudstone layers of very low

permeability that accumulate CO2 but also allow its migration. The simul-

taneous flow of brine and CO2 is modeled with the Black-Oil formulation for

two-phase flow in porous media [7], which uses the PVT data as a simplified

thermodynamic model [8]. The pressure map before the injection is assumed to

be hydrostatic for which a reference porosity map is defined. The permeability

is assumed to be anisotropic and is obtained from first principles as a function

of porosity and grain sizes [6].

The wave propagation is based on an isotropic viscoelastic model that consid-

ers dispersion and attenuation effects. The complex P-wave and S-wave moduli

are determined as follows: in the brine saturated mudstone layers we use a Zener

model to represent the viscoelastic behavior of the material [9]; outside the mud-

stone layers, we use White’s theory [10] to model P-wave attenuation, based on

a model of porous layers alternately saturated with brine and CO2. The results

of the flow simulator, applied to the petrophysical (poro-viscoelastic) model,

allows us to calculate the phase velocities and attenuation coefficients of the P

and S waves in order to compute the synthetic seismograms.

The methodology is used to model CO2 injection and flow and compute

time-lapse seismograms corresponding to the Utsira aquifer at Sleipner field. It

is possible to identify the spatio-temporal distribution of CO2 after its injection

over long periods of time. Attenuation and dispersion effects are clearly ob-

served in the recorded traces. The synthetic seismograms show the progressive

increase in CO2 accumulations below the mudstone layers and the pushdown

effect observed in field data [11]. Better results are obtained by updating the

petrophysical properties (mainly porosity, permeability and dry-rock moduli).

Since the effectiveness of the time-lapse seismic method depends on the survey

plan and the properties of the storage site [12], these simulations may be used

3
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to optimize the type of sources and the number and location of receivers to

perform the seismic surveys.

2. THE BLACK-OIL FORMULATION OF TWO-PHASE FLOW IN

POROUS MEDIA

The simultaneous flow of brine and CO2 in porous media is described by the

well-known Black-Oil formulation applied to two-phase, two component fluid

flow [7]. We identify the CO2 saturated aqueous phase (CO2 and brine compo-

nents, subindex b) with the oil phase and the CO2 phase (subindex g) with the

gas phase. In this way, the CO2 component may dissolve in the aqueous phase

but the brine component is not allowed to vaporize into the CO2 phase. The dif-

ferential equations are obtained by combining the mass conservation equations

with Darcy’s empirical Law.

The mass conservation equations are:

For the CO2 component,

−∇ · (ρg vg + Cg,b ρb vb) + qg =
∂
[
φ (ρgSg + Cg,b ρb Sb)

]

∂t
; (1)

for the brine component,

−∇ · (Cb,b ρb vb) + qb =
∂
[
φ(Cb,b ρb Sb)

]

∂t
, (2)

where ρ is density at reservoir conditions, v is Darcy velocity, S is saturation,

q mass rate of injection per unit volume and φ is porosity. Cg,b, Cb,b are the

mass fractions of CO2 and brine in the brine phase, respectively. In the Black-

Oil formulation these fractions are computed using a simplified thermodynamic

model as

Cg,b =
Rs ρ

SC
g

Bb ρb
, Cb,b =

ρSC
b

Bbρb
, ρg =

ρSC
g

Bg
(3)

4
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where Rs (CO2 solubility in brine), Bg (CO2 formation volume factor) and

Bb (brine formation volume factor) are the PVT data. Also ρSC
g and ρSC

b are

the CO2 and brine densities at standard conditions. To estimate the Black-Oil

PVT data we apply an algorithm developed by Hassanzadeh et al [8], which is

summarized in subsection 5.2.

The empirical Darcy’s Law gives the momentum balance for the fluids,

vg = −κ
κrg
ηg

(∇pg − ρgg∇D), (4)

vb = −κ
κrb
ηb

(∇pb − ρbg∇D), (5)

where D indicates depth, generally identified with the coordinate z, and g is

the gravity constant. Also, pg, pb are the fluid pressures and κ is the absolute

permeability tensor, assumed to be diagonal κ = diag(κx, κy, κz). For β = g, b,

the functions krβ and ηβ are the relative permeability and viscosity of the β-

phase, respectively.

Replacing equations (3)-(5) into equations (1)-(2) and dividing by ρSC
g and

ρSC
b , the following nonlinear system of partial differential equations is obtained,

∇ · (κ(
κrg
Bgηg

(∇pg − ρgg∇D) +
Rsκrb
Bbηb

(∇pb − ρbg∇D))) +
qg
ρSC
g

(6)

=

∂
[
φ

(
Sg

Bg
+
RsSb

Bb

)]

∂t
,

∇ · (κ
κrb
Bbηb

(∇pb − ρbg∇D)) +
qb
ρSC
b

=
∂
[
φ
Sb

Bb

]

∂t
. (7)

Two algebraic equations relating the saturations and pressures, complete the

system:

Sb + Sg = 1, pg − pb = PC(Sb), (8)

where PC is the capillary pressure.

5
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The unknowns for the Black-Oil model are the fluid pressures pg, pb and the

saturations Sg, Sb for the CO2 and brine phases, respectively. This flow model

does not take into account chemical reactions.

The numerical solution is obtained with public-domain software BOAST [13]

which solves the differential equations using the IMPES algorithm (IMplicit

Pressure Explicit Saturation), based on a finite difference technique [7]. Finite

differences is the standard in commercial reservoir simulators, and the improved

versions use both structured and unstructured grids with local refinements to

accurately represent reservoir geometry. The basic idea of IMPES is to obtain a

single pressure equation by a combination of the flow equations. Once pressure

is implicitly computed for the new time, saturation is updated explicitly. Next,

we briefly describe IMPES for the system of equations (6), (7) and (8). The

first step is to obtain the pressure equation, therefore equation (6) multiplied

by Bg and equation (7) multiplied by (Bb −RsBg) are added. In this way, the

right-hand side of the combined equation is

Bg

∂
[
φ

(
Sg

Bg
+
RsSb

Bb

)]

∂t
+ (Bb −RsBg)

∂
[
φ
Sb

Bb

]

∂t
. (9)

Using the chain rule to expand the time derivatives, and after some algebraic

manipulations, the expression in (9) becomes:

φ
[ 1
φ

dφ

dpb
+ Sg

(
−

1

Bg

dBg

dpb

)
+ Sb

(
−

1

Bb

dBb

dpb
+
Bg

Bb

dRs

dpb

)]∂pb
∂t

, (10)

where all time derivatives of saturation have disappeared.

Defining the compressibilities as

Formation compressibility: cf =
1

φ

dφ

dpb
,

Gas compressibility: cg = −
1

Bg

dBg

dpb
,

6
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Brine compressibility: cb = −
1

Bb

dBb

dpb
+
Bg

Bb

dRs

dpb
,

Total compressibility: ct = cf + Sgcg + Sbcb,

the following simply expression is obtained for (10),

φct
∂pb
∂t

. (11)

Finally, replacing pg by pb+PC(Sb) in the left side of the combined equation,

the following pressure equation in pb is obtained,

Bg

[
∇ · (κ(

κrg
Bgηg

(∇pb − ρgg∇D) +
Rsκrb
Bbηb

(∇pb − ρbg∇D) +
κrg
Bgηg

∇PC))
]

+(Bb −RsBg)
[
∇ · (κ

κrb
Bbηb

(∇pb − ρbg∇D))
]

(12)

+Bg
qg
ρSC
g

+ (Bb −RsBg)
qb
ρSC
b

= φct
∂pb
∂t

.

In the BOAST simulator, the system of nonlinear differential equations (7)

and (12) is discretized using a block centered grid. The equations are linearized

evaluating the pressure and saturation dependent functions (PVT parameters,

viscosities, relative permeabilities and capillary pressure) using the pressure

and saturation values at the previous time step. The pressure equation (12) is

solved implicitly, applying a Block Successive Over Relaxation method (BSOR)

to compute the solution of the linear system. The saturation equation (7) is

solved explicitly, therefore stability restrictions are imposed to select the time

step [14].

3. A VISCOELASTIC MODEL FOR WAVE PROPAGATION

One of the main phenomena occurring in rocks, in particular partially sat-

urated with gas, is the mesoscopic-loss effect [10]-[9]. It is caused by hetero-

geneities in the fluid and solid phase properties greater than the pore size but

much smaller than the predominant wavelengths. The mesoscopic-loss causes

7
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wave attenuation and velocity dispersion. Because the mesoscopic-scale is typi-

cally on the order of centimeters, any finite-element or finite-difference numerical

procedure based on Biot equations is impractical. To overcome this difficulty,

we use an alternative approach, based on an equivalent viscoelastic medium.

Let ρs and ρf be the grain and fluid densities, respectively. The equation of

motion in a 2D isotropic viscoelastic domain Ω with boundary ∂Ω can be stated

in the space-frequency (x, ω) domain as

−ω2ρu−∇ · σ(u) = f(x, ω), Ω (13)

−σ(u)ν = iωDu, Γ = ∂Ω, (14)

where u = (ux, uz) is the displacement vector and

ρ = (1− φ)ρs + φρf (15)

is the bulk density.

Equation (14) is a first-order absorbing boundary condition [15], where

D = ρ


 ν1 ν2

−ν2 ν1




 vP (ω) 0

0 vS(ω)




 ν1 −ν2

ν2 ν1


 ,

with ν = (ν1, ν2) the unit outward normal on Γ and vP (ω), vS(ω) the phase

velocities of the compressional and shear waves at the frequency ω defined below

in (17).

The stress tensor σ(u) is defined in the space-frequency domain by

σjk(u) = λG(ω)∇ · uδjk + 2µ(ω)εjk(u), Ω, (16)

where εjk(u) denotes the strain tensor and δjk is the Kroenecker delta. The

Lamé coefficients λG(ω) and µ(ω) are complex and frequency dependent and are

determined as follows. In the brine saturated mudstone layers these coefficients

are obtained using a Zener model [9]. Outside the mudstone layers we consider

P-wave attenuation due to wave induced fluid flow at mesoscopic scale using a

model of porous layers alternately saturated with brine and CO2, respectively

[10]. This approach yields a complex and frequency dependent P-wave modulus

8
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E(ω) = λG(ω) + 2µ(ω) for the formation. S-wave attenuation is also taken into

account by making the shear modulus µ(ω) complex and frequency dependent

using another relaxation mechanism related to the P-wave mechanism [5].

Both, Zener and White models, require the knowledge of the bulk modulus

Ks and density ρs of the solid grains, the bulk and shear modulus Km and µm

as well as the porosity φ and permeabilities κx, κz of the solid matrix. They

also need the fluid bulk modulus and viscosity. The determination of these

parameters is explained in subsection 5.1.

The phase velocities v(ω) and quality factors Q(ω) are defined by the rela-

tions

vt(ω) =

[
Re

(
1

vct(ω)

)]
−1

, Qt(ω) =
Re(vct(ω)

2)

Im(vct(ω)2)
, t = P, S, (17)

where vct(ω) are the complex and frequency dependent compressional velocities

defined as

vcP (ω) =

√
E(ω)

ρ
, vcS(ω) =

√
µ(ω)

ρ
. (18)

4. THE ITERATIVE DOMAIN DECOMPOSITION ALGORITHM

4.1. Weak Formulation

We proceed to formulate the variational form for viscoelastic waves:

Find û ∈ [H1(Ω)]2 such that

−(ρω2û, ϕ) +
∑

pq

(σpq(û), εpq(ϕ)) + iω 〈Dû, ϕ〉Γ = (f̂ , ϕ), ϕ ∈ [H1(Ω)]2.

Here (f, g) =
∫
Ω
fg dΩ and 〈f, g〉 =

∫
Γ
fg dΓ denote the complex [L2(Ω)]N

and [L2(Γ)]N inner products. Also, H1(Ω) denotes the usual Sobolev space of

functions in L2(Ω) with first derivatives in L2(Ω).

4.2. Finite Element Method

To define a global finite element method we employ the nonconforming finite

element space based on rectangular elements first presented in [16] described

below. For h > 0, let Th be a quasiregular partition of Ω such that Ω = ∪J
j=1Ωj

9
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with Ωj being rectangles of diameter bounded by h. Set Γj = ∂Ω ∩ ∂Ωj and

Γjk = Γkj = ∂Ωj ∩ ∂Ωk, we denote by ξj and ξjk the centroids of Γj and Γjk,

respectively.

We consider a nonconforming finite element space constructed using the

following reference rectangular element:

R̂ = [−1, 1]2 S2(R̂) = Span

{
1

4
±

1

2
x−

3

8

(
(x2 −

5

3
x4)− (y2 −

5

3
y4)

)
,

1

4
±

1

2
y +

3

8

(
(x2 −

5

3
x4)− (y2 −

5

3
y4)

)}
.

The four degrees of freedom associated with S2(R̂) are the values at the mid

points of the faces of R̂, i.e., the values at the nodal points a1 = (−1, 0), a2 =

(0,−1), a3 = (1, 0) and a4 = (0, 1). For example the basis function ψ1(x, y) =

1
4 − 1

2x − 3
8

(
(x2 − 5

3x
4)− (y2 − 5

3y
4)
)
is such that ψ1(a1) = 1 and ψ1(aj) =

0, j = 2, 3, 4.

A useful property of employing nonconforming elements for wave propaga-

tion phenomena is that it almost halves the number of points per wavelength

necessary to reach a given accuracy as compared with the standard bilinear

elements [17].

Set NCh
j = S2(Ωj) and define a nonconforming finite element space in the

following manner

NCh =

{
v | vj : = v |Ωj

∈ NCh
j , j = 1, . . . , J ; vj(ξjk) = vk(ξjk), ∀{j, k}

}
.

The global nonconforming Galerkin procedure is defined as follows: find

ûh ∈ [NCh]2 such that

−(ρω2ûh, ϕ) +
∑

pq

(τpq(û
h), εpq(ϕ)) + iω

〈〈
Dûh, ϕ

〉〉
Γ
= (f̂ , ϕ), ϕ ∈ [NCh]2,

where 〈〈·, ·〉〉 denotes the approximation of 〈·, ·〉 on the boundary faces by the

midpoint quadrature rule.

Instead of solving the global problem, we will use the parallelizable domain

decomposition iterative hybridized procedure defined in [15]. This approach

becomes a necessity when dealing with large 2D (or 3D) problems.

10
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One of the main advantages of using nonconforming elements to solve wave

propagation phenomena in parallel architectures is that the amount of informa-

tion exchanged among processors in a domain decomposition iterative procedure

is considerable reduced as compared to the case when conforming elements are

employed. Besides, it is possible to obtain an estimate on the speed of con-

vergence of the iterative domain decomposition procedure as a function of the

mesh size h.

To define the iterative procedure, we introduce a set Λ̃h of Lagrange multi-

pliers λhjk associated with the stress values −τ(ûj)νjk(ξjk):

Λ̃h = {λh : λh|Γjk
= λhjk ∈ [P0(Γjk)]

2 = [Λh
jk]

2}.

Here P0(Γjk) are constant functions on Γjk. Note that Λh
jk and Λh

kj are consid-

ered to be distinct.

Then, given an initial guess
(
ûh,0j , λh,0jk , λ

h,0
kj

)
∈ [NCh

j ]
2 × [Λh

jk]
2 × [Λh

kj ]
2,

compute
(
ûh,nj , λh,njk

)
∈ [NCh

j ]
2 × [Λh

jk]
2 as the solution of the equations

−(ρω2ûh,nj , ϕ)j +
∑

pq

(τpq(û
h,n), εpq(ϕ))j + iω

〈〈
Dûh,nj , ϕ

〉〉
Γj

+
∑

k

〈〈
λh,njk , ϕ

〉〉
Γjk

= (f̂ , ϕ)j , ϕ ∈ [NCh
j ]

2, (19)

λh,njk = −λh,n−1
kj + iβjk[û

h,n
j (ξjk)− ûh,n−1

k (ξjk)], on Γjk. (20)

It can be shown that

[ûh,n − ûh]2 → 0 in [L2(Ω)]2 when n→ ∞,

so that in the limit the global nonconforming Galerkin approximation is obtained

[15].

5. PETROPHYSICAL, FLUID-FLOW AND SEISMIC DATA

In this section, we describe the procedure used to determine the petrophys-

ical and fluid-flow parameters needed in the Black-Oil and seismic simulations.

11
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5.1. A petrophysical model for the Utsira formation

The pressure dependence of properties is based on the following relationship

between porosity and pore pressure p(t) = Sbpb(t) + Sgpg(t),

(1− φc)

Ks
(p(t)− pH) = φ0 − φ(t) + φc ln

φ(t)

φ0
, (21)

where φc is a critical porosity, φ0 is the initial porosity at hydrostatic pore

pressure pH and Ks is the bulk modulus of the solid grains [6]. The rock is

formed with quartz (bulk modulus of 40 GPa) and clay (bulk modulus of 15

GPa). Ks is computed as the arithmetic average of the Hashin Shtrikman

upper and lower bounds.

The relationship among horizontal permeability, porosity and clay content

C is [6] ,

1

κx(t)
=

45(1− φ(t))2

φ(t)3

(
(1− C)2

R2
q

+
C2

R2
c

)
, (22)

where Rq and Rc are the average radii of the sand and clay grains.

Also, as permeability is anisotropic, we assume the following relationship

between horizontal and vertical permeability κz [6]

κx(t)

κz(t)
=

1− (1− 0.3a) sinπSb

a(1− 0.5 sinπSb)
, (23)

where a is the permeability-anisotropy parameter.

The bulk modulus of the dry matrix, Km, is computed using the Krief

equation [18] as follows:

Km(t) = Ks(1− φ(t))A/(1−φ(t)). (24)

Assuming a relation Km/µm = Ks/µs, we set

µm(t) = µs(1− φ(t))A/(1−φ(t)). (25)

Using the moduli Ks,Km, µm, the porosity φ and permeabilities κx, κz, as well

as the fluids bulk moduli and viscosities (computed using the Peng-Robinson

model [19]), we determine the complex and frequency dependent Lamé coeffi-

cients λ(ω), µ(ω) as explained in Section 3.

12
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Relative permeabilities and capillary pressure as functions of CO2 saturation

are represented by the following potential models [14]:

κrg(Sg) = κ∗rg
( Sg − Sgc

1− Sgc − Sbc

)ng
, (26)

κro(Sg) = κ∗ro
( 1− Sg − Sbc

1− Sgc − Sbc

)no
, (27)

PC(Sg) = P ∗

C

( Sg − Sgc

1− Sgc − Sbc

)nc
, (28)

where κ∗rg, κ
∗

ro, P
∗

C are the maximum values of the curves and the exponents

ng, no, nc determine the curvature. Sgc, Sbc are the saturations at which CO2

and brine phases become mobile, respectively.

5.2. The Black Oil fluid model

The PVT data, Rs and Bb, can be expressed in terms of the equilibrium

properties obtained from an equation of state as presented in [8] and [20], i.e.,

Rs =
ρ̃SC
b χg

ρ̃SC
g (1− χg)

, Bb =
ρSC
b

ρb(1− ωg)
, (29)

where ρ̃SC
b and ρ̃SC

g are the brine and CO2 molar densities at standard condi-

tions, respectively, χg and ωg are the CO2 mole and mass fractions in the brine

phase. The molar density is related to the mass density through the molecular

weight. While the CO2 molecular weight (Mg) and mass density at standard

conditions are known, these properties for the brine phase must be estimated.

The brine molecular weight (Mb) is simply computed from the mole fractions

χsalt of NaCl and χH2O of H2O. The brine mass density at standard conditions,

ρSC
b , is estimated following the Rowe and Chou correlation as given in formulas

(B6)-(B14) of [8]. Once ρSC
b is computed, ρb at reservoir conditions is obtained

using the approach of Garćıa, as stated in [8],

ρb =
1 + (Mg/Mb)(χg/(1− χg))

(Vm/Mb)(χg/(1− χg)) + 1/ρb
, (30)

13
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where Vm is a partial molar volume, computed as a function of temperature

T (oC) as in formula (21) of [8]:

Vm = 37.51− 9.585x10−2T + 8.74x10−4T 2 − 5.044x10−7T 3. (31)

To determine χg, we apply the following relationship

χg =
mg

mg + 55.508 + νms
, (32)

where mg is the molality of CO2 in saline water, ms is the salt molality and ν

is the stoichiometric number of ions in the dissolved salt. In order to compute

mg we use

mg =
mo

g

γ∗g
, (33)

where mo
g is the molality of CO2 in pure water and γ∗g the activity coefficient.

To obtain mo
g for each pressure and temperature, we solve iteratively the

thermodynamic nonlinear equations (B1)-(B5) in [8]. These equations involve

H2O and CO2 molar volumes, fugacities and activity coefficients. The CO2

molar volume is computed using the Peng-Robinson model [19]. Also, γ∗g is

obtained using the Rumpf model, as stated in equation (A6) in Spycher &

Pruess [20].

Once χg is computed, the CO2 mass fraction in the aqueous phase ωg is

obtained from the relation:

ωg = χg
Mg

Maq
. (34)

Here Maq is the aqueous molecular weight, given by

Maq = χgMg + χH2OMH2O + χsaltMsalt. (35)

Finally, the viscosity, density and bulk modulus of CO2 are obtained from

the Peng-Robinson equations as a function of temperature and pore pressure.

6. NUMERICAL EXPERIMENTS

To test the proposed methodology, we consider a model of the Utsira for-

mation having 1.2 km in the x-direction, 10 km in the y-direction and 0.4 km

14
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in the z-direction (top at 0.77 km and bottom at 1.17 km b.s.l.). The pressure-

temperature conditions are T = 31.7z + 3.4, where T is the temperature (in

oC) and z is the depth (in km b.s.l.); pH = ρbgz is the hydrostatic pressure,

with ρb = 1040 kg/m3 the density of brine and g the gravity constant. Within

the formation, there are several mudstone layers which act as barriers to the

vertical motion of the CO2.

The initial porosity φ0 (at hydrostatic pore pressure) for the Utsira sand-

stone is assumed to have a fractal spatial distribution, obtained as follows. First,

we generate a fractal porosity distribution, based on the so-called von Karman

self-similar correlation functions. These models are widely used in the statis-

tical characterization of heterogeneities for different applications. The fractal

porosity is obtained with the following relation

φ0(x, z) = 〈φ0〉+ f(x, z). (36)

In (36) 〈φ0〉 denotes the spatial average of φ0(x, z) and f(x, z) is a fractal field

representing the spatial fluctuation of φ0(x, z), for which the spectral density is

given by [21]

Sd(rx, rz) = N0(1 +R2α2)−(H+E/2). (37)

Here R =
√
r2x + r2z is the radial wavenumber, α the correlation length, H is a

self-similarity coefficient (0 < H < 1), N0 is a normalization constant and E

is the euclidean dimension. The von Karman correlation (37) describes a self-

affine, fractal processes of fractal dimension D = E + 1 −H at a scale smaller

than α. For this application we take E = 2 and D = 2.2 and 〈φ0〉 = 36.7 %. The

correlation length value was taken to be 2 % of the domain size. We generated

a porosity field, by choosing the variance parameter in the fractal generator.

Horizontal and vertical permeabilities were determined by using equations (22)

and (23), considering an anisotropy parameter a = 0.1 and a fixed clay content

C = 6 %. The minimum, average and maximum porosities obtained are 32.5 %,

36.7 % and 38.3 %. The associated vertical permeabilities are 0.1, 0.12 and 0.145

D. The mudstone layers are not completely sealed, having constant porosity and

vertical permeability values of 24 % and 0.033 D. Besides they have openings,

15
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that will give a path for the upward migration of CO2. The top and bottom

of the Utsira formation have constant porosity and vertical permeability values

of 22 % and 0.02 D. The initial porosity and vertical permeability fields can be

observed in Figures 1 and 2 a), respectively.
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Figure 1: Initial porosity distribution before CO2 injection.

6.1. CO2 injection

CO2 is injected during seven years in the Utsira formation at a constant flow

rate of one million tons per year. The injection point is located at the bottom

of the formation: x = 0.6 km, z =1.082 km. The simulation uses a mesh with

equally-spaced blocks in each direction: nx = 300 in the x-direction, ny = 5

in the y-direction and nz = 400 in the z-direction. Actually the model is 2.5D

since the properties are uniform along the y-direction, which has an extension

of 10 km. The source is located at the third grid point along this direction.

To satisfy the CFL stability condition due to IMPES formulation [14], the time

step is 0.125 d. With this choice of the mesh and time step, we check that the

results of the BOAST simulator satisfy the mass conservation condition. Recall

that the petrophysical properties of the formation are time dependent due to

the CO2 injection and consequent increase in pore fluid pressure (c.f. (21), (22),

(23)) but they change at a much slower rate than pressure and saturations. As
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Figure 2: Vertical permeability distribution: a) before CO2 injection and b) after 7 years of

CO2 injection.

a consequence, we have two time scales, and we use a much larger time step to

update petrophysical properties than to run the flow simulator. In this work,

the petrophysical properties are updated every year.

Figures 3 a), b) and c) show 2D vertical slices (corresponding to ny = 3)

of the CO2 saturation fields after one, three and seven years of CO2 injection,

respectively. In all the cases, CO2 accumulations below the mudstone layers

can be observed. As injection proceeds, part of the injected fluid migrates up-

wards due to the openings in the mudstone layers that generate chimneys, and

the vertical fluid flow is ruled by the vertical permeability. As CO2 saturation
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increases, vertical permeability updated with equation (23) also increases, in

particular in the mudstone layers. This allows an increase in the CO2 upward

motion across the layers with the resulting low CO2 saturations levels observed

between layers. As a consequence, CO2 chimneys become less defined as injec-

tion time increases, as it can be seen in Figures 3 a), b) and c). A 2D slice

(at ny = 3) of the saturation dependent vertical permeability distribution after

seven years of CO2 injection is shown in Figure 2 b). Porosity and horizontal

permeability depending only on pressure suffer little changes and are not shown

for brevity. Figure 4 displays the difference between CO2 and brine pressure

(capillary pressure) after seven years of injection. As CO2 saturation increases,

flow is more affected by capillary forces.

6.2. Seismic Monitoring

In this section, we analyze the capability of seismic monitoring to identify

zones of CO2 accumulation and migration. With this purpose, we use 2D slices

of CO2 saturation and fluid pressure obtained from the flow simulator to con-

struct a 2D model of the Utsira formation. The iterative procedure given in

equations (19)-(20) is used to compute the time Fourier transforms of the dis-

placement vector for 200 equally spaced temporal frequencies in the interval

(0, 200Hz). The seismic source is a spatially localized plane wave of main fre-

quency 60 Hz located at z = 772 m. A line of receivers is located at the same

depth to record the Fourier transforms of the vertical displacements. Then, a

discrete inverse Fourier transform is employed to obtain the data used for the

synthetic seismograms.

Initially, we show the pre-injection results at full brine saturation. Figures 5

a) and 6 a) display the spatial distribution of the P-wave phase velocity vP and

S-wave phase velocity vS , respectively. Besides, Figure 7 a) shows the synthetic

seismogram before the injection, where the mudstone layers in Figures 5 a) and

6 a) are clearly identified.

Figures 7 b), c) and d) display seismograms after one, three and seven years

of CO2 injection associated with the CO2 saturations shown in Figures 3 a),
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Figure 3: CO2 saturation distribution: a) after one year of CO2 injection, b) after three years

of CO2 injection and c) after seven years of CO2 injection.

b) and c), respectively. A standard f -k filter is applied to the seismic sections.

The reflections seen in those seismograms show the progressive increase in CO2

accumulations below the mudstone layers as the injection proceeds. In partic-
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Figure 4: Capillary pressure distribution after seven years of CO2 injection.

ular, the pushdown effect observed in the real seismograms [11] due to CO2

accumulations is clearly observed (Figure 7 d)). Figures 5 b) and 6 b) display

P and S-wave phase velocities vP and vS after seven years of CO2 injection,

predicted by White’s model. It can be observed the reduction in the P-wave

velocities in zones of CO2 accumulation.

7. CONCLUSIONS

We have performed numerical simulations of CO2-brine flow and seismic

wave propagation to model and monitor CO2 storage in a saline aquifer. The

flow simulator considers the CO2 solubility in brine through a simplified thermo-

dynamic model, with CO2 properties determined by the Peng-Robinson equa-

tions. We have built a petrophysical model of a shaly sandstone based on fractal

porosity and considering the variation of its properties with pore pressure and

fluid saturation. The wave propagation simulator takes into account wave ve-

locity changes due to the presence of heterogeneous CO2 accumulations and at-

tenuation effects due to the presence of mesoscopic scale heterogeneities caused

by patches of carbon dioxide. The proposed methodology has been applied to

the Utsira formation, which contains several thin low-permeability mudstone
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Figure 5: P-wave velocity: a) before CO2 injection and b) after 7 years of CO2 injection.

layers. These layers are not completely sealed and also have openings, allowing

the upward migration of CO2 .

The fluid-flow simulator yields CO2 accumulations below the mudstone lay-

ers. Taking into account the time-lapse variations of the petrophysical properties

(with vertical permeability being the more affected property by this updating),

the corresponding synthetic seismograms resemble the real seismic data. In par-

ticular, regions of low saturations between layers and less defined chimneys are

obtained. The reflections seen in the seismograms show the progressive increase

in CO2 accumulations below the mudstone layers, in particular, the pushdown

effect is clearly observed.
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Figure 6: S-wave velocity: a) before CO2 injection and b) after 7 years of CO2 injection.

Summarizing, this methodology constitutes an important tool to monitor

the migration and dispersal of the CO2 plume, to analyze storage integrity and

to make long term predictions.
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Figure 7: Synthetic seismograms: a) before CO2 injection, b) after one year of CO2 injection,

c) after three years of CO2 injection and d) after seven years of CO2 injection
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