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Petróleo, Av. Las Heras 2214 Piso 3 C1127AAR Buenos Aires, Argentina.

cUniversidad Nacional de La Plata, La Plata, Argentina.

∗ Corresponding author. E-mail address: santos@math.purdue.edu (J. E. Santos).

Preprint submitted to Int. J. Rock Mech. Mining Sciences 5 December 2018



Abstract

BLA BLA

Keywords: Anisotropy, Layered Media, Two-phase Fluids, Poroelasticity, Ef-
fective Media.

1 The 2PBM describing a poroelastic solid saturated by a two-

phase fluid

We consider a porous solid saturated by two immiscible fluids, where we distin-
guish a wetting phase and a non-wetting one, to be denoted with the subscripts
(or superscripts) “w” and “n”, respectively. Let x = (x, y, z) and Sw = Sw(x)
and Sn = Sn(x) denote the wetting and non-wetting fluid saturations averaged
over the bulk material, respectively, with Srw and Srn being the corresponding
residual saturations. We assume that both fluid phases completely saturate the
porous part and move within the pore space, [30,31], so that Sw+Sn = 1. and
Srn < Sn < 1− Srw.

Denote by us = (us
i ), ũ

n = (ũn
i ) and ũw = (ũw

i ), i = 1, 2, 3 the time Fourier
transforms of the averaged displacement vectors of the solid, non-wetting and
wetting phases, respectively, and let φ = φ(x) denote the matrix effective
porosity. The relative fluid displacements are

uθ = φ(ũθ − us), ξθ = −∇ · uθ, θ = n,w.

Let εij(u
s) and es = εii(u

s) be the Fourier transforms of the strain tensor of
the solid and its linear invariant, respectively. Also, set u = (us,un,uw).

Let τ = τij and ε = εij, i, j = 1, 2, 3 denote the Fourier transforms infinitesi-
mal changes in the stress and strain tensors, respectively. Also, let Pn and Pw

denote the Fourier transforms of the infinitesimal changes in the non-wetting
and wetting fluid pressures, respectively. These infinitesimal changes are taken
with respect to corresponding reference values τ̄ij, P̄n, and P̄w associated with
the initial equilibrium state having non-wetting fluid saturation S̄n and poros-
ity φ̄. Pn and Pw are related through the capillary relation [30,31]

Pca = Pca(Sn + S̄n) = P̄n + Pn − (P̄w + Pw) = Pca(S̄n) + Pn − Pw ≥ 0.(1)

Ignoring hysteresis, Pca is a positive and strictly increasing function of the
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non-wetting fluid saturation.

The stress-strain of a 2PBM are [27,29,23]:

τij(u) = 2µ εij + δij(λc e
s − B1 ξ

n −B2 ξ
w), (2)

Tn(u) =
(
S̄n + β + ζ

)
Pn − (β + ζ)Pw = −B1 e

s +M1 ξ
n +M3 ξ

w, (3)

Tw(u)=
(
S̄w + ζ

)
Pw − ζ Pn = −B2 e

s +M3 ξ
n +M2 ξ

w, (4)

where

β =
Pca(Sn)

P ′

ca(S̄n)
, ζ =

Pw

P ′

ca(S̄n)
. (5)

The quantities τij, Tn and Tw are the generalized forces of the system. The
coefficient µ is the shear modulus of the dry rock, while λc = Kc −

2
3
µ with

Kc being the undrained bulk modulus. The coefficients in (2)-(4) can be are
determined as indicated in [27,29,23].

The equations for a 2PBM in the diffusive range of frequencies, stated in the
space–frequency domain are [27,29,23]:

∇ · τ (u) = 0, (6)

iω dn u
n − iω dnw uw +∇Tn(u) = 0, (7)

iω dw uw − iω dnw un +∇Tw(u) = 0. (8)

The coefficients dn, dw and dnw are taken to be of the form:

dl(S̄l) = (S̄l)
2 ηl
κKrl(S̄l)

, l = n,w, (9)

dr,nw(S̄n, S̄w) = ǫ
(
dn(S̄n)dw(S̄w)

)
. (10)

Here ηn, ηw are the fluid viscosities and κ, Krn(Sn), Krw(Sw) are the abso-
lute permeability and the relative permeability functions, respectively, while
dr,nw(Sn, Sw) is a cross dissipative function. In the numerical experiments we
choose ǫ = 0.01.

2 The equivalent TIV medium

Let us consider x1 and x3 as the horizontal and vertical coordinates, respec-
tively. As shown in [15] a fluid-saturated poroelastic solid with a set of hori-
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zontal layers behaves as a TIV medium with a vertical symmetry axis at long
wavelengths.

Denote by τij(ũs) and ǫij(ũs) the stress and strain tensor components of the
equivalent TIV medium, where ũs denotes the solid displacement vector at
the macroscale. The corresponding stress-strain relations, stated in the space-
frequency domain and assuming a closed system are [32,8]

τ11(ũs) = p11 ǫ11(ũs) + p12 ǫ22(ũs) + p13 ǫ33(ũs), (11)

τ22(ũs) = p12 ǫ11(ũs) + p11 ǫ22(ũs) + p13 ǫ33(ũs), (12)

τ33(ũs) = p13 ǫ11(ũs) + p13 ǫ22(ũs) + p33 ǫ33(ũs), (13)

τ23(ũs) = 2 p55 ǫ23(ũs), (14)

τ13(ũs) = 2 p55 ǫ13(ũs), (15)

τ12(ũs) = 2 p66 ǫ12(ũs). (16)

Note that in a TIV medium p12 = p11 − 2 p66, so that only five independent
stiffness, i.e., p11, p33, p13, p55 and p66 need to be considered.

As shown in [21,22] these stiffnesses can be determined using five time-harmonic
experiments. Next we present the generalization of those experiments using
the 2PBM to determine a TIV medium long-wave equivalent to a fine layered
poroelastic solid saturated by a two-phase fluid.

We will solve (6)-(8) in the 2D case on a reference square Ω = (0, L)2 with
boundary Γ in the (x1, x3)-plane. Set Γ = ΓL∪ΓB∪ΓR∪ΓT , where ΓL,ΓR,ΓB

and ΓT denote the left, right, bottom and top boundaries of Ω. Denote by ν

the unit outer normal on Γ and let χ be a unit tangent on Γ oriented coun-
terclockwise so that {ν,χ} is an orthonormal system on Γ. To determine the
five independent stiffness coefficients, we solve (6)-(8) in Ω with the boundary
conditions

un · ν = 0, uw · ν = (x1, x3) ∈ Γ, (17)

i.e., no fluids enter or leave the sample, and the additional boundary condi-
tions:

for p33:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓT , (18)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (19)

us · ν = 0, (x1, x3) ∈ Γ \ ΓT . (20)
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Using the relation

∆V (ω)

V
= −

∆P

p33(ω)
, (21)

where V the original volume of the sample, p33(ω) can be determined from (21)

measuring the complex volume change ∆V (ω) ≈ Lu
(33,T )
s,3 (ω), where u

(33,T )
s,3 (ω)

is the average of the vertical component of the solid phase at the boundary
ΓT .

for p11:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓR, (22)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (23)

us · ν = 0, (x1, x3) ∈ Γ \ ΓR. (24)

Thus, this experiment determines p11 as indicated for p33, measuring the os-
cillatory volume change.

for p13:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT , (25)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (26)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB. (27)

From (11) and (13) we get

σ11 = p11ǫ11 + p13ǫ33 σ33 = p13ǫ11 + p33ǫ33,

with ǫ11 and ǫ33 being the (macroscale) strain components at ΓL and ΓT ,
respectively. Since σ11 = σ33 = −∆P (c.f.(25)) we obtain p13(ω) as

p13(ω) =
p11ǫ11 − p33ǫ33

ǫ11 − ǫ33
. (28)

for p55:

−τ (u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (29)

us = 0, (x1, x3) ∈ ΓB, (30)

where
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g =





(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .

The change in shape of the rock sample allows to obtain p55(ω) by using the
relation

tg(βω)) =
∆G

p55(ω)
, (31)

where β(ω) is the departure angle between the original positions of the lateral
boundaries and those after applying the shear stresses, that can be determined
by measuring the average horizontal displacement at ΓT [21,22].

for p66:

−τ (u)ν = g2, (x1, x2) ∈ ΓB ∪ ΓR ∪ ΓT , (32)

us = 0, (x1, x2) ∈ ΓL, (33)

where

g2 =





(∆G, 0), (x1, x2) ∈ ΓB,

(−∆G, 0), (x1, x2) ∈ ΓT ,

(0,−∆G), (x1, x2) ∈ ΓR.

Then, we proceed as indicated for p55(ω).

The approximate solution of these five BVP was computed using a FE proce-
dure. We used bilinear functions to approximate each component of the solid
displacement vector, while for the non-wetting and wetting fluid displacements
we used a closed subspace of the vector part of the Raviart-Thomas-Nedelec
space of zero order [33]. See [22,23] for details on the description of these finite
element spaces. Also, it was shown in [22] that the error associated with these
finite-element problems, measured in the energy norm, is on the order of h1/2,
with h being the size of the computational mesh. The proof can be generalized
to the case of two-phase fluids analyzed here.

3 Numerical experiments

The FE procedures described above were implemented to determine the five
complex stiffnesses pIJ(ω) as a function of frequency. The corresponding phase
and energy velocities and dissipation coefficients for qP, qSV and SH waves
were computed as in [8].
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In all the experiments the numerical samples are squares of side length 20 cm
and were discretized using a 80× 80 uniform mesh representing 10 periods of
of 6 cm isotropic illite layers and 2 cm isotropic viscoleastic kerogen layers,
with the layers saturated by two-phase fluids.

The saturant fluids were chosen to be two-phase mixtures of water-gas or oil-
gas, with water being the wetting phase for the illite layers and oil being the
wetting phase for the kerogen layers.

The grain bulk modulus, density, dry bulk and shear modulus, porosity and
permeability of the illite are (in MKS units)

Ks = 28.431109 ρs = 2700.0, Km = 18.0098× 109 µm = 12.4683× 109

φ = 0.1, κ = 2× 10−19

For the kerogen layers, the grain density, dry bulk and shear modulus, porosity
and permeability are (in MKS units)

Ks = 6.7759109 ρs = 1400.0, Km = 4.2923× 109 µm = 1.277× 109

φ = 0.1, κ = 2× 10−19

The bulk modulus, density and viscosity of the fluids are 2.25 GPa, 1000
kg/m3 and 0.001 Pa·s for water, 0.022 GPa, 78 Kg/m3 and 0.00015 Pa·s for
gas and 0.57 GPa, 700 Kg/m3 and 0.01 Pa·s for oil, respectively.

In the illite layers, saturation for the water (wetting) phase is Sw = 0.99, while
the nonwetting gas phase has saturation Sg = 0.01.

In the kerogen layers saturation for the wetting (oil) phase is So = 0.05, and
the nonwetting gas phase has saturation is Sg = 0.95.

The two-phase fluid is described in terms of relative permeabilities, Krn(Sn) ,
Krw(Sn), and capillary pressure function, Pca(Sn), taken to be [29,34]:

Krn(Sn) = (1− (1− Sn)/(1− Srn))
2 ,

Krw(Sn) = ([1− Sn − Srw] / (1− Srw))
2 ,

Pca(Sn) = A
(
1/(Sn + Srw − 1)2 − S2

rn/[Sn(1− Srn − Srw)]
2
)
,

where A is the capillary pressure amplitude, chosen to be 30 kPa in all ex-
periments. These relations are based on laboratory experiments performed on
different porous rocks during imbibition and drainage processes (neglecting
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hysteresis effects) and are of common use in multiphase flow reservoir simula-
tion.

The first experiment compares energy velocities and attenuation coefficients
of qP, qSV, and SH waves for a two-phase gas-brine mixture defined using the
2PBM with those corresponding to the analytical solution using the SPBM as
in [15], with the single-phase fluid determined by weighting the gas and brine
properties with the corresponding saturations in background and fractures.
Note that the analytical solution correspond to the case when the kerogen
layers are elastic.

The effective single phase fluid viscosity η(eff), density ρ(eff) and bulk modulus
K(eff) are computed as follows,

η(eff) = ηnSn + ηwSw,

ρ(eff) = ρnSn + ρwSw

1

K(eff)
=

Sn

Kn

+
Sw

Kw

,

8



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500  1000  1500  2000  2500  3000  3500

V
e z

(m
/s

)

Vex(m/s)

qP waves, SPBM,  analytical
qP waves, 2PBM, numerical

qSV waves, SPBM, analytical
qSV waves, 2PBM, numerical

Fig. 1. Polar representation of energy velocities of qP and qSV waves of the 2PBM
for a two-phase gas-brine fluid and those of the analytical model, the latter computed
using and effective single-phase fluids. Residual saturations are Srn = 0, Srw = 0.01.
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[17] Saenger E. H., Ciz, R., O. S. Krüger, O. S., Schmalholz, S. M., Gurevich,
B., and Shapiro, S. A., Finite-difference modeling of wave propagation on
microscale: A snapshot of the work in progress, Geophysics 2007; 72: SM293-
SM300.

[18] Grechka, V. and M. Kachanov, M., Effective elasticity of rocks with closely
spaced and intersecting cracks, Geophysics 2006; 71: D85D91.

[19] Wenzlau, F., Altmann, J. B. and Müller, T. M., Anisotropic dispersion and
attenuation due to wave-induced flow: quasi-static finite element modeling in
poroelastic solids, J. Geophys. Res. 2010; 115: B07204.

[20] Quintal, B. H., Steeb, M., Frehner, M. and Schmalholz, S. M., Quasi-static
finite element modeling of seismic attenuation and dispersion due to wave-
induced fluid flow in poroelastic media, J. Geophys. Res. 2011; 116: B01201.

[21] Santos, J. E., Mart́ınez Corredor, R. and Carcione, J. M., Seismic velocity

11



 0

 0.025

 0.05

 0.075

 0.1

 0.15

 0.2

 0.025  0.05  0.075  0.1  0.15

10
00

/Q
 (

z)

1000/Q (x)

qP waves, SPBM, analytical
qSV waves, SPBM, analytical

Fig. 4. Polar representation of attenuation coefficient of qP and qSV waves for
the analytical solution computed using and effective single-phase fluids. Jose: aqui
se grafican separados los casos analiticos de atenuacion de la Figura 2 porque los
valores se ven como un punto en ese grafico.

and Q anisotropy in fractured poroelastic media, Int. J. Rock. Mech. Min. Sci.
2014; 70: 212 – 218.

[22] Santos, J. E. and Carcione, J. M., Finite-element harmonic experiments to
model fractured induced anisotropy in poroelastic media, Comput. Methods
Appl. Mech. Engrg. 2015; 283: 1189 – 1213.

[23] Santos, J. E. and Gauzellino, P. M. Numerical Simulation in Applied
Geophysics, Birkhauser, Lecture Notes in Geosystems Mathematics and
Computing, 2017.

[24] Auriault, J. L., Lebaigue, O. and Bonnet, G., Dynamics of two immiscible
fluids flowing through deformable porous media, Transport in Porous Media
1989; 4: 105 – 128.

[25] Lo, W. C., Sposito, G. and Majer, E., Wave propagation through elastic porous
media containing two immiscible fluids, Water Resources Research 2005; 41:
W02025, 1-20.

[26] Qi., Q, Muller, T. M., Gurevich, B., Lopes, S., Lebedev, M., and Caspari, E.,
Quantifying the effect of capillarity on attenuation and dispersion in patchy-
saturated rocks, Geophysics 2014; 79: WB35 WB50.

[27] Santos, J. E., Douglas, J., Jr., Corberó, J. and Lovera, O. M., A model for wave
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