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SUMMARY

Shale reservoir formations are porous rocks of low permeability composed of fluid saturated

illite-smectite and kerogen layers, which behave as viscoelastic transversely isotropic (VTI)

media at long wavelengths. Seismic waves travelling across these heterogeneous materials in-

duce fluid flow (WIFF) and Biot slow waves generating energy loss (mesoscopic loss) and

velocity dispersion. When these formations are saturated by two-phase fluids, the presence of

capillary forces – interfacial tension – and interaction between the two fluids as they move

within the pore space need to be taken into account. This can be achieved by using a Biot

model of a poroelastic solid saturated by a two-phase fluid that includes capillary pressure

and relative permeability functions and supports the existence of two slow waves. An upscal-

ing finite element (UFE) method is used to analize the WIFF, which determines an effective

VTI medium predicting higher attenuation and (Q) anisotropy than the classical single-phase

(single fluid) models.
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1 INTRODUCTION

The purpose of this work is to analyze the anisotropic behavior of seismic attenuation in shale

reservoir rocks as a function of fluid saturation and spatial distribution of organic matter (oil and

kerogen) in the rock matrix. Most shale reservoir rocks are laminated media of very low perme-

ability composed of illite-smectite layers and organic matter in the form of oil, gas and kerogen.

For seismic wavelengths much larger than the thickness of the layers, these laminated materials

behave as homogeneous viscoelastic transversely isotropic (VTI) media.

Biot (1956b; 1956c; 1962) developed a theory to describe wave propagation in a poroelastic

solid saturated by a single-phase fluid (a single-phase Biot medium - SPBM). The theory predicts

the existence of two compressional waves (one of them slow), and one shear wave. The fast P-

wave has solid and fluid motions in phase, and the slow Biot P-wave has out-of-phase motion,

causing strong energy losses. The existence of the second slow wave was confirmed by Plona

(1980). However, Biot’s theory does not take into account the presence of capillary forces and

interference effects between the two fluids as they move within the pore space.

A generalization of Biot’s theory to the case when a poroelastic medium is saturated by a

two-phase fluid (a two-phase Biot medium - 2PBM) was presented in Santos, Douglas, Corberó

& Lovera (1990a), Santos, Corberó & Douglas (1990b) and Ravazzoli, Santos & Carcione (2003).

The 2PBM model includes effects of capillary and relative permeability functions defined in terms

of the two-phase Darcy’s law (Scheidegger 1974; Peaceman 1977). The model predicts the exis-

tence of one fast wave, two slow compressional waves and one shear wave. Capillary forces are

responsible for the existence of one additional slow wave, while relative permeability functions

induce energy losses due to interferences between the two-phase fluids as they move within the

pores.

Among other authors analyzing the quasi-static and dynamic behavior of porous rocks with

partial, miscible or segregated fluid saturation we mention the works of Dutta & Odé (1979),
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Mochizuki (1982), Berryman, Thigpen & Chin (1988) and Toksöz, Cheng & Timur (1976). None

of the above approaches incorporate the capillary forces. Using an homogenization approach, Au-

riault (1989) included a description of capillary effects at the pore scale obtaining a two-phase

Darcy law.

One significant cause of attenuation in layered fluid-saturated poroelastic media is wave-

induced fluid flow (WIFF), by which the fast compressional (P) and shear (S) waves are converted

to slow (diffusive) Biot waves as they travel across heterogeneities in the fluid and petrophysical

properties of the medium. We refer to this mechanism as mesoscopic loss. The mesoscopic-scale

length is intended to be larger than the grain sizes but much smaller than the wavelength of the

pulse. For instance, if the matrix porosity varies significantly from point to point, diffusion of pore

fluid between different regions constitutes a mechanism that can be important at seismic frequen-

cies. A review of the different theories and authors, who have contributed to the understanding

of this mechanism, can be found, for instance, in Carcione & Picotti (2006), Müller, Gurevich &

Lebedev (2010) and Carcione (2014). In this work, the analysis of the WIFF takes into account

the presence of two slow waves and the additional energy losses present in the case of two-phase

fluids.

For an analysis of anisotropy in stratified media, we mention the early work by Carcione

(1991), whereas Carcione & Avseth (2011) treated the specific case of source rocks without energy

loss. Gelinsky & Shapiro (1997) obtained the relaxed and unrelaxed stiffnesses of the equivalent

poro-viscoelastic medium to a finely layered SPBM. Assuming that the layers are homogeneous

and flow is perpendicular to the layering plane, Krzikalla & Müller (2011) obtained the five com-

plex and frequency-dependent stiffnesses of an equivalent viscoelastic transversely isotropic (VTI)

medium to a layered SPBM.

Qi, Muller, Gurevich, Lopes, Lebedev & Caspari (2014) studied the effects of capillarity on

attenuation and dispersion in isotropic patchy-saturated rocks, They found that the capillary action

leads to an additional stiffening and thereby to higher phase velocities. It also implies a pressure

discontinuity at patch interfaces so that wave-induced pressure diffusion process is weakened and
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attenuation is reduced. As we shall see, we found in the present study that attenuation is enhanced

by the presence of capillarity.

The work in Santos and Carcione (2015) use the SPBM model to define a set of five harmonic

compressibility and shear experiments for determining the stiffness coefficients and the corre-

sponding energy velocities and dissipation factors of a long-wave equivalent VTI medium to a

densely fractured fluid-saturated poroelastic medium. The experiments are formulated as bound-

ary value problems (BVP) in the space-frequency domain that are solved using the finite element

(FE) method. See also Santos & Gauzellino (2017) for a detailed description of the use of the FE

method in the context of numerical rock physics and upscaling.

The first section of this paper states the equations defining a 2PBM model in the diffusive

range of frequencies. The next section presents the time-harmonic BVP to determine the stiff-

ness coefficients of a VTI medium long-wave equivalent to a layered 2PBM model poroelastic

material. The following sections present numerical experiments to determine the complex and fre-

quency dependent stiffness coefficients defining a VTI medium long wave equivalent to a periodic

medium consisting of illite-smectite and kerogen layers. First, we compare the results obtained

using the 2PBM model with the analytical ones computed using effective single-phase fluids and

the theory in Krzikalla & Müller (2011) for the SPBM model. The last sections apply the UFE pro-

cedure to analyze variations in energy velocities and dissipation factors due to changes in kerogen

concentration, variation in gas saturation and patchy oil-brine saturation in the kerogen layers.

2 THE MODEL DESCRIBING A POROELASTIC MEDIUM SATURATED BY A

TWO-PHASE FLUID

In a porous solid saturated by a two-phase fluid exist wetting and non-wetting phases denoted with

the subscripts (or superscripts) “w” and “n”, respectively, while “s” will indicate the solid phase.

Let Sl and Srl be the saturation and residual saturation of the l-phase, l = n,w, so that Srn <

Sn < 1 − Srw. Besides, assuming fully saturation of the pore space, Sw + Sn = 1 (Scheidegger

1974; Peaceman 1977).
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The relative particle fluid displacements are

u
ℓ = φ(ũℓ − u

s), ξℓ = −∇ · uℓ, ℓ = n,w.

where u
s = (us

i ), ũ
l = (ũl

i) ℓ = n,w, i = 1, 2, 3 are the time Fourier transforms of the displace-

ment vectors of the solid and fluid phases and φ is the matrix effective porosity.

Define εij(u
s) and es = εii(u

s) as the Fourier transforms of the strain tensor of the solid and

its linear invariant, respectively, and set u = (us,un,uw). Let τ = τij and ε = εij , i, j = 1, 2, 3

denote the time Fourier transforms of the stress and strain tensors, respectively. Also, let Pl denote

the time Fourier transform of the infinitesimal change in the pressure of the l-fluid phase, taken

with respect to the reference value P̄l l = n,w. This reference value is associated with the initial

equilibrium state having non-wetting fluid saturation S̄n and porosity φ̄. Pn and Pw are related

through the capillary relation (Scheidegger 1974; Peaceman 1977)

Pca = Pca(Sn + S̄n) = P̄n + Pn − (P̄w + Pw) = Pca(S̄n) + Pn − Pw ≥ 0. (1)

The stress-strain relations of a 2PBM are (Santos et al. 1990a; Ravazzoli et al. 2003):

τij(u) = 2N εij + δij(λu e
s −B1 ξ

n − B2 ξ
w), (2)

Tn(u) =
(
S̄n + β + ζ

)
Pn − (β + ζ)Pw = −B1 e

s +M1 ξ
n +M3 ξ

w, (3)

Tw(u) =
(
S̄w + ζ

)
Pw − ζ Pn = −B2 e

s +M3 ξ
n +M2 ξ

w, (4)

where

β =
Pca(Sn)

P ′

ca(S̄n)
, ζ =

Pw

P ′

ca(S̄n)
. (5)

The coefficient N is the shear modulus of the dry rock. The determination of the other coefficients

in (2)-(4) is explained in Santos et al. (1990a), Ravazzoli et al. (2003) and Santos and Gauzellino

(2017).

The equations for a 2PBM in the diffusive range of frequencies are

∂τij
∂xj

= 0, (6)

iω (S̄n)
2 ηn
κKrn(S̄n)

un
j − iω dnw uw

j +
∂Tn

∂xj

= 0, (7)

iω (S̄w)
2 ηw
κKrw(S̄w)

uw
j − iω dnw un

j +
∂Tw

∂xj

= 0, j = 1, 2, 3. (8)
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The cross dissipative coefficient dnw is taken to be

dnw(S̄n, S̄w) = ǫ

(
(S̄n)

2 ηn
κKrn(S̄n)

)(
(S̄w)

2 ηw
κKrw(S̄w)

)
. (9)

In (7)-(8) ηn, ηw are the fluid viscosities and κ, Krn(Sn), Krw(Sw) are the absolute and relative

permeabilities, respectively. In this work the following relative permeability and capillary pressure

functions are used (Ravazzoli et al. 2003):

Krn(Sn) = (1− (1− Sn)/(1− Srn))
2 ,

Krw(Sn) = ([1− Sn − Srw] / (1− Srw))
2 ,

Pca(Sn) = A
(
1/(Sn + Srw − 1)2 − S2

rn/[Sn(1− Srn − Srw)]
2
)
, (10)

where A is the capillary pressure amplitude, chosen to be 30 kPa.

3 THE EQUIVALENT VISCOELASTIC TRANSVERSELY-ISOTROPIC MEDIUM

As shown in Krzikalla and Müller (2011), a fluid-saturated poroelastic solid with a set of horizontal

layers behaves as a VTI medium with vertical symmetry axis at long wavelengths. Denoting by x1

and x3 the horizontal and vertical coordinates, respectively.

Denote by σij(ũs) and eij(ũs) the stress and strain tensor components of the equivalent VTI

medium, where ũs denotes the solid displacement vector at the macroscale. The corresponding

stress-strain relations, stated in the space-frequency domain and assuming a closed system are

(Carcione, 2014),

σ11(ũs) = p11 e11(ũs) + p12 e22(ũs) + p13 e33(ũs), (11)

σ22(ũs) = p12 e11(ũs) + p11 e22(ũs) + p13 e33(ũs), (12)

σ33(ũs) = p13 e11(ũs) + p13 e22(ũs) + p33 e33(ũs), (13)

σ23(ũs) = 2 p55 e23(ũs), (14)

σ13(ũs) = 2 p55 e13(ũs), (15)

σ12(ũs) = 2 p66 e12(ũs). (16)

Note that in a VTI medium p12 = p11−2p66, so that only five independent stiffness, i.e., p11, p33, p13, p55

and p66 need to be considered.
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As shown in Santos and Carcione (2015), these stiffnesses can be determined using five time-

harmonic experiments. Next, we present the generalization of those experiments using the 2PBM

to determine a VTI medium long-wave equivalent to a fine layered poroelastic solid saturated by

a two-phase fluid.

Denoting by x1 and x3 the horizontal and vertical coordinates, we will solve equations (6)-

(8) in the 2D case on a reference square Ω = (0, L)2 with boundary Γ in the (x1, x3)-plane.

Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where ΓL,ΓR,ΓB and ΓT denote the left, right, bottom and top

boundaries of Ω. Denote by ν the unit outer normal on Γ and let χ be a unit tangent on Γ oriented

counterclockwise so that {ν,χ} is an orthonormal system on Γ. To determine the five independent

stiffness coefficients, we solve equations (6)-(8) in Ω with the boundary conditions

u
n · ν = 0, u

w · ν = (x1, x3) ∈ Γ, (17)

i.e., no fluids enter or leave the sample, and the additional boundary conditions.

For p33:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓT , (18)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (19)

u
s · ν = 0, (x1, x3) ∈ Γ \ ΓT . (20)

Using the relation

∆V (ω)

V
= −

∆P

p33(ω)
, (21)

where V is the original volume of the sample, p33(ω) can be determined from equation (21) mea-

suring the complex volume change ∆V (ω) ≈ Lu
(33,T )
s,3 (ω), where u

(33,T )
s,3 (ω) is the average of the

vertical component of the solid phase at the boundary ΓT .

For p11:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓR, (22)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (23)

u
s · ν = 0, (x1, x3) ∈ Γ \ ΓR. (24)

Thus, this experiment determines p11 as indicated for p33, measuring the oscillatory volume change.
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For p13:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT , (25)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (26)

u
s · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB. (27)

From equations (11) and (13) we get

σ11 = p11ǫ11 + p13ǫ33 σ33 = p13ǫ11 + p33ǫ33,

with ǫ11 and ǫ33 being the (macroscale) strain components at ΓL and ΓT , respectively. Since σ11 =

σ33 = −∆P (c.f. equation (25)) we obtain p13(ω) as

p13(ω) =
p11ǫ11 − p33ǫ33

ǫ11 − ǫ33
. (28)

For p55:

−τ (u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (29)

us = 0, (x1, x3) ∈ ΓB, (30)

where

g =





(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .

The change in shape of the rock sample allows to obtain p55(ω) by using the relation

tg(βω) =
∆G

p55(ω)
, (31)

where β(ω) is the departure angle between the original positions of the lateral boundaries and

those after applying the shear stresses, that can be determined by measuring the average horizontal

displacement at ΓT (Santos & Carcione 2015).

For p66:

−τ (u)ν = g2, (x1, x2) ∈ ΓB ∪ ΓR ∪ ΓT , (32)

us = 0, (x1, x2) ∈ ΓL, (33)
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where

g2 =





(∆G, 0), (x1, x2) ∈ ΓB,

(−∆G, 0), (x1, x2) ∈ ΓT ,

(0,−∆G), (x1, x2) ∈ ΓR.

Then, we proceed as indicated for p55(ω).

The approximate solution of these five BVP was computed using a FE procedure. On each

cell of the FE partition of the computational domain we used bilinear functions to approximate

each component of the solid displacement vector, while for the non-wetting and wetting fluid

displacements we used a closed subspace of the vector part of the Raviart-Thomas-Nedelec space

of zero order (Raviart & Thomas 1975). See Santos & Carcione (2015) and Santos & Gauzellino

(2017) for details on the description of these finite element spaces. Also, it was shown in Santos

& Carcione (2015) that the error associated with these finite-element problems, measured in the

energy norm, is on the order of h1/2, with h being the size of the computational mesh. The proof

can be generalized to the case of two-phase fluids analyzed here.

4 NUMERICAL EXPERIMENTS

The five complex stiffnesses pIJ(ω), as a function of the frequency and propagation direction,

are determined by solving the associated BVP using the FE method. The corresponding energy

velocities and dissipation factors for qP, qSV and SH waves are obtained as in Appendices A and

B of Santos and Carcione (2015).

The FE experiments consider square periodic layered samples Ω of side length 0.09 cm with 6

periods of illite-smectite and kerogen layers (see Figure 1), discretized by using a 60×60 uniform

mesh, i.e., Ω = ∪jΩj . The material properties are given in Table 1.

4.1 Validation

The experiments consider 6 periods of 0.0135 cm of illite-smectite and 0.0015 cm of kerogen

layers, each layer saturated by a two-phase fluid. In the illite-smectite layers, the wetting and non-
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wetting phases are water and gas, with residual saturations Srw = 4.5% and Srg = 0, respectively,

and gas saturation is Sg = 1%. In the kerogen layers, the wetting and non-wetting phases are oil

and gas, with residual saturations Srw = Sro = 4.5% and Srg = 0, respectively, and gas saturation

is Sg = 10%. Thus, in these experiments Srn = Srg.

The experiments compare energy velocities and dissipation factors of qP, qSV and SH waves

computed by using the 2PBM, when the sample is saturated by a two-phase fluid mixture, with

the velocities obtained with the analytical solution using the SPBM model as in Krzikalla and

Müller (2011). The properties of the single-phase fluids are determined by weighting those of the

water-gas and the oil-gas mixtures with the corresponding saturations. The effective single phase

fluid viscosity η(eff), density ρ(eff) and bulk modulus K(eff) are obtained as Reuss averages for

the bulk moduli and arithmetic averages for densities and viscosities:

η(eff) = ηnSn + ηwSw,

ρ(eff) = ρnSn + ρwSw,

1

K(eff)
=

Sn

Kn

+
Sw

Kw

.

Figure 2 displays the energy velocities of the qP and qSV waves at 50 Hz for the FE 2PBM and

analytical models. Small differences between energy velocities can be observed, due to capillary

pressure and relative permeability effects present in the 2PBM. Figures 3 and 4 show that the

dissipation factors of the qP and qSV waves are much higher for the 2PBM than for the SPBM.

Furthermore, attenuation is higher at angles between 60 and 90 degrees for qP waves and at angles

between 30 and 60 degrees for qSV waves.

The higher attenuation predicted by the 2PBM model is due to the combined effects of relative

permeability and capillary pressure. Relative permeabilities define the dissipation function in the

Lagrangian formulation of the 2PBM (Santos et al., 1990a), and they represent the interaction

between the two fluid phases as they move within the pore space. To quantify this effect, we have

computed the L2 norm of the horizontal and vertical displacements of both fluid phases for the p11

and p33 tests. For the p11 test, the L2 norm of the horizontal displacement of the nonwetting phase
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is higher than that of the wetting phase, while for the p33 experiment this behavior was observed

for the vertical displacements. The same behavior of the displacements of the two fluid phases was

observed in all the experiments performed in this section. These relative motions between the two

fluid phases induce energy losses not present in single-phase fluids.

Figure 5 shows that the energy velocities of SH waves are not affected by the relative perme-

ability and capillary pressure. This behavior is explained by the fact that SH waves are uncoupled

of the qP waves and the shear experiment associated with the SH waves does not induce changes

in fluid pressure.

The following experiment analyzes the behavior of waves as a function of frequency in the

range 1 Hz–1 kHz. Figure 6 displays velocities of waves parallel (“11” waves) and normal (“33”

waves) to the layering plane, while Figure 7 shows the corresponding dissipation factors. Velocities

increase with frequency. Besides, “11” waves exhibit higher phase velocities than “33” waves.

Dissipation factors are frequency dependent with attenuation peaks of associated quality factors

Q = 50 at about 50 Hz for “11” waves and Q = 67 at about 60 Hz for “33” waves.

In reservoir rocks saturated by two-phase water-gas or oil-gas mixtures, there exists always a

certain percentage of immobile water or oil (the wetting phases), indicated by the residual wetting

saturation Srw. In all the remaining experiments, the residual saturations are Srg = 0, Srw = 10%.

4.2 Sensitivity to gas saturation in kerogen layers

To analyze changes in energy velocities and dissipation factors due to variations of gas saturation

in the kerogen layers, we consider the same sample of the validation experiments but Sg = 10 and

30 % in the kerogen layers. Figure 8 shows that the energy velocities of the qP and qSV waves for

the 2PBM are not sensitive to changes in gas saturation in the kerogen layers. The corresponding

values of the energy velocities for the SPBM are not shown due to their small differences with

those of the 2PBM.

The opposite situation is observed in Figures 9 and 10, which show the dissipation factors of

the qP and qSV waves as a function of the propagation angle at 50 Hz. For qP waves, attenuation

is higher for waves traveling normal to the layering plane, and higher for Sg = 10% than for



12 J. E. Santos, G. B. Savioli, J. M. Carcione and J. Ba

Sg = 30%. The attenuation predicted by the SPBM model exhibits a similar behavior but with

much lower values.

For qSV waves, attenuation is stronger for angles between 30 and 60 degrees, and higher

for Sg = 30% than for Sg = 10%. Attenuation values obtained by using the SPBM model are

negligible and are shown as a point at the origin. As in the previous example, relative permeabilities

are responsible for the high attenuation predicted by the 2PBM model.

4.3 Sensitivity to kerogen concentration

Here we analyze changes in the energy velocities and dissipation factors of qP and qSV waves

due to variations in the kerogen concentration. We consider the same sample of the validation

experiments with 6 periods of 0.012 cm of illite-smectite and 0.003 cm of kerogen (20 % kerogen)

and 6 periods of 0.0105 cm of illite-smectite and 0.0045 cm of kerogen (30 % kerogen). Figures

11-14 show the results. As expected, lower velocity corresponds to higher kerogen content (11-

12). Furthermore, the results exhibit much higher dissipation factors for the 2PBM model than for

the SPBM model, and a completely different anisotropic behavior. These experiments indicate that

the SPBM model is not reliable for predicting attenuation in multiphase saturated porous rocks.

4.4 Sensitivity to patchy saturation

Finally, we analyze the effect of patchy gas-oil saturation in the kerogen layers for the case of 40

% kerogen concentration. Patchy-saturation patterns produce strong mesoscopic-loss effects at the

seismic frequency band, as shown by White et al. (1975).

To generate patchy gas-oil distribution in the kerogen layers, we proceed as follows. The first

step to generate a patchy fluid distribution is to assign to each sub-domain Ωj , of the partition of

the domain Ω, a pseudo-random number using a generator with uniform distribution. This random

field is Fourier transformed to the spatial wave-number domain and its amplitude spectrum is mul-

tiplied by the von Karman spectral density given by (Frankel & Clayton 1986; Santos, Ravazzoli,

Gauzellino & Carcione 2005),

Sd(kx1
, kx3

) = S0(1 + k2(CL)2)−(H+Ne/2) (34)
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where k =
√
(kx1

)2 + (kx3
)2 is the radial wave-number, Ne is the Euclidean dimension, CL

the correlation length, H is a self-similarity coefficient (0 < H < 1) and S0 is a normalization

constant. Equation (34) corresponds to a fractal process of dimension D = Ne + 1 −H at scales

smaller than CL. The resulting fractal spectrum is then transformed back to the spatial domain,

obtaining a micro-heterogeneous fractal gas saturation model S
(j)
g .

Next, to assign to each cell Ωj either Sg = 1% or Sg = 30%, a threshold value S∗

g is chosen so

that for each sub-domain Ωj where S
(j)
g ≤ S∗

g it is assumed that such sub-domain has Sg = 1%,

while if S
(j)
g > S∗

g , Sg = 30% in Ωj . In this way, a multi-scale binary gas-oil patchy-saturation

model is constructed and an overall brine saturation Sg is obtained. In the examples, the fractal

dimension is D = 2.3 and the correlation length is 1.67 % of the side length of the sample.

Residual saturations are Srw = 10% and Srg = 0. Saturation in the illite-smectite layers is chosen

to be uniform with gas saturation Sg = 1%.

Figure 15 displays the patchy gas-oil distribution in the kerogen layers. White regions corre-

spond to Sg = 30%, and black regions correspond to Sg = 1%. Figures 16 and 17 show the

energy velocities and dissipation factors of qP and qSV waves at 50 Hz for the SPBM and 2PBM

models and patchy gas-oil saturation in the kerogen layers for overall gas saturation 10 %. The

results of the SPBM were obtained using the FE harmonic experiments as in Picotti el al. (2010)

with the effective single phase fluid properties determined as in equation (34).

Figure 16 shows that energy velocities are very similar for both models. On the other hand,

Figure 17 shows that for the SPBM model attenuation of the qP waves is almost isotropic, while

the 2PBM exhibits much higher attenuation and strong anisotropy. Besides, qSV attenuation is

strong for angles between 30 and 60 degrees and higher for the 2PBM model than for the SPBM

model.

Figure 18 shows the absolute value of the total fluid pressure distribution T̃ at 50 Hz, defined

as T̃ = Tn+Tw, with Tn and Tw being the generalized forces in equations (3) and (4), respectively.

It is seen that pressure gradients are the highest at the gas-oil interfaces. This illustrates the WIFF

mechanism.
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5 CONCLUSIONS

We have shown that in porous rocks saturated with two-phase fluids, the presence of capillary

forces (interfacial tension) and the relative permeabilities significant affect the attenuation of qP

and qSV waves. We considered shales composed of illite-smectite layers saturated with water and

gas, and kerogen layers saturated with oil and gas. Quasi-static experiments performed with a

finite-element procedure allowed us to compute the energy velocities and dissipation factors due

to wave-induced fluid flow. The higher attenuation and strong Q anisotropy predicted by the two-

phase Biot medium model is due to the combined effects of relative permeability and capillary

pressure. Relative permeabilities define the dissipation function in the Lagrangian formulation,

representing the interaction between the two fluid phases as they move within the pore space.

These relative motions induce energy losses not present in rock saturated with single-phase or

effective fluids. Possibly, these novel results are to be confirmed by experiments derived by the

present theory.
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Table 1. Material Properties.

Property illite/smectite kerogen water oil gas

Ks (GPa) 28.4 7 2.25 0.57 0.022

Km (GPa) 18 4.3 – – –

µm (GPa) 12.5 1.3 – – –

ρs (g/cm3) 2.7 1.4 1 0.7 0.078

φ (%) 10 10 – – –

η (cP) – – 1 10 0.015

κ (ndarcy) 200 200 – – –

Sw(%) 99 0 – – –

So(%) 0 90 – – –

Sg(%) 1 10 – – –
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illite/smectite saturated with water and gas

kerogen saturated with oil and gas

illite/smectite saturated with water and gas

kerogen saturated with oil and gaskerogen saturated with oil and gas

135 µm

  15 µm

Figure 1. Schematic model of the Vaca Muerta formation.



Q anisotropy in 2-phase fluids source rocks 19

 0

 500

 1500

 2500

 3500

 500  1500  2500  3500

V
e z

(m
/s

)

Vex(m/s)

qP waves, SPBM,  analytical
qP waves, 2PBM, numerical

qSV waves, SPBM, analytical
qSV waves, 2PBM, numerical

Figure 2. Polar representation of the energy velocities of the qP and qSV waves for the FE 2PBM and

analytical SPBM models at 50 Hz. The medium consists of a sequence of nine water-gas saturated illite-

smectite layers and one oil-gas saturated kerogen layer (relation 9-1). The results of the analytical model

are obtained as effective single-phase fluids.
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Figure 3. Polar representation of the dissipation factors of the qP waves for the FE 2PBM and analytical

SPBM models at 50 Hz. The medium consists of a sequence of nine water-gas saturated illite-smectite

layers and one oil-gas saturated kerogen layer. The results of the analytical model are obtained as effective

single-phase fluids.
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Figure 4. Polar representation of the dissipation factors of the qSV waves for the FE 2PBM and analytical

SPBM models at 50 Hz. The medium consists of a sequence of nine water-gas saturated illite-smectite

layers and one oil-gas saturated kerogen layer. The results of the analytical model are obtained as effective

single-phase fluids.
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Figure 5. Polar representation of the energy velocities of the SH waves for the FE 2PBM and analytical

SPBM models at 50 Hz. The medium consists of a sequence of nine water-gas saturated illite-smectite

layers and one oil-gas saturated kerogen layer. The results of the analytical model are obtained as effective

single-phase fluids.
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Figure 6. Velocity of waves parallel (“11” waves) and normal (“33” waves) to the layering plane as a

function of frequency. The medium consists of a sequence of nine water-gas saturated illite-smectite layers

and one oil-gas saturated kerogen layer.
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Figure 7. Dissipation factor of waves parallel (“11” waves) and normal (“33” waves) to the layering plane

as a function of frequency. The medium consists of a sequence of nine water-gas saturated illite-smectite

layers and one oil-gas saturated kerogen layer.
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Figure 8. Polar representation of the energy velocities of the qP and qSV waves for the FE 2PBM model at

50 Hz as a function of gas saturation in kerogen layers. The medium consists of a sequence of nine water-gas

saturated illite-smectite layers and one oil-gas saturated kerogen layer.
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Figure 9. Polar representation of the dissipation factors of the qP waves for the FE 2PBM model at 50

Hz as a function of gas saturation in kerogen layers. The medium consists of a sequence of nine water-gas

saturated illite-smectite layers and one oil-gas saturated kerogen layer.
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Figure 10. Polar representation of dissipation factors of the qSV waves for the FE 2PBM model at 50 Hz

as a function of gas saturation in kerogen layers. The medium consists of a sequence of nine water-gas

saturated illite-smectite layers and one oil-gas saturated kerogen layer.
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Figure 11. Polar representation of the energy velocities of the qP waves for the FE 2PBM and SPBM

models at 50 Hz as a function of kerogen concentration. The medium consists of a sequence of eight (seven)

water-gas saturated illite-smectite layers and two (three) oil-gas saturated kerogen layer. Sg = 10% in the

illite-smectite and kerogen layers.
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Figure 12. Polar representation of the energy velocities of the qSV waves for the FE 2PBM and SPBM

models at 50 Hz as a function of kerogen concentration. The medium consists of a sequence of eight (seven)

water-gas saturated illite-smectite layers and two (three) oil-gas saturated kerogen layer. Sg = 10% in the

illite-smectite and kerogen layers.
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Figure 13. Polar representation of the dissipation factors of the qP waves for the FE 2PBM and SPBM

models at 50 Hz as a function of kerogen concentration. The medium consists of a sequence of eight (seven)

water-gas saturated illite-smectite layers and two (three) oil-gas saturated kerogen layer. Sg = 10% in the

illite-smectite and kerogen layers.
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Figure 14. Polar representation of the dissipation factors of the qSV waves for the FE 2PBM and SPBM

models at 50 Hz as a function of kerogen concentration. The medium consists of a sequence of eight (seven)

water-gas saturated illite-smectite layers and two (three) oil-gas saturated kerogen layer. Sg = 10% in the

illite-smectite and kerogen layers.
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Figure 15. Patchy gas saturation distribution in the kerogen layers. White regions correspond to Sg = 30%,

black regions correspond to Sg = 1%. Overall gas saturation in the kerogen layers is 10 %. The sample is

a square of side length 0.09 cm.
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Figure 16. Polar representation of energy velocities of the qP and qSV waves for the FE 2PBM and FE

SPBM models at 50 Hz. Patchy gas-oil distribution in the kerogen layers with overall gas saturation Sg =

10% with . The medium consists of a sequence of six water-gas saturated illite-smectite layers and four

oil-gas saturated kerogen layer (Kerogen concentration is 40 %). Sg = 1% in the illite-smectite layers.
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Figure 17. Polar representation of dissipation factors of the qP and qSV waves for the FE 2PBM and

FE SPBM models at 50 Hz. Patchy gas-oil distribution in the kerogen layers with overall gas saturation

Sg = 10% with . The medium consists of a sequence of six water-gas saturated illite-smectite layers and

four oil-gas saturated kerogen layer (Kerogen concentration is 40 %). Sg = 1% in the illite-smectite layers.
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Figure 18. Absolute value of the fluid pressure for the 2PBM model at 50 Hz, patchy gas-oil saturation

with 10 % overall patchy gas saturation in the kerogen layers. The medium consists of a sequence of six

water-gas saturated illite-smectite layers and four oil-gas saturated kerogen layer (Kerogen concentration is

40 %). Sg = 1% in the illite-smectite layers.


