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Summary

This progress report describes the main research activities carried out at Universidad Nacional

de La Plata, Argentina, since September 2007 to present date (March 2010).

After an initial stage in which we investigated about the generalities of the seismic monitor-

ing of underground carbon dioxide accumulations and the physical characterization of the gas

and reservoir fluids using different models and equations of sate, our work was directed to the

development of different numerical applications related to the seismic monitoring of the CO2

migration.

We developed a procedure for the evaluation of mesoscopic attenuation and velocity dis-

persion in heterogeneous formations. These effects are related to the dissipation of seismic

energy due to wave-induced fluid flow. For this study, we considered the case of patchy CO2

saturation in a brine saturated background. The problem involves the determination of effec-

tive complex plane wave and shear moduli in a highly heterogeneous fluid-saturated porous

solid employing finite element based upscaling procedures. This method resembles laboratory

compressional and shear tests on rock samples. The spatial heterogeneities in saturation are

represented by means of stochastic fractals, which also encouraged us to implement this method

in a Monte Carlo fashion. Our work also includes a parametric analysis as function of the spa-

tial distribution and saturation levels of CO2 in different geologic formations and the design

of efficient iterative solvers to determine the complex effective moduli at each frequency. A

closely related problem was the representation of the viscoelastic moduli previously obtained

using linear viscoelastic models.

The effective moduli obtained in this way were next used to perform finite element nu-

merical simulations of seismic wavefields (snapshots and traces) in CO2 saturated geological

formations using viscoelastic wave equations, to analyze the effect of this kind of accumulations

on the amplitude and attenuation of seismic waves. This procedure is computationally more

efficient than solving Biot’s equations of motion due to the extremely fine meshes that would be

necessary to represent properly the mesoscale heterogeneities and the large number of degrees

of freedom involved.

Another subject investigated is related to the modelling of the P-wave reflection coefficient

at the interface between a cap rock (such as a shale layer) and a layer saturated by a mixture

of CO2 and brine or oil at liquid, supercritical and gaseous conditions, using a Biot-Gassmann

formulation. The variations in the reflection coefficients vs. angle of incidence (AVA) are

commonly used in reservoir geophysics to obtain information about the rocks and pore fluids.

For this analysis we assumed a long term injection so that it is reasonable to consider that

the gas is uniformly distributed within the pore space of the rock forming a layer of thickness
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large compared to the seismic wavelengths. We performed a sensitivity analysis of the standard

AVA coefficients (the so called intercept, gradient and curvature) in the near offset range, to

investigate whether they can be useful to study the properties of horizontal CO2 accumulations

such as saturation, pressure and temperature.

On the other hand, our group developed an efficient pre-stack spectral inversion procedure

(based on the Simulated Annealing algorithm) for the characterization of thin layers and the

determination of thickness, P and S wave velocities and bulk density. The feasibility and

potential application of this technique to the problem of CO2 monitoring was analyzed using

synthetic gathers.
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1 Physical properties of CO2 and other reservoir fluids

at in situ conditions. Equations of State (EOS) for

CO2

As is well known, for modelling purposes it is necessary to compute the physical properties of the

different fluids involved in the CO2 sequestration procedure at variable formation temperature

(T ) and pressure (P ). With this idea one of the first steps in our work consisted in the

implementation of empirical models and sate equations to compute density, bulk modulus (or

alternatively compressibility) and viscosity of hydrocarbon oil and gas, brine and CO2.

Carbon dioxide and hydrocarbon gases behave as real gases, whose density and compress-

ibility can be computed using EOS. The corresponding properties of CO2 (density and bulk

modulus) for variable temperature and pressure can be computed using some of the general

equations of state (EOS) developed for real gases such as [72] or [52] [40], or some more specific

such as [68] or [22]. To our knowledge, there is not a full agreement yet in geophysical literature

about which EOS is the most appropriate to represent CO2 properties at the temperatures and

pressures found in geologic reservoirs. Among the different existing models we implemented

and compared the following ones

• Van der Waals (1873), involving two-parameters,

• Duan et al. (1992), involving fifteen-parameters,

• Xu (2002) formulas, based on Batzle & Wang (1992) laws, and

• Peng-Robinson (1976, 1978), involving two parameters.

In many cases (except for Duan et al. EOS), the range of validity in the T − P plane is

uncertain. Comparing the results obtained with the different models with real data [73] as

shown in Figures 1 and 2, we found that for pressures below the critical point for CO2 (7.4

MPa) the different results are in good agreement, with higher discrepancies for supercritical

pressures. In that range Duan et al. and Peng Robinson EOS give a more accurate density

representation. However, important discrepancies are observed in the adiabatic bulk modulus

computations KA, which are mainly due to an unproper calibration of the γ constant relating

isothermal to adiabatic modulus KI :

KA = γKI

Velocity measurements in rock samples of Utsira sandstone saturated with CO2 and other

geologic formations involved in the project would be very useful to improve this calibration.
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Figure 1: CO2 density versus pressure for a fixed temperature according to the different models
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Figure 2: CO2 bulk modulus versus pressure for a fixed temperature according to the different

models
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Figure 3: CO2 viscosity versus pressure for a fixed temperature according to Sutherland formula

and Fenghour et al. empirical models.

Other physical parameter of CO2 is the viscosity, which can be computed using Sutherland

temperature dependent formula. Alternatively, we used the formulas derived by [25] from

laboratory experiments, who found that CO2 viscosity depends not only on temperature but

also on pressure. In Figure 3 we compare the behavior of both models, which are in good

agreement only for low pressures. However it must be emphasized that for frequencies in

the seismic range the influence of the effective viscosity in seismic velocities and reflection

coefficients is minor.

Also, using Duan et al. (1992) equations we computed the solubility of CO2 in brine under

diferent physical condictions and brine salinity. Our aim is to analyze whether disolution effects

are important as trapping mechanism. In Figures 4 (a)-(b) we show some computations. These

results allow us to conlude that the volume fraction of CO2 dissolved in brine seems not to

be significant at the supercritical temperature and pressure conditions usually present in CO2

sequestration injection sites.

For simplicity, in the absence of measurements the density, bulk modulus and viscosity of

brine for given in situ temperature and pressure conditions are computed using the classic [6]

empirical relations.
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2 Modelling AVA coefficients at the top of CO2 accu-

mulations

Carbon dioxide is released into our atmosphere during hydrocarbon production and mainly

when carbon-containing fossil fuels such as oil, natural gas, and coal are burned during com-

bustion. As a result of the world-wide consumption of such fossil fuels, the amount of CO2 in

the atmosphere has largely increased over the past century. It is now widely accepted that the

continued increase in CO2 concentration is a major agent in global climate change.

Many carbon dioxide capture and storage projects are being developed worldwide to reduce

the emission of greenhouse gases in the atmosphere as a way to mitigate climate changes

in a transition period towards the use of more sustainable energies, in accordance with the

objectives of Kyoto agreement. The sequestration and geological storage of CO2 in many cases

is a feasible option to accomplish this goal, giving rise to the science of CO2 sequestration, a

new challenge for governments, scientists and engineers [58]. However this practice requires a

careful surveillance to prevent this greenhouse gas from seeping back to the atmosphere.

In most cases, the appreciable contrast between the physical properties of natural reservoir

fluids and those of carbon dioxide allows the utilization of 4D seismic methods as a monitoring

tool of the spatio-temporal distribution of this substance after the injection. Very good illus-

trations of this technique are described by [1], [17] and [2] at Sleipner injection field (North Sea,

Norway), among other works. While it is accepted that 4D seismic methods are able to monitor

the presence or absence of CO2, their ability to quantify the saturation and state of this fluid

within the reservoir is still under discussion. This makes necessary to search for reliable seismic

indicators for CO2 saturated geological formations.

It is widely recognized that the dependence of seismic reflection amplitude versus offset

from source to receiver (AVO) or equivalently, amplitude variations with ray angle (AVA)

are important tools for reservoir lithology and fluid characterization. With this idea, [10]

suggested an AVO based method to monitor both presence and degree of CO2 saturation.

They showed that variations in the best-fitting AVO parameters, A (intercept), B (gradient)

and C (curvature) [43], before and after CO2 injection may be seismically noticeable. More

recently, [32] presented an AVO model in brine reservoirs oriented to the identification of CO2

- brine interfaces. However, none of these works take into account the high variability of the

many parameters and state variables involved in CO2 sequestration problems. This led us to

model the seismic P-wave reflection coefficient at the top of a layer containing mixtures of CO2

and brine or oil, for variable saturations and different in situ pore pressure and temperature

conditions (e.g. in cold and warm basins). These results then allowed us to perform a parametric

analysis on the corresponding AVO parameters.
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From these experiments we conclude that the intercept parameter shows a monotonic de-

creasing behavior, with very strong variations with respect to the pre-injection state and for

low CO2 saturations, showing slower changes at higher saturations. The gradient parameter

also decays substantially for low CO2 saturations, showing changes of trend for saturations in

the intermediate range. The third AVO parameter (curvature term), related to the far offset

information, is less sensitive to saturation, showing changes that in some cases may be well be-

low the seismic resolution. We also found remarkable differences between the P-wave reflection

coefficient curves for liquid CO2 and those obtained for gaseous and supercritical states.

Our modeling results indicate that, under certain conditions, it would be possible to use

seismic parameters not only to establish bounds on CO2 saturation levels but also to characterize

the physical state of this substance in subsurface accumulations and leakages at different depth

levels.

2.1 Modelling procedure and main assumptions

The formulation and solution of the energy and amplitude splitting problem when a monochro-

matic plane compressional P-wave strikes obliquely at a plane interface between two isotropic

porous saturated homogeneous halfspaces was treated by different authors, such as [20], [24],

[64] and [59]. Following the ideas in those papers, in this work the mechanical behavior of

the porous media is described in terms of the classic constitutive relations and equations of

motion given by [8, 9]. At the interface, two reflected compressional waves (fast and slow)

and a shear wave are generated, and the same holds for the transmitted waves. However, it

must be remarked that when a low frequency seismic wave propagates through a porous sat-

urated medium, due to fluid viscosity both constituents (solid and fluid) move in phase, and

consequently the model response is equivalent to that resulting from the formulation given by

[27]. In this connection, since in this work we are interested in frequencies within the seismic

range, we can neglect slow wave conversion and focus in the fast P-wave reflection coefficient,

hereafter denoted by Rpp. Nevertheless, and only for some particular situations, we also analyze

the shear wave reflection coefficient denoted by Rps.

It is assumed that the mixture of CO2 and brine or CO2 and reservoir oil can be treated

as a viscous single phase fluid, as explained in the next section. We also consider that CO2 is

uniformly distributed within the pore space in one of the halfspaces, forming a layer of thick-

ness larger than the wavelengths of the incident waves. The computation of seismic reflection

coefficients for the case of thin layers or spatially variable CO2 distribution (such as patchy

saturation) would require a more complex treatment.

In general, the presence of intrinsic dissipation in this kind of media leads to a complex
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frequency dependent reflection coefficient, which produces changes in amplitude and phase of

the reflected waves [59]. Given that for the applications we are only considering viscous friction

effects associated to Biot’s global flow, which are negligible at low frequencies, the imaginary

parts of the reflection coefficients result several orders of magnitude lower than the real parts.

Consequently, for practical purposes they will be omitted.

To complete the model description, it is important to remark the assumption of no chemical

interactions between the pore fluids and the frame, which allows us to employ the fluid substi-

tution procedure to consider that the pore space is saturated by brine or oil and CO2 in variable

proportions. Variations of rock matrix elastic properties with effective pressure (related to the

difference between confining and pore pressure), are not taken into account either. However,

knowing the experimental effective pressure laws for the rocks under consideration would allow

us to incorporate this effect in the computations [59].

2.2 Effective properties of pore fluids

We study the injection of a volume of carbon dioxide VCO2 in a geologic reservoir in which the

pore volume Vp at the pre-injection state is fully saturated by liquid reservoir fluids such as

brine or oil. We assume that CO2 displaces, without dissolution, part of such fluids giving rise

to a two-phase fluid saturation. Then, if we denote the CO2 saturation as

Sg =
VCO2

Vp

, (1)

and if Sl denotes liquid saturation (corresponding to brine or oil), the following relationship

holds:

Sl + Sg = 1. (2)

We suppose that the fluid phase in the pore space can be described as a single-phase mixture

of liquid and gas, whose effective physical properties can be obtained by means of the following

rules:

mass density ρ∗f = Sl ρl + Sg ρg (weighted average), (3)

bulk modulus
1

K∗

f

=
Sl

Kl
+
Sg

Kg
(isostress Reuss average), (4)

viscosity η∗ ≃ ηg

(

ηl

ηg

)Sl

,Teja and Rice (1981) [69], (5)

where ρl, ρg are the individual liquid and gas densities, ηl, ηg their viscosities and Kl, Kg the

corresponding bulk moduli. For the present analysis we leave out capillary pressure effects.
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The density, bulk modulus and viscosity of brine and oil for given in situ temperature

and pressure conditions are computed using [6] empirical relations. For the computations we

consider a typical brine salinity of 50000 ppm. and a light oil with reference density ρ0 = 0.78

gr/cm3, according to the notation used by [6], equivalent to an API gravity equal to 49.91.

The corresponding properties of CO2 (density and bulk modulus) for variable temperature

and pressure can be computed using some of the general equations of state (EOS) developed

for real gases such as [72] or [52] [40], or some more specific such as [68] or [22]. To our

knowledge, there is not a full agreement yet in geophysical literature about which EOS is

the most appropriate to represent CO2 properties at the temperatures and pressures found in

geologic reservoirs. Then for our computations we employ the fifteen-parameter EOS given by

[22], valid for pressures in the range 0-800 MPa and temperatures from 0 to 1000 ◦C, which

guarantees a suitable representation of CO2 properties at different states. In some cases, for

comparison we also used the well known [72] cubic EOS.

To estimate CO2 viscosity we used the formulas derived by [25] from laboratory experiments,

who found that CO2 viscosity depends not only on temperature but also on pressure. However

it must be emphasized that for frequencies in the seismic range the influence of the effective

viscosity in seismic velocities and reflection coefficients is minor.

Depending on the in situ pressure and temperature conditions CO2 can exist at the under-

ground in different physical states. We recall that its critical point occurs at a temperature

Tc =31.1 ◦C and a pressure Pc =7.39 MPa. For pressures P < Pc and T < Tc CO2 behaves

as vapour and for P < Pc and T > Tc as a gas. For T < Tc and P > Pc CO2 is a liquid. At

temperatures higher than Tc and pressures higher than Pc CO2 is said to be at supercritical

state, where it is compressible like a gas but with the density of a liquid. This important char-

acteristic of CO2 behavior is particularly relevant for its underground storage since supercritical

CO2 is capable to fill the available volume with minimum buoyancy effects [5]. Temperatures

and pressures near the critical point commonly occur in applications involving CO2, such as en-

hanced oil recovery techniques and sequestration projects [44]. However, as pointed out by [5],

the depth at which CO2 supercritical conditions are met is highly variable and strongly depen-

dent on surface temperature and geothermal gradients, even within a single basin. In addition,

the pressure regime of the basin (normal or abnormal), is also very important and is related

to its geologic history, existence of sealing faults, permeability barriers and the occurrence of

overpressure generation mechanisms [51].
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2.3 Amplitude versus angle analysis

Variations in the reflection coefficients with angle of incidence are commonly used in reservoir

geophysics to infer properties about the lithology and fluid type of reservoir rocks [4, 43]. In this

work, we investigate whether AVA coefficients can be usefully applied to the characterization of

CO2 accumulations, a problem of particular relevance for monitoring lateral migrations across

permeable layers.

For the applications we consider a 50 Hz plane P-wave striking the horizontal interface

between a porous poorly consolidated sandstone, with high porosity and permeability, i.e. with

good storage capacity, overlain by a shale layer acting as sealing rock. For the sandstone we

consider the following parameters, taken from [24]: porosity 30%, permeability 1 Darcy, solid

grain bulk modulus 35 GPa, frame bulk and shear moduli 1.7 GPa and 1.855 GPa and grain

density 2.65 gr/cm3. The corresponding properties of the upper shale layer are: porosity 25%,

permeability 0.001 Darcy, solid grain bulk modulus 20 GPa, frame bulk and shear moduli

3.11 GPa and 1.528 GPa and grain density 2.45 gr/cm3. The shale rock is assumed to be

fully saturated with brine and the sandstone is assumed to be saturated by mixtures of brine

and CO2, in one case, and mixtures of oil and CO2 in another case, in variable volumetric

proportions.

In the near offset domain or below the critical angle, we assumed that the Rpp reflection

coefficient as a function of the incidence angle θ can be approximated in the usual form:

Rpp(θ) ≃ A+B sin2θ + C
(

tan2θ − sin2θ
)

, (6)

where the coefficient A is the so called intercept, B the gradient and C the curvature. The

intercept is equal to the normal incidence reflection coefficient and is controlled by the contrast

in acoustic impedance between both media. The gradient is more complex in terms of rock

properties and is related to contrasts in density, in compressional and shear wave velocities

[4]. The third parameter is important at far offsets and near the critical angle, in case it

exists [43]. Equation (6) can be used to carry out a parametric analysis on the A,B and C

coefficients to study their sensitivity at different saturation levels by implementing a standard

fitting procedure on the results obtained for Rpp(θ).

With the aim of analyzing the behavior of the seismic reflectivity at different scenarios, in

the following numerical experiments we consider variable CO2 saturations, ranging from 0 to

100%, and different physical states (supercritical, gaseous and liquid), according to the location

of the temperature and pressure pairs in the CO2 phase diagram. A linear relationship between

in situ temperature and pressure can be obtained by assuming that that the pore pressure at

any depth z is hydrostatic, i.e. P = ρwgz, where ρw is formation water density and g gravity.
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Figure 5: Schematic temperature vs. Pressure diagram and phase behavior of CO2 .

Also, considering a surface temperature T0 and a geothermal gradient G, so that T = T0 +G z,

it is straightforward that

P =
(ρwg

G

)

(T − T0). (7)

According to [5], we can distinguish warm basin conditions, where the trajectory in the P vs. T

diagram is to the right of the critical point and goes through the gas and supercritical regions.

The opposite geothermal conditions, defined as cold, are those in which the line P vs. T is to

the left of the critical point and passes trhough the vapor and liquid regions, as illustrated in

Figure 5.

The values of the physical properties of CO2 at the different states are given in Table 1.

12



CO2 Brine Oil

Gaseous CO2 K = 0.0049 GPa K = 2.5986 GPa K = 1.2175 GPa

T = 40 ◦C ρ = 0.1498 gr/cm3 ρ = 1.0287 gr/cm3 ρ = 0.7714 gr/cm3

P = 6 MPa η = 0.1787 10−3 Poise η = 0.785 10−2 Poise η = 0.01985 Poise

Supercritical CO2 K = 0.01397 GPa K = 2.6234 GPa K = 1.2640 GPa

T = 40 ◦C ρ = 0.6452 gr/cm3 ρ = 1.0304 gr/cm3 ρ = 0.7742 gr/cm3

P = 10 MPa η = 0.4963 10−3 Poise η = 0.784910−2 Poise η = 0.01985 Poise

Liquid CO2 K = 0.0931 GPa K = 2.5009 GPa K = 1.4319 GPa

T = 20 ◦C ρ = 0.8535 gr/cm3 ρ = 1.03607 gr/cm3 ρ = 0.7879 gr/cm3

P = 10 MPa η = 0.8089 10−3 Poise η = 0.01101 Poise η = 0.05002 Poise

Table 1. Physical properties of brine, oil and CO2 at different physical states, according to Batzle

and Wang (1992), Duan et al (1992) and Fenghour et al.(1998).

2.3.1 P-wave reflection curves

The set of plots in Figure 6 (a)-(c), show the general behavior of Rpp as a function of incidence

angle for fixed saturations and three CO2 states, considering also the case of CO2 injection in

brine and oil. Hereafter, according to the scheme in Figure 1, for the gaseous state (see Figure

6(a)) we consider a pore pressure P = 6 MPa and a temperature T = 40◦C, a condition that

could be found within a warm basin at shallow depths (below 1 Km). We also analyze the

seismic reflectivity in the liquid region (Figure 6(c)), by taking P = 10 MPa and T = 20◦C, a

possible case in a cold basin at about 1 Km depth. An intermediate situation, of great practical

interest, is that of supercritical CO2 (Figure 6(b)), which is analyzed by taking P = 10 MPa

and T = 40◦C. In the graphs we restricted the angles to the 0-30◦ interval (near offset range).

And, given the abrupt change observed in the reflection coefficients from pre-injection (i.e. for

0% CO2 saturation) to post-injection states, we decided not to show in the figures the curves

of 0% CO2 saturation to obtain a scale more convenient to direct the attention on the changes

of Rpp with CO2 saturation, an effect that in general is not strong.

The set of curves shown for fixed saturations 10, 20, 60 and 100% show an AVA class III

behavior, according to standard AVA classification [16]. In particular, the plots corresponding

to brine at supercritical state are similar to those recently published by [28] for Utsira sandstone.

As expected, due to the low impedance of the lower medium we obtain a negative reflection
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coefficient for normal incidence becoming more negative for higher angles. However, as will be

evident later, for saturations lower than 10% and for some physical states a different AVA class

can be found.

For both types of reservoir fluids we observe that the minimum reflection coefficients (in

absolute value) are obtained for liquid CO2 due to its high density and bulk modulus in this

state, having a lower contrast with respect to the physical properties of the reservoir fluids.

However, the Rpp coefficient for liquid CO2 allows a better discrimination of saturation degree

than in the other physical states under consideration. Except for the gaseous state, for the same

degree of saturation, Rpp is more negative for CO2-oil mixtures than for CO2-brine mixtures.

In the supercritical and gaseous sates variations with saturation are small and are associated

with changes in the second decimal place.

2.3.2 The influence of temperature and pressure

Considering uncertainties in the in-situ formation temperature and pore pressure and to asses

its influence on the seismic reflectivity, in Figures 7 and 8 we plot the variations of Rpp with

those state variables, assuming that they vary independently. We restricted to θ = 30◦ and a

limited number of CO2 saturations.

In Figure 7 we show the model computations for a fixed supercritical pressure P = 10

MPa, and temperatures ranging from 10 to 50◦C, where we can see that for both reservoir

fluids and for temperatures lower than 45◦C the reflection coefficient becomes more negative

with increasing temperature. The most pronounced changes are observed for the minimum

saturations with an average change of 23% every 10 ◦C for 10% saturation in brine and about

18% every 10 ◦C for oil.

The curves of Rpp vs. pressure for a supercritical temperature T = 40 ◦C (Figure 8) show

an almost constant behavior with pressure, with a noticeable change of trend at about 9 MPa,

associated to the transition zone from gaseous to supercritical CO2 (which was also corroborated

using [72] EOS). For the case of 10% saturation we found a change of 18% from 9 to 12 MPa

for brine and 16% for oil. Similar results were also found for normal incidence.

From both Figures 7 and 8 we observe that for higher CO2 saturations smaller variations

with pressure and temperature are observed. These results also prove the necessity of accurate

estimations of pressure and temperature for a proper calibration of theoretical models and real

time lapse seismic data, particularly at the early stages of injection, in which the errors could

be significant.
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Figure 6: P-wave reflection coefficient vs. ray angle for brine-CO2 mixtures (left) and oil-CO2

mixtures (right) for: a) gaseous CO2 , b) supercritical CO2 and c) liquid CO2 conditions.
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2.3.3 AVA coefficients versus partial CO2 saturation at different conditions

In the next set of Figures (9, 10 and 11) we plot the coefficients A,B,C to study their sensitivity

at different saturation levels, by fitting equation (6) to the numerical results obtained for Rpp(θ).

As stated previously, due to the large variation of these parameters with respect to the pre and

post-injection states, we excluded from the figure saturation levels lower than 5%, to accentuate

the variations at higher saturations, which in general are small. From this analysis we found that

the intercept parameter A, shows a monotonic decreasing behavior for the three states under

consideration. These variations are more pronounced for CO2 in liquid state, with significant

percentage changes in the range from 5 to 40%, which for a better interpretation are indicated

in the graph. It can be seen that they are greater than 100% for CO2-brine and greater than

60% for CO2-oil mixtures.

In the same saturation range the variation of A for supercritical and gaseous CO2 is much

lower but still noticeable for the reservoir fluids considered. This allows us to distinguish

clearly the liquid state from the other two, in which the overall behavior is the same but with

less significant changes. It is worthwhile to mention that for the particular case of liquid CO2

and for saturations lower than 5%, the intercept takes slightly negative values, consistent with

an AVA Class II case.

Regarding the gradient B, it can be seen that it is always negative showing a trend similar to

that of the intercept, except for the gaseous CO2 state, in which an opposite trend is observed.

The most significant variations take place for CO2 in liquid state (the percentage variations are

indicated in the figure).

With regards to the curvature coefficient C, for both fluid types, we only found significant

changes on the order of 10% for CO2 at the liquid state and for saturations in the range 0-40%.

For the other states the variations are much lower than 2%. The correct determination of

such small changes may be strongly limited by the seismic resolution. In this sense, [10] point

out that AVA variations on the order of 5% are seismically detectable. Using this numerical

threshold we can state that variations in the parameter C do not bring much information and

consequently an AVO analysis based solely on A and B may be sufficient.

2.3.4 Effect of the EOS

In Figure 12 we illustrate coefficients A, and B vs. CO2 saturation, comparing the results

obtained using [72] and [22] equations of state. For brevity, we only show the results corre-

sponding to mixtures of CO2 with brine at supercritical conditions. As stated previously, we

excluded of the figure CO2 saturations lower than 5% to enhance the small discrepancies be-

tween the curves. From the results we observe for CO2 saturations under 20% an almost perfect
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agreement, while for higher saturations A is slightly underestimated when using [22] EOS and

B results slightly overestimated. However, the discrepancies are lower than 3%. Equivalent

conclusions are obtained for the other physical states. From these experiments we can conclude

that for seismic modelling applications the choice of an EOS should not be a main concern

since it does not change significantly the results.

2.3.5 Shear wave conversion

Here we investigate whether shear wave reflections at the top of the CO2 accumulation could

be used for monitoring purposes. With this motivation we modeled the shear wave reflection

coefficient Rps(θ) for mixtures of CO2 with brine or oil at the different physical conditions

under consideration. In Figure 13 we show Rps for angles in the range 0-90◦ for the case of

gaseous CO2 injected in brine. Although the amount of energy conversion from compressional

to shear wave mode is very low, we remark that for this particular case Rps at far offsets is very

sensitive to saturation degree, which is observed for brine and also for oil. For a saturation

change from 10 to 100% this coefficient shows a decrease on the order of 60%. For supercritical

CO2 the curves show smaller differences while at the liquid state they are almost independent

of saturation. The same behavior is obtained for Rps in the case of CO2-oil mixture, with values

slightly lower than those in the previous case. They are not included for the sake of brevity.

2.4 Conclusions

We have analyzed the behavior of the compressional and shear wave reflection coefficients vs.

angle of incidence at the top of a plane CO2 accumulation within a poorly consolidated sand-

stone. Taking different temperatures and pore pressures corresponding to gaseous, supercritical

and liquid states, we have also modelled the variations of the AVA parameters A,B,C with

CO2 saturation. Appreciable differences between the reflection coefficient in the different states

were observed.

From this analysis we conclude that the intercept parameter A shows a monotonic decreas-

ing behavior, with very strong and rapid variations with respect to the pre-injection state. This

is also observed in the low saturation range, while much slower changes are found for higher sat-

urations. The gradient parameter B also decays strongly for low CO2 saturations even showing

slight changes of trend for saturations in the intermediate range, particularly for gaseous CO2.

The most pronounced changes of these parameters with CO2 saturation are observed for CO2

at liquid state, a condition that can be met in cold basin scenarios. The curvature parameter

C does not bring much more information about saturation, since in most cases its variations
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are smaller than those observed in A and B. In all cases analyzed the relative changes of

A,B and C at saturations higher than about 40% are considered to be unimportant. The lack

of sensitivity of AVA parameters in that saturation range imposes a serious limitation to any

attempt to quantify CO2 saturation degree using AVA information.

In some cases, reservoir temperature and pressure uncertainties can lead to significant errors

in the modelled reflection coefficients, particularly at low CO2 saturations. However, variations

in AVA coefficients derived from implementing different equations of state for carbon dioxide

are not significant.

With regards to the shear wave reflection coefficient at the top of the accumulation, we

found that the amount of energy conversion from compressional to shear wave mode is low but

particularly sensitive to saturation for gaseous CO2 injected in brine or oil.

Our results suggest the possibility of using seismic reflection data to characterize the physical

state of the CO2 accumulated into brine or oil reservoirs, even with normal incidence data only.

Moreover, the study of changes in AVA parameters over time may help to establish bounds

on CO2 saturation degree particularly at the early stages of accumulation below the cap-rock,

assuming uniformly distributed CO2 . We remark the need of a careful analysis about the

quality, resolution and processing of the seismic data. This is essential to obtain meaningful

estimations of the AVA coefficients and to asses the significance of the relative changes observed

in the parameters, which in some cases may be at the edge of conventional seismic resolution.
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The results presented in this Section 2 were also included in the following paper:

Seismic reflectivity analysis in carbon dioxide accumulations, by Claudia L.

Ravazzoli and Julián Gómez,

submitted to Journal of Applied Geophysics on 28/09/2009.

25



3 Modelling of velocity dispersion and attenuation in

fractal patchy saturated media: mesoscopic effects,

numerical upscaling

Different theoretical and laboratory studies on the propagation of elastic waves in real rocks

have shown that the presence of heterogeneities larger than the pore size but smaller than

the predominant wavelengths (mesoscopic-scale heterogeneities) may produce significant effects

in the attenuation and velocity dispersion of seismic waves. Such phenomena are known as

“mesoscopic effects” and are due to equilibration of wave-induced fluid pressure gradients. In

this work we present a numerical upscaling procedure to obtain equivalent viscoelastic solids

for heterogeneous fluid-saturated rocks. It consists in simulating oscillatory compressibility and

shear tests in the space-frequency domain, which enable us to obtain the equivalent complex

undrained plane-wave and shear moduli of the rock sample. The behavior of the porous media

is assumed to obey Biot’s equations, and a finite-element procedure is used to approximate

the solutions of the associated boundary value problems. Also, since at mesoscopic scales rock

parameter distributions are generally uncertain and of stochastic nature, we propose to apply

the compressibility and shear tests in a Monte Carlo fashion. This facilitates the definition

of average equivalent viscoelastic media by computing the moments of the equivalent phase

velocities and inverse quality factors over a set of realizations of stochastic rock parameters

described by a given spectral density distribution. We present numerical examples in which we

first analyze the sensitivity of the mesoscopic effects to different kinds of heterogeneities in the

rock and fluid properties. Next, we illustrate the application of the Monte Carlo procedure for

the particular case of quasi-fractal heterogeneities.

3.1 Motivations

Seismic velocities and absorption properties of rocks are key-parameters in the characteriza-

tion of their properties, and permit to obtain valuable information such as lithology, types of

saturating fluids, physical state and degree of saturation. Consequently, the understanding

of the physics controlling these parameters is of great interest for theoretical and exploration

geophysics and other branches of science.

One major cause of attenuation in porous media is wave-induced fluid flow, which can take

place at microscopic, macroscopic and mesoscopic spatial scales. The attenuation mechanism

associated with wave-induced fluid flow at microscopic scales is also known as local fluid flow

or squirt flow, and is due to fluid-filled microcracks which respond with greater fluid pressure
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changes than the main pore fluid producing fluid flow and, consequently, energy loss. This loss

mechanism is able to explain ultrasonic attenuation data but is incapable of explaining the

measured attenuation levels at seismic frequencies [55].

The loss mechanism predicted by the theory of Biot [8, 9], the classical Biot’s global fluid flow

in homogeneous media, has a macroscopic nature and is due to wavelength-scale fluid pressure

equilibration between the peaks and troughs of the fast propagating wave. This induces a

relative displacement between the solid frame and the fluid, causing energy dissipation due

to viscous friction. Although the attenuation due to global flow is generally important in the

range of ultrasonic frequencies, it is not significant at the seismic frequency band.

The wave-induced fluid flow at mesoscopic scales takes place when a fast wave travels

across an heterogeneous porous medium having inhomogeneities larger than the pore size but

smaller than the predominant wavelengths. Basically, when a compressional wave squeezes

an heterogeneous fluid-saturated porous material, the different regions of the medium, due to

their distinct elastic properties, may undergo different strains and fluid pressures. This in turn

produces fluid flow and Biot slow waves generating energy loss and velocity dispersion. These

effects can also be produced by shear stresses applied to the medium, particularly when the

mesoscopic heterogeneities have some local anisotropy associated with its shape [42]. Recent

results have demonstrated the importance of the mesoscopic effects in the context of exploration

geophysics, being the dominant P-wave attenuation mechanism in reservoir rocks at seismic

frequencies ([55]).

White and coauthors [74, 75] were the first to model the wave-induced fluid flow produced

by mesoscopic-scale heterogeneities, showing that this mechanism can produce important atten-

uation and velocity dispersion effects at seismic frequencies in partially saturated rocks. They

obtained approximated solutions of the response of plane porous layers alternately saturated

with gas and water [74] and of spherical gas pockets in a water-saturated porous rock [75].

These works established the physical equivalence between the behavior of the low-frequency

fast Biot’s waves in the presence of meso-scale heterogeneities and that of a viscoelastic solid

at a larger scale. Since then, many authors have made very important contributions to a better

understanding of this subject using a great variety of methods.

In this sense, we can mention the work of [54] who obtained an analytical model for the

seismic response of a mixture of two different porous phases having a single dominant length

scale, while [49] and [29] focused on the case of layered porous media. The case of irregular

patchy saturation received great interest during the last decade with important works such as

that published by [34], who developed a general analytical solution for arbitrary geometries.

Some years later, [46] analyzed the asymptotic behavior of attenuation and dispersion versus

frequency in different random porous media. On the other hand, [70] presented a comparative
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review of different models and analyzed the effect of random discrete and continuous fluid

distributions. More recently, these authors ([71]) assessed the mesoscopic effects in the case of

continuous random fluid distributions and [47] focused on fractal fluid distributions.

Mesoscopic effects have also been studied by performing numerical simulation of wave prop-

agation, such as in [30] and [61], among others. However, this methodology is computationally

expensive or even not feasible due to different reasons. First, very fine meshes are needed to

represent the inhomogeneities. In addition, in the low frequency range the resolution of the

diffusion process associated with the fluid pressure equilibration is a critical issue, since the

diffusion length is very small as compared with the seismic wavelengths.

To overcome these limitations, a different and very interesting approach was recently pre-

sented by [42]. In their work, a time-varying stress is applied to the boundaries of an hetero-

geneous sample and by numerically computing the average stress and strain fields its effective

complex moduli are determined.

First, we present an alternative methodology to obtain the equivalent compressibility and

shear complex moduli of heterogeneous rock samples. Such moduli are obtained by defining

an equivalent viscoelastic solid with the same attenuation and velocity dispersion as that of the

fast compressional (or shear) wave in the original fluid-saturated porous rock. We emphasize

that, since a viscoelastic solid is neither able to represent the propagation of both fast and slow

waves nor support fluid flow through it, this equivalence is not complete and must be understood

in the previously mentioned sense. The properties of the viscoelastic model are obtained by

applying time-harmonic compressibility and shear stresses to a representative sample of bulk

material, which are mathematically represented as local boundary value problems stated in

the space-frequency domain. Biot’s theory is used to model the response of the heterogeneous

material to the applied stresses, and the approximate solution is obtained using a finite-element

procedure. We validate the methodology by comparison with previously published theoretical

results.

Since at mesoscopic scales rock parameter distributions are generally uncertain due to their

high degree of spatial variability and the fact that direct observations are not possible, a second

goal arises. It consists in representing the heterogeneities as stochastic functions and apply-

ing the before-mentioned numerical experiments in a Monte Carlo fashion. Such approach

enables us to obtain the average equivalent complex plane-wave and shear moduli of highly-

heterogeneous fluid-saturated porous media, as well as their corresponding variances. These

moduli and variances represent the statistical properties of the response of a set of rock samples

containing stochastic multi-scale heterogeneities described by a given spectral density distribu-

tion and facilitate the analysis of the effects of the spatial variability on the seismic response

of these kind of media.
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We present numerical examples in which we first perform a parametric study to analyze

the sensitivity of the mesoscopic effects to different types of heterogeneities in the fluid and

rock properties. Next, we illustrate the application of the Monte Carlo approach to obtain

the average equivalent moduli and variances in the case that the poroelastic medium contains

quasi-fractal stochastic multi-scale heterogeneities.

3.2 Review of Biot’s theory

The propagation of waves in a porous elastic solid saturated by a single-phase compressible

viscous fluid was first analyzed by Biot in two important classical papers [8, 9, ]. He considered

a porous isotropic medium saturated by a single-phase, compressible viscous fluid, and assumed

that due to deformation the fluid may flow relative to the solid frame causing viscous friction.

Let us = (us
i ) and ũf = (ũf

i ), i = 1, · · · , E denote the average displacement vectors of the solid

and fluid phases, respectively, where E denotes the Euclidean dimension. Also let

uf = φ(ũf − us), (8)

be the average relative fluid displacement per unit volume of bulk material, where φ denotes

the effective porosity. Set u = (us, uf) and note that

ξ = −∇ · uf , (9)

represents the change in fluid content.

Let εij(u
s) be the strain tensor of the solid phase. Also, let σij , i, j = 1, · · · , E, and pf

denote the stress tensor of the bulk material and the fluid pressure, respectively. Following [9],

the elastic stress-strain relations can be written in the form:

σij(u) = 2µ εij(u
s) + δij(λc ∇ · us − α Kav ξ), (10)

pf(u) = −α Kav ∇ · us +Kavξ. (11)

The coefficient µ is the shear modulus of the bulk material, considered to be equal to the shear

modulus of the dry matrix. We also introduce

λc = Kc −
2

E
µ, (12)

where Kc is the undrained bulk modulus of the saturated (closed) material. Following [27],

the coefficients in expressions 10 and 11 can be obtained from the relations

α = 1 − Km

Ks

, (13)

29



Kav =

(

α− φ

Ks
+

φ

Kf

)−1

, (14)

Kc = Km + α2Kav, (15)

where Ks, Km and Kf denote the bulk moduli of the solid grains, the dry matrix and the

saturant fluid, respectively. The coefficient α is known as the effective stress coefficient of the

bulk material. It is also convenient to introduce the undrained plane-wave modulus Mc, given

by

Mc = λc + 2µ. (16)

For the present analysis, we consider that the moduli in the previous expressions are real and

frequency independent.

3.3 The equations of motion

Let ρs and ρf denote the mass densities of the solid grains and the fluid and let

ρb = (1 − φ)ρs + φρf (17)

denote the mass density of the bulk material. Let the positive definite matrix P and the

nonnegative matrix B be defined by

P =

(

ρbI ρfI

ρfI gI

)

, (18)

B =

(

0I 0I

0I bI

)

, (19)

where I denotes the identity matrix in R
E×E. The mass coupling coefficient g represents the

inertial effects associated with dynamic interactions between the solid and fluid phases, while

the coefficient b includes the viscous coupling effects between such phases. They are given by

the relations

b =
η

k
, g =

Sρf

φ
, S =

1

2

(

1 +
1

φ

)

, (20)

where η is the fluid viscosity and k the absolute permeability. The coefficient S is known as the

structure or tortuosity factor, computed according to [7]. Next, let L(u) be the second-order

differential operator defined by

L(u) = (∇ · σ(u),−∇pf(u))
t . (21)

Then, if ω = 2πf is the angular frequency, in the absence of body forces, the Biot’s equations

of motion stated in the space-frequency domain can be written in the form [8, 9, ]
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−ω2Pu(x, ω) + iωBu(x, ω) − L(u(x, ω)) = 0, (22)

where x denotes the position of an infinitesimal bulk volume in the Cartesian coordinate sys-

tem. Considering the homogeneous case, it was shown by [8] that in these type of media two

compressional waves, denoted here as P1 and P2, and one shear or S wave can propagate. The

P1 and S waves correspond to the classical compressional and shear waves propagating in elas-

tic or viscoelastic isotropic solids. The additional P2 slow mode is a wave strongly attenuated

in the low frequency range, and it is associated with the motion out of phase of the solid and

fluid. In terms of this theory, the physics of the mesoscopic attenuation and dispersion effects

in heterogeneous porous media is basically the conversion from fast-wave energy into slow-wave

energy at the discontinuities within the rock.

3.4 Description of the numerical method to obtain the equivalent

complex moduli

As we mentioned in the introduction, using numerical simulation of wave propagation to study

mesoscopic effects is computationally expensive or even not feasible.

A different and very convenient approach to achieve this goal is to apply time-harmonic

compressional and shear stresses to a representative sample of a fluid-saturated porous rock,

which enables us to obtain its equivalent complex plane-wave and shear moduli. This is per-

formed by defining an equivalent viscoelastic medium with the same attenuation and velocity

dispersion as the original porous rock. The theoretical basis for this procedure were given in

the works of [74, 23] and [34].

This idea is implemented computationally in the 2D case, with the obvious extension to the

3D case. Figure 14 shows a schematic representation of an undrained oscillatory compressibility

test, where ν is the unit outer normal on the boundaries of the sample and σ is the stress

tensor. In this experiment, the sample is subjected to a time-harmonic compression of the

form ∆Peiωt on its top boundary, and no tangential forces are applied on the boundaries of the

sample. Also, the solid is neither allowed to move on the bottom boundary nor have horizontal

displacements on the lateral boundaries, and the fluid is not allowed to flow into or out of the

sample.

Denoting by V the original volume of the sample, its (complex) oscillatory volume change,

∆V (ω), enables us to define the equivalent undrained complex plane-wave modulus Mc(ω), by

using the relation
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Figure 14: Schematic representation of an oscillatory compressibility test to estimate the equiv-

alent complex plane-wave modulus of a sample.

∆V (ω)

V
= − ∆P

Mc(ω)
, (23)

valid for a viscoelastic homogeneous solid in the quasistatic case.

To estimate the volume change ∆V (ω), we consider the solution of equation 22 under the

following boundary conditions

σ(u)ν = (0,−∆P ), (x, y) ∈ ΓT ,

σ(u)ν · χ = 0, (x, y) ∈ ΓL ∪ ΓR,

us · ν = 0, (x, y) ∈ ΓL ∪ ΓR, (24)

us = 0, (x, y) ∈ ΓB,

uf · ν = 0, (x, y) ∈ ΓL ∪ ΓR ∪ ΓB ∪ ΓT ,

where ΓL, ΓR, ΓB and ΓT are the left, right, bottom and top boundaries of the domain,

respectively. In the expressions 24, χ is a unit tangent on the boundaries of the sample and

the factor eiωt is omitted, since the problem is formulated in the space-frequency domain.

Assuming that the fluid-saturated porous sample is a square of side length L, the verti-

cal displacements us
2(x, L, ω) on the top boundary ΓT allow us to obtain its average vertical
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displacement us,T
2 (ω). Then, for each frequency ω, the volume change produced by the com-

pressibility test can be approximated by ∆V (ω) ≈ Lus,T
2 (ω). This in turn enables us to compute

the equivalent complex plane-wave modulus M c(ω) by using the relation 23. The corresponding

complex compressional velocity is given by ([11])

Vpc(ω) =

√

M c(ω)

ρb

, (25)

where ρb is the average bulk density of the rock sample. The following relations allow us to

estimate the equivalent compressional phase velocity Vp(ω) and (inverse) quality factor Qp(ω)

in the form ([11]):

Vp(ω) =

[

Re

(

1

Vpc(ω)

)]−1

, (26)

1

Qp(ω)
=

Im(Vpc(ω)2)

Re(Vpc(ω)2)
. (27)

Following the same methodology, in order to obtain the equivalent complex shear modulus of

the fluid-saturated porous medium, we apply the numerical shear experiment shown in Figure

15. In this case, the solid is not allowed to move on the bottom boundary of the sample, the

fluid is not allowed to flow into or out of the rock and shear stresses are applied on the left,

right and top boundaries.

The change in shape of the rock sample permits to recover its equivalent complex shear

modulus µc(ω) by using the relation

tan(θ(ω)) =
∆T

µc(ω)
, (28)

where θ(ω) is the departure angle between the original positions of the lateral boundaries and

those after applying the shear stresses (see, for example, [36]). Equation 28 is valid for a

viscoelastic homogeneous solid in the quasistatic approximation.

To estimate the shape change of the rock sample, let us consider the solution of equation

22 under the following boundary conditions

σ(u)ν = g(x, y), (x, y) ∈ ΓT ∪ ΓL ∪ ΓR,

us = 0, (x, y) ∈ ΓB, (29)

uf · ν = 0, (x, y) ∈ Γ,

where

g(x, y) =



















(0,−∆T ), (x, y) ∈ ΓL,

(0,∆T ), (x, y) ∈ ΓR,

(∆T, 0), (x, y) ∈ ΓT ,

(30)
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Figure 15: Schematic representation of an oscillatory shear test to estimate the equivalent

complex shear modulus of a sample.

and ∆T denotes the constant amplitude of the external oscillatory stress.

The horizontal displacements us
1(x, L, ω) on the top boundary allow us to obtain, for each

frequency, its average horizontal displacement us,T
1 (ω). Then, the shape change of the sample

can be approximated by tan(θ(ω)) ≈ us,T
1 (ω)/L, which from equation 28 let us estimate µc(ω).

The complex shear velocity is given by

Vsc(ω) =

√

µc(ω)

ρb

, (31)

and the equivalent shear phase velocity Vs(ω) and (inverse) quality factor Qs(ω) are estimated

using the relations

Vs(ω) =

[

Re

(

1

Vsc(ω)

)]−1

, (32)

1

Qs(ω)
=

Im(Vsc(ω)2)

Re(Vsc(ω)2)
. (33)

In order to estimate these equivalent complex moduli, we use a finite-element procedure

to approximate the solution of the equations of motion 22 under the boundary conditions 24

or 29. We use bilinear functions to approximate the solid displacement vector, while a closed

subspace of the vector part of the Raviart-Thomas-Nedelec space of zero order ([60, 48]) for the
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fluid displacement is employed. Santos et al. [67] show that uniqueness holds for the associated

weak forms for ω > 0 and sufficiently small. Also, these authors demonstrate that the error

associated with these finite-element problems, measured in the energy norm, is of order of the

size h of the computational mesh. The reader is referred to that work for the details of the

finite-element procedure.

Concerning the mesh size h, in the low frequency range it has to be small enough so that

the diffusion process associated with the fluid pressure equilibration is accurately resolved. For

practical purposes, in this work we take h so that the minimum diffusion length is discretized

with at least 3 mesh points at the highest frequency, which is sufficient to represent a (smooth)

diffusion-type process. In the case that the frequency is above the critical value at which the

slow wave becomes a truly propagating wave ([34]), the mesh size should be chosen as usual to

avoid unproper wavelength sampling.

We wish to emphasize that the size of the rock sample is not arbitrary: it has to be big

enough to constitute a representative volume of the medium but, at the same time, it has to

be much smaller than the wavelengths associated with each excitation frequency. To find an

upper bound for the side length L, we check that the compressibility and shear tests applied

to homogeneous samples of side length L, composed of any of the different materials forming

the heterogeneous medium, give negligible attenuation and velocity dispersion at the highest

frequency under consideration.

3.5 Validation of the procedure

To validate the procedure to estimate the equivalent plane-wave modulus, we assume that the

rock sample is composed of two poroelastic layers of equal thickness 0.2 m, one fully saturated

with water and the other fully saturated with gas. The physical properties of the solid matrix

are taken constant in all the domain, and correspond to the sandstone 1 in Table 2, while the

physical properties of the fluids (water and gas) are given in Table 3. The physical properties of

the solid grains and those of the fluids were taken from [13]; in addition, following their work,

the bulk and shear moduli of the dry matrices were computed using the model of [37], while

the Kozeny-Carman relation was employed to relate porosity and permeability. We consider a

partition of 75×75 equal square elements to approximate the solutions of the boundary value

problems.

Next, we compare the phase velocities and inverse quality factors obtained using our nu-

merical approach for frequencies lying between 0.1 and 100 Hz with the corresponding values

obtained using the analytical theory of [75] but, in the last case, considering a periodic medium

composed of alternating layers of equal thickness 0.4 m saturated with either gas or water.
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Figure 16: Compressional phase velocity obtained from the compressibility test (dots) and

using White’s theory (line) for frequencies lying between 0.1 and 100 Hz.

This comparison is valid because the boundary conditions for the compressibility test can be

associated with a compression similar to that proposed by [75], but applied to a periodic sample

obtained by a mirror reflection of the rock sample with respect to the x-axis.

Figures 16 and 17 display the compressional phase velocity and inverse quality factor as

functions of frequency, respectively, obtained with the compressibility test (dots) and with the

White’s theory (line). In both cases an excellent matching between the two approaches can

be observed, and the position of the peak in the curve of 1
Qp

is in good agreement with the

theoretical predictions obtained using concepts from standard diffusion and wave propagation

theories [43, 23].

To validate the procedure for the estimation of the equivalent shear modulus, we suppose

that the rock sample is composed of two horizontal layers L1 and L2, of thicknesses T1 and T2

respectively, such that T1 + T2 = 1 m. We assume that both layers are saturated with water

but their solid matrices are different: the solid matrix of the layer L1 is the sandstone 1 while

the solid matrix of the layer L2 is shale, with the physical parameters given in Table 2. Then,

we verify that the equivalent shear modulus obtained with the shear test for different values of

the shale content T2/(T1 + T2) and in the zero-limit frequency is in excellent agreement with

that obtained using the Reuss average for an effective mixture of sand and shale [43]. Also, as

expected, the imaginary part of the modulus is negligible due to the low frequency used in this

experiment. These curves are not shown here for brevity.
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Figure 17: Compressional inverse quality factor obtained from the compressibility test (dots)

and using White’s theory (line) for frequencies lying between 0.1 and 100 Hz.

Sandstone 1 Sandstone 2 Shale

Ks 37 GPa 37 GPa 25 GPa

ρs 2650 Kg/m3 2650 Kg/m3 2550 Kg/m3

φ 0.3 0.2 0.3

Km 4.8 GPa 12.1 GPa 3.3 GPa

µ 5.7 GPa 14.4 GPa 1.2 GPa

κ 1 Darcy 0.23 Darcy 1.5 × 10−5 Darcy

Table 2. Physical properties of the solid materials used in the numerical examples.

Water Gas Oil

Kf 2.25 GPa 0.012 GPa 0.7 GPa

ρf 1040 Kg/m3 78 Kg/m3 700 Kg/m3

η 0.003Pa·s 0.00015 Pa·s 0.01 Pa·s

Table 3. Physical properties of the fluids used in the numerical examples.
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3.6 A Monte Carlo approach to obtain the average equivalent com-

plex moduli

The compressibility and shear tests defined in the previous section enable us to estimate the

equivalent complex moduli of rock samples when the spatial distribution of their properties is

known in detail. However, as we mentioned before, a precise knowledge of the spatial distri-

bution of the rock heterogeneities at mesoscopic scales may not be feasible. Instead, they can

be represented as stochastic functions (parameters) with given spectral density distributions.

For instance, [30] used the von Karman self-similar correlation function to model patchy fluid

distributions, while [42] analyzed the behavior of materials having local properties randomly

sampled from certain probability distribution functions. This fact suggests the possibility of

applying the compressibility and shear tests in a Monte Carlo fashion, i.e., they can be applied

to representative samples of bulk material containing stochastic heterogeneities characterized

by certain spectral density distribution and the boundary value problems are solved for each

realization. This allows us to obtain the average equivalent complex moduli for such media, and

they represent the statistical behavior of the responses of the rock samples under consideration.

Following this stochastic approach, any given spatial property in the solid or fluid p(x, y)

is considered as a sample (or realization) taken at random from an ensemble of a physically

meaningful random function P (x, y, γ), where γ is the random variable. Using this concept

of ensemble allows us to define the statistical properties of the stochastic process P (x, y, γ)

and of any computed (random) quantity obtained as output of our model. For example, the

ensemble mean of P (x, y, γ) could be interpreted as the average of repeated measurements of

the property.

In our case, a finite set of realizations P (x, y, γn), n = 1, · · ·NR, is generated using a

given spectral density distribution. Next, for each temporal frequency ω and realization γn,

the phase velocities and inverse quality factors βn(ω), β = Vp, 1/Qp, Vs, 1/Qs, are random

functions and they are determined by taking spatial averages of the computed displacements at

certain locations of the domain, as explained in the derivation of formulas 26, 27, 32 and 33. In

this procedure we exchange ensemble averages of the computed displacements by their spatial

averages and consequently the ergodic hypothesis must be used. This hypothesis ([39]) states

that the statistical structure of P (x, y, γ) can be obtained by substitution of ensemble averages

by spatial averages, and is of common use in geophysical applications. Finally, the means and

variances of the random functions βn(ω), n = 1, · · · , NR represent the statistical behavior of

the response of the fluid-saturated porous rocks under consideration.

To analyze the convergence of the Monte Carlo approach in terms of the number of realiza-
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tions NR, the frequency average of the variances are computed by

‖ σ2
β(NR) ‖= 1

NF

NF
∑

m=1

σ2
β(ωm, NR), (34)

where

〈β(ωm, NR)〉 =
1

NR

NR
∑

n=1

βn(ωm), (35)

σ2
β(ωm, NR) =

1

(NR − 1)

NR
∑

n=1

[βn(ωm) − 〈β(ωm, NR)〉]2 . (36)

Following a standard criterion the Monte Carlo simulations are stopped after N∗

R realiza-

tions, such that the variances given by the expression 34 of the computed quantities stabilize at

constant values. Then, the averages 〈β(ωm, N
∗

R)〉 define our average equivalent phase velocities

and inverse quality factors for the heterogeneous fluid-saturated poroelastic material.

The presented methodology was implemented in a serial computer, employing a global solver

to find the solutions of the local boundary value problems associated with each realization.

Alternatively, each local boundary value problem could be submitted to a different processor in

a parallel cluster, in which case a linear speed up behavior would be obtained. An additional

reduction in CPU time for the Monte Carlo runs may be achieved by employing for each local

boundary value problem a suitable iterative procedure instead of a global solver.

3.7 Applications and Conclusions

In order to analyze the amount of attenuation and velocity dispersion caused by different types

of inhomogeneities in the rock frame and fluid properties, we consider some heterogeneous rock

samples and obtain their equivalent phase velocities and quality factors. We performed the

following experiments:

A. Sensitivity of the mesoscopic effects to the geometry of the fluid distribution

B. Sensitivity of the mesoscopic effects to rock permeability

C. Sensitivity of the mesoscopic effects to fluid viscosity

D. Sensitivity of the mesoscopic effects to heterogeneities in the fluid and frame properties

E. Sensitivity of the mesoscopic effects to lithological variations.

We do not include all the results in the report for brevity. The numerical experiments

enabled us to obtain the equivalent complex undrained plane-wave and shear moduli of rock

samples, as well as the corresponding phase velocities and quality factors. We applied our

methodology to diverse 2D rock models to analyze the sensitivity of the mesoscopic effects to
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different kinds of heterogeneities in the rock and fluid properties. Although we focused our

attention in the seismic range of frequencies, these experiments can also be performed at higher

frequencies, as long as the domain size and heterogeneity scales are properly chosen.

Since at mesoscopic scales rock parameter distributions are generally uncertain and of

stochastic nature, we proposed to apply the oscillatory tests in a Monte Carlo fashion. This

allowed us to define the average equivalent viscoelastic media by computing the moments of

the equivalent phase velocities and inverse quality factors over a set of realizations of stochastic

rock parameters characterized by a given spectral density distribution In order to illustrate this

procedure, numerical experiments were performed to obtain the average equivalent complex

moduli of gas-water patchy-saturated sandstones.

The proposed numerical upscaling procedure can be used to replace a Biot medium contain-

ing mesoscopic-scale heterogeneities by an equivalent (or average equivalent) viscoelastic solid,

where the mesoscopic effects are included by solving a set of local boundary value problems.

This methodology is particularly important in the context of exploration geophysics, since

performing numerical simulation of wave propagation employing the viscoelastic equation is

computationally much less expensive than any numerical procedure based on the discretization

of the full Biot’s equations for the same order of accuracy.
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The ideas presented in this Section are applied in next sections to model the seismic response

of rocks containing patchy CO2 distributions.
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4 Finite element numerical simulation of the propaga-

tion and attenuation of seismic wavefields in CO2 bear-

ing media

The analysis of attenuation at seismic frequencies due to wave-induced fluid flow caused by

mesoscopic-scale heterogeneities has been the object of many studies, such as [74, 56, 46, 41,

13, 61], among others. These heterogeneities in the solid frame and fluid properties, typically

on the order of centimeters, are much smaller than the wavelengths of the fast P and S waves

travelling in Biot’s media. Consequently, the huge number of degrees of freedom (DOF) needed

to represent these heterogeneities and their attenuation effects at the macroscale in any finite

element or finite difference based numerical procedure employing Biot’s equations renders such

approach not feasible. In [66] the authors presented a novel numerical upscaling approach to

tackle this problem. The idea is as follows: take a representative sample ΩR of bulk material and

perform (local) numerical oscillatory compressibility and shear tests to determine the equivalent

undrained complex frequency dependent plane wave Mc(ω) and shear modulus N(ω) associated

with ΩR in the range of frequencies at which the material is going to be tested by acoustic

methods.

These local compressibility and shear oscillatory tests are defined as boundary value prob-

lems formulated in the space-frequency domain assuming that the sample obeys Biot’s equations

of motion. The numerical solution of these boundary value problems employing a finite ele-

ment method allows to determine the equivalent moduli Mc(ω) and N(ω). These moduli are

then employed at the macroscale in a numerical simulator based on a finite element discretiza-

tion of the viscoelastic wave equation formulated in the space-frequency domain. Using this

numerical upscaling procedure the number of DOF is reduced in several orders of magnitude

as compared with the DOF that would be needed if Biot’s equation of motion was employed

at the macroscale, while still representing the acoustic behavior of the highly heterogeneous

fluid-saturated porous media. The proposed methodology is first validated by comparison with

previous numerical simulations performed using a finite element procedure for the approximate

solution of Biot’s equations of motion for the case of alternating layers of gas and water, as

presented in [61]. Then, it is applied to simulate the seismic response of an heterogeneous CO2

accumulation within the Utsira formation, at the Sleipner field, using the data in [14]. The

simulation results allow to explain the high levels of attenuation observed in the seismic data

surveyed in this injection field ([1, 2]), as a result of the lateral and vertical migration of the

CO2 and its distribution in the form of patches of gas within an otherwise brine saturated

formation.
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4.1 Methodology

Let us consider a 2D isotropic fluid-saturated porous material Ω with boundary ∂Ω containing

multiscale mesoscopic heterogeneities in the fluid and/or the solid matrix properties. Let us

take a part of bulk fluid-saturated material containing a representative number of such hetero-

geneities. This will be our representative element, denoted ΩR, and for simplicity let us assume

that ΩR is a square of side length LR, i.e. ΩR = (0, LR)2. In the absence of external body

sources, the oscillatory motion of ΩR at the angular frequency ω will be assumed to obey Biot’s

equations of motion, stated in the form

−ω2ρus(x, ω) − ω2ρfu
f(x, ω) −∇ · τ(us, uf) = 0, ΩR, (37)

−ω2ρfu
s(x, ω) − ω2Sρf

φ
uf(x, ω) + iω

η

k
uf(x, ω) +

∇pf(u
s, uf) = 0, ΩR, (38)

where us and uf are the Fourier transforms of the displacement vectors associated with the solid

and the fluid phases, respectively, x denotes the particle position and ω the angular frequency.

In (37)-(38) τ(us, uf) is the total stress tensor and pf(u
s, uf) is the fluid pressure, that are

defined by stress-strain relations with coefficients that can be determined in terms of the bulk

moduli Ks, Kf and Km of the solid grains, the fluid and the dry matrix, the shear modulus µ of

the dry matrix and the porosity (see [61]). In (37)-(38) ρs and ρf are the mass densities of the

solid grains and the saturating fluid and ρ = (1−φ)ρs +φρf is the bulk density of the material,

with φ being the effective porosity. Also, η is the fluid viscosity, κ the absolute permeability

and S the structure or tortuosity factor.

To determine the equivalent complex frequency dependent plane wave modulus Mc(ω) =

λc(ω)+2N(ω) and the complex shear modulus N(ω) associated with our domain Ω we proceed

as explained in [66], using a finite element procedure to solve Biot’s equations (37)-(38) in ΩR

with boundary conditions chosen to represent compressibility and shear oscillatory tests at a

finite number of angular frequencies ω. The computed displacements allow to measure the

volume and shape changes of the sample, from where Mc(ω) and N(ω) are obtained.

At this stage, for a finite number of frequencies we solve the following boundary value

problem at the macroscale (in Ω):

−ω2ρbu−∇ · σ(u) = 0, Ω (39)

−σ(u)ν = iωDu, ∂Ω, (40)

where u = (ux, uy) is the displacement vector in our equivalent viscoelastic material, ρb is the

average bulk density and (40) is a first-order absorbing boundary condition using the positive
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definite matrix D, which definition is given in [31]. The stress tensor σ(u) is defined in the

space-frequency domain by

σjk(u) = λc(ω)∇ · uδjk + 2N(ω)εjk(u), Ω, (41)

where εjk(u) denotes the strain tensor and δjk is the Kronecker delta.

The approximate solution of (39) with the boundary conditions (40) was obtained using a

finite element procedure employing a uniform partition T h of the computational domain Ω into

square subdomains Ωm, m = 1, · · · ,M of side length h. To approximate each component of

the solid displacement vector we employed the nonconforming finite element space defined in

[21], since it generates less numerical dispersion than the standard bilinear elements ([76]). It

can be demonstrated that the error associated with this numerical procedure measured in the

energy norm is of order h ([31]).

4.2 Validation of the numerical procedure

To validate the procedure we compared the time histories of the solid particle velocities obtained

using the equivalent viscoelastic model and those resulting from Biot’s equations of motion.

The domain Ω is a square domain of side length 800 m consisting in alternating layers of equal

thickness 40 cm fully saturated with either gas or water. The solid matrix and fluids properties

are ([13]): φ = 0.3, κ = 10−12 m2, S = 1, Ks = 37 GPa, Km = 4.8 GPa and µ = 5.7 GPa,

Kw = 2.25 GPa, ηw = 0.03 Poise, Kg = 0.012 GPa and ηg = 0.0015 Poise. The medium is

excited with a compressional point source with dominant frequency 20 Hz. The mesh sizes are

2000 × 2000 for the Biot model ([61]) and 200x200 for the viscoelastic model.

Figure 1 shows time histories of the vertical component of the velocity vy = iωuy in our

viscoelastic model as function of time at three receivers rj with receiver locations (xrj , yrj), j =

1, 2, 3, where xrj = 400 m, j = 1, 2, 3 and yr1 = 230 m, yr2 = 456 m, yr3 = 682m. The corre-

sponding time histories for the Biot model are almost identical and are not shown for brevity.

The amplitude decay due to the mesoscopic loss mechanism can be clearly observed. To fully

verify the agreement with White’s theory, the quality factor Q(ω) associated with this decay

rate was evaluated using the frequency-shift and spectral-ratio methods. Both methods yield

Q−estimates that are in very good agreement with the theoretical value (Q = 28 at the dom-

inant frequency 20 Hz) predicted by [74], [61]. Notice that using our upscaling procedure the

number of DOF has decreased in two orders of magnitude to obtain almost the same response

of the system, with the consequent drastic reduction in computing time.
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Figure 18: Time histories of the vertical component of particle the velocity at the receivers r1, r2

and r3 obtained with a viscoleastic model for a periodic gas-water saturated porous medium.

4.3 Application to seismic modelling in a CO2 injection site

As is well known, geological sequestration of carbon dioxide must be carefully monitored to

ensure that this greenhouse gas is not returned to the Earth’s atmosphere. Since October 1996,

million of tonnes of CO2 are separated from natural gas and re-injected into a shallow saline

aquifer, the Utsira formation at Sleipner field. This formation consists of a high porosity un-

consolidated sandstone with several thin intra-reservoir shale layers, which structural geometry

is not completely known. These shale intervals act as temporary seals causing accumulations

of high CO2 saturations beneath them ([1, 2]). However, as deduced from seismic interpreta-

tions and reservoir flow simulations ([1]), these shales allow for the vertical migration of CO2,

giving rise to the formation of chimneys at depth levels above the injection point. The marked

contrast between the physical and acoustical properties of natural reservoir fluids and those of

carbon dioxide allows for the utilization of seismic methods as a tool for monitoring the spatio-

temporal distribution of CO2 near the injection point. In particular, seismic data recorded in

this injection site show a strong amplitude decay and delay of the seismic signals through the

chimneys ([1]).

With these motivations, we employ our equivalent viscoelastic model to simulate the seismic

response of wave propagation using the parameters of the Utsira formation. Thus we design an
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Figure 19: The idealized subsurface model of CO2 accumulation.

idealized domain Ω = (0, L)2 with L = 1 Km consisting of different regions Ωi, i = 1, 2, 3, 4 as

shown in Figure 2.

The material properties of the regions Ωi are given in Table 4, taken from [14]. The thin

layers of shale, referred to as Ω2, are used to model the CO2 accumulations at different

depths. We assume that the major cause of the observed attenuation in the seismic sections is

associated to the accumulation of the CO2 in the region Ω4 of our idealized model. According

to the previous description, we assume that the pore space in region Ω4 contains a 90% of

brine and a 10 % of CO2 in the form of patches with a fractal-type spatial distribution, a novel

saturation model, not considered previously by the authors in this field. Region Ω3 is also

assumed to contain patches of CO2, but with 60% CO2 saturation and 40% brine saturation.

The regions Ω1 and Ω2 are considered to be brine-filled and are modeled defining a viscoelastic

material having the same phase velocities and quality factors than the original Biot’s mediums.

The generation of the viscoelastic moduli associated with the patchy saturated regions Ω3 and

Ω4 was achieved using stochastic fractal fields based on the so-called von Karman self-similar

correlation functions. Following [26] and more recently [65], we consider a particular case for

46



0 10 20 30 40 50
0

10

20

30

40

50

Figure 20: The reference sample ΩR associated with the patchy CO2 saturated region Ω4.

which the spectral density of the stochastic field is given by:

Sd(kx, ky) = S0(1 + k2a2)−(H+E/2) (42)

where k =
√

k2
x + k2

y is the radial wavenumber, a the correlation length, H is a self-similarity

coefficient (0 < H < 1) and S0 is a normalization constant. Equation (42) corresponds to a

fractal process of fractal dimension D = E + 1 −H at scales smaller than a.

Figure 3 displays the representative sample ΩR of the region Ω4, taken to be a square of

side length 50 cm with 10% CO2 saturation. The parameters associated with ΩR in Figure 3

are D = 2.2, a = 5 cm, E = 2.

Region ρs(gr/cm
3) Ks(GPa) φ Km(GPa) µ(GPa) S κ(cm2)

Ω1 2.6 40 0.35 1.33 0.85 2.8 1.6 10−8

Ω2 2.6 20 0.25 4.7 0.99 5 0.001 10−8

Ω3 2.6 40 0.36 1.4 0.87 2.8 1.6 10−8

Ω4 2.6 40 0.36 1.4 0.87 2.8 1.6 10−8

Table 4. Material properties of the Utsira formation
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The brine properties are ρw = 1.03 gr/cm3, Kw = 2.61 GPa and ηw = 1.2−2 Poise, while

the gas properties are ρg = 0.485 gr/cm3, Kg = 0.012 GPa and ηg = 0.0015 Poise. For regions

Ω3 and Ω4 we performed the described compressibility test in order to determine the complex

equivalent modulus Mc(ω) for each region.

Also, for each reference sample ΩR associated with either Ω3 or Ω4 we computed the average

bulk density ρb needed in (39). The shear modulus in Ω3 and Ω4 were taken to be real as in

Table 4. As result of the compressibility tests in Ω4 we obtained a decreasing set of values of

the P-quality factor Qp in the range (0, 100Hz), with values of Qp=10 at 15 Hz and Qp=5 at

100 Hz. The P-phase velocities vary between 1.22 km/s at 1 Hz and 1.4 km/s at 100 Hz. Thus,

we expect that P-waves will suffer strong attenuation when travelling across Ω4. On the other

hand, in Ω3 the compressibility tests yield values of the phase velocity almost independent of

frequency and equal to 1.17 km/s in the range (0, 100) Hz, and the values of the P-quality

factor Qp are Qp = 100 at 50 Hz and Qp = 50 at 100 Hz, so that waves would suffer very

little attenuation when travelling across this region. To excite the medium Ω in our numerical

simulations of seismic monitoring of CO2 injection we used a horizontal line source of dominant

frequency 25 Hz located at depth y = 100 m to obtain a plane wave travelling downwards across

the formation.

Figure 4 displays a snapshot of the vertical particle displacement at time t=225 ms. It

can be seen a very clear reflection which, due to fact that the wavelengths of the direct wave

are much greater than the thickness of the upper CO2-bearing layer, it is associated with the

interference of the reflections at the top and the bottom of such layer. Also, we can observe

a significant delay and amplitude decay of the direct wave while travelling across the chimney

(zone Ω4).

The next snapshot (Figure 5) corresponds to a time t=350 ms. It shows the very strong

attenuation and velocity dispersion produced by the chimney on the direct wave. Also, it can

be seen the generation of a reflection produced by the the lower CO2-bearing layer at both sides

of the chimney.

Figure 6 shows a plot of the recorded traces near the surface. The first reflection at about 250

ms is generated by the presence of the upper CO2-bearing layer, while the second reflection, at

approximately 600 ms, is produced at the second CO2 accumulation. A weak multiple reflection

is also observed. The center of the second reflector is strongly attenuated due to the two-way

travel across the chimney.

In our last numerical experiment we consider a smaller correlation length a = 1 cm in

the definition (42) of the fractal spectral density distribution to generate the complex moduli

associated with region Ω4, but keeping the overall CO2 saturation to be 10%. This change in the

correlation length causes changes in the size and shape of the patches, which in turn modifies
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Figure 21: Snapshot at t=225 ms for the case of a plane wave source.

Figure 22: Snapshot at t=350 ms for the case of a plane wave source.
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Figure 23: Time histories measured near the surface for the case of a plane wave source. Region

Ω4 has correlation length a=5 cm.
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Figure 24: Time histories measured near the surface for the case of a plane wave source. Region

Ω4 has correlation length a=1 cm.

the attenuation properties of Ω4. This can be noticed in Figure 7, where the weak delayed

reflection at approximately 850 ms corresponds to waves reflected at the second CO2-bearing

layer. This reflection can not be observed in Figure 6 due to the stronger attenuation effects

suffered by the waves. This difference in the seismic response is only due to the change of the

sizes and shapes of the patches of CO2, demonstrating that the mesoscopic-scale heterogeneities

can affect the seismic response at the macroscale.

4.4 Conclusions

We have presented a novel finite element procedure to model wave propagation and mesoscopic

attenuation effects in highly heterogeneous fluid-saturated poroelastic media. The method uses

a numerical upscaling procedure to define a viscoelastic model stated in the space-frequency

domain with complex coefficients bringing to the macroscale the attenuation effects due to the
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mesoscopic-scale heterogeneities. The method was first validated by comparison with previous

numerical experiments employing Biot’s equations of motion at the macroscale, showing that

the proposed methodology allows for a reduction in several orders of magnitude of the degrees

of freedom needed to represent the response of a given highly heterogeneous fluid-saturated

poroelastic medium. The algorithm was then applied to simulate the seismic response of a CO2

injection site in the Utsira formation. The numerical results obtained using fractal patchy satu-

ration, give a possible explanation for the high levels of attenuation observed. The experiments

also demonstrated that the size and shape of the CO2 patches in a brine-filled formation can

change the seismic response of the formation being monitored. The presented modelling pro-

cedure can be a useful tool in seismic monitoring, for the interpretation of time lapse seismic,

for the delineation of CO2 plumes and the characterization of its saturation type.

These results were presented in the following work:

J. E. Santos, J. G. Rubino and C. L. Ravazzoli Modelling mesoscopic attenua-

tion in a highly heterogeneous Biot’s medium employing an effective viscoelastic

model. Expanded Abstracts, Society of Exploration Geophysicists, International

Exposition and 78th. Annual Meeting, Las Vegas, 2008. ISSN 1052-3812.
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5 A finite element method to model attenuation and dis-

persion effects in highly heterogeneous fluid-saturated

porous media

A major cause of P-wave attenuation at seismic frequencies is known as mesocopic loss and it

is caused by heterogeneities greater than the pore size but much smaller than the predominant

wavelengths. A fast P-wave travelling in an heterogeneous fluid-saturated porous material in-

duces fluid-pressure gradients in the different regions of the medium. This in turn generates slow

P-waves that diffuse away from the interfaces separating the heterogeneities, causing energy

loss and velocity dispersion. White and coauthors [74, 75] were the first to model wave-induced

fluid flow produced by mesoscopic-scale heterogeneities in partially saturated rocks, showing

that this mechanism can produce important attenuation and velocity dispersion effects at seis-

mic frequencies. They obtained approximated solutions of the response of plane porous layers

alternately saturated with gas and water [74] and of spherical gas pockets in a water-saturated

porous rock [75]. In this fashion, the equivalence between the approximate behavior of low-

frequency fast compressional P-waves in the presence of mesoscale heterogeneities and that of

a viscoelastic solid at a the macroscale was established. Since those leading work, the study

of this attenuation mechanism has motivated the interest and research of many authors in this

field, such as [23, 56, 30, 13, 42, 61] , among others. These mesoscopic scale heterogeneities

in the solid frame and fluid properties, typically on the order of centimeters, are much smaller

than the wavelengths of the fast P and S waves travelling in Biot’s media. Consequently, the

huge number of degrees of freedom (DOF) needed to represent these heterogeneities and their

attenuation effects at the macroscale in any finite element or finite difference based numerical

procedure employing Biot’s equations renders such approach not feasible. In this paper we

present an alternative approach to overcome this difficulty. First we employ the numerical

upscaling procedure presented in [67] as follows. We define local boundary value problems

representing time-harmonic compressibility and shear tests applied to a representative sample

ΩR of bulk material containing stochastic heterogeneities described by their statistical proper-

ties. The computed volume and shape changes of ΩR allowed us to calculate complex P-wave

and shear moduli. Averaging over realizations of the stochastic parameters, we obtain average

P-wave and shear modul, denoted M c(ω) and µ(ω), respectively, defining locally an average

equivalent viscoelastic solid having approximately the same attenuation and velocity dispersion

than the original fluid-saturated porous rock. Biot’s theory [9] is used to model the response of

the heterogeneous material to the applied stresses. For each realization of the stochastic param-

eters, the equivalent complex P-wave moduli and shear moduli are obtained solving numerically
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Biot’s equations of motion in the space-frequency domain with appropiate boundary conditions

employing a finite element procedure and for a finite number of frequencies in the range where

the material is going to be tested by acoustic methods. Second, the computed average equiv-

alent complex P-wave and shear moduli M c(ω) and µ(ω) are employed at the macroscale to

define a viscoelastic medium that will represent our heterogeneous Biot’s medium. This vis-

coelastic medium is determined using a causal model that fit the computed frequency dependent

avarage moduli. Numerical simulations of wave propagation at the macroscale are performed

in the time-domain. The algorithm, based on the velocity-stress elastodynamic equations, uses

a spectral method with a Chebychev expansion in the vertical direction, and absorbing bound-

ary conditions at the artificial boundaries. This approach allows the calculation of the spatial

derivatives with high accuracy [12]. The anelasticity is described by the standard linear solid,

also called the Zener model. The proposed methodology is applied to the CO2 geological storage

monitoring. There is evidence that, during the last 150 years, the increased concentration of

greenhouse gases has increased the atmospheric temperature by 0.3 - 0.6 C. Geological seques-

tration of CO2 is an immediate option to reduce the emission of this gas into the atmosphere.

The main possibilities are injection into hydrocarbon reservoirs, saline aquifers and unmineable

coal mines. Wherever we put the CO2, however, it is necessary to do before, during and after

the injection integrated studies to model the long term behaviour of CO2. In particular, in this

study we are interested in the identification of potentially hazardous leakages using the seismic

method. In this work we consider one of the site of the CASTOR project, the almost depleted

Atzbach-Schwanenstadt gas-field in central northern Austria, where the CO2 comes from a pa-

permill and a fertilizer plant. This site is considered a potential site for a future CO2 injection.

It is important to monitor the time evolution of the injected CO2 within the reservoir and in

the sealing layers above, so to evidence changes and possible breakthrough before it reaches

the surface. The seismic survey method is very useful to this aim, because of the mesoscopic

loss effect, which occurs when the pore space is occupied either by liquids and gases. In this

application we evaluate whether in this particular case the seismic method is efficient.

5.1 Proposed methodology

We consider a 2D isotropic fluid-saturated porous material Ω with boundary ∂Ω composed

of several subdomains, say Ω = ∪m=M
m=1 Ωm. We assume also that some of the Ωm’s contain

multiscale mesoscopic heterogeneities in the solid and fluid properties, which are statistically

homogeneous and can be described by its statistical properties. Thus, for each subdomain Ωm

let us take a part of bulk fluid-saturated material containing a representative number of such

heterogeneities. This will be our representative element, denoted ΩR,m, and for simplicity let
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us assume that ΩR,m is a square of side length LR,m, i.e. ΩR,m = (0, LR,m)2. In the absence

of external body sources, the oscillatory motion of ΩR,m at the angular frequency ω will be

assumed to obey Biot’s equations of motion, stated in the form

−ω2ρmus,m(x̃, ω) − ω2ρm
f u

f,m(x̃, ω) −∇ · τ(us,m, uf,m) = 0, x̃ ∈ ΩR,m, (43)

−ω2ρm
f u

s,m(x̃, ω) − ω2
Smρm

f

φm
uf,m(x̃, ω) + iω

ηm

κm
uf,m(x̃, ω)

+∇pf(u
s,m, uf,m) = 0, x̃ ∈ ΩR,m. (44)

Here we denote by x̃ the local coordinate system at the mesoscale in ΩR,m. Also, us,m and

uf,m are the Fourier transforms of the solid and fluid relative to the solid displacement vectors,

respectively In (43)-(44) ρs and ρf are the mass densities of the solid grains and the saturating

fluid and ρm = (1 − φm)ρm
s + φmρm

f is the bulk density of the material, with φm being the

effective porosity. Also, ηm is the fluid viscosity, κm the absolute permeability and Sm the

structure or tortuosity factor. Also, τ(us,m, uf,m) is the total stress tensor and pf (u
s,m, uf,m) is

the fluid pressure, given by stress-strain relations

τjk(u
s, uf) = 2µm εjk(u

s,m) + δjk(λ
m
c ∇ · us,m + α Km

av ∇ · uf,m), (45)

pf (u
s,m, uf,m) = −αm Km

av ∇ · us −Km
av∇ · uf,m, (46)

where εjk(u
s,m) denotes the strain tensor and δjk is the Kronecker delta. Also, the coefficient

µm is equal to the shear modulus of the bulk material, considered to be equal to the shear

modulus of the dry matrix and

λm
c = Km

c − µm,

with Km
c being the bulk modulus of the saturated material. The coefficients in (45)-(46) can

be obtained from the relations

αm = 1 − Km
d

Km
s

, Km
av =

(

αm − φm

Km
s

+
φ

Km
f

)−1

, Km
c = Km

d + (αm)2Km
av, (47)

where Km
s , K

m
d and Km

f denote the bulk modulus of the solid grains composing the solid matrix,

the dry matrix and the the saturant fluid, respectively. The viscoelastic model to be used at the

macroscale to perform our numerical simulations will be defined in terms of the macroscopic

bulk density ρm
b (x) and the (undrained) macroscopic frequency dependent shear and P-wave

modulus µm
c (x, ω) andM

m

c (x, ω), with x denoting the coordinate system at the macroscale. The

coefficient ρm
b (x) is determined by averaging the local bulk density ρm(x̃) over ΩR,m. The average

equivalent complex frequency dependent plane wave modulus M
m

c (x, ω) = λ
m

c (x, ω)+2µm
c (x, ω)

and the average equivalent complex shear modulus µm(x, ω) are determined in a Montecarlo
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fashion as as in [67]. Here we briefly summarize the procedure. Biot’s equations (43)-(44) were

solved over a set of realizations of representative samples ΩR,m containing stochastic hetero-

geneities characterized by their statistical properties, with boundary conditions representing

compressibility and shear oscillatory tests at a finite number of angular frequencies ω. The size

of the rock sample ΩR,m is not arbitrary: it has to be big enough to constitute a representative

volume of the medium but, at the same time, it has to be much smaller than the wavelengths

associated with each excitation frequency. To find an upper bound for the side length LR,m, we

check that the compressibility and shear tests applied to homogeneous samples of side length

LR,m, composed of any of the different solid and fluid parts forming the heterogeneous medium,

give negligible attenuation and velocity dispersion at the highest frequency under considera-

tion. To obtain the equivalent complex plane wave modulus Mm
c (x, ω) associated with each

realization of the reference sample ΩR,m, ΩR,m is subjected to a time-harmonic compression of

the form ∆Peiωt on its top boundary, and no tangential forces are applied on the boundaries

of the sample. Also, the solid is neither allowed to move on the bottom boundary nor have

horizontal displacements on the lateral boundaries, and the fluid is not allowed to flow into or

out of the sample. Thus we solved equation (43)-(44) with the following boundary conditions:

τ(us,m, uf,m)ν = (0,−∆P ), on ΓT ,

τ(us,m, uf,m)ν · χ = 0, on ΓL ∪ ΓR,

us,m · ν = 0, on ΓL ∪ ΓR, (48)

us,m = 0, on ΓB,

uf,m · ν = 0, on ΓL ∪ ΓR ∪ ΓB ∪ ΓT ,

where ΓL, ΓR, ΓB and ΓT are the left, right, bottom and top boundaries of ΩR,m, respectively. In

the expressions 48 ν is the unit outer normal and χ is a unit tangent oriented counterclockwise

on the boundaries of ΩR,m such that {ν, χ} is an orthonormal system on Γ. The computed

displacements allow to measure the volume change of the sample, from where Mc(x, ω) is

determined [67]. Similarly, to obtain the equivalent complex shear modulus µm(x, ω) associated

with each realization of the reference sample ΩR,m, the solid is not allowed to move on the

bottom boundary of the sample, the fluid is not allowed to flow into or out of the rock and

shear stresses are applied on the left, right and top boundaries. Then in this case we solve

(43)-(44) with boundary conditions

τ(us,m, uf,m)ν = g, on ΓT ∪ ΓL ∪ ΓR,

us,m = 0, on ΓB, (49)

uf,m · ν = 0, on Γ,
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where

g =



















(0,−∆T ), on ΓL,

(0,∆T ), on ΓR,

(∆T, 0), on ΓT ,

(50)

and ∆T denotes the constant amplitude of the external oscillatory stress. The computed

change in shape of the rock sample permits to determine the equivalent complex shear modulus

µm
c (x, ω).

To solve (43)-(44) with either (48) or (49) as boundary conditions we used a finite element

procedure employing bilinear functions to approximate the solid displacement vector, while

for the fluid displacement a closed subspace of the vector part of the Raviart-Thomas-Nedelec

space of zero order was employed ([60, 48]). Concerning the mesh size used in this local

problems, it has to be small enough so that the diffusion process associated with the fluid

pressure equilibration is accurately resolved. For practical purposes, in this work we take the

mesh size so that the minimum diffusion length is discretized with at least 3 mesh points at the

highest frequency, which is sufficient to represent a (smooth) diffusion-type process. See [67]

for details on the finite element spaces and mesh sizes employed to solve each oscillatory local

problem.

The average and variance of the phase velocities and quality factors associated with these

moduli were obtained by averaging over realizations of the stochastic parameters, and the Monte

Carlo realizations were stopped when the variance of the computed quantities stabilized at an

almost constant value. The mean phase velocities and mean inverse quality factors obtained

in this fashion at a finite number of frequencies are the desired average equivalent plane wave

and shear modulus. As a final step, the computed complex frequency dependent moduli were

fitted with a suitable viscoelastic model to be employed at the macroscale in the numerical

simulations.

5.2 Memory variables and equation of motion

After computing the average equivalent complex plane wave and shear moduli, we perform nu-

merical simulations of wave propagation at the macrosacle solving the single-phase viscoelastic

differential equations. The memory-variable approach introduced in [12] is essential to avoid

numerical calculations of time convolutions when modeling wave propagation in the time do-

main. With this approach, we obtain a complete differential formulation. The dilatational and

57



shear relaxation functions in the stress-strain relation for isotropic media have the form:

ψK(t) = K∞

[

1 − 1

L1

L1
∑

l=1

(

1 − τ
(1)
ǫl

τ
(1)
σl

)

exp(−t/τ (1)
σl )

]

H(t), (51)

ψµ(t) = µ∞

[

1 − 1

L2

L2
∑

l=1

(

1 − τ
(2)
ǫl

τ
(2)
σl

)

exp(−t/τ (2)
σl )

]

H(t), (52)

where H is the Heaviside function and τ
(ν)
ǫl , τ

(ν)
σl are relaxation times corresponding to dilata-

tional (ν = 1) and shear (ν = 2) attenuation mechanisms. They satisfy τ
(ν)
ǫl ≥ τ

(ν)
σl , with the

equal sign corresponding to the elastic case.

The stress-strain relations read

σij = ψK ∗ ǫkkδij + 2ψµ ∗ dij, (53)

where ∗ denotes the time convolution. After introduction of the memory variables, we have

σij = KU

(

ǫkk +

L1
∑

l=1

e
(1)
l

)

δij + 2µU

(

dij +

L2
∑

l=1

e
(2)
ijl

)

, (54)

where

KU =
K∞

L1

L1
∑

l=1

τ
(1)
ǫl

τ
(1)
σl

, µU =
µ∞

L2

L2
∑

l=1

τ
(2)
ǫl

τ
(2)
σl

, (55)

and

e
(1)
l = ϕ1l ∗ ǫkk, l = 1, . . . , L1 (56)

and

e
(2)
ijl = ϕ2l ∗ dij, l = 1, . . . , L2 (57)

are sets of memory variables for dilatation and shear mechanisms, with

ϕνl =
1

τ
(ν)
σl

(

Lν
∑

l=1

τ
(ν)
ǫl

τ
(ν)
σl

)−1(

1 − τ
(ν)
ǫl

τ
(ν)
σl

)

exp(−t/τ (ν)
σl )H(t). (58)

The memory variables satisfy

e
(1)
l = ϕ1l(0)ǫkk −

e
(1)
l

τ
(1)
σl

, e
(2)
ijl = ϕ2l(0)dij −

e
(2)
ijl

τ
(2)
σl

. (59)

For n = 2 and say, the (x, z)-plane, we have three independent sets of memory variables. In

fact, since d11 = −d33 = (ǫ11 − ǫ33)/2, then e
(2)
11l = ϕ2l ∗ d11 = −ϕ2l ∗ d33. The other two sets are

e
(1)
l = ϕ1l ∗ ǫkk and e

(2)
13l = ϕ2l ∗ ǫ13.

58



The equation of motion is obtained by substituting the stress-strain relation (54) into Euler’s

differential equations

∂2
ttu1 = ρ−1 (∂1σ11 + ∂3σ13 + f1)

∂2
ttu3 = ρ−1 (∂1σ13 + ∂3σ33 + f3) ,

(60)

and making use of the strain-displacement relations

ǫij =
1

2
(∂iuj + ∂jui), (61)

where f denotes the body force.

5.3 Application to seismic modelling in the Atzbach-Schwanenstadt

injection site

The Atzbach-Schwanenstadt gas field is situated in the Molasse Basin (Alps foreland), outside

the area affected by compressional deformation. Molasse basin filling started from the latest

Eocene to the early Oligocene. The Aztbatch gas-field is being considered as a potential site

for CO2 injection.

5.4 Atzbach-Schwanenstadt geological model

The geological model has been built on the basis of seismic interpretation, geological knowledge,

and well log data [57], including the topographic surface and one low velocity layer to simulate

the overburden (Figure 25a).

The model was then populated with the physical properties provided in part by the partners

and in part from the existing literature. The sedimentary sequence evidences the presence of

shaly sandstones with variable clay content from 30% and 50%. The reservoir is located in the

A4 formation. The presence of clay, calcite and quartz modifies the effective bulk modulus of

the grains. That is, the grains are formed by a mixture of 3 solids. We assume that the grain

bulk modulus Ks and shear modulus µs are equal to the arithmetic average of the upper and

lower Hashin-Shtrikman bounds [33], as described in detail in [14]. The density is simply the

arithmetic average of the densities of the single constituents weighted by the corresponding

volume fractions. It is assumed that CO2 is injected in the A4 formation (Figure 2), and the

presence of 3 leakages, caused by degradation of the casing of an old well. In the reservoir,

the fluid (CO2, CH4 or fluid mix) saturation is 56%. Numerical simulations [50] show that the

mixed zone (where CO2 and CH4 are mixed together in equal proportions) after eight years is
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Figure 25: Atzbach-Schwanenstadt geological model (a). Density (b), bulk modulus (c) and viscosity

(d) of a fluid mixture composed by CO2 (90%) and CH4 (10%) versus depth. L1, L2 and L3 indicate

the three leakages.

approximately 15 m thick, where mixing is due to molecular diffusion. Therefore, because of

the density difference between the two fluids, we assume the presence of almost pure CO2 (90%

CO2 + 10% CH4) at the bottom of the reservoir, almost pure CH4 (10% CO2 + 90% CH4)

at the top, and a 15 m thick fluid mixture zone of CO2 (50%) and CH4 (50%) in the middle.

We also assume that the leakages are composed by almost pure CO2 (90% CO2 + 10% CH4),

with a fluid mixture saturation of 10%. Leakage 1 (L1) is located at 480m depth, with the

CO2 in the gaseous state. Leakage 2 (L2) is located at 950m depth, with the CO2 in the liquid

state. Leakage 3 (L3) is located at 1440m depth, with the CO2 in the supercritical state. The

reservoir (R) is located at 1788m depth, with the CO2 in the supercritical state.

5.5 Seismic properties of pore fluids and rocks

To correctly model the seismic response, it is necessary to calculate the physical properties of

the different fluids that may be present (brine and a mixture of methane and carbon dioxide).

The properties of the fluids depend on temperature T and pressure p, which in turn depend
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on depth z [14]. The most common method used to compute the density ρg of gases is the use

of equations of state (EoS). We consider the Peng-Robinson EoS [52], a cubic equation derived

from the van der Waals equation. The bulk modulus of the gas Kg is given by [45]

Kg = γρg
∂p

∂ρg

. (62)

where γ the specific heat ratio. [6] provide an emphirical equation of γ for methane. From

a regression of the experimental data of [73], we obtain a similar emphirical equation for the

specific heat ratio γ of CO2

γ = 1.03 +
8.47

pr + 6
+

11.7

(pr + 1.3)2
− 29.17 exp [−1.25 (pr + 1)], (63)

where pr = p/pc and Tr = Ta/Tc are, respectively, the reduced pressure and temperature.

Ta = T (oC)+273.15 is the absolute temperature, and pc and Tc are, respectively, the critical

pressure and temperature. For CO2, pc = 7.38 MPa and Tc = 304.3 K. The gas density at the

critical conditions, or critical density, is ρc = 468.2 kg/m3. We assume for the specific heat ratio

of the mixture the same mixing rule used for the parameters of the Peng-Robinson equation

[19]

γ = γ1x
2
1 + γ2x

2
2 + 2x1x2(γ1 + γ2), (64)

where x1 and x2 are the molar fraction of the two pure gases. The viscosity of the gas

mix, as a function of pressure and temperature, is determined using the Lohrentz-Bray-Clark

(LBC) theory [38]. Figure 3 shows density (a), bulk modulus (b) and viscosity (c) versus depth

of a fluid mixture composed by CO2 (90%) and CH4 (10%). The brine acoustic properties

depend on temperature, pressure and salinity. [6] provide a series of useful empirical relations

for density , velocity and viscosity. Using these relationships, we get the brine bulk modulus.

Part of the gas can dissolve in brine, generating live brine, and the rest remain as free gas. The

mixture of free gas with live brine behaves as a composite fluid with properties depending on

the stiffness moduli of the constituents and their respective saturations[14].

The low-frequency bulk modulus of the wet rock is given by the Gassmann modulus. [15]

obtained the generalized Gassmann modulus KG and the dry-rock bulk modulus Km for a

multi-phase system consisting of n solids and a saturating fluid. The shear modulus of the wet

rock is simply the modulus of the dry rock, µ = µm. The P-wave and S-wave velocities (at low

frequencies) are then

VP =

√

KG + 4µ/3

ρ
and VS =

√

µ

ρ
, (65)
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where ρ is the bulk density.

5.6 P-wave velocity and quality factor

As described in detail in the Section 2, we determine equivalent complex P-wave and shear mod-

uli solving at the mesoscale (and for a finite number of frequencies) boundary value problems

representing oscillatory compressibility and shear tests on a representative volume of bulk ma-

terial containing multiscale stochastic heterogeneities. However, the exact spatial distribution

of these heterogeneities is in general unknown. Instead, they can be assumed to be stochastic

functions characterized by their statistical properties. To generate the quasi-fractal patchy sat-

urated regions for the leakages and the reservoir, we use a stochastic fractal field based on the

so-called von Karman self-similar correlation functions. Following [65],we consider a particular

case for which the spectral density of the stochastic field is given by

Sd(kx, ky) = S0(1 + k2a2)(H+E/2), (66)

where k =
√

kx
2 + ky

2 is the radial wavenumber, a the correlation length, H is a self-similarity

coefficient (0 < H < 1), E is the Euclidean dimension and S0 is a normalization constant.

Equation (66) corresponds to a fractal process of dimension D = E+H−1 at scales smaller than

a. For a given realization of the stochastic parameters, the computed displacements allow to

determine equivalent complex P-wave and shear moduli as functions of frequency, representing

the behavior of the heterogeneous material at the macroscale. Figure 25 shows two different

fluid patch realizations, corresponding to the leakages (a), where the fluid saturation is 10%,

and the reservoir (b), where the fluid saturation is 56%. In this case we used a side length of 50

cm, D=2.5 and a = 5cm. Once determined the equivalent complex P-wave and shear moduli

M c(ω) and µ(ω), the complex P- and S-wave velocities are given by

vp(ω) =

√

M c(ω)

ρ
and vs(ω) =

√

µ(ω)

ρ
. (67)

In order to obtain the average equivalent complex moduli for such media, we calculatd the

means and variance of phase velocity and quality factor by applying the compressibility tests

in a Monte Carlo fashion. In other words, we averaged phase velocities and quality factors

over many patchy realizations of statistical parameters. [67] show that the variance of the

equivalent compressional phase velocity averaged over the whole range of frequencies stabilizes

at a very low constant value after about 30 realizations. We also computed the complex P-wave

velocity using the White’s theory for layered porous media [74, 13]. White’s theory considers a

simplified model consisting in plane layers alternatively saturated by brine and fluid mix. Our
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Figure 26: Two different fluid patch realizations, corresponding to the leakages (a), where the fluid

saturation is 10%, and the reservoir (b), here the fluid saturation is 56%.

methodology considers a more realistic medium consisting in fractal patches. For the case of

plane layers, both procedures yield the same results. Figure 26a,b show the results obtained

using the two metodologies for the three leakages. The layer width used for the periodic

White model is 17 cm. The strong differences in the attenuation curves of the two methods

justifies the use of the oscillatory tests, because White’s model overestimates attenuation and

shifts attenuation peaks. The results obtained for the reservoir show that the attenuation and

velocity dispersion is very small.

Because shear tests applied to these rock samples gave negligible attenuation and velocity

dispersion, their corresponding curves are not presented for brevitys sake. The S-wave velocities

are computed using the Gassmann relation (65). To obtain the P-wave velocity and quality

factor in the other formations we use White’s model of patchy saturation [74, 14], using a

residual CH4 saturation of 0.3% and a patch size of 3 cm. In the overburden the saturating gas

is air, with a saturation of 50%. It is assumed that the medium has spherical patches of CH4

or air in a brine saturated background. The S-wave quality factors have been calculated using

the following approximated relation:

QS = QP
4

3

(

vS

vP

)2

, (68)

where QP is the P-wave quality factor, vP is the P-wave velocity and vS is the S-wave

velocity. This relation is based on the assumption that there is no dissipation during a purely

compressional cycle (QP >> 1).
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Figure 27: P-wave velocity (a) and quality factor (b) obtained using oscillatory compressibility tests

and the White’s layered model for the three leakages. Best fit of the P-wave velocity (a) and quality

factor (b) obtained using the Zener model.

Finally, we define an equivalent viscoelastic model fitting the behaviour of the computed

complex moduli in the desired range of frequencies using a Zener model [53]. Figure 26c,d shows

the fit of the P-wave velocities and quality factors obtained for the three leakages. This model

is used at the macroscale to perform numerical simulations of wave propagation phenomena in

the time domain.

5.7 Simulations

We simulated a seismic line shot along a 2D section coinciding with one of the migrated seismic

sections available. The staggered grid, corresponding to the geological model, has 800 x 720

points. The mesh is structured, with rectangular cells. with a grid spacings dx =5 m and

dy =5 m This grid size is sufficient to sample the shortest wavelengths, according to the Nyquist
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theorem. The time-domain equations for wave propagation in a heterogeneous,viscoelastic and

isotropic medium are described in detail in subsection 5.3. The anelasticity is described by the

standard linear solid, also called the Zener model. We locate a source and a receiver at every

grid point at the surface to simulate a plane wave. The plane wave is absorbed at the top,

it goes down and it impinges on the interfaces and is reflected back to the surface where it is

recorded by the receivers. As the reflectors are sub-horizontal, the result can be considered

equivalent to a zero-offset section. The source is a dilatation stress whose time-history is a

Ricker wavelet with a dominant frequency of 15 Hz. The wavefield is computed by using a

time step of 0.5 ms with a maximum time of 2.2 s. The modeling algorithm is based on a

4th-order Runge-Kutta time-integration scheme and the staggered Fourier method to compute

the spatial derivatives [12]. The viscoelastic seismograms before and after CO2 injection show

the expected differences. Figure 27a show that the leakages that we hypothesized are easily

identifiable. Discrimination between methane and carbon dioxide in the reservoir is possible on

synthetic data. Nevertheless, the differences are subtle, and they may be masked in presence

of noise, or non-repeatable acquisition patterns.

a)                                                  b)

L1

L2

L3 Reservoir

Figure 28: Viscoelastic synthetic seismogram after the CO2 injection, in presence of the leakages

(a). NRMS section obtained using the simulations before and after the CO2 injection, without

leakages (b).
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A common procedure, when assessing the similarity of two time-lapse data sets, is to use

repeatability metrics, such as the normalized rms (NRMS)[35], where

NRMS = 100
RMS(repeat− base)

0.5(RMS(repeat) − RMS(base)
. (69)

Figure 27b shows the NRMS section obtained using the simulations before and after the CO2

injection, without leakages. Now we can clearly see that there is a difference between the pre-

injection and post-injection. The difference is above the value of 15% that has been measured

in real seismic data [35]. The leakage has a NRMS much higher than the noise, because of

the strong impedance contrast and the frequency change, so that it is well visible. Therefore,

notwithstanding the difficulties of the repeatability of a seismic survey onshore, possible CO2

migration should be detectable.

5.8 Conclusions

In this work, we present a numerical methodology to obtain synthetic seismograms in heteroge-

neous media, considering a particular case of a depleted gas field in which CO2 is supposed to be

stored. This methodology consists in rock-physics theories to calculate the properties of rocks

and pore fluids, and in an upscaling procedure to obtain equivalent viscoelastic solids for hetero-

geneous fluid-saturated porous media. Oscillatory compressibility and shear tests, based on a

finite-element solution of the classical Biot’s equations in the space-frequency domain enable us

to obtain the equivalent complex undrained plane-wave and shear moduli of rock samples. Be-

cause at mesoscopic scales rock parameter distributions are generally uncertain and of stochastic

nature, we apply the oscillatory tests in a Monte Carlo fashion. Then, fitting the P-wave and

shear moduli using a Zener model we replace the Biot medium containing mesoscopic-scale

heterogeneities by an average equivalent viscoelastic solid, where the mesoscopic effects are

included by solving a set of local boundary value problems. To illustrate this procedure, we

performed numerical experiments to obtain the average equivalent complex moduli of patchy-

saturated sandstones. We built a petro-physical model of the Atzbach-Schwanestadt depleted

gas field and made seismic numerical simulations. Different 2D rock models were considered,

in order to analyze the sensitivity of the mesoscopic effect at seismic frequencies in the three

different states of CO2: gas, supercritical and liquid. The simulations evidenced that leakages

are more evident when the CO2 is in the gaseous state, until about 600m depth. However, they

are also visible at early stages, where the CO2 is in the liquid or supercritical states (just over

the reservoir). If in the reservoir there is another gas (methane) and the saturation is high,

the seismic response is small and it may be masked by the noise. In this case a cross-well seis-

mic survey may help to evaluate also the changes within the reservoir, related to varied CO2
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saturations. These simulations confirm that this methodology is particularly important for

modelling CO2 geological storage and, more generally, in the context of exploration geophysics.

This because performing numerical simulation of wave propagation employing the viscoelastic

equation is computationally much less expensive than any numerical procedure based on the

discretization of the full Biot’s equations for the same order of accuracy.

These results are contained in the work

A finite element method to model attenuation and dispersion effects in highly

heterogeneous fluid-saturated porous media presented in the International Confer-

ence on Theoretical and Computational Acoustics (ICTA2009), held in Dresden,

Germany, in September 9th, 2009, to appear in the Proceedings of the Conference.
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6 Seismic characterization of thin beds containing patchy

carbon dioxide-brine distributions

In this work we first study seismic attenuation and velocity dispersion effects due to wave-

induced fluid flow in weakly-consolidated sandstones containing highly-heterogeneous distribu-

tions of carbon dioxide (CO2 ) and brine. Since in certain CO2 injection sites, such as the

Sleipner Field, this fluid accumulates forming thin layers, we also analyze the role of this loss

mechanism in the AVA seismic response of this kind of structures. Numerical experiments let us

observe that although wave-induced fluid flow effects are very significant, the seismic responses

obtained considering the viscoelastic nature of the layers are very similar to those obtained

replacing the thin bed by an elastic layer with the same bulk density and shear velocity but

with a compressional velocity equal to that of the heterogeneous medium averaged in the effec-

tive data bandwidth. This fact suggests that the prestack spectral inversion method recently

published by the authors could be used to estimate representative compressional velocities and

layer thicknesses in these environments. Results using realistic synthetic prestack seismic data

show that CO2 -bearing thin beds similar to those found at the Sleipner Field can be charac-

terized in terms of its thickness and representative compressional velocity. This information,

in turn, can be qualitatively related to CO2 saturations and volumes, and thus, the prestack

spectral inversion methodology could find application in the monitoring of the evolution of CO2

plumes at injection sites similar to that at the Sleipner Field.

6.1 Introduction

Underground storage of carbon dioxide (CO2) is an immediate option to reduce the amount

of this greenhouse gas in the atmosphere, and thus to mitigate the climate change. Seismic

methods constitute a very useful tool to monitor the injection of this gas due to the marked

contrast between its acoustic properties and those of brine.

Since October 1996, CO2 has been injected into the Utsira Sand at the Sleipner Field,

offshore Norway, with more than 8.4 million tonnes currently in the reservoir [3]. This reservoir

is a weakly consolidated sandstone lying at depths between 800 m and 1100 m. Internally

it contains thin intra-reservoir shale layers, having typical thicknesses of 1–2 m. The CO2

is injected at a supercritical state near the bottom of the Utsira Sand, and it rises due to

buoyancy effects until it reaches flow barriers such as the thin shale layers and the top seal

shale. Beneath each intra-reservoir shale, CO2 accumulates following the structural relief and

forms layers of up to a few meters thick [3]. These thin layers can be identified in the seismic

data as bright sub-horizontal reflections, which are mainly caused by the high compressibility
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of the CO2 as compared to that of the brine, and by constructive tuning effects of the top

and bottom reflections at the CO2 accumulations [1]. The correct interpretation of the seismic

responses of these structures is crucial to perform a proper monitoring of the injection process

at the Sleipner Field.

The major cause of seismic attenuation in reservoir rocks at seismic frequencies is presum-

ably wave-induced fluid flow due to mesoscopic-scale heterogeneities, i.e., heterogeneities larger

than the pore size but smaller than the predominant wavelengths [75, 74, 55, 13]. It has long

been recognized that this loss mechanism is particularly important in the presence of rocks

partially saturated with hydrocarbon gas and water, due to the strong contrast between the

physical properties of the pore fluids.

[75] and [74] were the first to model this phenomenon, showing that this mechanism pro-

duces significant attenuation and velocity dispersion effects at seismic frequencies in partially

saturated rocks. Since then, many authors have made important contributions to a better

understanding of this subject, including a great variety of analytical solutions to model the

seismic response of rock samples containing heterogeneities of ideal geometries (see, for in-

stance, [49, 34, 54]). Other studies are based on numerical simulations of wave propagation,

such as in [30] and [61], among others. However, in the low frequency range, these methodolo-

gies are computationally expensive or even not feasible because the diffusion length associated

with the fluid pressure equilibration is very small as compared with the seismic wavelengths.

Alternatively, [62] recently presented an approach where numerical oscillatory compressibil-

ity and shear tests are applied to representative rock samples in order to obtain their equivalent

complex undrained plane-wave and shear moduli. This upscaling procedure permits to handle

complex geometries and is also computationally convenient, since the rock sample has to be

much smaller than the wavelengths associated with the excitation frequencies.

As mentioned by [1], the distribution of CO2 and brine in the porous volume of the rocks

at the Sleipner Field is not expected to constitute a homogeneous mixture with respect to the

seismic wavelengths. In such case, considering that the reservoir contains patches of CO2 in

a brine-saturated background, and taking into account the high porosity, high permeability

and low frame moduli of the Utsira Sand, together with the high compressibility of the CO2,

significant attenuation and velocity dispersion effects due to wave-induced fluid flow are ex-

pected to arise. These effects, in turn, may play a key role in the observed seismic responses of

these environments, and thus, a better understanding of this subject is needed. Certainly, this

knowledge would help to extract, from seismic data, useful information about the mesoscopic-

scale characteristics of the CO2-bearing layers, such as overall CO2 saturation, nature of fluid

distribution and mean size of CO2 patches, among others.

With these motivations, in this work we first study the seismic attenuation and velocity
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dispersion effects that take place at a weakly-consolidated sandstone, similar to the Utsira Sand,

that contains patchy CO2-brine distributions. Next, we analyze the seismic response of CO2-

bearing thin beds as those found at the Sleipner Field, taking into account these effects. With

this aim, we follow [63] to obtain the AVA response of patchy CO2-brine thin beds embedded

between two brine-saturated sandstones, taking into account the viscoelastic behavior of the

CO2 accumulations. To model the viscoelastic nature of the thin beds we employ the numerical

methodology recently published by [62] which allows to replace a highly-heterogeneous fluid-

saturated porous rock by a viscoelastic solid with the same attenuation and velocity dispersion.

Finally, we use the prestack spectral inversion technique proposed by [63] to evaluate the

possibility of characterizing this type of thin beds, with the ultimate goal of estimating their

thicknesses and CO2 saturations from seismic data.

6.2 Viscoelastic behavior of rocks containing heterogeneous CO2-

brine distributions

As mentioned in the Introduction, the propagation of seismic waves in rocks containing mesoscopic-

scale heterogeneities in the fluid or frame properties may induce fluid flow. This physical process

constitutes the dominant P-wave attenuation mechanism in reservoir rocks at seismic frequen-

cies and can be understood as follows: when a compressional wave squeezes a heterogeneous

fluid-saturated porous material, the different regions of the medium, due to their distinct elastic

properties, may undergo different pore-fluid pressures. This, in turn, produces fluid flow and

thus generates energy loss and velocity dispersion.

[14] quantified mesoscopic attenuation and velocity dispersion effects at the Utsira Sand,

assuming patchy brine-CO2 saturation. These authors were able to observe that mesoscopic loss

may be very significant at this geological formation because of its physical properties. However,

to obtain this information they employed the analytical White’s model [75], which is strictly

valid for spherical gas patches.

In this Section we use the methodology presented in previous sections to extract the vis-

coelastic behavior of rock samples containing highly-heterogeneous distributions of CO2 and

brine. Since we consider rock samples containing heterogeneities associated with pore-fluid

distributions, shear tests produce unimportant mesoscopic effects. Thus, in the numerical ex-

amples shown in this work, we assume that the shear moduli of the rock samples are frequency

independent, real and equal to the shear moduli of their dry matrices.

70



6.3 Equivalent viscoelastic solids for the Utsira Sand containing

patchy CO2-brine distributions

In order to analyze the amount of attenuation and velocity dispersion caused by heterogeneous

fluid distributions, let us consider the Utsira Sand with a spatially variable CO2-brine distribu-

tion in the form of irregular patches fully-saturated with CO2 and zones fully saturated with

brine. We take into account neither mixing nor capillary forces, and we assume that the two

fluids occupy different mesoscopic regions of the model. Also, we neither consider chemical

interaction between pore fluids and rock frame nor solubility effects.

We generate these (binary) heterogeneous distributions using stochastic fractal fields based

on the so-called von Karman self-similar correlation functions, which are widely used in the

statistical characterization of heterogeneities for different applications. Following [26], we con-

sider a that the spectral density is given by 42, corresponding to a fractal process of dimension

D = E+ 1−H at scales smaller than a. In the experiments shown later, we take E=2, D=2.5

and different correlation lengths.

We first partition the computational domain (rock sample) into a finite number of square

subdomains Ωj , where j denotes cell number (we select 100 × 100 square cells in all cases)

and assign to each Ωj a pseudo-random number drawn from a uniform distribution. We then

Fourier transform this field to the spatial wavenumber domain and filter its amplitude spectrum

using Equation 42. Then, we transform back the result to the spatial domain and obtain a

micro-heterogeneous water saturation field S
(j)
w .

We obtain the final (binary) patchy field (i.e. the mesoscopic heterogeneities) by selecting

a threshold S∗ and setting each cell to zero-water saturation (i.e. 100% CO2 saturation) or

100%-water saturation according to whether S
(j)
w is smaller or larger then S∗. In practice, we

select S∗ in such a way that an overall CO2 saturation S
CO2

is obtained for each fractal field

realization. Figure 29 shows some examples of the quasi-fractal fluid distributions considered

in this work.

The next step is to compute the mesoscopic loss. For this purpose we require the rock

frame and pore fluids physical parameters. In this sense, we assume that the solid matrix of

the rock sample is homogeneous and corresponds to the Utsira Sand, with properties given by

[1]. Following this work, we take a rock porosity φ = 0.37, mineral bulk modulus Ks = 36.9 GPa

and solid grains density ρs = 2.65 gr/cm3. Also, we consider a brine density ρw = 1.09 gr/cm3

and bulk modulus Kw = 2.3 GPa. In addition we set, for full water saturation, VP = 2.05 km/s

and VS = 0.643 km/s [1]. Thus, using the inverse Gassmann’s equation and the relation

between shear velocity, bulk density and shear modulus, we obtain the rock frame bulk modulus

Km = 2.68 GPa, and the shear modulus µm = 0.857 GPa. Also, water viscosity is taken to be
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Figure 29: Examples of quasi-fractal distributions of CO2 and brine in the Utsira Sand. (a)

a = 0.01 m, SCO2
= 0.1; (b) a = 0.01 m, SCO2

= 0.3; (c) a = 0.1 m, SCO2
= 0.1; (d) a = 0.1 m,

SCO2
= 0.3.
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Figure 30: Equivalent inverse quality factor as a function of frequency, for rock samples con-

taining an overall CO2 saturation SCO2
= 0.1 and different correlation lengths.

ηw = 1 cP and rock permeability κ = 1 D.

We calculate the CO2 density and bulk modulus employing the equation of state proposed by

[22], considering a temperature T = 37oC and pressure P = 10 MPa, which are representative

values for the reservoir under consideration. Thus, in the numerical experiments we set ρ
CO2

=

0.693 gr/cm3 and KCO2
= 0.0229 GPa. In addition, we use the Sutherland’s formulae to

compute CO2 viscosity as a function of temperature, obtaining η
CO2

= 1.56 × 10−4 P.

Figures 30 and 31 show, respectively, the equivalent compressional inverse quality factor

and phase velocity as functions of frequency, for particular samples containing an overall CO2

saturation SCO2
= 0.1 and different correlation lengths. In all cases the samples are squares of

side length L = 0.5 m, and we employ computational meshes of 100×100 equal square elements.

It can be seen that the energy losses are very significant in the seismic frequency band, with

quality factors below 10 in some cases, showing the importance of this loss mechanism in

the behavior of the rock samples under consideration. Also, we can observe significant velocity

dispersion effects, mainly for correlation lengths above 0.1 m. On the other hand, the mesoscopic

effects become less significant as patch size decreases.

These effects become also less significant for CO2 saturations higher or lower than about 0.1
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Figure 31: Equivalent compressional phase velocity as a function of frequency, for rock samples

containing an overall CO2 saturation SCO2
= 0.1 and different correlation lengths.

(plot not shown for brevity). In the case of samples with SCO2
= 0.3 and correlation lengths

between 0.01 and 0.2 m, for instance, although velocity dispersion increases with patch size,

this increment does not exceed 5% in the frequency range considered. In addition, equivalent

quality factor is below 10 only for the largest correlation lengths and for frequencies above

45 Hz.

Since we are dealing with rocks having local properties drawn from certain probability

distribution function, it seems appropriate to perform a Monte Carlo analysis as that suggested

by [62] to extract the statistical characteristics of phase velocity and quality factor as functions

of overall CO2 saturation, correlation length and frequency. However, the fact that seismic

data contain errors of different nature and magnitude, and that their energy is concentrated

within a relatively narrow frequency range, suggests that seismic data will at most provide

information about a single phase velocity and a single quality factor that are representative of

that narrow bandwidth. For this reason, and from a practical point of view, in our analysis we

proceed to average the compressional phase velocities and quality factors in a given effective

data bandwidth, and plot them as functions of overall saturation and correlation length.

Accordingly, Figure 32 shows the equivalent compressional phase velocity, as a function of
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Figure 32: Mean equivalent compressional phase velocity as a function of CO2 saturation, for

different realizations and correlation lengths in Utsira sandstone.

CO2 saturation and for various correlation lengths, averaged in the frequency range 10–60 Hz

for a large number of realizations. This plot also includes the low-frequency limit velocity

(solid line), which we compute taking into account that at sufficiently low frequencies the

fluid pressure is uniform (isostress state), and thus an effective fluid with bulk modulus given

by Wood’s law [13] can be used. Figure 32 shows that mean compressional phase velocities

are higher than the low-frequency limit values. These departures are due to velocity dispersion

effects and are more significant for large correlation lengths and S
CO2

near 0.1. On the contrary,

for the correlation lengths considered in this work, we can observe that for CO2 saturations

above 0.3–0.4 or near zero, or for very small patch sizes, average velocities are very close to the

low-frequency limit.

Equivalent compressional quality factors were also averaged within the same bandwidth and

for the same set of realizations (for the sake of brevity, the corresponding figure is not shown).

These data show that very important attenuation levels take place in these experiments, and

they become more significant as the characteristic size of the patches increases. The average

quality factors take values below 10 for SCO2
near 0.08 and correlation lengths above 0.05 m.

This behavior corresponds to that observed in Figure 32, since higher attenuation levels are

usually associated with higher levels of velocity dispersion. For CO2 saturations near zero or

above 0.6, approximately, average quality factors take values above 100. In the particular case

of very small CO2 patches, this parameter is above 100 for saturations above 0.2, approximately.
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This analysis allows us to observe that seismic data associated with rocks with patchy

distributions as those considered in this work are expected to carry useful information that

may help to provide some insight about CO2 saturation values. In addition, these results show

that for the patch sizes considered in this work, mesoscopic effects are more significant for CO2

saturations near 0.1 and large correlation lengths. Also, if CO2 saturation is higher than 0.6

or close to zero, attenuation and velocity dispersion effects can be disregarded irrespective of

the patch size. Therefore, in these cases, CO2-bearing rocks behave like an elastic solid with

a compressional velocity given by that of the low-frequency limit. For very small patch sizes,

this approximation is valid for S
CO2

higher than about 0.2.

6.4 Seismic response of a CO2-bearing thin bed

As mentioned in the Introduction, at the Utsira Sand CO2 accumulates beneath thin intra-

reservoir shales, forming thin CO2-bearing layers that can be identified in the seismic data as

bright sub-horizontal reflections. This fact, together with the results shown in previous section,

show that seismic attenuation and velocity dispersion effects associated with wave-induced fluid

flow may be very significant in these media, playing a key role in the observed seismic responses.

In this section we analyze the seismic responses of thin layers containing heterogeneous

distributions of CO2 and brine in the AVA domain. We use a methodology similar to that

presented by [63] to obtain the AVA response of a thin bed embedded between two homogeneous

half-spaces but, in this case, we include the viscoelastic behavior of the CO2-bearing layer. We

refer the reader to the work of [63] for the details of the calculations in the case of an elastic

thin bed. It is important to remark that in the modeling we neglect the ultra-thin shale layers

(1 to 2 m thick) typically found at the Utsira Sand because the contrast between the acoustic

impedance of the water-saturated shale layers and that of the water-saturated sandstone is very

low.

6.4.1 Methodology

Let us consider a viscoelastic horizontal layer embedded between two elastic homogeneous half-

spaces, as shown in Figure 33. Let a plane harmonic compressional wave of frequency ω = 2πf

and unit amplitude propagate in the (x, z) plane arriving at the thin bed with an incidence

angle θ. The particle displacements in the top half-space are caused by the contributions of the

incident wave and the reflected compressional and shear perturbations, while in the bottom half-

space they are given by the contribution of the transmitted compressional and shear waves. On

the other hand, the displacements within the (viscoelastic) thin bed are obtained by considering

four partial wavefields associated with a compressional and a shear-wave traveling upwards, and
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Figure 33: Diagram of the thin-bed model showing the reflection and transmission rays. For

simplicity, shear waves generated at the interfaces are not shown.

a compressional and a shear-wave traveling downwards. To represent such contributions, we

employ scalar and vector potentials for the compressional and shear waves, respectively.

Then, using the elastic properties of each medium we relate the displacement vectors with

the stress tensors by means of the Hooke’s law. As usual, we require the continuity of the dis-

placements and normal and shear stresses through the top and bottom layer interfaces, which

leads to an 8× 8 linear system of equations where the unknowns are the eight potential ampli-

tudes. The product of the source amplitude spectrum and the potential amplitude associated

with the reflected compressional wave, for different incidence angles, constitute the spectra of

the prestack data.

In order to take into account the viscoelastic nature of the thin layer, the wave number

associated with the compressional wave and the Lamé constant λc should be taken complex and

frequency dependent. To compute them, let us consider a compressional plane wave propagating

through such viscoelastic medium. Thus, by definition, it produces a material response of the

form u = Aei(ωt−k
P·r)k̆P where kP is the wave vector, r is the position vector, k̆P is the unit

vector in the direction of propagation, and A is a constant. The inverse quality factor and

phase velocity are related with the modulus of the wave vector, kP , in the form
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VP (ω) =
ω

Re(kP )
, (70)

1

QP (ω)
= −2

Im(kP )

Re(kP )
. (71)

Then, we can express the modulus of the wave vector as

kP =
ω

VP (ω)

[

1 − i

2QP (ω)

]

. (72)

In addition, the equivalent complex undrained plane-wave modulus can be written as

M c(ω) = λc + 2µm, where µm is the shear modulus of the saturated rock. Thus, λc is complex

and frequency dependent, and can be expressed as

λc = M c(ω) − 2µm. (73)

In summary, for each frequency we apply the oscillatory compressibility test to obtain

the equivalent phase velocity, quality factor and complex plane-wave modulus. Next, using

equations 72 and 73 we compute kP and λc.

6.4.2 Numerical experiments: Elastic versus viscoelastic models

With the aim of analyzing the effects of the mesoscopic loss on the seismic behavior of CO2-

bearing thin beds as those found at the Utsira Sand, we apply the recently presented method-

ology to obtain the seismic responses of these structures considering different thicknesses, in-

cidence angles and CO2 saturations. In all the examples we use a 30 Hz-Ricker wavelet and a

correlation length a = 0.10 m.

Figure 34 shows some particular realizations of the seismic responses of layers with thick-

nesses h = 5 and h = 10 m, containing two different CO2 saturations, for two incidence angles

(solid lines). In all cases there is an increase in the reflectivity with the angle of incidence

and with CO2 saturation. The last point is explained by the fact that the bed mean phase

velocity is lower for SCO2
= 0.3 than for SCO2

= 0.1, and thus the contrast between the acoustic

impedance of the thin bed and that of the water-saturated sandstone is more significant. In

addition, the reflectivity is stronger in the case h = 10 m as compared with h = 5 m, as a

consequence of the tuning effects for the considered wavelet.

Figure 34 also shows the seismic responses obtained after replacing the (viscoelastic) thin

layer by an elastic bed with the same shear velocity and bulk density, but with a compressional

velocity similar to that of the heterogeneous CO2-bearing bed averaged in the effective data
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Figure 34: Seismic responses for a 5 m (top panels) and 10 m (bottom panels) thick bed, for

SCO2
= 0.1 (left panels) and SCO2

= 0.3 (right panels). Black lines correspond to an incidence

angle θ = 0o, while grey lines correspond to θ = 40o. Solid lines represent the responses obtained

taking into account the viscoelastic nature of the thin bed, while dashed lines are those obtained

by replacing the thin layer by an elastic bed with a mean compressional velocity.
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bandwidth (dashed lines). As expected, the discrepancies between the elastic and viscoelastic

models are more significant for SCO2
= 0.1, since mesoscopic effects are particularly important

for this saturation value. However, it is interesting to notice that although wave-induced fluid

flow effects are very significant in these media, the discrepancies are negligible. To understand

this fact we have to take into account that the differences between the seismic responses are

associated with energy losses within the bed and with velocity dispersion effects on the acoustic

impedance contrasts between the layer and the upper and lower half-spaces. Energy losses

effects are not significant because the layer is very thin as compared with the predominant

wavelengths of the seismic waves. In addition, since the elastic model considers the mean phase

velocity computed within the frequency range in which the data contains most of the energy,

the differences due to velocity dispersion effects are minimized.

We observed similar behaviors to those shown in Figure 34 for other CO2 saturations,

correlation lengths and bed thicknesses (not show for brevity).

6.5 Prestack spectral inversion of seismic data for the characteriza-

tion of CO2-bearing thin beds

As we observed in previous sections, the patchy nature of the CO2 accumulations at the Sleipner

Field adds complexity to the modeling of the seismic response of this kind of structures. If we

wish to extract useful information from the seismic data to characterize these environments,

we must assume a simplified model. In this sense, the similarities between the elastic and

viscoelastic seismic responses shown in Figure 34 and analyzed in the previous section suggest

that the prestack spectral inversion method presented by [63] to study thin elastic beds, could

be used to estimate representative compressional velocities and thicknesses of CO2-bearing

layers, which in turn could allow us to provide insight into CO2 saturations and volumes.

With this purpose, in this section we invert the seismic response of thin beds in the prestack

spectral (amplitude) domain, assuming an elastic layer embedded between two homogeneous

half-spaces. We generate realistic data for thin beds similar to those found at the Utsira Sand,

taking into account their viscoelastic natures due to mesoscopic effects. We consider several

CO2 saturations, correlation lengths and bed thicknesses. Also, since the rock properties are

randomly sampled from certain probability distribution function, we generate a large number

of realizations and invert the resulting data in each case.

Following the procedure proposed by [63], let A(f, θ) and Â(f, θ) be the amplitude spectra of

the observed and calculated prestack data, respectively. Then, let J be a function that measures

the discrepancies between A(f, θ) and Â(f, θ). Here, J is a 10-dimensional cost function that

depends on the elastic properties and densities of the top and bottom half-spaces, and on the
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thickness, density and elastic properties of the thin bed. It is given by

J =
1

NM

N
∑

i=1

M
∑

j=1

wi

[

A(fj , θi) − Â(fj , θi)
]2

, (74)

where N is the number of incidence angles, M is the number of frequencies, and wi are weights.

The minimization of J with respect to the model parameters represents a highly non-linear

inverse problem that can be conveniently solved using a hybrid optimization scheme that in-

volves both simulated annealing (SA) and a linearizing approach ([63]). Note that in the actual

computations, A(f, θ) represents the seismic response of the CO2-bearing thin bed taking into

account its viscoelastic properties, as discussed in previous sections. Contrarily, Â(f, θ) is

calculated by assuming an elastic bed.

6.6 Results and discussion

In practice, we obtain A(f, θ) from the observed data after isolating the seismic response of the

CO2-bearing thin bed in the time-angle domain using an angle-dependent time window. This

process is illustrated in Figure 35, where we show a typical angle-gather used in the inversion

together with the angle-dependent time window (we use a Hamming window to avoid truncation

effects). Then, we obtain A(f, θ) by applying the Fourier transform to the windowed data and

taking the modulus.

The data used in the following numerical tests were obtained as follows. First, we calculated

the AVA response of the viscoelastic thin-bed model in the frequency domain for incidence

angles in the range 0–40o and considering a 30 Hz-Ricker wavelet. Then, after applying the

inverse Fourier transform, and in order to simulate realistic data, we added two types of noise:

additive and convolutional. The additive noise consisted in the summation of pseudo-random

numbers drawn from a Gaussian distribution. For convenience, random noise was previously

filtered with a 5-100 Hz passband filter. The convolutional noise was added, on the other hand,

with the aim of simulating the effects of small reflectors that may be present in the data. These

reflectors can be associated with the presence of the under- and overburdens. In this sense,

we chose an arbitrary set of well-log data to construct an angle-dependent reflectivity using

approximate Zoeppritz formula. Subsequently, we convolved this reflectivity with the source

wavelet and added the result to the data. Finally, we applied a constant hyperbolic move-out

to each trace. Figure 35 shows a typical gather constructed this way and used in the tests that

follow.

During the inversion process, we consider bounding constraints in all the model parameters

to guarantee physically reasonable models and to allow for the incorporation of a priori infor-
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Figure 35: Typical prestack data used in the inversion. The hyperbolic gray lines show the

angle-dependent window used to isolate the assumed CO2-bearing thin bed seismic response.

In this particular case, h = 10 m, SCO2
= 0.1 and a = 0.1 m.

mation. This is accomplished by selecting narrow search ranges for those parameters whose

values are known approximately from other means (e.g., well-log data). On the other hand, we

set wide search ranges for those parameters where this extra information is not available. In

a practical context, for the inversion of the seismic responses of the CO2-bearing thin beds we

assume that densities and velocities of the two half-spaces are known within a tolerance error

of about ±5%, but density, thickness and velocities of the thin bed are allowed to attain any

value within much wider search ranges (see Table 5). As noticed, the search ranges for the

S-wave velocity and the density of the CO2-bearing layer are in fact relatively narrow, since

these quantities do not vary significantly for different CO2 saturations and reasonable estimates

are available based on previous works (e.g. [1]).
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Layer VP (km/s) VS (km/s) ρ (gr/cm3)

Top half-space 2.0–2.2 0.6–0.7 2.0–2.2

CO2-bearing thin bed 1.3–2.2 0.5–0.7 1.9–2.1

Bottom half-space 2.0–2.2 0.6–0.7 2.0–2.2

Table 5. Search ranges used in the inversion. The thickness of the CO2-bearing thin bed is

allowed to vary in the range 2–25 m. For the two half spaces, we assume that their true properties

are VP = 2.05 km/s, VS = 0.643 km/s and ρ = 2.073 gr/cc.

In order to analyze the performance of the inversion procedure in different scenarios we

carried out a large number of inversions for different CO2 saturations, correlation lengths and

thicknesses. For simulating the seismic response of the thin layers we selected a Ricker wavelet,

whose tuning thickness can be estimated using the expression
√

6/(2πf0), where f0 is the

dominant frequency [18]. In the case of a 30 Hz-Ricker wavelet, the tuning thickness is about

13 ms, which turns out to be about 10 m for CO2-bearing beds as those found at the Utsira Sand.

In the numerical examples that follow we used thicknesses of 4, 7 and 10 m. Also, in all cases

we added noise to the data with a signal-to-noise ratio of about 10 (by amplitude) and chose

the 10-60 Hz band for the computation of the cost function J (we set all weights equal to 1).

In addition, for each realization we averaged the results of 100 inversions, where each inversion

involved the same data but different SA seeds. We used this strategy because of the difficulties

associated with the minimization of the cost function J , which often does not show a very clear

global minimum. Consequently, slightly different sets of model parameters led to excellent data

fits. Nevertheless, since the variability of the compressional velocity and thickness estimates

was small, we assumed that these averaged values correspond to the optimum solution within

the global minimum region of the 10-dimensional model space.

Figure36a shows, as a function of CO2 saturation, the estimated compressional velocity for

a 10 m-thick CO2-bearing layer considering three different correlation lengths (a = 0.01, 0.05

and 0.2 m). In particular, for each one of the correlation lengths, we took into account seventy

realizations associated with different CO2 saturations randomly distributed in the range 0–1 .

We can observe that for very low CO2 saturations, there is a rapid increase in the compressional

velocity for decreasing saturations. On the other hand, for saturations above 0.2, no significant

velocity changes are appreciated.

Because mesoscopic effects are much more significant for CO2 saturations around 0.1, the

elastic model used to fit the actual viscoelastic response becomes less appropriate in these

cases. In addition, at these saturation values the compressional velocity is very sensitive to the
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Figure 36: Estimated compressional velocity as a function of CO2 saturation for different

realizations and correlation lengths: (a) h = 10 m; (b) h = 7 m; h = 4 m. Each dot represents

the average of 100 different inversions. Gray bars show the mean (binned) velocity plus-minus

one standard deviation (bin size 0.1).
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geometry of the CO2 patches. As a consequence of these facts, it turns out that the dispersion

of the inverted velocity is larger at these saturation levels, as can be observed in Figure 36a.

Contrarily, when CO2 saturations are relatively high (say above 0.2), the fit is much more

accurate and the compressional velocity is less sensitive to the pore fluids distribution; thus,

the variability of the inverted velocity is smaller.

Also, it is interesting to see that the uncertainty of the inverted velocity is significantly lower

for very small correlation lengths (e.g., red dots). This result can be explained by noting that

for the frequencies considered in this work, the patches are very small and the wavelengths do

not see differences among realizations.

Figures 36b and 36c show the results obtained for CO2-bearing layers of thicknesses 7 m

and 4 m, respectively. We can observe that the results obtained in these cases show similar

behaviors to those found for a 10 m thick bed.

Figure 36 can be compared with Figure 32, where we plotted, for several CO2 saturations

and correlation lengths, the compressional velocity associated with the Utsira Sand containing

patchy CO2-brine distributions, averaged in the bandwidth 10–60 Hz. The similarities between

the plots suggest that, although the inverted velocities shown in Figure 36 are not expected

to attain the same numerical values than those in Figure 32, their behaviors with respect

to SCO2
are comparable. The inverted velocities are, in fact, model parameters associated

with a (simple) elastic thin-bed model that produces a seismic response similar to that of the

viscoelastic model at different saturation levels. This fit is valid, at least, within the frequency

range where the observed seismic energy is concentrated, which coincides with the bandwidth

selected for the inversion. Thus, considering that the mean velocities shown in Figure 32

exhibit a clear relationship with CO2 saturations, we believe that the inverted velocities shown

in Figure 36 can be used as a petrophysical attribute to characterize CO2-bearing thin beds in

terms of saturations.

In effect, take Figure 36a as a reference. The gray bars show the mean (binned) inverted

compressional velocity plus-minus one standard deviation, as a function of CO2 saturation (bin

size 0.1). These bars can be used as a guide to associate inverted velocities with SCO2
. It

is clear from the graph that in general high compressional velocities are associated with low

(below 0.2) CO2 saturations. On the other hand, velocities lower than about 1.45 km/s are

indicative of SCO2
higher than about 0.2. It is not possible to make any distinction between

saturations above 0.2, because the inverted velocities do not show any significant change for

these saturation values. On the contrary, the analysis shows that the inverted velocities may

help to discriminate among saturations below 0.2.

On the other hand the uncertainty of the inverted velocities increases, as expected, for

thicknesses below tuning (see Figures 36b and 36c), specially for large correlation lengths. As
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in the previous case, for these layer thicknesses high inverted velocities are indicative of low

saturation values, while low velocities are associated with saturations above 0.2.

In addition, it is important to remark that should the patchy distribution be of known cor-

relation length, the dispersion of the inverted velocity represented by the gray bars in Figure 36

would be much smaller, and thus it would be possible to draw more certain conclusions about

CO2 saturations.

It is worth taking into account that the quantities and ranges mentioned in this analysis

are not meant to be rigorous. In any case, the inverted velocity is viewed as a CO2 indicator,

specially for discriminating between low and high CO2 concentrations, and hence, it can be

used for the characterization of CO2-bearing thin beds. We believe that this methodology may

be a valuable tool to provide some broad but useful information about CO2 saturation from

prestack seismic data.

In addition to the thin-bed compressional velocity, the other parameter of interest is layer

thickness. Table 6 shows the mean and standard deviation of the inverted thickness for three

different CO2 saturation ranges, taking into account the values obtained for the three correlation

lengths. As expected, the larger the thickness and CO2 saturation, the smaller the uncertainty.

For h = 10 m, the accuracy of the inversion is very high, even for low saturation values. As

layer thickness is smaller, the accuracy is lower; however, even in the case of a 4 m thick bed the

estimates are reasonable and may be very useful to improve the knowledge of the distribution

of the injected CO2 in the reservoir.

Actual thickness SCO2
< 0.1 0.1 ≤ SCO2

< 0.2 SCO2
≥ 0.2

4 m 6.1 ± 1.8 4.9 ± 1.5 3.3 ± 0.5

7 m 8.0 ± 1.1 7.2 ± 0.9 6.0 ± 0.4

10 m 10.3 ± 0.7 9.9 ± 0.4 9.4 ± 0.1

Table 6. Mean and standard deviation of the inverted thickness for different CO2 saturation ranges.

Values are given in meters.

6.7 Conclusions

The application of the oscillatory test permits us to study seismic attenuation and velocity

dispersion effects due to wave-induced fluid flow in media similar to the Utsira Sand, containing

highly-heterogeneous distributions of CO2 and brine. We can observe that these effects may be

very significant, with quality factors below 10 in some cases, mainly for CO2 saturations near
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0.1 and correlation lengths above 0.1 m. Hence, seismic data is expected to carry information

about this loss mechanism, information that can be used to derive useful characteristics about

the mesoscopic-scale properties of these environments.

The AVA seismic response of a thin bed containing patchy brine-CO2 distributions as those

found at the Utsira Sand is very similar to that of an elastic thin bed with the same shear velocity

and bulk density, but with a compressional velocity equal to that of the patchy-saturated Utsira

Sand averaged in the effective data bandwidth. This is explained by the fact that although the

mesoscopic loss is very important in these media, energy losses within the thin bed are not very

significant because the layer is very thin as compared to the predominant seismic wavelengths.

In addition, the differences due to velocity dispersion effects are minimized when using a mean

compressional velocity.

This evidence permits us to make use of a prestack spectral inversion algorithm to estimate

representative compressional velocities and thicknesses of CO2-bearing thin beds, information

which in turn could be used to provide insight into CO2 saturations and volumes. In this sense,

results using realistic simulated prestack seismic data show that a CO2-bearing thin bed with

properties similar to that of the Utsira Sand could be characterized in terms of its thickness

and compressional velocity, which allows us to derive some broad but useful information about

CO2 saturations. In this context we show that low velocities are indicative of relatively high

CO2 saturations (above 0.2), while high velocities are indicative of low saturations.

It is important to remark that this analysis is valid for patchy models with correlation

lengths in the range 0.01 to 0.2 m. As expected, the smaller the correlation length the smaller

the uncertainty of the estimates, both for inverted velocity and thickness. If the correlation

length (or mean size of the CO2 patches) were known, the information contained in the inverted

velocity would allow us to derive more accurate CO2 saturation estimates from seismic data.

Unfortunately this information is not available, and only rough but very useful CO2 saturation

estimates can be obtained using the proposed methodology. Another limitation is that it is

not possible to discriminate among saturations above 0.2, an issue that is naturally expected

because the compressional velocity at the Utsira Sand does not show any significant change

for these saturation levels. In spite of this, we believe that the inverted velocity represents,

from a practical point of view, an important petrophysical attribute that can be used as an

indicator to characterize CO2-bearing thin beds. Furthermore, the proposed procedure allows

us to obtain reasonable thickness estimates for sub-tuning CO2-bearing layers of a few meters.

This kind of information is crucial to perform a proper monitoring of the injection process at

sites such as the Sleipner Field.

Finally, it is worth mentioning that the results suggest that the proposed spectral inversion

methodology may be used to characterize CO2-bearing thin beds in a two or three-dimensional
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framework. In this sense, it would be possible to estimate thicknesses and CO2 saturations at

various locations and hence to obtain useful information about how the layer develops areally

and what the CO2 plume extension is within that unit. Presumably, at points far away from

the injection point the CO2 saturations will be low, and thus the extension of CO2 plume could

be delimited by detecting those regions where the inverted compressional velocity is very high.

On the other hand, since zones with low velocities are indicative of high CO2 saturations, the

procedure could be used to monitor in time and in space the extent of the CO2 distribution

as well as how it migrates to the nearby zones around the injection point. These studies are

currently under investigation.

The results presented in this Section were included in the follwing paper:

Seismic characterization of thin beds containing patchy carbon dioxide-brine

distributions, by J. Germán Rubino & Danilo R. Velis, submitted to Geophysics

in September 2009. Presently under review.
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