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Aires, Argentina and Department of Mathematics, Purdue University.
∗ Istituto Nazionale di Oceanografia e di Geofisica Sperimentale -

OGS,Trieste, Italy

82th SEG Annual Meeting, Las Vegas, Nevada, November 5, 2012

Determination of the stiffness tensor of a fractured medium using finite-element simulations – p. 1



Fractured media. I

� Fractures are common in the earth’s crust due to

different factors, for instance, tectonic stresses and

natural or artificial hydraulic fracturing caused by a

pressurized fluid.

� Seismic wave propagation through fractures and cracks

is an important subject in exploration and production

geophysics, earthquake seismology and mining.

� Fractures constitute the sources of earthquakes, and

hydrocarbon and geothermal reservoirs are mainly

composed of fractured rocks.
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Fractured media. II

� Modeling fractures requires a suitable interface model.

Schoenberg (JASA (1980), GP (1983)) proposed the

so-called linear-slip boundary condition model

(LSBC), based on the discontinuity of the

displacement and the continuity of the stress

components across the fractures. (Schoenberg’s model).

� A generalization of the (LSBC) (Carcione, JGR (1996))

states that across a fracture stress components are

proportional to the displacement and velocity

discontinuities through specific stiffnesses and

viscosities, respectively.
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Fractured media. III

� Displacement discontinuities conserve energy, while

velocity discontinuities generate energy loss at the

fractures. The specific viscosity accounts for the

presence of a liquid under saturated conditions,

introducing a viscous coupling between both sides of a

fracture.

� Schoemberg’s theory predicts that a dense set of

parallel plane fractures behaves as a Transversely

Isotropic Viscoelastic (TIV) medium if the dominant

wavelength of the traveling waves is much larger than

the distance between the fractures.
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Fractured media. IV

� Schoenberg’s model has never been simulated with a

numerical method.

� To test the theory, in the context of Numerical rock

physics we developped a novel numerical solver that

can be used in more general situations.

� Numerical rock physics offer an alternative to

laboratory measurements.

� Numerical experiments are inexpensive, repeatable,

essentially free from experimental errors and can

easily be run using alternative models of the materials

being analized.
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Fractured media. V

� To determine the complex stiffness coefficients of the

equivalent TIV medium, we solve a set of boundary

value problems (BVP’s) for the wave equation of

motion in the frequency-domain using the

finite-element method (FEM).

� The BVP’s represent harmonic tests at a finite number

of frequencies on a sample having a dense set of

fractures, modeled using the LSBC.

Determination of the stiffness tensor of a fractured medium using finite-element simulations – p. 6



The equivalent TIV medium. I

Consider a viscoelastic isotropic background medium

having a set of parallel (horizontal) fractures and its

description in the space-frequency domain.

u, eij(u),σij(u): frequency domain displacement vector,

strain components and stress components of the

background medium.

The stress-strain relations and equations of motion:

σ jk(u) = λδjk∇ · u+ 2µejk(u)

ρω2u(x, z,ω) +∇ · σ[u(x, z,ω)] = 0

δjk: Kroenecker delta λ, µ: complex Lamé constants ρ: mass

density.
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The equivalent TIV medium. II

x1 and x3: horizontal and vertical coordinates, respectively.

When a dense set of parallel fractures is present, the

medium behaves as a TIV medium at long wavelengths.

τij, ǫij: stress and strain tensors of the equivalent TIV

medium. Stress-strain relations:

τ11(u) = p11 ǫ11(u) + p12 ǫ22(u) + p13 ǫ33(u),

τ22(u) = p12 ǫ11(u) + p11 ǫ22(u) + p13 ǫ33(u),

τ33(u) = p13 ǫ11(u) + p13 ǫ22(u) + p33 ǫ33(u),

τ23(u) = 2 p55 ǫ23(u),

τ13(u) = 2 p55 ǫ13(u), τ12(u) = 2 p66 ǫ12(u).
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The equivalent TIV medium. III

Schoenberg’s theory predicts that if the background

medium is homogeneous, the stiffnesses pIJ’s are given by

p11 = p22 = E− λ2ZNcN, p12 = λ − λ2ZNcN, p13 = λcN,

p33 = EcN, p55 = µcT, p66 = µ.

where E = λ + 2µ ,

cN = (1+ EZN)
−1 cT = (1+ ¯ZT)

−1.

ZN and ZT: normal and tangential complex compliances of

the fractures
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The equivalent TIV medium. IV

� The theory assumes a constant background, that the

distance between fractures is much smaller than the

wavelength of the signal and that the boundary

condition is the same for all the fractures.

� The numerical solver may consider an inhomogeneous

background medium and dissimilar boundary

conditions at the fractures surfaces.

� The pIJ’s are the complex and frequency-dependent

stiffnesses to be determined numerically with the

harmonic experiments.
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Determination of the stiffness components pIJ

Ω = (0,D)2: a square sample of boundary

Γ = Γ
L ∪ Γ

R ∪ Γ
B ∪ Γ

T

Γ
( f ,n), n = 1, · · · , J( f ): a set of horizontal fractures in Ω, each

one of length D.

This set of fractures decomposes Ω in a set of

nonoverlapping rectangles R(n), n = 1, · · · , J f + 1:

Ω = ∪J( f )+1
n=1 R(n).
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Boundary conditions at the fractures. I

R(n) and R(n+1): two rectangles having as a common side

the fracture Γ
( f ,n).

νn,n+1: the unit outer normal on Γ
( f ,n) from R(n) to R(n+1)

χn,n+1: a unit tangent on Γ
( f ,n) oriented counterclockwise.

u(n) = u|R(n): restriction of u to R(n),

[u] =
(

u(n) − u(n+1)
)

|
Γ( f ,n) : jump of u at Γ

( f ,n)
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Boundary conditions at a fracture Γ
( f ,n). II

1. -continuity of the stress components

2.- stress components are proportional to the displacement

and velocity discontinuities through specific stiffnesses and

viscosities, respectively:

σ(u(n))νn,n+1 = σ(u(n+1))νn,n+1, Γ
( f ,n),

σ(u(n))νn,n+1 · νn,n+1 = (LZn
N)

−1[u] · νn,n+1, Γ
( f ,n),

σ(u(n))νn,n+1, ·χn,n+1 = (LZn
T)

−1[u] · χn,n+1, Γ
( f ,n).

L: average distance between the fractures.
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Boundary conditions at the fractures. III

The compliances Z (ZN or ZT) are complex and

frequency-dependent and can be expressed as

Z−1 = L(κ + iωη),

where

κ is a specific stiffness with dimension of stiffness per unit

length

η is a specific viscosity, having dimension of viscosity per

unit length.
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Determination of the stiffness components pIJ. I

p33: solve the viscoelastic wave equation in Ω using the

fracture B. C.’s with the additional B. C.’s

σ(u)ν · ν = −∆P, Γ
T,

σ(u)ν · χ = 0, Γ,

u · ν = 0, Γ
L ∪ Γ

R ∪ Γ
B.

In this experiment ǫ11(u) = ǫ22(u) = 0.
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Determination of the stiffness components pIJ. II

V: original volume of the sample

∆V(ω): complex oscillatory volume change.

In the quasistatic case

∆V(ω)

V
= −

∆P

p33(ω)
.

Using the average vertical displacement us,T3 (ω) suffered

by the boundary Γ
T and the the estimate

∆V(ω) ≈ Dus,T3 (ω)

allows us to determine p33(ω).
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Determination of the stiffness components pIJ. III

p11: solve the viscoelastic wave equation with the fracture

B. C.’s and the additional B. C.’s

σ(u) · ν · ν = −∆P, Γ
R,

σ(u) · ν · χ = 0, Γ,

u · ν = 0, Γ
L ∪ Γ

B ∪ Γ
T.

Here ǫ33 = ǫ22 = 0 and this experiment determines p11
computing the volume change as indicated for p33.
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Determination of the stiffness components pIJ. IV

p55: solve the viscoelastic wave equation with the fracture

B. C.’s and the additional B. C.’s

σ · χ = g, Γ
T ∪ Γ

L ∪ Γ
R,

u = 0, Γ
B,

g =















(0,∆G), Γ
L,

(0,−∆G), Γ
R,

(∆G, 0), Γ
T.

θ(ω): angle between the original positions of the lateral

boundaries and their location after applying the shear

stresses. Determination of the stiffness tensor of a fractured medium using finite-element simulations – p. 18



Determination of the stiffness components pIJ. V

To estimate θ(ω), compute the average horizontal

displacement uT
1 (ω) at the boundary Γ

T and use that

tan[θ(ω)] ≈ uT
1 (ω)/D.

Thus, the change in shape of the rock sample allow us to

determine p55(ω) from the relation (Kolsky, 1963)

tan[θ(ω)] =
∆G

p55(ω)
.

p66: Since this stiffness is associated with shear waves

traveling in the (x1, x2)-plane, we rotate the layered sample

90 degrees and apply the shear test as indicated for p55.
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Determination of the stiffness components pIJ. VI

p13: solve the viscoelastic wave equation with the fracture

B. C.’s and the additional B. C.’s

σ(u) · ν · ν = −∆P, Γ
R ∪ Γ

T,

σ(u) · ν · χ = 0, Γ,

u · n = 0, Γ
L ∪ Γ

B.

In this experiment ǫ22 = 0, and from the stress-strain

relations at the macroscale we get
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Determination of the stiffness components pIJ. VII

τ11 = p11ǫ11 + p13ǫ33,

τ33 = p13ǫ11 + p33ǫ33,

ǫ11, ǫ33: macroscopic strain components at the right lateral

side (ΓL) and top side (ΓT) of the sample, respectively.

Then using that τ11 = τ33 = −∆P we obtain

p13(ω) =
p11ǫ11 − p33ǫ33

ǫ11 − ǫ33
.
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Schematic representation of the oscillatory compressibil ity and shear tests in Ω
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Finite element implementation

The FE formulation uses bilinear elements to compute

approximate solution of the bounday value problems, as

explained in Santos et al. (CMAME, 2012), where apriori

error estimates which are optimal for the regularity of the

solution are given.
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Numerical experiments. I

We consider the data provided by the laboratory

experiments of Chichinina et al. (TPM, 2009), measured at

100 kHz.

Determination of reliable fracture parameters needs

measurements at the seismic range.

The background medium is isotropic with

λ = 10 GPa, µ = 3.9 GPa and ρ = 2300 kg/m3.

The simulations to determine the pIJ’s used a square sample

of side length 30 cm with 29 equally spaced fractures.
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Numerical experiments. II

Fracture distance is L = 1 cm, grid spacing is h = 0.5 cm.

Experimental values of ZN and ZT for wet fractures scaled

to seismic frequencies:

Z−1
N = [34+ i( f/ f0)24.7]GPa

Z−1
T = [15.5+ i( f/ f0)11.3]GPa

f0 = 25Hz.
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Validation of the FE method. Phase velocities as function of frequency for wet fractures.
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“11” and “33” refer to the qP wave along and perpendicular to the fracture plane. “55”

refers to the qS wave perperdicular to the fracture plane. A very good fit is observed. qP

waves along the fracture plane (“11”) travel faster than qP waves travelling perpendicular

to the fractures (“33”). Determination of the stiffness tensor of a fractured medium using finite-element simulations – p. 26



Validation of the FE method. Dissipation factor as function of frequency for wet fractures.
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“11” and “33” refer to the qP wave along and perpendicular to the fracture plane. “55”

refer to the qS wave perperdicular to the fracture plane. A very good fit is observed. qP

waves along the fracture plane (“11”) suffer lower attenuation than qP waves travelling

perpendicular to the fractures (“33”).
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Fractures at varying pore fluid pressure .

Daley et a. (GPY, 2006) suggest to take high values of

fracture compliance at low

effective normal stress σ = pc− pp,

where pc is the confining pressure and pp the pore presure.

For a contant pc = 30 MPa, we consider two pore pressures

values: 5 MPa (normal) and 25 MPa (overpressure). Using

their model, we obtain, at 25 Hz,

pp = 5MPa, Z−1
N = (23.1+ 5.9i), Z−1

T = (75+ 9.4i)(GPa),

pp = 28MPa, Z−1
N = (14.4+ 3.6i), Z−1

T = (21+ 2.6i)(GPa).

We consider a set of equispaced fractures with L = 1 cm and

80 % binary fractal variations of ZN and ZT around these

mean values. Determination of the stiffness tensor of a fractured medium using finite-element simulations – p. 28



Real part of fractal Z−1
N at pore pressure 28 MPa.
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Phase velocities for fractal ZN ZT, wet fractures. pc is 30 MPa. Pore pressures pp: 5 MPa

and 28 MPa.
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Dissipation factor for fractal ZN ZT, wet fractures. pc is 30 MPa. Pore pressures pp: 5 MPa

and 28 MPa.
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Phase velocity for fractal and uniform ZN ZT, wet fractures. pc is 30 MPa. Pore pressure

pp is 28 MPa (overpressure).
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Dissipation factor for fractal and uniformZNZT, wet fractures. pc is 30MPa. Pore pressure

pp is 28 MPa (overpressure).
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Dissipation factor of the “33” qP wave is more affected by the heterogeneities, showing

lower values in the fractal case.
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Fractal λ and µ background.

50 % binary fractal variations of the background Lamé constants λ and µ with respect to

the mean values 10 GPa and 3.9 GPa, respectively.
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Phase velocities and dissipation. Uniform and fractal brackground, dry fractures.
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“11” and “33” refer to the qP wave along and perpendicular to the fracture plane. Phase

velocities are lower for the fractal case for both “11” and “3 3” qP waves. Concerning

attenuation, for qP “33” waves is lower than in the uniform background case, while

attenuation for qP “11” waves is not affected by the fractal background. Fracture

compliances: Z−1
N = 9.6 + i( f/ f0) 4.8 GPa, Z−1

T = 3.1+ i( f/ f0) 0.12 GPa.
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CONCLUSIONS. I

� Schoenberg’s theory predicts that an homogeneous

background containing a dense set of horizontal

parallel fractures behaves like a TIV medium at long

wavelengths.

� We presented a collection of novel FE harmonic

experiments to test and validate the theory.

� The methodology was applied to cases when no

analytical solutions are avalaible, such as fractal

variations of the fracture compliances at different pore

pressures and fractal Lamé parameters.
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CONCLUSIONS. II

� In particular, it is shown that attenuation can be an

indicator of overpressure with higher values at high

pore pressures.

� THANKS FOR YOUR ATTENTION !!!!
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