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Fractured media. I

Fractures are common in the earth’s crust due to different factors, for

instance, tectonic stresses and natural or artificial hydra ulic

fracturing caused by a pressurized fluid.

Seismic wave propagation through fractures and cracks is an

important subject in exploration and production geophysic s,

earthquake seismology and mining.

In geophysical prospecting, reservoir development and CO2 storage

in geological formations, knowledge of fracture orientation, densities

and sizes is essential since these factors control hydrocarbon

production.
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Fractured media. II

A planar fracture embedded in a Biot background is a particular case

of the thin layer problem , when one of the layers is very thin, highly

permeable and compliant.

A Biot medium containing a dense set of aligned fractures behaves

as an effective transversely isotropic and viscoelastic (TIV) medium

at the macroscale when the predominant wavelength is much larger

than the average distance between fractures .

One important mechanism in Biot media at seismic frequencie s is

wave-induced fluid flow generated by fast compressional waves at

mesoscopic-scale heterogeneities, generating slow diffu sion-type

Biot waves.

Wave Propagation in Fractured Poroelastic Media – p. 3



Fractured media. III

In the context of Numerical Rock Physics , we present and analyze a

set of time-harmonic finite element (FE) experiments that ta ke into

account the effects of the presence of aligned fractures and interlayer

fluid flow occurring at the mesoscale .

These numerical experiments allow to determine the complex and

frequency dependent stiffnesses of the effective TIV medium at the

macroscale . They are defined as BVP on representative samples of

the fractured material, with boundary conditions associat ed with

compressibility and shear tests, which are solved using the FE

method.
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Anisotropic poroelasticity. I

For Biot’s media, White et al. (1975) were the first to introdu ce the

mesoscopic-loss mechanism in the framework of Biot’s theor y.

For fine layered poroelastic materials, the theories of Geli nsky and

Shapiro (GPY, 62, 1997) and Krzikalla and Müller (GPY, 76, 2 011) allow

to obtain the five complex and frequency-dependent stiffnesses of

the equivalent TIV medium .

To test the model and provide a more general modeling tool, we

present a FE upscaling procedure to obtain the complex stiffnesses

of the equivalent TIV medium.

The samples contain mesoscopic-scale heterogeneities due to patchy

brine-CO 2 saturation and fractal porosity (fractal frame properties ).
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TIV media and fine layering. I

Let us consider isotropic fluid-saturated poroelastic laye rs.

u
s(x),uf (x) : time Fourier transform of the displacement vector of the

solid and fluid relative to the solid frame, respectively.

u = (us,uf )

σkl(u),pf (u) : Fourier transform of the total stress and the fluid

pressure, respectively.

e(us) the strain tensor of the solid phase.

On each plane layer n in a sequence of N layers, the frequency-domain

stress-strain relations are

σkl(u) = 2µ ekl(u
s) + δkl

(
λ

G
∇ · us + αM∇ · uf

)
,

pf (u) = −αM∇ · us −M∇ · uf .
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TIV media and fine layering. II

α = 1−
Km

Ks

, M =

[
α− φ

Ks

+
φ

Kf

]−1

.

KG = Km + α2 M, λG = KG −
2

3
µ,

µ: shear modulus of the dry matrix,

Km,Ks,Kf ,KG: bulk modulus of the dry matrix, the solid grains, the

saturant fluid, and the saturated bulk material, respective ly.

Biot’s equations in the diffusive range:

∇ · σ(u) = 0,

iω
η

κ
u
f (x, ω) +∇pf (u) = 0,

η, κ : fluid viscosity and frame permeability, respectively,

ω = 2πf : angular frequency
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TIV media and fine layering. III

τij(ũs), ǫij(ũs): stress and strain tensor components of the equivalent

TIV medium,

ũs: solid displacement vector at the macroscale.

The stress-strain relations (assuming a closed system ( ∇ · uf = 0))

τ11(ũs) = p11 ǫ11(ũs) + p12 ǫ22(ũs) + p13 ǫ33(ũs),

τ22(ũs) = p12 ǫ11(ũs) + p11 ǫ22(ũs) + p13 ǫ33(ũs),

τ33(ũs) = p13 ǫ11(ũs) + p13 ǫ22(ũs) + p33 ǫ33(ũs),

τ23(ũs) = 2 p55 ǫ23(ũs), τ13(ũs) = 2 p55 ǫ13(ũs),

τ12(ũs) = 2 p66 ǫ12(ũs).

This approach provides the complex velocities of the fast mo des and

takes into account interlayer flow effects ..
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The harmonic experiments to determine the stiffness coeffic ients. I

To determine the complex stiffness we solve Biot’s equation in the 2D

case on a reference square Ω = (0, L)2 with boundary Γ in the

(x1, x3)-plane .

Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x1, x3) ∈ Γ : x1 = 0}, ΓR = {(x1, x3) ∈ Γ : x1 = L},

ΓB = {(x1, x3) ∈ Γ : x3 = 0}, ΓT = {(x1, x3) ∈ Γ : x3 = L}.
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The harmonic experiments to determine the stiffness coeffic ients. II

The sample is subjected to harmonic compressibility and shear tests

described by the following sets of boundary conditions .

p33(ω):

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ Γ

u
s · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR ∪ ΓB,

u
f · ν = 0, (x1, x3) ∈ Γ.

ν : the unit outer normal on Γ

χ : a unit tangent on Γ so that {ν,χ} is an orthonormal system on Γ.

Denote by V the original volume of the sample and by ∆V (ω) its

(complex) oscillatory volume change.
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The harmonic experiments to determine the stiffness coeffic ients. III

In the quasistatic case

∆V (ω)

V
= −

∆P

p33(ω)
,

Then after computing the average us,T
3 (ω) of the vertical displacements

on ΓT , we approximate

∆V (ω) ≈ Lus,T
3 (ω)

which enable us to compute p33(ω)

To determine p11(ω) we solve an identical boundary value problem than

for p33 but for a 90o rotated sample.
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The harmonic experiments to determine the stiffness coeffic ients. IV

p55(ω): the boundary conditions are

−σ(u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR,

u
s = 0, (x1, x3) ∈ ΓB,

u
f · ν = 0, (x1, x3) ∈ Γ,

where

g =





(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .
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The harmonic experiments to determine the stiffness coeffic ients. V

The change in shape suffered by the sample is

tan[θ(ω)] =
∆G

p55(ω)
. (1)

θ(ω) : the angle between the original positions of the lateral bou ndaries

and the location after applying the shear stresses.

Since

tan[θ(ω)] ≈ us,T
1 (ω)/L,

where us,T
1 (ω) is the average horizontal displacement at ΓT , p55(ω) can

be determined from (1).

To determine p66(ω) (shear waves traveling in the (x1, x2) -plane), we

rotate the sample 90o and apply the shear test as indicated for p55(ω).
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The harmonic experiments to determine the stiffness coeffic ients. VI

p13(ω) : the boundary conditions are

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ Γ,

u
s · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB, u

f · ν = 0, (x1, x3) ∈ Γ.

In this experiment ǫ22 = ∇ · uf = 0 , so that

τ11 = p11ǫ11 + p13ǫ33, τ33 = p13ǫ11 + p33ǫ33,

ǫ11, ǫ33 : the strain components at the right lateral side and top side of the

sample, respectively. Then, since τ11 = τ33 = −∆P ,

p13(ω) = (p11ǫ11 − p33ǫ33) / (ǫ11 − ǫ33) .
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Schematic representation of the oscillatory compressibility and shear tests inΩ
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Numerical Examples .

A set of numerical examples consider the following cases for a
square poroelastic sample of 160 cm side length and 10 period s of 1
cm fracture, 15 cm background:

Case 1: A brine-saturated sample with fractures.

Case 2: A brine-CO 2 patchy saturated sample without fractures.

Case 3: A brine-CO 2 patchy saturated sample with fractures.

Case 4: A brine saturated sample with a fractal frame and
fractures.

The discrete boundary value problems to determine the compl ex
stiffnesses pIJ(ω) were solved for 30 frequencies using a public
domain sparse matrix solver package.
Using relations not included for brevity, the pIJ(ω)’s determine in
turn the energy velocities and dissipation coefficients sho wn in the
next figures.
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Material Properties of background and fractures.

Background and fractures:
grain density is ρs = 2650 kg/m 3,
bulk modulus is Ks = 37 GPa,
shear modulus is µs = 44 GPa.

Background:
Porosity is φ = 0.25, Permeability is κ = 0.247 Darcy ,
dry bulk modulus is Km = 1.17 GPa,
shear modulus is µ = 1.45 GPa.

Fractures:
Porosity is φ = 0.5, Permeability is κ = 4.44 Darcy ,
dry bulk modulus is Km = 0.58 GPa,
shear modulus is µ = 0.68 GPa.
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Validation. Analytical and numerical solutions for case 1. Dissipation factor of qP waves and qSV waves at 300 Hz
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A very good match between the theoretical and numerical results is observed.
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Validation. Analytical and numerical solutions for case 1. Energy velocity of qP waves and qSV waves at 300 Hz
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Dissipation factors of qP waves at 50 Hz and 300 Hz. Cases 1, 2 a nd 3
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Note strong Q anisotropy, with higher attenuation at 300 Hz and patchy brine-CO2 saturation.

Energy losses are much higher for angles between 60 and 90 degrees (waves incident normal to

the fracture layering)
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Energy velocity of qP waves at 50 Hz and 300 Hz. Cases 1, 2 and 3
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Velocity anisotropy caused by the fractures in cases 1 and 3 is enhanced for the case of patchy

saturation, with lower velocities when patches are present. Velocity behaves isotropically in case 2
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Fluid pressure distribution at 50 Hz and 300 Hz for case 3 and c ompressions normal to the fracture layering.
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Pressure gradients take their highest values at the fractures
(mesoscopic losses), and at 300 Hz remain always higher than at
50 Hz. This explains the higher losses for qP waves at 300 Hz as
compared with the 50 Hz experiment observed before.
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Relation among different attenuation mechanisms for cases 1, 2 and 3 at 300 Hz.
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Dissipation factors of qSV waves at 50 Hz and 300 Hz. Cases 1, 2 and 3
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Case 2 is lossless, while for a fractured sample brine or patchy saturated (cases 1 and 3 ), Q

anisotropy is strong for angles between 30 and 60 degrees, with about a 50 % increase in

attenuation at 300 Hz with respect to 50 Hz
Wave Propagation in Fractured Poroelastic Media – p. 24



Energy velocity of qSV and SH waves at 50 Hz. Cases 1, 2 and 3

  1.0

  2.0

  3.0

  4.0

30

60

90

0

Vex (km/s)

V
ez

 (k
m

/s
)

 

 

1. Brine saturated medium with fractures
2. Patchy saturated medium without fractures  
3. Patchy saturated medium with fractures

1.0 2.0 3.0 4.0

qSV

SH

Case 2 shows isotropic velocity for both waves. Velocity anisotropy is observed to be induced by

fractures (cases 1 and 3 ). Patchy saturation does not affect the anisotropic behavior of the

velocities. At 300 Hz the behavior is almos identical for qSV was and identical for SH waves.
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Dissipation factors of qP and qSV waves for case 3 at 300 Hz as f unction of CO 2 saturation.
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For qP waves, an increase of CO2 saturation from 10% to 50% induces a strong decrease in

attenuation for angles close to the normal orientation of the fractures. For qSV waves the same

decrease in attenuation is observed, but for angles between 30 and 60 degrees.
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Energy velocities of qP and qSV waves for case 3 at 300 Hz as fun ction of CO 2 saturation.

qP energy velocities decrease for increasing CO 2 saturation,
with the greater decreases for angles closer to the normal
layering of the fractures.

For qSV and SH waves, energy velocities show almost no
change between the 10% and 50% CO 2 saturations.
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Dissipation factors for cases 1, 2 and 3 for waves parallel (‘ 11’ waves ) and normal (‘33’ waves) to the fracture layering
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‘11’ waves for case 1 (brine-saturated homogeneous background with fractures) are lossless,

while the cases of patchy saturation with and without fractures suffer similar attenuation.
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Dissipation factors for cases 1, 2 and 3 for waves parallel (‘ 11’ waves ) and normal (‘33’ waves) to the fracture layering
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‘11’ waves for case 1 (brine-saturated homogeneous background with fractures) are lossless,

while the cases of patchy saturation with and without fractures suffer similar attenuation. ‘33’ show

much higher attenuation than those for ‘11’ waves for the three cases.
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Velocities for cases 1, 2 and 3 for waves parallel (‘11’ waves ) and normal (‘33’ waves) to the fracture layering
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In case 1, ‘11’ velocities are essentially independent of frequency. In the case of patchy saturation

with fractures (case 3), velocities are always smaller than in case 1. For ‘33’ waves the presence

of fractures induces a noticeable reduction of velocities normal to the fracture plane, either for
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Lamé coefficient λG of the brine saturated fractal sample used in case 4
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A binary fractal permeability is obtained starting with the relation

log κ(x, z) = 〈log κ〉+ f(x, z)

f(x, z): fractal spatial fluctuation of the permeability field, of fractal dimension D = 2.2, correlation

length 2 cm, and average permeability 0.25 Darcy in the background and 4.44 Darcy in the

fractures. Porosity was obtained using the Kozeny-Carman relation.
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Dissipation factors of qP and qSV waves at 50 Hz for cases 1 and 4
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Frame heterogeneities induce a noticeable increase in Q anisotropy for qP waves for angles

normal to the fracture plane and for qSV waves for angles between 30 and 60 degrees.
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Energy velocity of qP and qSV waves at 50 Hz for cases 1 and 4
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Observe the expected energy velocity reduction in the heterogeneous case, and that velocity

anisotropy is less affected by frame heterogeneities than Q anisotropy.
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Approximate representation of fractures using boundary co nditions. I

Bakulin and Molotov (SEG, 1997) first and later Nakawa and Sch oenberg

(JASA, 2007) presented a boundary condition to represent ap proximately

fractures in poroelastic media. Consider an horizontal fra cture Γ in the

(x1, x3)- plane separating two half spaces Ω(1),Ω(2) in R2.

ν1,2,χ1,2: be the unit outer normal and a unit tangent (oriented

counterclockwise) on Γ from Ω(1) to Ω(2)

[us], [uf ]: jumps of the solid and fluid displacement vectors at Γ:

[ut] =
(
u(t,2) − u

(t,1)
)
|Γ, t = s, f

u
(t,1): displacement vector restricted to Ω(1), and similarly for u(t,2).
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Approximate representation of fractures using boundary co nditions. II

Boundary conditions on Γ:

[us] · ν1,2 = ηNd
σ(u)ν12 · ν12 + αηNd

pf (u), Γ,

[us] · χ1,2 = ηTσ(u)ν12 · χ12, Γ,

[uf ] · ν1,2 = −αηNd
σ(u)ν12 · ν12 −

αηNd

B̃
pf (u) Γ.

ηNd
: Dry normal compliance (m/Pa)

ηT : shear compliance (m/Pa)

B̃ = α
M

HG

, HG = KG +
4

3
µ
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Magnitude of reflection coefficients. Fractures as fine layer s and as boundary condition
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Nakagawa (2007), Eq. 53
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Nakagawa (2007), Eq. 53

h=0.001 m

h=0.00001 m

P1-reflection coefficient (left), P2-reflection coefficient (right).
Incident wave is a P1-wave of normal incidence to the fracture
layering. Fracture aperture h is , h =0.001 m and h =0.00001 m.
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EQ 53
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Thin layer
Nakagawa (2007), Eq. 53

h=0.00001 m

h=0.001 m

P1-transmission coefficient (left), P2-transmission coefficient
(right). Incident wave is a P1-wave of normal incidence to the
fracture layering. Fracture aperture h is , h =0.001 m and
h =0.00001 m.
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Conclusions
We employed the FEM to determine the complex and

frequency-dependent stiffnesses of a VTI homogeneous medi um

equivalent to a fluid-saturated poroelastic material conta ining a

dense set of planar fractures.

Fractures induce anisotropy and the P-S coupling generates losses in

the shear waves as well.

Fractures were modeled as very thin highly permeable poroel astic

layers of negligible frame moduli.

Velocity and attenuation anisotropy is observed in the qP an d qSV

wave modes, with attenuation stronger for the patchy satura ted

cases. the SH wave is lossless because it is a pure mode in TI me dia,

but shows velocity anisotropy.

Thanks for your attention !!!!!.
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