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CHAPTER 1
REVIEW OF THE THEORY OF ELASTICITY

This chapter gives a brief review of the classical theory of elasticity. For a more detailed
treatment of the subject, we refer to [7].
The Stress Tensor

)
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FIGURE 1. v = UNIT OUTWARD NORMAL TO AS, B = THREE-
DIMENSIONAL BODY, AND S = CLOSED SURFACE WITHIN B.

Consider the part of material lying on the positive side of v. That part of the material
exerts a force AF on the other part situated in the —v direction. (AF is a function of AS
and the orientation of the surface.)

Assumption: There exist

lim — =T"= —.
AS50 AS ds
T" = stress vector or traction; it represents the force per unit area acting on the surface.
Also, assume that the moment of the forces acting on AS about any point within AS
vanishes in the limit. (Stress Principle of Euler-Cauchy). Now consider a special case in
which S represents the face of a unit cube.

Ty

FIGURE 2.
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k kK k k
Let T = (T'1,T2,T3) be the stress vector acting on ASy. Let the normal to ASy be in
the positive direction of the x;—axis. Set

k k k
Ty = Tga, Ty = T2, T3 = T3.

T;;: normal stresses
Tij, © 7 j: shearing stresses.
7;;: force in the j—direction acting on the plane z; = constant.

Laws of Motion. (Euler’s equations).
Let (x1, 29, z3) be an inertial frame of reference and let B(t) be the space occupied by
a body at time ¢.

Let
r = position vector of a particle with respect to the
origin of the coordinate system, and
v = particle velocity at (z1,z2,x3).
Then, define
(1.1) P = vp, dv, (linear momentum),
B(t)
(1.2) H = r x vpdv, (moment of momentum),
B(t)

where p is the material density.

Newton’s Laws.

(1.3) P=F,

(rate of change of linear momentum = total applied force F);
(1.4) H=_L,

(rate of change of moment of momentum = total applied torque L).
The torque L is taken with relation to the same point as the origin of the position vector

External forces:

1) body forces,
2) surface forces on stresses.

Examples:

1) gravitational forces,
2) pressure due to mechanical contact of two bodies.
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Representation of body forces: /X dv.

X = (X4, X5, X3) = dimensions of the force per unit volume (in gravitational forces
X; = pgl) Then,

(1.5) F = total force = des—k/ X dv
B
Likewise, the torque S about the origin is

(1.6) £:/rx%ds+/r><de.
S B

Next, consider a small area AS as in Figure 3 below (small box).
TH

=,

AS

706

FIGURE 3.

Assume that § — 0 while AS remains small but finite. Then, / Xdv - 0 (B =
B

AS x §). Also,
]{ 5" dr — 0
s
on the lateral surfaces of the small box AS x §.
Also,

P:/ vpdv — 0, P —0.
Bx$ —0 6—0

Thus, it follows from (1.3) that
0= ]{f’ds ~ AS(TWH) + 1)

so that

(1.7) 7)) = _7(H) |,
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Next, we want to show that if we know the components 7;;, we can write the stress vector
1%

T acting on any surface with outer normal v in the form

v
Ti = VjTji-

ds

FIGURE 4.
Note that

dS1 = dS cos(v,z1) = 1v1dS

= area of surface parallel to the zox3—plane,
dSs = vodS,
dSs = v3dS.

The tetrahedron volume is

1
v = ghdS, h = dist(vector P, surface base dS).

The forces acting in the positive z;—direction on the three coordinate surfaces (dSi, dSs,
and dS3) can be written as

(—’7’11 + 61)d81, (—’7’21 + 82)d52, (—’7’31 + 63)d;5’3.
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The negative sign in 717 is taken because the outer normal v; is opposite in sense with the

xr1—axis, likewise, for x5, x3. If the stress field is continuous, the €;’s are infinitesimal. The

g;’s are added because the tractions are acting at a point slightly different from P. Also,
174

the force acting on the triangle normal to v has a component (71 +¢)ds in the z;—direction,
the body force has an x3—component (X; + ¢’)dv, and the rate of change of linear motion
has a component po; dv (¢, ¢ are infinitesimal and T}, X refer to the point P). The first
equation of motion is

(—T11 + 81)V1d8 + (—T21 + 82)V2dS + (—T31 + 83)V3dS

v 1 1
+ (T1 +¢€)dS + (z1 +e’)§hd8 = pi)lghds.

Dividing by dS and taking the limit A — 0, we obtain

174
Ty = T11v1 + T21V2 + T3, V3.

In general,
(18) Tl =V;Tij-

Since (1.8) is valid for any vector v, it follows from the quotient rule that 7;; is a tensor
called the stress tensor.

Equations of Equilibrium

ot
Tyt 22 de

ot
Tyt 2L dx2
ot
Tt 28 d S | /
X v
TX% ..+ 90 dx,
: T <~ ? o
T
3 — ot
T _7 X1 yd Tyt 6x—11 dx
|

- _ 7'[
_ 23
L =--7 ot
. D1 Tzt 13 d
- |
¥
2

FIGURE 5.
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Consider the static equilibrium of an infinitesimal parallelepiped with surfaces parallel
to the coordinate planes (see Figure 5) (dzidzadrs = volume of the parallellepiped). On
the face 1 = 0, we have the force m1dxodx3, while on the face z1 = dx1, we have the force

(7’11 + —37—11 dx1> dxodxs, etc.
35171

The body force is X;dxidxodxs, © = 1,2,3. For equilibrium, the resulting force must
vanish. Considering the forces in the x;—direction, we have that

T11 + @da?l d£U2d£U3 - Tlldl'gdl'g —+ | To1 + @dl'g d:l?lda?:_), — T21dl’1d£l?3
0x1 0z

0
+ <T31 + %dl’g) d.’l?zdl'l — Tgldl'zdxl + del'ldxzdl'g =0.
T3

Dividing by dzidxydxs, we obtain

87’11 87’21 87’31
X, =0.
8.’171 + 8.’172 + 8.’173 +A

Similarly for x5, x3 directions, then,

87'7;'
1.9 — +X;,=0
(1.9) oz, T i
Using moments we can see that
(1'10) Tij = Tji-

Principal Stresses

A plane defined by a vector v such that the stress vector is normal to the surface and
the shearing stresses vanish is called a principal plane, and the value of the normal stress
acting on the principal plane is a principle stress.

Let v be a principal axis and ¢ the principal stress. Then,

v
T = ovV; = Uajiyj-

Also,

v
T = TjilVj;

thus,
Tjﬂ/j = O'(SjiVj, (Tji — O'(Sji)llj = 0, 7 = 1, 2, 3.

We must find nonzero solutions such that

lv| = 1.
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The equation

(1.11) det(r;; — 06;5) =0
gives a cubic equation for o, the principal stress. Expanding (1.11) we have:
(1.12) (1ij — 06i5) = —0° + I1o? — Lo + I3 = 0,
where

I, = Tg(7) = 111 + To2 + T33, (linear invariant),

I, = 722 723 T T T , (quadratic invariant),

732 733 731 733 T21 T22
711 Ti2 T13
Is=detT = |T91 T2 To3|, (cubic invariant).

731 T32 T33
Let o1, 03, 03 be the roots of (1.11). Then,
(0 —01)(0 — s2)(0 —03) =0,
—03 + (01 + 02 +03)U2 —0(0102 + 0103 + 0203) + 010203 = 0,
so that
(1.13) Iy =01+ 09+ 03, Iy = 0109 + 0103 + 0203, Is = 0y05073.

The principal stresses characterize the physical state of stress at a point and, consequently,
must be independent of the coordinate system. Then, (1.12) and the coefficients Iy, I, I3
are invariant with respect to the coordinate transformation. Iy, I, I3 are the invariant of
the stress tensor 7;;. In the principal axis,

01 0 0
Tij — 0 (o] 0
0 0 o3

Strain Tensor

Solid bodies are deformed when subjected to forces, and the distances between material
points vary. Consider a point of a solid body, represented by its position vector x =
(1,2, x3). After deformation, x becomes the point x’. Displacement during deformation
is then characterized by the vector

FIGURE 6.
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The distance between two infinitely close points before deformation was
dt = (da? + da? + dz2)*/?

and, after deformation, it becomes

dt' = (dzh)? + (dzh)? + (dzh)?
= ((d:ljl + du1)2 + (dl’z + du2)2 + (d.’173 + dU3)2)1/2 .

Now, use that
8’(1,1'

- 8.’Ek

(sum over repeated indices from now on). Then,

d’U,i

dCEk

(d0)? = (dx; + du;)(dz; + duy) = deidr; + 2duide; + duidu;

= dx;dx; + 2ui,kdxkdxi + Ui,kd.’ﬂkui’gdl'e.
Next, use that
1 — k
k— ¢

= Uiykdl'idl'k + uk,gdl'gd.rk {— 3

2Ui7kd$kd$i = Ulykdl'ldl'k + ’U,z,kd.’lfld.’lfk

= u; pdx;dry, + ug idrdr,, = (u g + ugi)dzidey.

Next,
i edrpdry = uy g dogds, © 0L e
Us kUi 0 AT AT = Uj kU  ;GT AT 7/_>] J )
= ’LLg’kUK,id.deCEi.
Then,
(d€/)2 = (d€)2 + (Ui,k + Uk,i) + Up KUy i dz;dzy
= (d)* + 2eipdx;day,,
where
1 .
(1.14) ik = = (Ui + Uk, + ugupr) = the strain tensor.

2

For small deformations, the variations in distances between material points and, hence,
variation in displacements, are small. Then, we can discard the products wug;us . The
linearized strain tensor is given by

1
(1.15) Eik = E(U,z,k + Ukﬂ;).
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Physical Interpretation
Consider a variation in length in the x;-direction. Then,

(d¢')? = (dx})?, (d6)? = dx?, dzy =0, k#1,
dx; = (dz1,0,0), dx| = (dx',0,0),

thus,
(1.16) (dz))? = (dz1)*(1 + 2e11).
> il — s
X - X1
6.’171 = L .
x|
Then,
|dx’ || = [|dx1][(1 4 dz1),
so that
(1.17) (dz’)? = (dz1)?(1 + 6x1)>.

From (1.16) and (1.17),
(1 + 5.1’1)2 =1+ 2611.

Since
(14 621)% =1+ 2021 + (0z1)* =~ 1 + 2024

for small dx1, we have
(1.18) e11 = 6(z1),
and from (1.17),
|d£l?/1| = (1 + 811)|d£l?1|.

Then, the g;;’s correspond to linear dilation in the x;—direction.
Now consider two vectors dx, dy that, after transformation, become dx’, dy’. Recall
that
x'=x+u(z), y =y+u(y).

Then,

dx' - dy' = (dx + du) - (dy + du)
= (d.’l?i + ui,kdxk)(dyi + ui,gdyg)

> da;dy; + u; pdapdy; + s pdyeda; ‘; I ’z
=dx - dy + u; pdxdy; + v pdypdr, L —1
= dx - dy + (uir + ug,q;)drrdy;

=dx-dy + 26i-kda:kdy,~.

1—k k—i does not change €
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Then,
dx' - dy' = dx - dy + 2e;pdx;dyy,.

Assume that
dx = dx; = (dz1,0,0), dy = dxo = (0,dz2,0), dzi > 0, dzy > 0,
are initially orthogonal. Recall that
A-B = |A||B|cos(A, B).
From (1.18),

dx} - dx}, ~ |dx] | |dx}| cos(dx], dx})
(119) = dl’ldl'z(l + 811)(1 + 822) : COS(Xml, Xmz)

= 2812d$1d$2 + Xm : dX2 = 2612d.’171d.772,
but note that

(14+e11)(1+e22) =1+4¢e11 +e22 +€11622+ -~ L.

dx,
)(2/
T
\5 T
T - dX:I.
ax'
Also,
(1.20) cos(dxdx}) = cos (g — 912> = cos g cos A5 + sin g sin 015 =~ 012

for 015 small. Then, from (1.19) and (1.20),
(121) 912 = 2612.
Thus, the nondiagonal elements characterize the change in angle between two basic vectors.

The strain tensor has real eigenvectors, whose directions are called (orthogonal) principal
strain directions. Let €7, €77, and €775 be the diagonal strain tensor in such a reference
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frame. They are the principal strains. The elementary volume dv, built on the principal
directions, is

dV =dzrdrrdrrg.
When transformed, dz| = (1 + er)dxy, etc. Then,
dV'= (1+¢er)(1 +er) (1 +errr)dV = dV + (er + 11 + 111)dV.
Up to the first order, the volumetric strain is now

dV' — dV = AV = 9dvV,

so that

V' —dV AV
dV - dv
O =tre=cr+err+err  (tensorial invariant),

(1.22) 0 (volume change/unit volume),

6 =V -u (displacement divergence).

The Equations of Motion

A body is composed of particles. To label the particles of the body, we choose a Cartesian
frame of reference and identify the particles by its coordinates (a1, as,a3) at t = 0. At a
later time, the particle has moved to another point of coordinates (x1, x2, x3) in the same
coordinate system. The relation

(123) Ty = fi(al,ag,ag,t), 1= 1, 2,3,

links the configurations of the body at different times ¢. The functions Z; are single—valued,
and the Jacobian is not zero. (See Figure 7.) Assume that there exists a positive quantity
p (density), such that

mass of B(x,ry)

1.24 s
( ) p(x) rklgo volume of B(x,7y)’

where B(x,ry) denotes the ball of radius rj centered at x.

Xy
=% (a,,3,1)
I SRS G
9‘3(31’ 2,81)

Configuration at t=t

/

Configuration at t=0

%

X8

FIGURE 7
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Assume that mass is conserved at all times. At ¢t = 0, let pp(a) be the density at the point
(a1, az,a3). Conservation of mass states that

[ xiax= [ pola)da,

where the integration is over the same set of particles. Since

Ox;
[ s = [ ofw)| 52 .
we have that
ox; da;

1.25 = =

(1.25) (@) = 09| 52, ) = pote)| 3.
since the relation holds for all bodies. Here, % denotes the determinant of the matrix

]

da; . . . .
{3 : } For a particle (a1, as, a3), whose trajectory is described by
]

ri(a,t) = 2;(a1, az, as,t),
the velocity is
0
Ui(av t) = %xi(aa t)a

and the acceleration is )

ot?
(a is held constant). A description of mechanical evolution that uses (a1, as,as,t) as in-
dependent variables is called material description. In hydrodynamics, usually the spatial
description is chosen where the location is (21, %2, 23), and time ¢ is used as indepen-
dent variables. This is convenient because measurements in many materials are better
interpreted in terms of what happens at a certain place, rather than following the parti-
cles. These two methods are called Lagrangian (material description) or Eulerian (spatial
description):

’l'}i (a, t) = xI; (a, t)

a1, as2,a3,t:  Lagrangian variables,

(21, x2,23,t) : Eulerian variables.
They are related by
(1.26) xi(a, t) = 57\1 (a, t).

In the spatial description (x,¢) the instantaneous motion is described by the vector field
v;(x,t) associated with the instantaneous location of the particle (zi,z2,x3) at time z.
Then note that

Vi (z,t)dt = vi(x; + vidt, t + dt) — vi(x,t)

gt Digyy i)

At — v
ot ox; T
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so that
8v,~ a’U,'
’U,(l',t) = E(Cﬂ,t) + ,Uja—l']
or
(1.27) v = g—;’ + v-Vv
~~~ SN——

local part convective part
Considering any function F(x1,xs,z3,t), we can define the material derivative

. _DF _0F or _ (OF
(128) F= E = —t +,Uja—il?j - ( at >a:c0nst7

x=const

where a = (a1, a2,a3) = Lagrangian coordinate of the particle which is located at x at
time .

Material Derivative of a Volume Integral

We have that
(1.29) I:/ A(z,t)dv,
v

where A(z,t): a property of the continuum (example: mass).
We wish to know how fast the body itself sees the value of I changing. The particle z;
at time ¢ will have coordinate z; + v dt = z, at time ¢t + dt. The boundary S at time ¢ will

have moved to S’ at ¢ + dt, which bounds a domain V’. The material derivative of I is
defined as

br .. 1 , ,
(1.30) Dt = dltlglo% |:/V’ Az’ t+ dt)dv' — /‘/A(x,t)dv].

There are two contributions to the right hand side of (1.30). One is over the region
Vo = VN V’. Such part contributes with

.1 0A
dltlLHO pr /VO [A(z,t + dt) — A(x, t)]de = y Edv.

The other contribution comes from the value of A on S multiplied by the volume swept
by the particles on the boundary in a time dt. Since the displacement of a particle on the
boundary is v;dt, the volume swept by particles occupying an area ds is dV = v - vdt ds.
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Volume: v. VAsdt

FIGURE 8

o . DI . e .
Then, the contribution of this part to Dr is Av-vds, and the total contribution is obtained

integrating over S. Then,

D 0A

Ft/VA(x,t)dv—/Vadv+/SAv-uds
B 0A B 0A  0A v,
—/V {f% +V (Av)]dv—/v<8t +3$jvj+ 3a7j>dv

DA D
:/ <—+AV-V>dt: — | A(z,t)dv.
1%

Dt Dt [y,
Thus,
D DA 0A
1.31 — | A(z,t)dv = — + AV v )dt = — - (Av)|d
(1.31) Dt/v (x,t)dv /V<Dt+ Vv) /V{atvLV(v)]v,
and also,
D 0A

1.32 i '} _ [ 22 Av - vds.
(1.32) Dt/V (x,t)dv /V oy dv+/S v - vds
Continuity Equation

Let

m:/pdv
14

be the mass contained in a region at time ¢ where p = p(z,t) is the density. Conservation

D
of mass implies that ?T;L = 0. From (1.31) and (1.32), for A = p we get

. ap /
i —dv+ | pv-vds =0,
) /V ot s
(1.33) ii) % +V-(pv) =0,
iii) &+pv-v:0.

Dt
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Equation of Motion

At an instant of time ¢, a region V of the space contains the linear momentum

Pi:/ pu;duv.
1%

If the body is subjected to surface tractions T'; and body force/unit volume X;, the resul-
tant force is
174
s 1%

We have seen that (c.f., 1.8) T'; = v;7ij,

v
Ti = VjTij-

fiz/rijyjds+/ Xida::/ (ﬁ +X¢>dv.
s 1% v\ 0z;
Then, using (1.31),

D _ [ [9(pv;) -
E/vazdv—/v{ T +3 (pv,v])}dv

0
2
:/ {U'@ijE)viera(pvj) + pv avi]dv
v Oz '

Thus,

‘ot ot 70
8,0 8’07; 8’07;
= il = . ; dv.
/V{v{at—kv (pv)]+p[8t +Ujaxj]}v
Ne—— — " J
=0 by (1.33) pB’vi

Thus,

D’Ui 3’7'1;'
p dv = / <—7 + Xi> dv.

Then, since V is arbitrary, we conclude that

D’Ui . 37—1']'

1.34
( ) p Dt 8.17j

+ X; i=1,2,3.

Now, (1.33) and (1.34) give us four equations for the ten unknowns: p, v; (or u;) and
the six stress components 7;;. We need additional relations and assumptions. One such
restriction comes from a statement about the mechanical properties of the medium, in the
form of a specification of the stress—strain relations (constitutive equations).

Generalized Hooke’s Law

We have

(1.35) Tij =T = CYFep.
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Since 7% = 77 we must have
Cijk@ — Cf]zk:f

Next, since ey = €y, we have

1. 1 ..
T = Ecwkfeu + 50”“6% k—t, L—s

1 . 1 .
= 50”“8]@ + 50”68855 s — k

— 5Ozjk£€k£ + 5Ozj£k6k£

1 . .
— E(Cz]kf + Cz]ﬁk) E1p-

N J/
-~

symmetrized Ci/k¢ with respect to k,£

Then we can always assume that
(1.36) Okt — itk

This give us 36 independent coefficients. Assume that there exists a strain energy function
W in the form

1 .
(1.37) W = EC’”keé‘ijé‘kz,

with the property that

ow

1. —_—
(1.38) o

= Tij;

(i.e., W be an exact differential of the ¢;;’s). This will happen if and only if

0*W 02w
(1.39) _ _
88@'88]6@ 88k£86ij
Thus,
o (oW 0 o .. g
N = T = — C”'ka — ngke
a:‘:ké <3€ij> 88/«473 3€kg Ehe ’

o (oW 0 0 g iy
— _Ckfzj i = Ckfzj.
867;j <86k£> 867;j Tkt 8€¢j ©ij

Thus, we have the conditions
(1.40) CHkE = Obid

This additional condition (1.40) reduces the number of coefficients C*** to 21.
For isotropic materials (elastic solids),

(141) Tij — )\5”V ‘U + 2/1161']' (U),
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where A\ and p are called the Lamé constants. The constant p is also called the shear
modulus. To see the validity of (1.41), we proceed as follows (Love, p. 102). In an isotropic
solid, (1.35) must be independent of direction. Also, in this case, the strain energy density
W in (1.37) must be invariant under orthogonal transformations. Thus, W must be a
function of the three invariants I, I, and I3 of the strain tensor €;;; i.e.,

(1.42) W =W (I, I, I5).

Since we want to have a linear stress—strain relation, the Is—term must be dropped and
the strain energy density W becomes quadratic, including only I; and I. Thus, we use

2 2 2
I, = €11 + €22 + €33 =e, Iy = e99e33 + €11€22 + €11633 — €15 — €13 — €33.

It is convenient to use —41 = I}; i.e.,

! 2 2 2
[2 :4(612 + €13 + 823) — 4611822 — 4822633 — 4811833

2 2 2 2 2 2
= 2(812 + €91 + €13 + €31 + €93 + 832) — 4811622 — 4622833 — 4811633.

Thus,
1
(1.43) W = 5(He2 + plb).

Now, using (1.38),

ow
e L= He + p(—2e33 — 2e23),
€11
ow
(144) —— = T99 = He + M(—2611 — 2633),
Oeaa
ow
@ =133 = He + p(—e11 — €22),
ow ow
—— = Ti2 = 2UE12, S = T21 = 2l€21,
0€12 Oea1
ow ow
o = T13 = 2UE13, S = T23 = 2lE23,
013 Oeas
ow ow
Do T TsL = 2pEst, S = 2ps.
€31 Oe32
Set
H =X+ 2p.
Then,

T11 = (A4 2p)e + p(—2e22 — 2e33)
= Xe +2u(e11 + €22 + €33 — €22 — €33) = Ae + 2penn,

T99 — Ae + 2/1,6"22, 733 — e + 2/1,6"33, T12 = 2[1,812, caey etc.
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In general,
Tij = )\65”' + 2#813',
and (1.41) is proved.
Let us analyze the condition on the Lamé coefficients A and p so that the quadratic

form W is positive definite.
oW = (A + 2u)e? + ulj
= )\62 + 2/},62 + 4/},(6%2 + 8%3 + 8%3) — 4/1,811822 — 4M622833 — 4/1,811633
= )\62 + 4/11(8%2 + 8%3 + 6%3)

2 4
+ guez + gu(e?u + e99 + €33)% — dpue11622 — dlic2€33 — 4juE11€33

2
= <)\ + gﬂ) e? + dp(els + €13 + e33)

4
+ g,u[(c?n + £22 + €33)% — 3e11692 — 3e20€33 — 3€11€33]

2
= (A + gﬂ) e + dp(ely + el + €35)

4 5 2 2
+ gﬂ(gn + €59 + €553 — €11€22 — €11€33 — €22€33)

2
= <)\ + gﬂ) e? + 4p(ely + €15 + €33)

+ - p((e11 — 622)2 + (611 — 833)2 + (22 — 833)2)-

[SVRN )

Thus,
2 2 2 2 2
(14:5) 2W: )\+ g//: (4 +4/L(812+613+623)

p((e11 — €22)% + (€11 — €33)% + (€22 — €33)?).

[SVNN )

+
Now for €;; = €11, €45 = 0, ¢ # j, we see that

(1.46) k:)\+§u>0.
For €;; = 0, €;; # 0 must be

(1.47) > 0.

To analyze the physical significance of the constant k in (1.46), we consider an experiment
in which a cube of solid material is subjected to a hydrostatic pressure Ap; i.e.,

Ti1 = Tz = T33 = —Ap, Tij =0, 1# 1L
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From (1.41)
—Ap:T11:A6+2/1,€11, —Ap:T22:A6+2,U,822, —Ap:T33:A6+2/1,€33,
or
—3Ap = (BA + 2p)e.
Then,
A A AV
(1.48) e=——"0o - _ZP_1

Hence, (recall (1.22))

2
k= X+ gp, = bulk modulus of elastic solid.



20 JUAN E. SANTOS

CHAPTER 2
GASSMANN THEORY FOR FLUID-SATURATED POROUS MEDIA

Following the ideas in [8], in this section we will determine the bulk modulus of a fluid—
saturated porous solid. We will assume that porous medium: (1) consists in a solid matrix
which behaves like an isotropic homogeneous elastic solid as a whole, (2) the solid grains
in the matrix also behave as a homogeneous elastic solid (with a higher compressibility),
(3) the poral space is filled with a fluid, (4) all the poral space is interconnected, and
(5) the whole system is macroscopically isotropic and homogeneous; i.e., for a cube of bulk
material of dimensions much bigger than the pore diameter, the mechanical properties of
the cube are identical and independent of the direction.

Let
Vp = volume of a (representative) part of bulk
material, big enough with respect to the
pore diameter, small enough to be homogeneous,
Vs = volume of the solid part contained in V}, and
Vi = poral space volume.
Then,
Vi .
(2.1) Vo = Vs + V5, » = V= porosity.
b
Let
my = total mass of bulk material contained in V},
mg = mass of the matrix contained in V}, and
my¢ = fluid mass contained in V}.
Then,
(2.2) mp = ms + my,
Pb = % = density of the bulk material,
b
Ps = % = density of the solid grains building the skeleton,
S
pf = My _ fluid density,
Vi
p= % = density of the dry matrix (p < ps always).
b
Note that
.. m mg V. ms (Vp — V. V,
p:_s__s_s —S( f)—ps 1 7 :ps(l_é)a
Voo VsW Vi W Vo
(2.3) p=ps(1-¢)
Also,
mp Mg+ m -~ m ~ msV, ~
== L=p+ =0+ L =5+0s0.
b b
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Thus,
(2.4) Po =P+ Qps.

Let us consider a prismatic element ) of bulk material of base area Fj and height h as
in Figure 10 (volume V}, = Fh):

- Fb(X)

area k.

FIGURE 9

(assume Fp and h big compared to the pore diameter). Consider a plane 7,|| to the base
at a distance z. Let

Fy(z) = Q Ny,
Fs(z) = Fp(x) N (solid part of @), and
Fy(x) = Fy(x) — Fs(z).
Then,
1 [h 1 1
E/o Fi(z)dr = EVf = EQSVb = O Fy.

We now know that the average of Fy¢(x) over the cube is ¢Fy. If we assume that the
variations of F¢(x) are small, then

(2.5) Fy = ¢F,

which in turn implies that

(2.6) Fy=F,—F; =(1—¢)F.

Next, consider a point A in the interior of the system and a neighborhood of A of a size
much bigger than the pore diameter, but small enough to assume that the hydrostatic
pressure in the fluid filling the poral space is uniform and equal to py. Now, consider a

plane through A intersecting the neighborhood of A (see Figure 11) in a surface of measure
Fy.
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FiGure 10
Let Fy and Fy be defined as before, and let ey be a unit normal vector to the plane.
Within the system around A, the forces are transmitted across surfaces. Let P,y be the
total force transmitted through Fy.

Set
P,y = total force transmitted through the solid part of Fy(Fy)
Prn = total force transmitted through the fluid part of Fy,(FY)
= Ffpf EN
(recall the pressure is uniform and equal to py in the neighborhood of A). Then, we have
(2.7) Pyy = Psny + Fypyen.

It is convenient to decompose P,y into two parts: P,y = T + ﬁN. The term 77 is chosen
such that when added to the hydrostatic fluid pressure Fypren acting over the fluid part
Fy, it gives the hydrostatic pressure Fypren over the whole surface area Fy; i.e.,

Fipren +T1 = Fypren,

so that
T, = (Fy — Fy)pren = Fypren

and
(2.8) PN :FspfeN—f-ﬁN.
From (2.7) and (2.8), we see
(2.9) Pyny = Psy + Fypreny = Fopren + ﬁN + Fypren = Fypren + ﬁN.
Set

Pyn - Py
2.10 — _°r — 4
( ) PN Fb 9 PN Fb )
(forces per unit area). Then, from (2.9),
(2.11) PN = PN + DPren.

Since the whole set of tensions Pyn and Pryen (for all possible directions defined by en)
are each a tensor of rank 1 (a vector), from (2.11), the whole set of py (for all possible
directions defined by ey ) is also a tensor P of components pi, ..., ps (quotient rule) which
will be called the matriz residual stress tensor.
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Elasticity of the Open System.

Consider a part of bulk material of volume V}, with dimensions big enough with respect
to the pore diameter. Assume a homogeneous tensional state P, of a hydrostatic tension
ps and a residual stress tension P in the matrix. We will assume that in this tensional
state the matrix behaves as elastic. This will allow us to determine the elastic properties of
the matriz applying tensional changes Apy and A]/I\”, thereby allowing the fluid to respond
to changes in the matrix. This shows why the poral space must be open to the exterior
allowing the fluid to flow in or out. Also, the tensional changes must be done slowly to
ignore friction effects of the fluid at the pore walls and also to ignore inertial effects. We
will also assume that the fluid completely fills the poral space to avoid capillary effects, in
which case py may not be uniform on V4.

Since the solid grains building the matrix, the solid matrix and the fluid are assumed
to be elastic, the idea is to divide a general change in tensional state AP into parts Apy
and A@; ie.,

(2.12) AP, = Aps + AP,
and consider as separate cases,
) Apr#£0, AP=0, i) Ap;=0, AP=£o.

Later, the general case will be obtained by superposition.
First, consider a tensional state such that

(2.13) Aps £0, AP =0.
This corresponds to the so—called unjacketed—compressibility test in [5]. Since, from (2.8)

(2.14) AP;n :FSApfeN—f-AﬁN :FSApfeN,
[l

we see that in this case, the matrix is subject to an additional hydrostatic pressure change
Apy. Therefore, in this case, the matrix reduces its volume but keeps a similar shape; i.e.,

AV, AV,

2.15 ==
(2.15) AT

Let ks denote the bulk modulus of the solid grains composing the matrix. Then, by
definition of kg,

AV Ap
Thus, from (2.15),
A A
(2.17) 2l P
Vi s
Aps#0
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Note that in this tensional state (i.e., in the case of (2.13)) we have that
(2.18) Ap = 0.

In fact, using (2.15),

Vy Vo —Vi\ AWV, — VAV,
Adb=Al-—L]=A —
¢ (%) ( Vi ) vy
_ AWV, AV, AVeVs AV,

= 0.
Vio Vi W Vi Vi Wb

Note that for a tensional change as in (2.13) it is also true that

AVy AV,
Vi Vo
Next, let
1, . .
(2.19) Ap = g(Apl + Apy + Aps)

be the variation of the normal tension corresponding to AP.
Assume a tensional change such that

(2.20) Ap;=0, Ap=0, AP#0,

so that only shear tensional changes are applied (Ap; = Apy = Aps = 0).
From (1.48) we see that in this case

AV,
_—_0
e = v =0,

so that we have matrix deformation without volume change. Such deformation is described
with a constant 7, the shear modulus of the matrix. For this tensional change we make

the hypothesis that A¢ = 0.
Now we consider a tensional change:

(2.21) Apr=0, Ap#0.

If we measure the volume change AV}, then the corresponding matrix bulk modulus K is
determined by the relation

AV, Ap
(2.22) i) 4

Voly, o

APAO

Our next objective is to determine the porosity change A¢ for the tensional change (2.21).
We use the following result of elasticity theory:
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Let a homogeneous isotropic (differentiably) elastic body of arbitrary shape, volume Vj
and compressional modulus k£, be compressed between parallel plates located at distance
a, with a total pressure AH; (i.e., AH; = (Force/unit area) (plate area), see Figure 11).

== y ==

FIGURE 11

Then, the volumetric reduction AVj, is given by

AH;

2.23 AV, = —
(2.23) “ 3k

with a negative sign since the volume is reduced. The proof of (2.23) for a cube @ is as
follows. Assume that the tensional state of Vj is described by (1.41) (this is our hypothesis
about the elastic behavior of the body). Then consider a tensional state 711 = —AH;,
Top = 733 = 0, 735 = 0, @ # j. Thus, for a unit cube @,
—AHZ =T11 — e + 2/1,6"11,
0= T22 = e + 2/1,822,
0= 733 = e + 2/1,833,

2
—AH; = (3A+2p)e = 3()\ + gu)e = 3kse.

Since e = —%,
AQ; AH;
e=— = — .
Q 3k
Now assume V; = cube of side a. In this case, 711 = a?H;, Vs = a3, so that
AV, AV,
—a?AH; = 3kse = 3ks——+ = 3ks——".
Vs a?
Hence,
3k AV,
AR, = — 2l
a
or
AH;
AV, = -2

3ks
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as desired.

Now we apply (2.23) to our case. We consider a part of bulk material which is a cube
of side a so that V;, = a® and let V; be the matrix volume in the cube. For a tensional
change of the form (2.21), the opposite faces of the cube are compressed by the forces

AH,; = a®>Ap;, i=1,2,3.

Thus,
3 3 3 ~
AH,; a® ~ Vo Ap
AV, = AV = — =—— Ap; = — )
or
AV Ap
2.24 ——
(2.24) v i

Next, since V = (1 — @) V4,
AV = (1 - ¢)AV, — VA,

or equivalently

AV, AV,
. —(1—¢)7b—A¢-
Using (2.22),
AV Ap
(2.25) 7=01-9) ( - %) ~ A¢.
Now from (2.24) and (2.25),
Ap _ Ap
T —(1- ¢)7 — Ad.
Therefore,
(1 (A=)
(2.26) Ap = (k— - )Ap.

Elasticity of the Closed System.

We want to apply tensional changes to a part V; of the bulk material but avoid flow in
or out of V4, which we call a closed system.

We first consider a tensional change of the form

(2.27) Apr=0, Ap=0, AP=#£0.

As before, AV, = 0, and it is reasonable to assume that the shear modulus characterizing
the deformation is independent of whether the system is open or closed, so that u = .



INTRODUCTION TO THE THEORY OF POROELASTICITY 27

We now need to determine the bulk modulus k. of the saturated rock. For this purpose

we apply a tensional change Ap,. As before, we can decompose the tensional change in
the form

(2.28) Apy = Apf + Ap.
The desired modulus of the closed system is defined by

AV, Apy
2.29 —_— = — ;
(2.29) v o

The fluid bulk modulus k¢ is defined by

AVf Apf
2.30 —_ = -
(2.30) 7 y

Now, using linear superposition and (2.17), (2.22),

AV, AV
2.31 =2
(2.31) AT

AV, Ap; AP

ks ko

AP=0 Ap#0

Next, using (2.26) and (2.31),

AV, _A(L-9)V) _ —AdVs+ (1- $)AT

Vb Vb Vb
AV,
— A 1— o222
¢+ (1-9) v
(1-¢) 1Y\, Apy Ap
= 2 — —|A 1— - — =
< k ks P (1=9) ks k
Apf A}/)\
- (1— _ =P
Um0
Then,
AV Apy Ap
2.32 = —(1— - —
232 = —(1- gy S -
Now, from (2.29) and (2.31),
_Bpp __Bpp AP
ke ks A
. (Apf — AZ/)\) A]/)\ . Apf —~ 1 1
- ke Pk e 7))
so that
1 1 1 1
2. App[ == )=ap[ = - =
29 (i) =29 1)
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Next, from (2.30) and (2.31),

AV, AV -Vy) AV, AV,
(2.34) _ AV V) _ AV AV

Vo Wb Vo Wb
__Bny AP ViAV; __ Ap AP A
ks k W Vi ks % kg
Now, from (2.34) and (2.32),
Apy Ap  Apy Apy Ap
== - (1 - - =L
P
1 ¢ (1—-9) Ap Ap
Ape| - —+2)=— Aps — =L 4 2
pf( ks+ks> PR A T
Then,
1 ¢ . ( ) . Ap Ap
=2 2 ) apy— Ap) = — Apy, — Ap) — =2 4+ =
< ks+ks>( Do — AD) - (Apy — AD) . ~
Dividing by Ap,
L ¢\ [Am (1—9) (Apy 1 1
2. o) (2R o) == N [
( 35) ( ks_'_kf)(Aﬁ ks Al/)\ ks_'_k
Now from (2.33),
ke — k k k
Apy( =22 = Ap( ==
pb( ko s > p( ko b >
so that
App ks —k\ [ keks k— Ky \ ke
mo () - ()t
p ks k s ¢ c s/ k

From (2.35) and (2.36),

1 ¢) (=¢9) 1 1_(1 4 (1-9))2n
(i)~ )

ke kg ks

or

(ks — ¢ko)k — (1 — p)ksk + (k — ky)ky

kokyk
_ Apy (kf = dks — (1= §)ky
Ap ko kg
(R Ry e (ky — dks — (1 §)ky
B kc_ks /k\i kskf
(/k\_ks)

=& (b — 0k — (1= )ky).
k

c

)
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Then,

(2.37)  (kf— ko )k — (1 — p)kpk + (k — ko)kyp = (k = ks) (ks — pks — (1 — ¢)ky).

(1- %)
From (2.37),
l—ﬁ: (/k\_kS)(kf_¢ks_(1_¢)kf)
ke (kp— ¢k)k — (1 — @)kpk + (k — ks)kys
kik —oksk —kk+okrk+kky—ksky
_ dk—k)ky—k) _a
kp(k — k) + ¢k(ky — k) b
Then,
ks a b—a b
(239) k_ZI_E: b , kc:ksb—a

Let us compute b — a as follows:

b—a=ks(k—ks)+ dk(ks —ks) — d(k — ky) (ks — ks)

(2.40) = k‘f(k — ks) + qﬁﬁ(k‘f — ks) — Qﬁf\(kf — ks) + ¢ks(k‘f — ks)
= kp(k — ky) + ks (ks — ks).

Then, from (2.39) and (2.40),

kp(k — k) + ¢k(ky — ks)
kp(k — ks) + ¢ks(kp — ky)

(2.41) ke = ki

or,

~ kp(k - k)
Pt
fy + I
T oy — k)
Set,
ks (ks — )
2.42 -
( ) Q ¢(ks - kf)
Then,
(2.43) be = TG
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Note that if k¢ is very small, Q =0, and k. = k. Also, if ¢ = 0, from (2.41) we see that

Q: - — =,
p(1— L)
and N -
ke = k+g —>E+E
1+ ¢
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CHAPTER 3
THEOREM OF MINIMUM POTENTIAL FOR ELASTIC BODIES

Assume a body V in static equilibrium under the action of specified body and surface
forces; i.e.,

0 i . v v
(31) %—FFZ:OIH V, TijVj :111211;k on S.
L

Assume there exists a system of displacements wu; such that they satisfy (3.1). Consider
a class or arbitrary displacements wu; + du; with du; small so that the material remains
elastic. The arbitrary displacements du; are called virtual displacements.

We assume that the body remains in static equilibrium and let us compute the “virtual

v
work” done by the body forces F; and surface forces per unit area (tractions) T'F as:

(3.2) / F;du;dv + / T du;ds.
1% s
Since we know that .
T3 = 7ijvj,

the second term in (3.2) is
(33) / 5—':(5’U,Zd8 = / Tij5u1;deS = / (Tijéui),j dv
S S \%4

:/ Tij’j5u1;d’l)+/ Tijéui,jdv:—/ F,(S’U,Zd’U—F/ Tijéui,jdv.
\4 14 \%4 \%4

Since 7;; is symmetric, we see that

1 1 1 1
Tij0Uij = STi0Uij + S TjidUi = STij0uij + S Tji0Uj; = Tij0gi;.

Then, (3.3) becomes the virtual work principle:

(3.4) /Fléuldv+/”};‘6ulds:/ Tij(sé‘ij.
\4 S 14

Assume that there exists a strain—energy function W (e;;) such that

ow

—Tij-

8€¢j

/Tij56ij:/ g&zj:&/ W dv.
1% v U&ij 1%

The principle of virtual work can be stated here as

Then, in this case,

(3.5) 6/ W dv —/ Fiou;dv + / %f6uids =6V =0,
% 1% S
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where

(3.6) V:/ de—/ Fiuidv—/%fuids
1% v s

is called the potential energy of the system. Equation (3.5) shows that of all displacements
satisfying the given boundary conditions, those that satisfy the equilibrium equations are
distinguished by a stationary (extreme) value of the potential energy. Since linearity has
not been used, this principle is valid for linear and nonlinear stress—strain laws.

Now we show that the principle of virtual work (3.5) yields (3.1). In fact,

oY =0= a—W&?ijdv — / F;du;dv — / %féuids
v Ogij % S

:/ T,-jésijdv—/ Fﬁu,d’u—/%féuzds
\4 14 S

1 v
= — / Tij (511,1;73' + (S’U,jﬂ;)d’l) — / F1,5U1,d’l) — / T;k(S’U,ZdS
2y v S

But
1 1 1
5 Tij6ui7jdv = —5 Tij,j(Fuidv + 5 Tijvj(s’u,ids
|4 \Y4 S
and
1 1
5/ TijOugjidv = 5/ Tji0Uj idv
\4 1%
1 1 . . .
=75 (Tji i)5ujdv + 5 [ Tjvidujds J—t, 1=k,
2 )y 7 2 /g
1 1
=5 Tik, kOUdV + — TikVEOU;ds
2 )y 2 /g
1 1
=5 Tijjouidv + = | Tv0uds.
2 Jv 2 /s
Therefore,

(37) (SV =0= —/ Tij,j5u,~dv —f-/ Tijl/j5u,~ds —/ Fzéuzdv - / %:5U,d8
v S v S
Since du; is arbitrary, from (3.7) we conclude that

1%
— 3 _ *
Tij; T Fi=01in V, Ti;v; =T on S,

so that (3.1) is satisfied. If we assume that W(e;;) is positive definite in a neighbor-
hood of the original equilibrium state, then it can be shown that for any other system of
displacements wu; + du; with potential energy V' we have

(3.8) V-V >o.
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In fact,

V' = We;; + de;i)dv — F;(u; + du;)dv — ilj’* u; + ou;)ds,
v J J v 5 7

V:/ W(Sij)d’l)—/ F,u,d’u—/%fuzds
\%4 \%4 S

V/ -V = / [W(é‘z’j + (Sé‘”) — W(eij)]dv — / Fléuldv — / %f&ulds
\4 \4 S

Expanding W (e;; + 0¢;;) we have

Then,

ow 1 0°W
(39) W(é‘ij + (Sé‘”) = W(é‘ij) + %(sé‘ij + 5m5€ij5€k£ o
Then, up to second order terms we have
ow v 1 0*wW
3.10 Vi -V = / ——dg;idv — / F;du;dv — / T76u;ds + —/ ————0€;;0cky.
( ) % 867;j J % S 2 % 8€¢j(58k£ J ke

It follows from (3.5), that the sum of the first three terms in the right hand side of (3.10)
vanishes, so that

1 O*W
3.11 V-V == ———fe;i0c.
( ) 2 % a&ijaskg “ijOcke
Now set €;; = 0 in (3.9). The constant term W (e;;) can be taken to be zero since it denotes

the strain energy in the natural unstrained state. Also, since 2%

e, = Tij and Tij = 0 for

g;5 = 0, we have that up to second order terms,

1 0°W

A2 ==
(3 ) 2 86@'88]@

58¢j(56k5 = W((sé‘”)
Then, if W is positive definite, from (3.11) we get
V/ -V = / W((Sé‘ij)d’l} Z 0,
1%

and (3.8) is demonstrated.

Review of Calculus of Variations.
Consider the functional

t1
(3.13) T(p) :/ L0ty oy Oy @1y ey s t)d

to

where ¢;(tg) = 90?, @;(t1) = 90}, 1 < j < n, are fixed given values. Assume that u =
(u1,...,uy,) is such that

(3.14) J(u) = mini(;num J(p),
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and let us find the equation to be satisfied by J (Euler Equations). Let us perturb u; in
;15 (t), with ¢; independent of ¢ and n;(to) = n;(t1) =0, j =1,...,n, as follows:

5L = L(Ul + €111, U2 + E2M2,y ...y Up + €n’l7n,’lll + 6’17'71,1'1,2 + 82’[72, . .,’dn + Snﬁn,t)

— L(ug, Uy ..oy Up, U, Uy ..., Uy, t)

OL o+ 2Ly L fop 2
6 8 —8 ) —_—

8 Uy 1M 8 1771 8Un nn 8’U,n nn

Ze < W oL 7,7_)
J ou J 8UJ J |-
Then, since 6.J(u) = ftil §L(u,u,t)dt = 0, we have

" & oL .
0—/ 251<3 i+ %m)dt-
J

0 Jj= 1

Next, using integration by parts,

oL oL
[ -3
t

t! t
[ (2
to tO dt 82:1,] J '

n
o 8u3 auj I
——
=0
Then,
t; T
! oL d 8L
1=1
Choosing €1 # 0 and small, eo = -+ = g, = 0, and since 7 (¢) is arbitrary, we conclude
that

oL _d (oL
8U1 dt 8’(1,1 N

Similarly, for the other u;’s, so that we have the n Euler equations,

oL  d (oL
1 9L _2(O9%) oy j—1,....n
(3.15) o dt<auj> b T heen

Hamilton Principle.
Assume an oscillating body with displacements small enough so that the acceleration is

given by a;gz in Eulerian coordinates. Then the equation of motion is

8221,1 . 87'7;j

1 _
(3.16) o T oz,

Again, consider virtual displacements du; but, instead of the body in static equilibrium, we
now have a vibrating body. Assume that we have prescribed surface tensions over S = 9V;
i.e.,

(317) TijVj = T?, on S.
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As before, the virtual work done by the body force and surface force is
(3.18) / Fl6uldv + / T?(Sulds
1% s

Consider the last integral:

I 10U
/T?5Uzd8:/7'”1/]5u,ds:/ Mdv
S S \%4 33:]-
37—1']' 32,“1;
- Ouid ij0Ui,jdv = — F; |ou;d ij0€i5dv.
I R A G~ S Ty R

This yields the following variational equation of motion:

2u v
(3.19) / Tij56ijd1) :/ (F pa . >5uzd’u + / T?(Suzds
\4 \4 ot S

If we assume that a strain energy density function exists, then (3.19) can be written as

2 1%
(3.20) 5/ de:/ <F pa >5u,dv+/T?5u,~ds.
v v ot? s

Let us integrate (3.20) between ty and ¢; under the assumption that the virtual displace-
ments du; are functions of both space and time and that

Then,

ty ty ty
(3.22) / /(5de—/ dt/ F5u,d1)+/ /T%u,ds—/ dt

Let
t1
p Y s dv dt.
/ /to otz "
Using integration by parts in time,

ou; { Odu; 8,0
o [ )

From the continuity equation and for constant in space density p

ap 0 Jui\ 0 ([ 0Ou;
ot = V=g <p ot ) __pﬁxi<8t >

For small displacements, this term is small since we have assumed that velocities and
gradients of velocities are small, and consequently

Duv; 31}14_ ov; 32ui+ ouj 0 (Ouy N 0%u;
ot ~ P\ ot T ax;) TP TP ot ox; ot )T Mo

dv.

dv
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Then,
b1 3uz b1 3u, 3u,
I= d dt = d dt
[ L /0
t1 1 Ou; du,
LL /2 P gy i = tOWUd,
where
1 8Ul 8Ul
2 T(t) = =
(3:23) (®) 2/‘,p8t o

represents the kinetic energy of the body. Thus, under the assumption (3.21), (3.22)
becomes

t1
(3.24) 5(V = T)dt =0,

to

where, as in (3.6),

(3.25) V:/ de—/ F,-uidv—/%?uids,
1% 1% S

represents the potential energy of the system. The function
(3.26) L=V-T

(or sometimes —L) is called the Lagrangian function, and (3.24) represents Hamilton’s
principle. In words, the Hamilton principle states that the system will move so that the
time average of the difference between kinetic and potential energies will be an extremum
(minimum). Using the Euler equations (3.15) we obtain the Lagrangian formulation of the

equation of motion
AT -V) d <3(T—V)>

611,]- N % 311,]
Since T' is independent of u; and V' is independent of 4;, we have
d (0T (2%
3.27 — =) =— ) =1,2,3

where we have chosen the displacements u; as generalized coordinates. Now let

1 8Ul 8Ul

be the kinetic energy density so that

T(t):/VTd(x,t)dv.
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Also, transforming the surface integral (3.25) into a volume integral we obtain

V:/ de—/ Fiuidv—/ i(7'7;3'117;)Cl’l}:/ Vddv,
1% v v 0T v

where Vj represents the potential energy density of the system. Then, from (3.27)

[ () ay— [

so that, since the above system holds for any V', then

d <8Td> OV

3.29 — | =— ) =1,2,3.
( ) dt 8U,J 8Uj7 J T

We now compute the right hand side in (3.29) as follows:

6)}:/ 5de—/ Fi6uidv—/i6u¢dv
1% 1% S
:/(SWd.T—/ Fiéui—/nﬂuwjds
Q 1% s
/6de—/ F(Ful—/ 0 leéul—/ Tij%d’l}
v Oz 0x;
/5Wda:—/ Fiou; — /87—”5 /T,jésijdv
ox
= — Fi + 5uzdv = 6Vddv.
v 3%’ Q

Thus,

o7
(3.30) Vg = — < v >5u'

Assume that V; is an exact differential of the variables u;; i.e., that the system is conser-
vative. Then,

oV, OT;i
3.31 =—|F Y.
( ) 8’(1,1 < + 8.Tj )
Also, it follows from (3.28) that
oTq 0
aa, U
Thus, (3.29) becomes
0?u; O0Tij
7 — F,L (%)
P 3t2 + 3'1']' ’

which are the original equations of motion in (3.16).
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Let us check that the boundary conditions (3.17) are satisfied. We proceed as in the
derivation of (3.7), where from the principle of virtual work (3.5) we derived the equilibrium
equations (3.1). We start with the statement of Hamilton principle in the form of (3.22)
and rewrite the left hand side of (3.22) in the form

t1 t1 t1 1
/ dt/ oW dv = / dt/ Tijész-jdv = / dt/ Tij_(5u1l,j + 6uj,1l)dv
to v to 14 to v 2
tl . tl
—/ dt/ 87—” 5uzdv —|—/ / TijVj(SUidS.
ox;
to \% J to /S

Using (3.32) in (3.22) we obtain

t1
—/ dt/ Tij 5u,d’u+/ dt/TijVj(S’U,idS
ox to
t1 t1 t1
/ dt/ F5u,dv+/ /Toéuzds—/ dt/ 5u,d’u
so that

b 0Ti; 32 v
(3.33) / / + Fi — p—5 | Suidv + / (T9 — 7i5v;)0usds pdt = 0.
to 3.1'] 3 S

Since the du;’s are arbitrary, from (3.33) we see that (3.16) holds, and that

(3.32)

v
TijVj = T(z] on S,

so that the boundary conditions (3.17) are satisfied.

Summarizing from the Hamilton principle (3.24) we have obtained the Lagrange equa-
tions of motion (3.29). If the system is conservative in the sense of (3.31), then from the
Hamilton principle we can recover the equations of motion (3.16)—(3.17).

In the next section, we will use these tools to derive the equation of motion for fluid—
saturated porous media, also known as Biot media.
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CHAPTER 4
WAVE PROPAGATION IN FLUID SATURATED POROUS MEDIA

1. The Stress-Strain Relations.

Let © be a porous medium saturated by a single-phase fluid, let ¢(z) be the effective
porosity, and let u®, uf be the locally averaged solid and water displacements in €. The
physical meaning of uf is as follows: take a unit cube @ of bulk material. Then, for any
face F' of the cube, the quantity

(4.1) /F si - vdo

represents the amount of fluid displaced through F', where v denotes the unit outward
normal to F. Let 7;; and o0;; be the total stress tensor of the bulk material and the stress
tensor in the solid part, respectively. Also, let ps denote the fluid pressure and set

(4.2) o= —¢py.
Then,
(4.3) Tij = Oij + 0ij0 = 0ij — $pydij.

Assume that the domain  of bulk material is originally in static equilibrium and

consider a system for surface forces g7, gif such that  remains in equilibrium under the
action of such forces.

Since the system is in static equilibrium, the fluid pressure is constant on €2 so that

(4.4) VPr= e

0.

Also, since the total stress field is in equilibrium,

37—1']'

(4.5) o,

= 0.

Let W denote the strain energy density for the fluid-solid system. Then, the virtual work
principle states that the variation of strain energy in a body 2 is equal to the virtual work
of the surface forces on 9 (body forces such as gravity are neglected here); i.e.,

(4.6) / SW dQ2 = / (g50us + gf 6ul ) do.
Q [2]9)

The forces g7 act on the solid part of 0€2, while gf acts on the fluid part of 0. Here 012 is
not the physical termination of the body, but any closed surface within the body. In this
way, we do not have to introduce the surface tension at the physical boundary.

Next, use that

(4.7) g; = oijvj, gl = —¢pydijvj.
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Also, from (4.3),
(4.8) gf = (Tij + 5ij¢pf)yj.
Using (4.7)—(4.8) in (4.6) we obtain
(4.9) / oW dSQ) = / ((Tij + 5ij¢pf)5ufuj — (ﬁpf(sij(Sﬂlij)dU
Q o
= / [njéufyj — QSpfém((Wf — (S’U,f)VJ]dO'
519
Set

(4.10) ul = p(ul —uf),

3 —

which represents the displacement of the fluid relative to the solid but measured in terms
of volume per unit area of bulk material. Then, (4.9) becomes

(4.11) /(5WdQZ/ (Tij(Fusj—pféijéu{Vj)da.
Q o

Next, using Gauss’s theorem,

0 0
4.12 /6WdQ:/ —(m0u; dv—/ —(p 5¢-5u{ dv.
(112) j g ratut)in = | (oo
Next, note that

B oou!
sy _ 9Pf s f i
(pfdijou; ) oz, du; +pf .

0 0 oou? 0
4.1 —(1i0u;) = =—mi0u + T ——,
(4.13) oz (Tij0us) 8%]_7'352;Z + Tij oz, 9z

Since the body is in equilibrium, (4.4) and (4.5) hold and consequently

7 S W7 S W
114 3'1']' TU wi) = T” 83:]- N 27—” 83:]- 27—]1' 83:]-
(4.14) 1 douf N 1 0duj 16 ou? N ou; e (u)
27—” 83:]- 27—” 3.1’1, T”2 83:]- 3.1’1, J J
Also,
0
(4.15) a—(pf5ij5uzf) =ps6V -ul.
Ly
Set
(4.16) ¢=-V-ul

Thus, (4.12) becomes

(4.17) /Q(SWdQ:/Q(njéeij(us)ijf(Ff)dv.
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Since this is true for any €2, we conclude that
(4.18) oW = Tij(s&','j (us) +pf5§.

Next, since W must be an exact differential of the strains ¢;;(u®) and £, we have that W
must satisfy the conditions

ow ow
4.1 =7, o —py,
( 9) 36” TJ aé- pf
and
(4.20) OPW ’W ’W OPW

8€¢j6£ - 8£8€¢j7 86@'88]@ - 88]6@867;3'.
The Stress-Strain Relations.
In the isotropic case, W needs to be a function of the three invariants I, I», and I3 of

€;j, and the variable &; i.e.,
W — W([l,Iz,[g,é).

To remain in the linear case, we must include only I, I, and £. As in the elastic solid

case, it is more convenient to use I, = —41I5 (c.f. 1.42). Thus,
1
(4.21) W = 5(He2 + plIh — 2Beé + ME?).
Using (4.19), we obtain
ow
8— =T11 = He + /1,(—2833 — 2622) — BE,
€11
ow
8— = T992 = He + /1,(—2811 — 2633) — BE,
€22
(4.22) e
8— — 733 — He + /1,(—2622 — 2822) — Bf,
€33
ow ., . oW
Do = Tij = 2u€i5,  tF 7, 3 = py = —Be+ M¢.
Set
(4.23) H =\ +2u, B = aM, Ae = A+ oM.

Then, (4.22) becomes
T11 = Ac€ + 2pe — 2u(e92 + €33) — aME = Aece + 2uery — aME.
Similarly,
Tii = Ac€ + 2ues; — aME, 1 =2,3.
Tij = 2U€ij, 1 # J. py = —aMe + ME.
In abbreviated form,
(4.24) Tij = (Ace — aM&)d;; + 2pe;;, pf =—aMe+ ME.

The inverse relation for (4.24) can be written in the form
1
(425) €ij = ﬂTij+5ij(DT_pr)7 fz —FT—I—pr,

where
(4.26) T =Ty1 + Too + 733 = Tp.(7).
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Physical significance of the variables ¢ and ¢.

Let Vy, Vi, V s be the bulk, solid, and fluid volumes, respectively, of a homogeneous
part €2 of bulk material in the initial equilibrium state. Since u® is the averaged solid
displacement vector over the whole bulk material, e represents the change AV, =V}, — Ve
in bulk volume per unit volume of bulk material; i.e.,

AV,
(4.27) e= =21
Vi
|
|
|
: // §(1+ Ax
| — f‘ N
%,
FIGURE 12

Next, consider a cube of bulk material of uniform porosity ¢ = V#/V. The amount of
fluid entering the face Sy, is ¢(@f (21) — u (#1))AzaAzs, and the amount of fluid leaving

the face Sy, yag, is ¢(@! (21 + Azy) — v (z1 + Az1))AzsAzs. Then, the change in fluid
content 6 F, is given by

~f .8 _ ~f _
s = L+ A — (e + Ae) = @) —wi@e)] ) ouln
A.Tl 3.1’1
In general,
SF
4.28 = =V-ul =—-¢
(4.28) 7, VW=t

Thus, £ represents the change in fluid content per unit bulk volume.
Next, let us denote by AV the part of the total change AVy = V¢ —V ¢ in fluid volume
due to changes in fluid pressure. Then,

AVE
f bf
4.29 — =
(4.29) 7 iy

Now observe that the change in fluid content is the difference between AVy and AVE.
Since ¢ measures this difference per unit bulk volume, we see that

AV, —AVE T B _
(4.30) =2 20 VA, Avf) — DAV} — AVE)/T.
Vi Vi Vi
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For the analysis, it is convenient to decompose 7;; in the form
(4.31) Tij = —Pf0ij + Tij,

where 7;; is the “residual” or “effective” stress of the material.
Let us determine the elastic coefficients in the stress—strain relations (4.24):

Tij = (Ace — B&)dij + 2pueij, py = —Be + M¢.

43

Here we follow the argument given in [14]. First, since the fluid does not support any
shear, y is identical to the shear modulus of the solid matrix. For the other coefficients, it

is sufficient to consider tensional changes 7;; such that

1 . .
7'11:7'22:T33:§AT:—AP, Ap>0, Tij:07 7’7&.]

Set

T =Ti1 + Toa + T33 = —AD.

Then the decomposition (4.31) becomes

(4.32) Ti1 = —pf + T11, (same for 72, T33)
1 1. ~ ~
3T PrE ST, SAp=-pp—AD Ap=pp+ AP

Also, (4.24)—(4.25) reduce to

1
gAT =T11 = ()\Ce — Bé) + 2/1,811,
1
EAT = T992 = ()\Ce — Bé) + 2/1,822,
1

EAT = 733 = (Ace — BE) + 2puess.

Adding the last three equations, we obtain

1 2
(4.33) gAT:—Ap: <)\c+§u>e—B§EGe—B§.
Also,
(4.34) ps = —Be + ME¢.

Now, from (4.25),
L (Dr—Fpy) Lot (DT~ Fypy) Lt
€11 = —T T— , €99 = —T: T— , €33 = —T: T
11 2% 11 bf 22 2 22 V4 33 2 33
Adding the last three equations,

1 1
(4.35) e= ZT+3DT—3F})J£: <3D+5>T—3pr,

—pr).
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and

(4.36) ¢ = —F7+ Hpy.

Consider the closed system, in which no fluid is allowed to flow in or out of the bulk
material, and let k., the bulk modulus of the system, be defined by

Ap

4.37 =
(4.37) =7

This corresponds to a compressibility test in which a sample of bulk material is enclosed

in an impermeable jacket and then subjected to an additional external pressure Ap.
Note that for a closed system £ = 0. Then from (4.33),

(4.38) e=—Ap/G.

Thus, from (4.37) and (4.38),

(4.39) G = k..

To determine k., we first need to use (4.35) to derive expressions for 3D + 2i and F' using
the jacketed compressibility test, which corresponds to a tensional state such that

so that the fluid pressure is held constant and the external applied pressure
(441) —Ap = —(pf + A]/)\) = —AZ/)\: ?11 = ?22 = ?33

is supported only by the solid matrix. Here k,, denotes the bulk modulus of the empty
matrix (see Biot and Willis [5]).
Now, using (4.29) and (4.30),

_AVy = AVE AV A(¢Vs) _ AgVs + dAY,

Vi Vi Vi Vb
_ Ap(Ve + AVy) + (9 + AP)AV,
Vs '
Then,
— AV,
(4.42) £~ Ap+d =2,
Vi

Now, according to (2.26),

(4.43) A = (i C $)>Aﬁ,

ks Em
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where ks denotes the bulk modulus of the solid grains. Thus, using (4.40) and(4.42),
1 1 . —=Ap AV, 1 1 .
=({—-—]A — +tp—=—=|——— |Ap.

kS km m

(4.44)
Now, using (4.44) and (4.40) in (4.35) we obtain

Ap 1 1\ .. - ~
—— = (3D + — =(3D+ —
km ( +2/1,>T < +2M>(T11+T22+T33)
1
= (3D + — | (—=3AD).
( + 2u>( D)
Therefore,
1 1
4.45 3D+ — = ——
( ) + 2u 3k,
Also,
1 1 Ap=—Fr=F-3Ap.
ks km p - T = p?
so that
1/1 1
F=—|——-——).
3 <k5 km>

(4.46)

Now we will obtain an expression for k. using (4.45) and (4.46).
Using (4.37), (4.45), and (4.46) in (4.35) we see that for the closed system,

= L(—3sz) - 3% (i - i)m-

Ap 1
— —— r_3Fp; =
TP T g ke ko

Thus,

1 1
(4.47) <
Next we will derive a relation between Ap and p¢, valid for the closed system.
First note that since, for the closed system £ = 0, from (4.29) and (4.20) we have

(3230
Vi Vi

Then,
(4.48) AV; _AVP_ wr
Vi Vg kg
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In (4.48), ks denotes fluid bulk modulus. Next, using (4.43) up to first order terms, we
have that

AVp _ AWV _ AV T Vi AV, (Ve + AT)

Vs Vi ’ Vi Vi "= Vs Vs ¢
Vi+AVH)AV, (Vi + AVp)A AV, A
(4.49) _ Vit AVHAV, (Vo + AVy)Ad AV | Ad
‘/E)Vf Vf ‘/b

_ Ap 11 1—¢ .
__k_c+3<k_s_<km )

Combining (4.48)-(4.49) and the decomposition (4.32) (Ap = py + Ap), we see that

_pp_ _op 1 (ki - (1,;5)>(Ap—Pf).

kf ke &

Thus,

(36 (o3 2)

Multiplying by ¢,

1 /11 1 /11
ap( -t oty (2o g
p(/gs . +¢<km k>> pf(k;s o +¢<km kf>’

so that
1 1 -/ 1 1
Ao+ -
(4.50) pf — k}s k?m __ m c Ap.
e

1ot (1 G ) TG, -
(4.51) _km+< > 7

From (4.49), a calculation yields

_ g fm @
(4.52) ke = ks et O

_ kf(km - kS)
(4:53) ©= p(ks — kf)

which coincides with the expression given in (2.42)—(2.43).
We need to compute the remaining coefficients B and M. They can be obtained from
the jacketed compressibility test described by the tensional state (4.40); i.e.,
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From (4.33), (4.34), (4.39), and the expression for £ in (4.44) we obtain

_ Ap 1 1Y\,
“Ap=-ANp=k| -L)-B(— - —)Ap,
i G R G o

Ap T 1),
o=-n(-2) +u (55 ) 40

Thus,
ke 1 1
I R )
(4.54) B ) |
.. _B (1
0= (k km>
Then,
kr(km—ks
B(km_ks> ke gk Fom + ‘;((kf_ks))
kskm N B _m - B m kf(km ks)
ks + P(ks—ks)
_ 1 Fs km@(ky —ky) + kg (km — ks)
km, (ks¢(kf - ks) + kf(km ks))
ks(kiy — ko) + 2L (K — ki)
 kep(ky — ko) + kp(km — k)
kg (km — ks) — k;iff (km — ks)
B ks¢(kf - ks) + kf(km - ks)
k= k)1 £2)
ksp(kyp — ks) + kp(km — ks)’
Then,
(km - ks) (k8¢(kf - kS) + kf(km - ks)
or
kske(ks — km,
(4.55) B= il )

ksp(ks — kf) + kf(ks - km).
Next, from (4.54.ii),

M(k-?;;;k>_ B o ks ks (ks — k)

ke T (ks — km) kst(ks —kp) + kp(ks — km)

47
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Thus,

k2ky

(4.56) M = ks — k) + ki (ks — Fom)”

Also, B and M may be determined using the unjacketed compressibility test ([5]) cor-
responding to a tensional state of the form

Ap =0, Ti1 = Tog = T33 = —Ap = —py.

In this test, a sample of bulk material is immersed in a container with the same fluid as
that inside the poral space and then subjected to a hydrostatic pressure change Ap.

Thus, in this case, the pressure change is supported by both the solid and fluid parts
of the bulk material, and the residual stress, acting only on the matrix, is zero. Thus,
according to (2.26) or (4.43),

(4.57) Ap = 0.
Next, note that from (4.57),
AV, A(L-OW) _ (1- AV~ AV

v, v, v,
1-(+A9IAV, AV

(1—=9)Vy Y

’

AVy  A(pVy)  ¢AV, AV
Vf Vf 571) Vb '
Thus,
AV, AV, AV,
(4.58) s _ 2
Vs Vs Vi
Since
AV, _ _&
Vs k'
we conclude that
A
(4.59) e:—%f.
Also, using (4.29), (4.30), and (4.58),
(7 -7)) =3~ 2+ 8)-7(5 %)
(4.60) £¢<vf V; N~ % ks ¢kf N

Now using (4.59) and (4.60) in (4.33)—(4.34), we obtain

Ap —(1 1
e G Bl g L

(1 1
— Ap = =-B| — — Mpl — — — A
b=Pps < k5>+ ¢<kf k5> b
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or

ke o —(1 1 B (1 1
(4.61) l_k_s+B¢<E_k_s>’ 1_ks+M¢<kf k)

Now, (4.61) and an algebraic manipulation using the expression for k. in (4.52)-(4.53)
yields again the equations for B and M in (4.55) and (4.56).

We now examine the restrictions on the coefficients imposed by the nonnegative char-
acter of the strain energy W. Recall that (c.f. (4.21))
(4.62) oW = He? + pl}y — 2Beé + Mg

Using an argument similar to that leading to (1.45), we can write (4.62) in the equivalent
form

2
oW = (Ac + §u> e? + du(ely + €33 +€33)

2
(4.63) + §u<(811 —£92)” + (e11 — €33)” + (€22 — 633)2> — 2Bef + M€,
Setting
e = 5 =0,
we see that we must have
(4.64) > 0.

Next, setting
€11 = €22 = €33, €&45 = 0, 7é Js

we obtain

W = kee® — 2Bef + ME? = [e, €] [_’% ;\f] [Z] = [e, ¢]E [2]

From det(E — rI) = 0, we find

(ke + M) £ /(ke + M)? — 4(k,M — C?)
; .

Thus, for the eigenvalues r to be nonnegative, we find the conditions

(4.65) (ke + M)? — 4k.M + 4B* = (k. — M)? + 4B* > 0 (always true),
(4.66) keM —B*>0, k.>0, M>0.

Next, we observe that, since B = aM and A\, = A + o?M (c.f. (4.23)),

koM — B? = k.M — o*M? = (k. — o> M) M.
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Next, set
2
k=X+—pu.
+3u
Then,
2 2 9
kc—k:)\c+§u—)\—§u:)\c—)\:aM
so that

k.M — B? = (k. — o> M)M = kM.
Therefore, for W to be nonnegative, we have the necessary and sufficient conditions
2
(4.67) w>0, M>0, k:A+§uZO.
To interpret the condition £k = X + % i1 > 0, we proceed as follows.
We start with (4.24):
1) 7ij = (Ace — aME&)d;; + 2uei;
. By = )i + 2uei
ii) pr=-aMe+ ME.

Next, write £ as function of py and e:

1
(469) £ = Mpf + «e.

Using (4.69) in (4.68), we obtain
Tij = {)\ce - aM(%pf + ae)] dij + 2peij,
or
(4.70) Tij + 0ijapys = 2pei; + 055 (Ae — o’M)e + 2ueij + 0ijAe.
Now use (4.31) to write 7;; as a function of the residual stress 7;;; i.e.,
Tij = —Pflij + Tij-
Then, (4.70) becomes
(4.71) Tij — (1 — a)dijpr = 2peij + di5e.
Recall that the jacketed compressibility test is defined by the tensional state
pr =0, Ti1=Top =T33 =T11 = Tag = T33 = —AP.
Then, from (4.71) we obtain
—ADp =2uey; + Xe, 1=1,2,3.
Adding the three equations, we get
—3Ap = (2u+ 3N)e

or N N
Ap  Ap
A 2p k-
Thus, the condition k& = A + %p, > 0 simply states that, for the open system (p; = 0),
the coefficient £ = X\ + %u, which represents the inverse of the jacketed compressibility, be
nonnegative.
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The Equation of Motion.

Following the ideas given in Chapter 3, we will choose u and uf , 1 <14 < 3 as generalized
coordinates or state variables to describe the evolution of the fluid—solid system. As in
(3.29), the Lagrange formulation of the equation of motion is given by

) 4 (0Ti) 0Dy _ 9Va
7o Voa\oas ) T oy T oug’
(4.72) o <8Td> oDy OV |
i) — = — , 1<4i<3.
di\oal ) oul  oul

In (4.72), Ty, Dy, and Vj are, respectively, the kinetic energy density, the dissipation energy
density function, and the potential energy density of the system.
First, let us compute the right hand side in (4.72). Following the definition in (3.6), let

(4.73) V :/ W dS _/ (g5ui + glul)do
Q oQ
be the potential energy of the fluid-solid system (neglecting body forces) where

(4.74) 9; = ouvy = (7ij + Sigbpp)vs, gl = —dppoiu;.
Also, recall that according to (4.18),
(475) oW = Tij(s&','j (US) +pf5§.

If the system is in static equilibrium, then
(4.76) 5V = 0= / SW dQ — / (g50u; + gf 60l )do
Q o0

states the virtual work principle for the fluid—solid system. Now we consider a perturbation
of the system from the equilibrium state; i.e., we do not have any more of the conditions,

3pf
Tijyj :0, — = 0.

33:]-
Then,
5V:/5WdQ—/ (T,-j+¢Pf5¢j)5usjda+/ (ﬁpf(s,-j&ﬂlfyjda
Q o0 o9
:/5WdQ—/ (Tijéufyj—pféijéulfyj)da
Q o9
—/5WdQ—/ i(r-(S?ﬁ)dQ%—/ i(p 5~~5uf)d§2
Q Q 333] “ t Q 3$3 F7% ¢
:/(Tij5€ij —I—pf5§)d9—/Tij’j5ufd9—/7'1;j581;jd9
Q Q

Q
+/ %5u{d§2+/pf(—5§)d(2.
o Oz Q
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Hence,
s Opso oy
(4.77) oY = — T¢j7j6ui - —5’(1,1 dQ) = (SVddQ
Q Ox Q
Thus,
0T Opy
4, §Vy = — =L ju? sul.
(4.78) Va oz, ug + 91, u;

Assuming that Vg is an exact differential in the variables u] and uf , we see that

8Vd . _87'7;]' % . 8pf
ous - 8.1'3', a'u,f N 8-'171'7

7

(4.79) i=1,2,3.

Next, we will compute the kinetic energy density Ty for the fluid-solid system. Let us
consider a unit cube @ of bulk material, and let (), denote the porous part of ). Let py
and ps be the mass densities of the fluid and solid phases, respectively.

Let (v;)1<i<3 be the relative microvelocity field; i.e., the velocity of each fluid particle
with respect to the solid frame. Assuming that the relative flow inside the poral space is
of laminar type (i.e., we are in the low frequency range) we can write

(4.80) Ui = aiju;cy

with the coefficients a;; depending on the coordinates of the pores and the pore geometry.
Let

1= (1 - ¢)ps

be the mass of solid per unit volume of bulk material. Then, on the solid part of @ (i.e.,
in @\ @), the kinetic energy is given by

1 s s 1 | B
(4.81) 5/ Ps“i“id(Q\Qp) = §|Q\Qp|PsUi“i = 5(1 - ¢5)Psuz'ui = 501%’“1'-
Q\Qp

Here we have used that since u; is the average solid displacement over ), u]

7
over ().

Next, on the porous part (), the velocity of any given particle is the relative micro-
velocity plus the averaged solid velocity; i.e., @; + v;. Then the kinetic energy in @, is
obtained by integration of (1; + v;)(4; 4+ v;) over @,. Thus, the total kinetic energy per
unit volume of bulk material is given by

1S constant

1

e 1 } }
(4.82) Ty = gouidis + s [0+ 008 + v0)dQ,

@p

Next, note that

1 *S S 1 *S S
(4.83) §Pf/ U U dQp = 5 pyui;
Q

p
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and that
(4.84) Pf/ U vidQp = pyi; / vidQp = prigil,
p Qp

since the averaged relative fluid velocity is obtained by averaging the relative microvelocity
field over @Q,,.
Next, using (4.80),

_ O SRS |
P [at'?
(4.85) pf/ VRUEdQ pf/ kit At dQyp

p QP

= (pf / amakjdc;p> wlid = gijadal,

P
where

(486) gij = pf/ akiakdep.

P

Note that 9ij = Gji-
Using (4.83), (4.84), and (4.85) in (4.82), we obtain

I oo, 1 1
Ty = —Plufuf+§/0f¢u §+ ppusil + S gigili f

2 2
Let
(4.87) p=p1+prd=1[(1—¢)ps + dps] = mass density of bulk material.
Then,
1 af + Lo il il
(4.88) Ty = - pliu; + pri;u] + =giju;

2 2

Note that g;; must be positive definite, otherwise, we may have, for u; = 0,

1
T = 29”1"5:0 foru{;«éO.

For an isotropic microvelocity field, we have that

(4.89) gij = 99ij,

and (4.88) becomes

| 1
(4.90) T; = Epufuf + prug f + 2gufuf.

Next, we will compute the form of the dissipation energy density function D,. Following
[3], we will assume that dissipation depends only on the relative flow between the fluid
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and the solid. Assuming that the relative flow is of Poiseuille type, the microscopic flow

pattern inside the pores is uniquely determined by the six generalized velocities %7, u; .

The dissipation function vanishes when u? = ﬁf. Thus, we can write Dy in the form

1
(4.91) Dy = Enriju{u;‘

where 7 is the fluid viscosity and r;; is a symmetric positive definite matrix. Now, from
(4.88) we have that

3Td . . aTd . .
- s :pulsc—kpfu;:, N :pfulsc+gkju;ca
4.92 O iy
(4.92) oDy oDy ,f
= — = gl .
i ol MY

Thus, combining (4.79) and (4.92) we see that the Lagrange equations (4.72) become

" Lp Oy
i) piig + pyiif =52,
8.’17j
(4.93)
. g Caf _..f__apf
1) pPru; + giju; + nriju; = Oz’
€T

which are Biot’s equation of motion for the fluid—solid system.
Note that in the case of steady flow rate (4; = const) from (4.93), we have that

7 Ops
J 8.1'7, .

Let K = (k;;) be the inverse of the matrix R = (r;;). Then, the equation above becomes
(4.95) nK-tal = Vp (Darcy’s law),

so that K can be identified with the rock permeability.
Next, in the isotropic case,
Tij = réij = K_I(Sij-

Thus, in the isotropic case, (4.93) becomes

. .. . OT;i
D) piif + prii) = =2,
8.’17j
(4.96) 5
i) priid + giid +pK'af = —%, i=1,2,3.
X

Equations (4.96) together with the constitutive relations given in (4.24); i.e.,

i) 7 = (Ace — BE)dij + 2peij(u’),

4,
(4.97) i) ps=—Be+ M,
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completely determines the dynamic behaviour of the solid—fluid system in the low—frequency
range.
Note that for the kinetic energy to be positive, the conditions

(4.98) pg — pfc >0, ¢g>0, (p>0always),

must be satisfied.
In fact,

dor (P07 P ) == Bl )+ (o9 = ) =0,

5 p+gi\/(p+g)2—4(pg—p§e) p+gi\/(p—g)2+4p§c
B 2 B 2 '

Thus, for the eigenvalues 3 to be positive we need that
2
pg — py >0,

and since p > 0, for the condition above to be true, g must be positive. Thus, (4.98) is
proved.

For the analysis that follows, it is convenient to write (4.96) in terms of u?, ﬂf for the
case of constant porosity ¢. Since (c.f., 4.3)

Tij = Oij + 0ij0 = 0ij — dprdij,

from (4.96.1) we have

(4.99) piig + pro(ii] —iif) =

Multiplying (4.96.ii) by ¢ we see that

0 0 . . 1.
T ¢ bpri; + dgi] +nK pi]
.5 o f “g — ~f . S
(4.100) = opyii; + ¢*g(u; —i7) + K7 (u; — if)

s o f _ ~f
= (¢pf — ¢29)Ui + ¢2gui + K 1¢2(Ui — ).

Using (4.100) in (4.99), we obtain

00;; s s f s s s f _ ~f . s
(4.101) 83:? = pii; + pyou; — pydii; — (py — ¢29)U¢ - ¢29Ui —-nK 1¢2(U¢ — ;)
. J
_ -9 2 ] 2 o f QK_l -s_~f
=(p bpy + ¢7g)ii; + (Ppy — d~g)u; + ¢°n (g — ).
Set
(4102) pi1=p—2¢ps +d>g,  pi12 = dps — $°g,

p22 = ¢%g, b= ¢*nK L.
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Then (4.99) and (4.101) become

. . o f . i 00j
i) pruii; + prou; — b(uf - U:) = aﬁa
(4.103) !
.. s o f .f A8 do
ii)  pioti] + paou; +b(4] —u;) = B
7

Next we will give constitutive relations for o;;, the stress in the solid part of the bulk
material, and o = —¢p; in terms of g;;(u®), e, and § = V - uf. First, note that

(E=-V.u =-V.(p@a —u).

Thus,
{=¢(e—10).
Next, from (4.98.1), using that B = aM,
(4.104) o=—¢psr = paMe — ¢pM¢p(e —0)
or

o= ¢M(a — p)e + ¢>M0.
Using (4.104), since A\, = A + o> M, we obtain

O'ij = Tl'j — (SUO'

= [Ace —aMep(e — 0)]0;; + 2pue;; — [pMae — p*Me + ¢*> MO

= -[)\C —2aM¢ + ¢*Mle + ¢M (o — QS)Q] 0ij + 2peij
(4.105) -
= [)\ + azM — 2&M¢5 + ¢52M]6 + qSM(a — ¢)9:| 51']' + 2/1'61']'
= -[)\ + M(a — ¢)?*]e + ¢M (o — QS)Q} 0ij + 2pE;;.
Setting
(4106) A:)‘+M(a_¢)27 Q:¢(a_¢)M7 R:¢2M7

we can rewrite (4.104) and (4.105) in the form

1 O;i = A6+Q9 (51,4—2/1,61,
(4.107) ”) i = )di; j
i) o=Qe+ RO.
The coefficient « in (4.106) was shown to be in the range ¢ < o <1 [5]. The equations of
motion (4.103) together with the constitutive relations (4.107) are the original equations
derived by Biot in [3].
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Let us analyze the significance of the coefficients p11, p12, p22 in (4.103) following the
ideas in [3]. In these arguments, we will ignore friction effects so that b = 0. Let p; =
(1—¢)ps, p2 = ¢py be the solid and fluid masses per unit volume of bulk material. Assume

that uf = &/ = u;. In this case, adding (4.103.i) and (4.103.ii) we obtain

i prm—

. 0
(,011 +2p12 + Pzz)ui = %(O'ij + 5¢j0) =
(3

Tij

Ow;

which shows that p11 + 2p12 + p22 represents the total mass p of the solid—fluid system per
unit volume. Thus,

(4.108) p = p11+ 2p12 + po2.
On the other hand,
(4.109) p=(1—9¢)ps+ dps.

Next, let us assume displacements only in the x;—direction and that uf = u{ .

1 2
P P

Ax

Assume that pfc < p}c so that

2 1
Opy . P; —Ps

< 0.
8.771 Al’l

Since the fluid moves in the positive x;—direction with positive acceleration, then

dpy ; s
T m, Pfuy = Pruy

or

2,8
0“uj

Opy
4.11 — =0 .

8.7]1

On the other hand, from (4.103.ii) we have that

. 8pf
4.111 S = —p—=.
( ) (p12 + p22)ii] ¢8$1
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Then, from (4.110) and (4.111), we see that

(4.112) p12 + p22 = dpy = p2.
Also, using (4.112), (4.108), and (4.109) we see that

p=(1—d)ps+ ¢ps = p11+ p12 + p12 + p22 = p11 + p12 + dpy
so that

(4.113) p11+ p12 = (1 — ¢)ps = p1.

The coefficient pi2 is a mass—coupling parameter between fluid and solid. To see this,
we consider the special case in which {Zf = 0. In this case and for displacements in the
x1—direction only, from (4.103) we have that

) s 011
) pnuy = )
(4.114) O
.. s, Opy
i) pretf = — pr

The force —gbg%{ is acting on the fluid to prevent its displacement. This force is in a
direction opposite to the acceleration of the solid, and then from (4.114.ii) we see that

(4.115) p12 < 0.

Also, from (4.114) we see that, since ﬂ{ = 0, the solid is moving within the fluid
with more inertia; i.e., moves slowly since the fluid is preventing the solid motion. The
coefficient p1; in (4.114.1) represents the total effective mass of the solid moving within the
fluid. Since the fluid is restricting the solid motion, the solid has an “apparent mass” pi1
greater than its own mass p1; i.e.,

(4.116) P11 = P1 + Pas
where p,, is an additional mass due to the fluid. Now from (4.113) and (4.116), we see that
(4.117) P12 = —Pa

so that pio is the additional apparent mass with a change in sign. Thus, we can write the
coefficients pi11, p12, and pao in the form

(4.118) P11 = P1 T+ Pas p22 = P2 + Pa, P12 = —Pa-
The kinetic energy density function T, associated with (4.103) is

1 . s Lot ~ff
(4.119) Ty = §(p11ufuf + 2p1205u; + pootl; u; ).

In order that T,; be a positive quadratic form, we need the conditions
i) p11>0, pa2>0,

(4.120) . 5

i)  prip22 — (p12)° > 0.

If p11, p12, and pao are given by (4.118), with py, p2, and p, positive by their physical
nature, then it is obvious that (4.120.ii) is always satisfied.
Note that using (4.103) and (4.120) we see immediately that g > 0 and that

p11p22 — (p12)® = (p — 2dps + ¢°9)d°g — (dps — ¢°9)* = ¢°[pg — p7] > 0
so that if py1, p12, peo are given in the form (4.118) then the conditions (4.98) are auto-
matically satisfied.
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Classification of the Waves in the Isotropic Case.
First note that in the constant coefficients case

0 o (. ou dus  Out 9
L (B o(3E 80 -

Oz 0x; 0 Oxr;  Ox; 0x;
Jd ouf 0? 0 Ouj 0
~ A I “J_p
0 s 0
= (A + ) 3$,~6 + pAu; — B&T,ﬁ'
Then, from (4.96) and (4.98) we obtain
. . 0 0
pi + prii] = (\e + p)5— — B —& + pdu,
(4.121) 5
priif + giil + nK-tal = - (—~Be + M¢).

7

Using vector notation we can write (4.121) in the equivalent form

pit® + pritf = (. + p)Ve — BVE 4 pAu’,

(4.122) e .
psi® + gty +nK~taf = —V[-Be + M¢).

Applying the divergence operator to (4.122) we obtain the equations governing the prop-
agation of dilatational waves:

(4.123) pé+psl = HAe + BAO,  ppé+ gl + 1K '0 = BAe + MAS,

where H = A\, + 2p and @ = V - u/. Now consider a plane compressional wave of angular
frequency w and wave number ¢ = /,. + ¢/; travelling in the z;—direction; i.e.,
Cg)ei(eml—wt) _ Cy)e—fimleiﬁr(ml—ﬁt)

€ = s

4.124
( ) 0= Cée)ei(fwl —wt) _ Cée)e_eiml pilr(T1—21)

Thus, the wave has phase velocity w/|¢,| and attenuation factor ¢;; this factor should be
nonnegative to have a physically meaningful solution. Substitution of (4.124) in (4.123)
yields

—w?[Cip+ Capy] = —2[CLH + C;B],

4125 K-1
( ) —w? Cipf + Cag — niw Co| = —L?[C1B + Co M.
Set
W w w(l —il) e
T Ty, ey T
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Then,
-1
C1B + CoM = ~? {Clpf + Cg + il Cz] :
Set
i_(r s m_(H B)
A_ ) E_ )
(pf g ) (B M
~ 0 0 o
_ -1 (v) — 1
C-[O nkK ], CW_(Cy)).
w

In matrix form, (4.125) now becomes the generalized eigenvalue problem
(4.127) (A +iC)C™ = EC),

Next note that since £ and A are associated with the strain and kinetic energies, they
are positive definite, and C is nonnegative. Let A = A, + ¢); and x be an eigenvalue and
eigenvector of the generalized eigenvalue problem (4.127); i.e.,

(4.128) Ex = MA+iC)x.

Set
r= (Ex,x) >0, p=(4x,x) >0, ¢g=(Cx,x)>0.

Then, from (4.128),
(4.129) (Ex,x) = A((Ax, x) + i(Cx, x))

or
r= (A + 1) (P + 1) = Aep — Xiq + i(Arg + Xip).

Then,

1) r= )\rp - )‘iQ7

4.130
(4.130) i) 0= Aq+ Ap.

Multiplying (4.130.1) by p and (4.130.ii) by ¢ and adding the resulting equations, we obtain

Ar (P + ¢°) = rp.

Therefore,
rp
i) A=—575>0,
(4.131) b +qq g
i) A=-A=-=-— <0.
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Thus,
2 r 2 . 2
=)A= — = Re 411
v PO (p — iq) (v7) +iIm(y%)
so that
(4.132) Re(y?) >0, Im(y?) <0.
y2

im(yh2 LoD (yhH2

FIGURE 13

Let (v())2, j = 1,2 be the two solutions of the generalized eigenvalue problem (4.127).
Since
w _ wi? —in?)

(4.133) 09 = p0) 4D = = = 2 /.
fy(J) (751))24_(%(1))2

we choose v() such that fyi(j ) > 0 so that El(j ) < 0 in order to have physically meaningful
solutions; i.e., the root circled in Figure 13.
The corresponding phase velocities are given by

(4.134) U = —_ =12,

corresponding to the type I and type II compressional waves, respectively. Instead of the
attenuation coefficient ¢; in (4.124), it is convenient to use another attenuation coefficient

€
defined as follows: At x; = 0, the original amplitude for e is ey = C{Z ") et

phase velocity _ v(7)

x(j) = wavelength = = .
frequency f
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Then, at z; = x1), the amplitude of e is

_¢@ L (7) _¢@ L (7)

e(X(j)) = C’{E(j))e T =ege .

Then,

el ()
logy ( 8 )> = _éz@)TlOglo(e)-

€0
We define the attenuation coefficient b0) measured in DB/H Z-sec by the formula

<e(x(”)

L)
) =20 1Og10(e)g57)y_

f
= (2)(8.685889)£) /149)].

w

This coefficient measures the wave attenuation after travelling one wavelength. For exam-
ple, an attenuation coefficient b() of 20 DB implies that after travelling one wavelength
the wave has reduced ten times its original amplitude.

Let us consider the purely elastic case (n = 0). In this case, (4.127) becomes

(4.135) ECY = ~2AC™,

Multiplying by A_%, we get the equation

(4.136) ATTEA 3 A3C) = 4245C0),
Set
(137 i) q = AzCO),

ii) D=A2EA"3.
Note that D is symmetric, positive definite. Then (4.136) becomes
(4.138) Dq = 42q™.
Let ¢\%), j = 1,2 be the orthonormal eigenvectors associated with D. Then,
(4.139) [q), q()] = [A2C), A2 CO2)] = [ACO), )] =0,

which is analogous to the orthogonality relation derived by Biot in [3]. To interpret the
orthogonality relation (4.139) it is convenient to rewrite it in terms of the absolute fluid

displacement uf and u®. Since
uf = ¢(ﬁf —u®),

we see that

(4.140) 0=V u = Chetltrr—eb),
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0= (0 — ¢) = ¢(Co — Cr)eir1=wt) — Cyeiltar—wt)

we conclude that the amplitude relation is

(4.141)

Set

Then,

Cy = ¢(Cy — C).

cn) — (Cle)’Oé’Yl)) = (xl,ngl),),(C(W) _ (092),0572)) — (yhcé’h)).

O = 6@ —m),  OPY = $(OF — ).

To simplify this notation, set xo = 5’571), Yo = 5’572), so that

(4.142)

C) = (21, p(w2 — 21)), C) = (y1,$(y2 — 11)).

Using (4.142) in (4.139), we obtain

(4.143)

[AC), )] = { <ppf pgf> <<;S(a:2$i x1)> ’ <<l5(y2yi y1)> ]

= [pz1 + prp(x2 — 21)|y1 + [prr1 + 9d(22 — 1)]P(Y2 — Y1)

= (p—2psp + 9¢2)$1y1 + (prop — 9¢2)(1U2y1 + z1Y2) + g Tays = 0.

Next, using the notation defined in (4.103) we can rewrite (4.143) in the form

(4.144)

p1121Y1 + p12(T2y1 + T1Y2) + pazzays = 0.

Possible cases.

a)

r1 >0 x> <0,
y1r > 0 Yo < 0.
Then,

p11r1yr > 0, p22T2y2 > 0, p12(T2y1 + T1y2) > 0,

and (4.144) cannot be satisfied.

Thus, this case is not possible.

1 >0 22>0

y1 >0 42 > 0.

In this case we can rewrite (4.114) in the form

(p11 + p12)yi(z1 + x2) + (P12 + p22)y2(z1 + 22) = 0,
or

(1= 9)psyi(z1 + w2) + ppry2(z1 + 72) = 0,

that cannot be satisfied since all terms are positive.
Then, this case is also not possible

r1 <0, z2<0,

y1 < 07 Y2 < 0.

63
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is not possible for the same reason as case b).

d) Case 1 < 0, z2 > 0, y; <0, y2 > 0 is not possible because it is like case a). Then,
the only possible cases are

(4145) 1 >0, x2 >0,
y1 <0, y2>0 (ory; >0,y <O0).

This says that if the amplitudes are in phase for one velocity; i.e., same amplitude
signs, then they are in opposite phase for the other. Thus, there is a wave in which the
amplitudes are in phase and another in which they are in opposite phase.

Now we go back to (4.135) and take the inner product with C(") = (Cf”, C’y)):
(4.146) [E(C(V) ,C] = 72@@(7) ,CO.
Using the notation defined above, we write
(4.147) CY = (21, p(zy — 21))
and, consequently,
(4.148) [X(C('Y) , (C('Y)] = pL1x3 + 2p12% 1T + paoT.
Next, using that B = aM,

[EC™), )] = Ha% az\]ﬂ Lﬁ(:cfi xl)}’ {fb(w:i wl)”

= [Hz1 + aMdp(xe — x1)]|x1 + [@Mxy + Mp(xe — 21)]p(2 — 21)
= (H —2aM¢ + M§?)(21)* + 2(aM$ — M?)z122 + M¢*(22)°.

Since H = A +2p = A+ o2 M + 2y, using (4.106) we see that
(4.149) [EC®), 0] = A(z1)? 4 2Qz125 + R(z3)2.
Thus, using (4.148) and (4.149) in (4.146) we see that

(4.150) p11(21)? + 2p127172 + pas(12)? _ 1
' A(z1)? 4 2Qz129 + R(22)? 2

From (4.150) we see that, since the only negative coefficient in (4.150) is p12, the minimum
of 7—12 corresponds to the case in which x; and x5 have the same sign; i.e., amplitudes in
phase. Thus, the higher velocity (min %) has amplitudes in phase and the lower velocity
has amplitudes in opposite phase.

Next we consider the rotational waves. Let

(4.151) k® = curlu’, k! = curlu’.
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Then applying the curl operator to equations (4.122) we obtain the equations governing
the propagation of rotational waves:

(4.152) pk® + pred = pAK?, pik® + g +nK k! =0.

Let us consider a plane rotational wave of angular frequency w = 27 f and wave number
! =V, + i4; travelling in the xi—direction:
(4153) kS — C](_e)ei(zwl —wt) — C{E)e—eim eifr(wl—ﬁt)7

[ﬁ;‘f = Cée)ei(eml_wt) — Cée)e_eimleier(wl—ﬁt).
Substitution in (4.152) yields

i) —w’[Cip+ Capy] = —£2uCh,

K—l

4.154
( ) i)  —w? {C1pf+029— niw C’g] = 0.

From (4.154.ii), we have that

K-
C1pf+02<g+znw >=0,

so that

(4.155) Cop=——"Pr__¢.

Using (4.155) in (4.154.1),

2
R VR )
et~ (£)

Thus,

This can be written as

or
— 2 -1 2
K ¢ 1
(4.156) P9 P11 B 4B = <_> =
L W w B

In the nondissipative case, the shear phase wave velocity is given by

I w
/8: 5 = —S_
pg—p; 14
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Now consider the dissipative case. From (4.156), we get
. 1 VIR Y S Y
Er +1 El = E(‘ér + Z(@) = E(é,r, - él + 21(167“)

Thus,

i) -1 =FEW

4.157
( ) i) 20.4; = Ew?.

To determine the phase velocity and attenuation of the shear waves, we need to determine
¢, and ¢;. From (4.157.ii), since

(4.158) ;=

substitution in (4.157.1) yields

Thus, multiplying by (£,.)%, we obtain

t- Buwi? - T =0,

r r

From this equation,

B, +w?\/EZ§ E?
(4.159) e w2 Pt B

Since 2 > 0, we choose the positive sign in (4.159). Thus,

2
(4.160) 02 = % <E + /B2 + E2>

Now, using (4.160) in (4.157),

E? + EZ - E,
E?zé?—Erwzch( T+2’ )

Since /; needs to be nonnegative to have physically meaningful solutions, we choose

(4.161) 09 = 2 (B2 + E2)* — E,)*.

Bl
V2
Now using (4.158), we find

(4.162) 05 =
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Finally, the phase velocity »(®) and attenuation factor b(*) are defined as before by

(4.163) pe) = |€°(‘;)|, b = (2r) - 8.685889(£") /[¢))).

In the table below, we give values of the material constants for several types of sand-
stones [6], [13]:

Pore Fluid
Viscosity Density Bulk Modulus
Water 1.0 cp (centipoise) | 1 gr/cm? 2.25 10'%dynes/cm?
Methane (4500 PSI, 275°F) | .022 cp 1398 gr/cm?® | .05543378 10'°dynes/cm?
Gas (after [6]) .015 cp 1 gr/cm3 .022 10'%dynes/cm?
Oil 4 cp .7 gr/cm? 57 101%dynes/cm?
Solid Grains
Density Bulk Modulus
2.65 gr/cm? | 3.79 10! dynes/cm?
Solid Matrix
Dilational | Shear
Porosity | Permeability | Velocity Velocity
Berea 200 md
Sandstone | .19 (millidarcies) | 3670 m/sec | 2175 m/sec
Teapot
Sandstone | .297 1900 md 3048 m/sec | 1865 m/sec
Fox-Hill
Sandstone | .074 32.5 md 4450 m/sec | 2515 m/sec

Elastic Constants for Saturated Berea
Sandstone (Units: 101° dynes/cm?)

Fluid ke L B M
Water 19.0866 | 10.1542 | 6.2493 | 10.5136
Oil 16.399 |10.1542|1.7279 | 2.9069
Gas [6] |15.4128|10.1542|.06874 |.1156
Methane | 15.4747|10.1542 | .1728 |.2908
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CHAPTER 5
EQUATIONS OF MOTION FOR FLUID-SATURATED
POROUS MEDIA IN THE HIGH-FREQUENCY RANGE

The equations of motion (4.96) were derived under the assumption that the flow inside
the poral space is of Poiseuille type. This assumption breaks down if the frequency exceeds
a certain critical value f;. This can be seen by the following argument.

Consider a plane boundary in the presence of an infinitely—extended viscous fluid oscil-
lating harmonically in its own plane.

A : wavelength

FIGURE 14

To describe the viscous fluid motion, we have the general Navier—Stokes equations [18]

Dv
(5.1) Prpy = VPr VT 48
where
2
(52) Tij == 2’[7d” + K — g’l] V.v 51']'
= stress tensor in the fluid (Newtonian Fluid),
n = shear coefficient of viscosity,
k = bulk coefficient of viscosity,
1(0v; Ov, .

(5.3) dij = 2 (8; + 82) : rate of strain tensor.

Assuming that the fluid is incompressible, V- v = 0 and
(54) Tij = 277d”

In this case, for constant viscosity 7,

0 1(0v; 0v; 0%v; 0 0v;
r=n2—c | 1) = : —L| = pAu,.
ver n 8$j2<8$j+8l'7;> n|:8l'j +8$¢8$j:| nav
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Then, in the incompressible case, we get the Navier-Stokes equations

ov
{ {
Convective i
_ pressure viscous body force
accéﬁﬁﬂion acceleration force per force per pexyunit
unit unit volume volume

volume

In applying (5.5) to the present case, we ignore the convective acceleration, gravity effects,
and pressure gradients and consider that the velocity is only xs = y—dependent. Thus,
(5.5) reduces to

Ov 0%v

(5.6) Pfa :Ua—yQ-

Now we search for solutions of (5.6) of the form
(5.7) v = Aet@Wt=ty) — poi(wt—(rtili)y) _ liy i(wi—Lry)
Substitution of (5.7) into (5.6) yields the relation

priw = —nb? = —n(02 — £ + 2il;L,.).

Set
y=1_ kinematic viscosity.

Pf
Thus,

i) or? =42,
5.8
(5:8) i) 20,0, =Pu =Y

n v

Therefore, |£,| = |¢;|, and taking modulus in (5.8.ii) we have that

(5.9) 62 = 2.

2v

Since ¢; must be nonpositive to have a physically-meaningful solution, from (5.9) we have
that

(5.10) b= —]—

and, consequently, |£,| = \/5%. Thus, for motion in the positive y—direction, £, > 0, and
from (5.7) we see that the velocity of the fluid parallel with the plane at a distance y from
the plane is

(5.11) v(y,t) = Ve V]
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Since a plane wave el@t=%Y) hag wavelength ); i.e., spatial period A, from (5.11) we see
that v(y,t) has wavelength

2
A=27 —V.

w

The quarter wavelength of the boundary layer is then

A v
12 A
(5 ) Y1 1 ™ 2w

For a porous material, we may assume that Poiseuille flow breaks down when y; is on the
order of diameter d of the pores; i.e., for

[ v
— = <d,
™ 2w A1

v
w2 < d>.

or, equivalently,

2(2r f)
Then,
TV
> —,
af
so that
TV
5.13 > — = f;.
( ) f Ad2 fy
For water at 15°C, p; = 1 gr/cm?,
d
n=1lcp =102 poise = 1072 yngssec.
cm
Then,
n _ 1072cm?
pr  sec

Then, for d = 102 cm,

T 1

= — = —— =~ 100 Hz.
Ji 4 10~4cm? < sec ’

4 sec

10_2cm2> w102

For d =102 cm,
7
fi = Z10‘1 Hz.
To study the modifications to be introduced in the theory in the range of frequencies above

ft it is more convenient to use the form of Biot’s equations given by (4.103) together with
the constitutive equations (4.107); i.e.,

. g /\',f ,;/f . aa-z .
i) puiif + pr2u; —b(u; —ul) = 8—]’
Ly
(5.14)
_ do

.. .. = f ~f . .
i)  pi2i; + poou; + b(u; — ;) i=1,2,3,

8.’Ei ’
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i) 05 =[Ae+ Q0)d;; + 2ue;; : force in solid per unit bulk volume,

5.15
( ) i) o=—¢pr=Qe+ RO : force in the fluid per unit bulk volume.

In this part, we will follow the ideas in [4]. Ignore acceleration terms and consider motion
only in the x;—direction. Then, from (5.14) we have that

. ~f s Jdo
1) - b(“l - U1) = 835111’

(5.16)

X

1
1_,0 .

If p; < pf}, then ZL;{ o % < 0, so that from (5.16.ii), b(&f{ —45) > 0 and the relative

flow rate (ﬂ{ —4f) is in the positive z1—direction; i.e., flow to the right. Now from (5.16.1)

we see that G = b(&f{ — 1) is the friction force per unit bulk volume exerted by the fluid
on the solid in the direction of the motion. To study the nature of this friction force G we
analyze two limit cases.

First we consider the flow in a cylindrical duct of radius a as in Figure 15.

u39
r=a

A

uf-us
r=o z
r=a

FIGURE 15
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To describe this flow, we go back to the Navier-Stokes equations

Dv

1 ==
(5.17) PF Dy

:—fo+pfg+V7', 1=1,2,3,

and write it in cylindrical coordinates. Recall that the strain tensor 7 in cylindrical coor-
dinates is given by [18, p. 146].

v, 2 10 2
—277; +<n——n>v-v, 799:2n<—ﬁ+ >+<m——n>v-v

3 00 3
a’Uz 2 . . 0 (7 1 31)7«
o a2 15)
B B Oy L1 1 0w, B B v, n ov,
Toz = Tz = 1] 3 r 00 Ter = Trz =1 or Oz .

Also recall that in cylindrical coordinates,

1 0 10vg 0w,
(5.19) V-v=—-—(rv,) + - 50 + 9y

r Or
Now assume that the flow is only in the z—direction, that velocities are small, ignore gravity,
pressure gradients, and velocity components normal to the boundaries of the cylinder
(gff = gg =0, v, =vg=0). Also assume that the fluid is incompressible.
Then, the only nonzero component of the stress tensor 7 is 7., = 778”2 (force/unit area

in the z—direction on surfaces r = const) and (5.17) reduces to the single equation

apf 10 B apf 10 0v,
0z + rar(TTM) Oz Ty ror ™ or

gy (10
R <a2+ ar>”’*

(5.20)

Since ﬂic = v, = velocity of the fluid in the z—direction, we get the following equation for
~f-
ul:

= f 3pf ~f
5.21 = —— A
(5.21) prliy = —— + 1AL,
where 52 5
~f 1 ~f
Auy = | == + —= .
=z <3r2 * T 87’) =
Set
(5.22) v = ﬂz — 43 = relative velocity of the fluid with respect

to the well (in the z—direction).

Using (5.22) in (5.21), we obtain

e op 92 10 L op 92 10
pf(U+Uz) 8f+ <8T.2+_E>(U+uz): 8f+ <87"2+_E v,
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since v is independent of r. Therefore,

2y 1 1 1
O 100 _pry <% u>— pf(——%—@).

or2  ror 7 n\ 0z n py 0z
Setting
prX = _8_p — psii;  (equivalent external volume force independent of ),
z
we obtain
v 10v 1 X
5.23 St — U= ——.
(5.23) or? * ror v 1

Now consider that v and X in (5.23) are oscillatory functions of the form
(5.24) v=uv(r)e™t X =X(z)e"

Then, from (5.23) we have

0%v  10v iw X
2 S ol
(5.25) oz ror vl v
To solve (5.25), we define
X(2)
2 hir) = _
(5.26) (r) = () ~ 20

or

1
0’h  10h w2
5.27 — + = | —
(5:27) 8r2+1"8r+<2<y>
which is a Bessel’s differential equation for h. The general solution of (5.27) is a linear

combination of Jo(i(%“’)%r) and Y (2(%)%1"), i.e., Bessel functions of zero order of the first
and second kind. We choose the one that is finite at » = 0; i.e., Jy. Thus, using (5.26),
the solution of (5.25) is given by

(5.28) w(r,w) = C Jo <Z(%> i) X

)

w0
N——
[\V]
>
I

The constant C' can be determined by asking the continuity of the velocity at the duct
well; i.e.,

(5.29) v(r=a)=0,
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so that

(5.30) C=_-=

Using (5.30) in (5.28), we obtain

(5.31) v(r,w) = —

For the general theory, we need to compute the average flow over the cross—section.
Thus, we compute

1 a
(5.32) Vaw (W) = W/o v(r,w)2mrdr.
Recall that
(5.33) Jo(#4% z) = ber z + i bei z

where ber z bei z are the Kelvin functions of the first kind and zero order. Next, use that
[12],

(5.34) / zber zdz = zbei z, / zbeizdz = —zber’ 2.
0 0

1
ke = <3> k= ak.
14

Recall that [v] = [Csr:j] so that [a(%)%] = [em(ck o )z]; i.e., k is dimensionless. Then,

Set

Vaw(w) = £—1 / [1 — 7J0(mfklr)]27rr dr
iwma? [, Jo(ii2 aky)
X 1 2 @
=—— |:7TCL2 - 7? / [ber(kqr) + i bei(kyr)|r dr]
W mTa Jo(iizaky) Jo
X[ 2 @ 1
=—|l1-—¥ ber(kir) + ¢ bei(kir krdk‘r—]
| T ) et btk tar dtiar)
X [ 2 N T /
=—|1- Bk (kiabei’ (k1a) — ikiaber' (k1a))
w | a2J0(ii§ak'1)k%
X[ 2
=—|1- ; (—i)(ber’ k + i bei’ k)]
w | aJo(ii5CLk1)/€1
X _1 B z(berlk—kibei'k‘)
~dw | ik (berk +ibeik) |
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Set
ber’ k + i bei’ k
) T(k) = .
(5.35) (k) berk + ¢beik
Then,

(5.36) Vi () = — (1 - %T(m))X, k= a<f) %.

) v

Next, since the unit outward normal at the surface » = a is pointing in the negative
r—direction, by our sign convection the stress 7,., at the wall is given by

ov, Eﬁf
Trz|r:a, = _nﬁhza = _nW“:a

ov

(since u® is independent of r) = (ﬂf —u%)|p=q = —778—|,~:a.
”

_775

V : unit outward normal

r=a

FIGURE 16
Then, using (5.31),

(5.37) 7= Tralsma = —1 [X <I—M

W |iw

But,

Then,

(5.38) e (f) %T(k).
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Next, let us consider a unit length cylinder as in Figure 17.

1

FIGURE 17

The wetted surface area is equal to 27a.1 and, consequently,

(5.39) 2waT = total friction force at the wall per unit length.
Thus,
2mat 2 . .
(5.40) 5~ = 7— = total friction force at the wall per unit volume.
ma a

Now from (5.36) and (5.37)

orar  m2ma(2)T(k) KT(K)
(5.41) Vo T 12T 27r771 "2 8mnF(k),
where
1 ET(R)
(5.42) F(k) = 77— 270

Now, from (5.40) and (5.41) we see that
2 2 Vaw 8
Tar _ 8,

T— =

(5.43) a ma? V., a2
= total friction force at the wall per unit volume.

(F)Vaw

Next, consider a unit cube of bulk material of porosity ¢ consisting of parallel cylinders
as in Figure 18.

FIGURE 18
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In this case, T%¢ represents the total friction force per unit volume of bulk material and
from (5.43) we have

8n

2,80 _ (o
(5.44) ¢ = S ¢F(k)Vay = (a%

)asZF(k)vM.

The coefficient ;—"(ﬁ can be associated with the Poiseuille flow in the unit cube above with
the following argument. Consider steady state flow first; i.e., constant velocity, in a cylinder
as in Figure 19.

r=a

FIGURE 19

According to (5.20), since 0, = 0, we need to solve

10 ( dv,\  Ops
(5:4) e or (T or > 0z
or
0 [ Ov, 1 Opy
4 g __Ltops
(5.46) 8T‘<T 87") n 0z

Integration in r yields

Thus,

Integration in r again give us
(5.47) v,(r) = ———=—+Cilnr + Cs.

Since at r = 0 v, must be finite, we conclude that Cy = 0.
Next, imposing the nonslipping boundary condition; i.e., the cylinder wall is not moving,

(5.48) v,(r=a)=0,
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we see that

0=— 0,1 7%
Thus,
a® Ops r2
4 Jr)=—L 1 - =
(5.49) v, (r) 0 ( a2>

indicating that the velocity profile is parabolic.
A useful quantity is the volumetric flow rate given by

27 2 a 3
2
Q= V—/ /vzrrdrde_“—apf”/ r— 2 )dr
dn 0z J, a?

B ma® Opy 1 B wa* 8pf
2 0z |2 4a2 0_ 8y 0z
The relation
wa* Opy
5.50 —_ = 7P
(5.50) Q 8 0

is known as the Hagen—Poiseuille law, experimentally shown in the early 19th century.
Now assume that in the unit cube of bulk material we have n parallel cylinders of radius
a per unit cross section. Then,

nma* Opy
8y 0z

(5.51) q=-

Let us compute the porosity ¢ in the unit cube. Each cylinder has pore volume

PV, = rwa?- 1
~—~

length of
the cylinder

Thus, the total pore volume for n—cylinders PV is given by

PV = nma’.
Next, by definition,
PV 2
(5.52) b= = T = nma?
Thus,
(5.53) n = %
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Using (5.53) in (5.51) we see that

¢ ra* Opy  a’¢ Opy

(5:54) @= a2 8y 0z 8y 0z

This shows that the coefficient (asz—"¢> in (5.44) is associated with the Hagen—Poiseuille

flow. Defining

2
(5.55) K=2%
8
we still can write
K 8pf
5.56 it 7
(5.56) Q=

which is the form of Darcy’s law for this type of flow.
Finally, using (5.55) we can write (5.44) in the form

2
(5.57) TE¢ = %¢2F(fi)Vav = total friction force at the wall per unit

volume of bulk material.

Next, we observe that identifying V,, with ﬂ{ —4f, and G = b(&f{ — 4f) with 72¢, we
see that

N2 .
(5.58) b= qu F(k);

i.e., the coefficient b representing the ratio of the total friction force at the wall per unit
volume to the average relative flow has a frequency correction factor F'(k) multiplying the
value %(ﬁz associated with the low—frequency equations for laminar flow.

Next we will consider the motion of a fluid in a two—dimensional duct; i.e., the space
limited by two parallel boundaries when these boundaries are subject to an oscillatory
motion and when an oscillatory pressure gradient acts at the same time on the fluid (see
Figure 20). Again we start with the Navier—Stokes equations

Dv

5.59 =
(5.59) P Do

=—Vps+pg+ V-1,

but now in cartesian coordinates. According to [18, p. 145], in cartesian coordinates the
strain tensor 7 in the fluid is given by

. 8v,~ 3’1)]' 2
(5.60) Tij _n<8xj + 3$i> + |:<KJ— §n>V.v}6”.
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uS

FIGURE 20

Now assume that the flow is only in the x;—direction, that velocities are small, ignore
gravity and pressure gradients and velocity components normal to the boundaries, so that

Ips _ Opy _

= 0 =v3 =0.
85172 3.1'3 ’ v vs

Also, assume that the fluid is incompressible. In this case, the only nonzero stress compo-
nent is

ov . . S
(5.61) T = na—l(force per unit area in the x;-direction on planes x5 = const),
X2

and (5.59) reduces to

3pf 32‘/1
3.1'1 + n 3.1'% ’

(5.62) pin = —

Since ﬂ{ = v1, we see that the equation of motion for the fluid is

= f 8pf 826{
Uy = ——— .
Pf 1 85171 " 3.1'%

Set
(5.63) Uy = ZZ{ — 4] = relative fluid velocity with respect to the wall.
Then,

. ops 0? : . Opy 0*U, .
5-64 U = —— - ) — s _ —_—— — S
(5.64) iU = =5 T g (w4 07) = ppily = =5 =+ 7 P

since u] is independent of z3. Set

D s
(5.65) prX = —2L — pyis.
T1
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Then (5.64) reduces to

02U,

5.66 U =X
( ) ! v 3.1’%

Now assume that _ .
Uy = Uy(z2)e™?, X = X(z1)e™".

Then (5.66) yields

02U,
(5.67) v——7> —wlU; = — X.
0X2
Set,
X
(5.68) h=U; — —.
Tw
Then h satisfies the homogeneous equation
0%h  iw
5.69 — — —h=0.
(5.69) ox v

The general solution of (5.69) is
h(z2) = Cle(%’)%mz + C’Ze_(iTw)%”.
Using that h must be symmetric in xs; i.e., h(z2) = h(—z2), we see that
C,=0C=C

and, consequently,

W=

h(2s) = C cosh [(’_“’>

v

:

so that from (5.68),

(VI

(5.70) Uy (22) = % + Ccosh K’-“’)

v

$2:| .
Using the nonslip boundary condition

U1(£U2 == :|:CL1) =0

we can determine the constant C' in (5.70):

(5.71) C=-=2

81



82 JUAN E. SANTOS

Using (5.71) in (5.70) we see that

(5.72) Uy (22) = % {1 - ZZZEEEE:; Z;]

Next we compute the average velocity of the fluid through the cross—section and the
friction force at the well. First,

o= Nl

1 [ 1 @ cosh ()2 z,) X
Uu, = _—— U drey = — 1-— Y d
Law 2a1 | _a, 1(72)dzs 2a, [/_al < cosh(( Tw %a1)> xz} w
1 X
= [ — —— sinh ( ) <1> }
2a1 iw cosh((*)zay) w

X 1 3 w) 2
s ()
w a1 \ iw v

Thus,
X 1 3 w2
v w
(5.73) v, =X {1 _ 1 <_) tanh (( ) )}
w a1 \ tw v
Next, the friction stress 715 at the wall 9 = —aq is
31)1
T = Ti2 = 77—8
To—=——0a1 l.z To=—a1
Note that the unit outward normal to 9 = —a; is on the positive xs—direction inside the
conduct (see Figure 21).
5
=0
% X
\Y)
N=-ay
FIiGURE 21

~f
Since v1 = 4" and 4f is independent of x2, and consequently, 3 8”1 = ‘Z;J;, we have that

(5.74) T=n—
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Set

3
(5.75) ki = <E> ay (dimensionless variable).

14

Next, as in (5.41), we compute the ratio of the total friction force 27 exerted by the fluid
on a unit length well and the averaged velocity of the fluid relative to the wall. Since

2 : total wetted surface,

then,
27 : total friction force/unit length,
so that
2r 2ni% ()% tanh[i%kl]g—; _2p i%kptanh(izhy)
Ur,,  1—2L(&)%tanh[izk,] a1 1- .;k tanh(iz k)
Set
1 i3k tanh(izk
(576) Fl(kl) _ 1 7 11 an (Z ‘ll) )
31— —— tanh(i2kq)
12 kq
Then,
2T 67
5.77 = —Fi(k1).
(5.77) 0w 1 (k1)

With the same argument then in (5.58) we see that in this case

6
b= g Filk) = s 0 Fih) = 8 Fi(k),
where
a1¢”

0
Next, a plot of the real and imaginary parts of F'(k) and Fy (k1) show that [4]

K =

(5.78) Re(Fy(ky)) ~ Re <F(§k>> Im(F, (ky)) ~ Im (F(%k))

Thus, when the pores have the shape of narrow slits, the associated frequency dependent

function may be taken the same as for circular pores with a radius a = %al.

These cases correspond to extreme shapes in the cross—section of the pores; i.e., when
they are close to circles (cylindrical ducts) or very flat ellipses (plane slits). Thus, in the

two extreme cases, the effect of frequency on the correcting factor F'(k) is the same except
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for a change in scale of the dimensionless variable k. It is natural to assume that if it is
true for the extreme cases, it will also be true for intermediate cases.

Biot claims [4] that there exist a universal function F'(k) that can be adopted to represent
the frequency effect with a nondimensional parameter

(5.79) k=a, (3> :

where a,, is the pore-size parameter depending on size and pore geometry.
To estimate a, we may proceed as follows ([10], [9]).
Let us define the hydraulic radius m by

volume filled with fluid
wetted surface )

(5.80) m =

For a unit cylinder as in Figure 17, the wetted surface is equal to 2ma and the volume filled
with fluid is equal to ma?, so that we have the relation

(5.81) m=_2 =2
2ma 2

i.e.,

(5.82) a = 2m.

Since the frequency correction factor function F'(k) is not heavily dependent of the shape
of the pores, Hovem et al, [10] suggests to replace a in the function F'(k) by the pore—size
parameter

(5.83) a, = 2m.

Now for media composed of regular grains, the hydraulic radius m can be related to the
rock permeability by the Kozeny—Carman equation (see [17], [1])

(5.84) K = ¢m?/A,.

The coefficient A is known as the Kozeny—Carman constant, which for glass beads, Ottawa
sand, Panama City sand, and other sandstones has been found to be approximately equal
to 5 [10].

Thus, using (5.84) in (5.83) we have

(5.85) ap, = 2(KAo/$)?,

which is the desired form of the pore-size parameter a,,.
Asymptotic properties of F'(k):

1 kT(k . berk + i1 beik
)= LW Ry in, T = Dokl
— 5T (k) ber' k +ibei k
(5.86) -
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so that it behaves like w? for large values of w. Also,

2

k
5.87 F(k) — 1+4im
(5.87) k) e i

so that at low frequencies the low—frequency coefficient is recovered.
Now we write the high—frequency form of Biot’s equation (5.14) in the space—frequency
domain:

(5.88) i) — W) — puowy — wbF(R)(E; - ) = 2,
]

. ~f = 0
i) —w?potl —wzpzzuf +zwa(k‘)(uf —u;) = qﬁ pf

(5.89) Gij = [Aé + Q010 + 2pei; (@), &= —¢py = Qe + RO.

Let us now write (5.88) using the variables #° and uf = ¢(§f — u®). Recall that

p11+ p12 = (1 — &) ps, p12 + p22 = Ppy,

and that
¥ =Llat e
¢

Thus, adding (5.88.i) and (5.88.ii) we obtain

83¢j 8}/)} 8?” 2 ~ 2 =f
_ — — w21 - s _ .

—w?(1 — ¢)pst; — w’dps (;u + )

= —w’([L = ¢lps + dpg)i® — wpsuf
= —w?pt® — wpsul .

Hence,

O0Ti;
5.90 —w?pu® — af = =4,
(5.90) w?pit® — w?psi or;°

Next, from (5.88.ii) we see that

—W —Uu

2 P12 ~ ap22 (1
5 f‘”?(

ol + a0 w l 1 F;
sl + )+ b (E) + ()

Then, since

P P22 \ ~ P22 F; (k) n f n ~f 6ﬁf
91 —w? 712 s _ Fr J .
(5 ) w < U, (.L) 5 + K -+ w (k‘)uz = o
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According to (4.103),
p22 = d°g.

Next, following [6], [2], we write

(5.92) 9= Spy/d,

where S is called the structure factor. According to [2],

1 1
5.93 S=—[14-).
9 2( ' <zs>
Thus, we finally write the equation in the form
oT;
5.94 ) —wpty — wippal = 2
(5.94) i) WP gl =
i) —w?ppts — wlg(w)a! + iwb(w)a! =
where
S F;(k
(5.95) ) g(w) = % + f} )
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CHAPTER 6
DERIVATION OF ABSORBING BOUNDARY CONDITIONS
FOR ELASTIC SOLIDS AND FLUID-SATURATED POROUS SOLIDS

First we consider an elastic body Q and follow the ideas in [11] and [16].

Consider a small disturbance originated in a restricted portion of an elastic solid medium
2. We may assume that the disturbed portion is bounded at any instant by a surface S.
If the medium is isotropic and if the disturbance involves dilatation, we may expect that
the surface S moves normally to itself with velocity (H%)l/ 2. If the disturbance involves

rotation without dilation, we may expect the velocity of the surface to be (%)1/ 2,
Then, let us assume that the surface moves normally to itself with velocity ¢ and let us

seek the conditions that must be satisfied at the moving surface.

Let u® = (uf)1<i<3 be the displacement vector. On one side §; of the surface S at
time ¢, the medium is disturbed and u® # 0. On the other side, (Q2)u® = 0. We take
the velocity ¢ to be directed from the first side €2; into the second side {25 so that the
disturbance spreads into parts of the medium €25 that were previously undisturbed.

2
Undisturbed
Region

Disturbed
Region

FIGURE 22

Since u® is continuous across S, u¢ must vanish on S; i.e.,

(6.1) u‘=0onS.
Consequently,

ou’
(6.2) 87”;1 = Vus - x =0,

for any x in the plane defined by
(6.3) z -v=0,

where v is the normal to S at the point O.
Then it must necessarily be

(6.4) Vu§ = yv.

7
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Then,
Vu; v=w-v=r;
ie.,
ouf
6.5 = —=,
(6.5) T=3,

Now from (6.4) and (6.5),

ouf Ou; Ouf ou§
- '(V17V27V3)-

351717 351727 85173 ov
Thus,
ous ou’ ou’
auq 8 2 8 2 8 2
(66) v T1 — T2 — 3

ov 141 1] V3 ’

Next, we observe that the equation
(6.7) uf(z1, 2, 23,t) =0 on S
must be satisfied to the first order in 6t when for (z1, z2, z3,t) we substitute

(x1 + cdtvy, xo + cOtvy, x5 + cStvs, t + dt).

Thus,
us (1 + cotvy, o + cotve, x3 + cdtvs, t + Ot)
us ouf
= u t —vicot Lot = 0.
uf(xy, e, x3,t) + 8$jyjc + 5
Hence,
ous ous ous
(6.8) 87”;’+0Vuf-1/: 5;’4—0822’:0 on S.
\Y)

}06t

FIGURE 23
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Now from (6.6) and (6.8) we obtain the relations

ou’

Ey 1 ouf
6.9 ] =
(6.9) vj c Ot’

on S, 1<i<3, (jnotsummed).

In (6.9), the derivatives need to be computed from the side ©; where there is a dis-
turbance at time t. The dynamical conditions which hold at the surface S are found by
considering the change in momentum of a thin slice of the medium in a neighborhood of
S. We mark out a small area 65 of S and consider the prismatic element bounded by S,
by the normals to S at the edge of 45, and by a surface parallel to S at a distance cdt
from it (see Figure 23). The volume V; of the prismatic element is Vy = ¢dt 6S. According
to the conservation of linear momentum, using (1.32) for A = p,

d
— pusdug :/ F ids.
5S

it |y,
Thus, using (6.7),
t+ot d
/ (E / pufdvs>dt
t v,
(6.10) ~p [df(:ﬁl, To,x3,t + O0t) — uf(x1, T2, T3, t)] Vs

t+0t
= pu; (1, T2, T3, t + 61)c6t0S = / / Fsids.
t ss

This shows that the change of momentum is equal to the time integral of the tractions
across 05. The traction Fy acts across the surface S normal to ¥ upon the matter on that
side of the surface towards which v is drawn.

Now recall the convention about notation: If 4S5 is a small area of the plane normal to
v at the point 0, that portion of the body which is on the side of the plane towards which
v is drawn acts upon the portion on the other side with a force at the point O specificed
by

v
Tl' = O'ijVj-

FIGURE 24
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Thus, the traction F§ is given by
(611) Fs,i == _UijVj-

Using (6.11), (6.10) can be written as follows:

t4ot
(612) pﬂ§($1,$2,$3,t+5t)65t 0S = / / (_O-ijyj) ~ 5t(—aij1/j)55’.
t 6S
Dividing by 6t S and taking limit when dt, S — 0, we obtain
ow
(6.13) pC’l'j,f = —04Vj = —7_—Vy, 1< < j,
8€¢j
or, in vector notation,
(6.14) pcu® = —ov = —F,, on S.

Let x! and x2 be two tangent vectors at the point 0 € S. Then from (6.14) we get the
three equations

(6.15) pca’ - v = —ovv, pcu® - x!' = —ovy!, pei® - x? = —ovy?.
Set

v = (uf, 5,05,

v = %l'lc V= lufw,
(6.16) o5 = %ixc-xl _ %uajl

v = 11'1c e luf:vf

& &

In the new variables, equations (6.15) become
(6.17) A pv§ = —ovv, pvs = —ovyt, A pv§ = —ovx?.

Next we write the right—hand side of (6.17) in terms of the variables v{, v§, and v§. For
that purpose, we first note that using (6.9) we can write €;;(u®) on the surface S in the
form

o 1 [0us Oujf 1/ 1., 1.,
(6.18) 8,’j(u ) = 5 (3.1'] + aa:z) = —5 <ngui + I/Z'E’U,j>.

Then, using the constitutive equations (1.41),

U?lj = )‘51']'81212 (UC)C + 2/1161']' (UC)

(6.19) S ¢t P\ Vit T

1. 1.
= —Avidi; — ,u<yj Euf + Vlgu§>
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Consequently,
oVV = 0iVilVj
c 1 . C 1 e
(6.20) = —A\V{0;V;Vj — MEUi 21 MEUjVin’Vj
= -+ 1—2uv{ = —(A+ 2p)vf,
and

1 1
ovxX = 0ijViX;

(621) 1 1 . c 1 1 . C 1 C
= —)\Ul5ijVin - MEUz'Vsz’Xj - MEUjViVin = —HVs3.
Similarly,
(6.22) ovx® = —pvs.
Next note that
1/1., 1.,
gijViVj = —5 E’U,iVj + E’U,jyi ViVj
1/1 .
(6.23) =-3 (Eufuwjuu + u?yym&)
1 C C C
= _5(7}1 +07) = -0y,
o 1/1 1.,
EijViX; = 5 —u; Vi + E’U,J-V, ViX;
(6.24) 1 1 1
= —5( iy, VJXJI +Eu§x;ylyl> = —51)5
=0
Similarly,
(6.25) ixE = — o
. €ijViX; = —5Vs-

Let us compute the strain energy density W (e;;) on the surface S in terms of the variables
(v§)1<i<3- To simplify the calculations, let us assume that we have changed coordinates
so that v = (1,0,0), x' = (0,1,0), and x> = (0,0,1). Then, from (6.16),
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Also, from (618) and (6.19),

1 1 1 c
611:—5< 1EU1+V12U1> = —Vq,
1 1 1., 1.
€12 = 5 (VQCU]_ + Vlcu2> = —51}2,
1 1 e 1.
€13 = 9 (Vscul + VIEU3> = —51)3,
1 1., 1.,
€23 = —5 <V3EU2 + VZEU?’) =0,

€22 = €33 = 0,

o111 = )\811 + 2/1,6"11 = —()\ + 2[1,)1)5
1 C C

012 = 2u€12 = —2N§U2 = — g,

C
013 = 2p€13 = — U3,

023 = 022 = 033 = 0.

Hence,
2W|S = 2H(VC) = 011€11 + 20'12812 + 20'13813
= (A +2p) (v9)? + 2p(v5)? + 2p(v5)*.
Thus,
c 1 c\t c
(6.26) II(v®) = 5(V ) Eve,
where
A4+2u 0 0
(6.27) E=| 0 u 0
0 0
Since 5 5 5
o m o
— (A 2 c _ c I c

from (6.21)—(6.23), we see that (6.15) can also be written in the form

(&) a]‘_‘[ C aH c a]:[
(6.28) pctvf = _3—115’ pcPvs = _8—1)5’ pcv§ = —31)5
or in vector form
oIl
(6.29) pve = = —F, = Ev°.
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Next write (6.29) in the form
2pl/2ye = 12 =12 /2 ge

Set
¢ — pl/zvc, g — p_1/2Ep_1/2.

Thus, (6.29) can be written in the form
(6.30) Ve = Sv°.

Also, in terms of V¢, the strain energy density on S can be written in the form

- 1

I(v®) =II(v°) = 3
1 1

— 5[p1/2(Vc)t]p—l/2Eup—1/2(p1/2vc) — EVCSVC'

(Vc)tEVc
(6.31)

Let (ci)i1<i<3 be the three positive wave speeds satisfying (6.30); i.e., solutions of

(6.32) det(S — ¢*I) = 0.
They are equal to ¢; = Af“, Cy = c3 = \/% , corresponding to the compressional and

shear modes of propagation, respectively. Let N1, N3, and N3 be the set of orthonormal
vectors associated with ¢, co, and c3, respectively, and let N be the matrix containing as
rows the eigenvectors N; and let A be the diagonal matrix containing the eigenvalues c?,
1 <2 <3o0f S, so that

(6.33) S = N'AN.

Next, let z = (v, wx!, 1-x?)? be a velocity vector on the surface S due to the simultaneous
normal arrival of waves of velocities (Ci)lgigg. Since the N;’s are orthonormal, we can write

3
(6.34) z=0p""z=>) [N; p'/*2,N;.
=1
Set
1
(6.35) 7 = p'/%2% = —[N;, p/%2).N;,
Ci

where [-, -] denotes the euclidean inner product. Then Z% satisfies the equation (c.f., 6.30)
(6.36) Sz = ¢}z,

{2

and the strain energy associated with z% satisfies the relation (c.f. (6.31))

(6.37) Ti(z") — %(zcl')tszca
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Now using (6.29) and (6.31) we see that the force F; on S associated with Z satisfies the
relation

e 9

5 = pl/zszci — p1/2p_1/2Ep_1/2p1/220i — Fg¢i — _F().

(6.38)

Now the total force Fs on the surface S is equal to the sum of the forces F;; i.e.,

3 3
(6.39) F. = Z}“(i) - _ Zp1/2S§c@-_
i—1 i=1

On the other hand, we can also write

3
(640) p_1/2-,Fs = Z[Niap_l/zfs]eNi-
i=1

2

i 7Ci —
Consequently, since Sz° = c;

(6.40) we have that

z“ is a vector in the direction of N;, from (6.39) and

(6.41) Sz°% = —[N;, p Y2 F,.N;, 1<i<3.
Now from (6.35),

(6.42) c7z7% = ¢;[Ny, pl/zz]eN,-.

Also, from (6.36) and (6.41),

(6.43) 274 = §7% = —[N;, p~ Y2 F,).N;, 1<i<3.

Thus, from (6.42)—(6.43) we have that

(6.44) ¢i[Ny, p¥%2], = =[Ny, p~ 2 F,]., 1<i<3.
In matrix form, the equation above becomes

(6.45) —Np~YV2F, = AY2NpY/ 2,
Multiplying (6.45) by p'/2N*, we obtain

_f's — pl/ZNt /\1/2 ]Vpl/ZZ7

6.46
(6.46) (c.f. (6.33)) = p'/281/2pY/ 24 = pS'/25 = Ba.

The matrix B in the right hand side of (6.46) is positive definite and finally we write the
first order absorbing boundary condition on S in the form

(6.47) ~F, = —(ovv, —ovx', —ovx?) = B(i-v,a - x', 0 x?).
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Observation. Recall that in the two—dimensional case the work done at the interface
x1 = 1 averaged over a period is given by (see Figure 25)

27

w w } .
fg = 2—/ (0'11’(1,1 -+ 012U2)dt.
T™Jo
r
b ooy
Bt
X
X = 1
FIGURE 25

Fo represents the energy flux across the interface and since o;; and u; are continuous,
we have conservation of energy. Since

1. . 11, 1.

€11 = —U; = —0 €12 = ———1Uy = — =

1= 1, €12 5 U2 5 V2

we may rewrite Fp in the form

2w 2w

lw [« lw [«

Fo=——— 011€11 + 2012€12)dt = —— — II(v°)dt.
¢ cor ), (11611 12€12) cor (v°)

For a wavefront arriving to , we may decompose the displacement u; in the form
Ui = Ujp + Uis

associated with the compressional and shear modes of propagation.
Then we can define the partial fluxes as:

2m

w w

Frr= Y (011,501 + 012 kU2 1 )dE, k=p,s,
0

27

w v . . . .
Fik = (011,501 1k + 02 jUs 1) dt, Jk=mp,s, J#£k,

27T 0
where 0;;, denotes the stress associated with the compressional mode, likewise for o;; ;.

It can be seen that F;; = 0 for j # k ([6]). This shows that the energy flux on , can be
written as the sum of the energy fluxes associated with each type of wave, so that

Tl(z) = ZH(ZCi), (z) = Zﬁ(z@).

Thus, the force on , can be written as

. ol =N
_fs:;%q:—;f :




96 JUAN E. SANTOS

The Saturated Porous Solid Case.

Next, let us consider the case of an isotropic fluid—saturated porous solid where a small
disturbance has originated on one side {21 of the surface S, which is the boundary between
the disturbed region {2; and the undisturbed region {25 if the wave front is arriving normally
to S with velocity c. Following the ideas leading to (6.14), we see that the conservation of
momentum on S can be written as

usc ow ow )
(6.48) cA (l-lf,c) = (=Tijvj, prvi) = <— @ij 8—£Vi>7 1<i<3,

where
I I
A | _PLles
pel| gl

and I denotes the identity matrix in R3*3. Then (6.48) can also be written in the form

. - s,C - f,c ow

i) c(pa®® + prat) = —Tiju; = T 9e.. i
(6.49) o !

i) c(ppa®c+ gulc) =psy; = 3—£Vi’ on S.

As before, let x! and x? be two tangent vectors at the point O € S. Taking the inner
product with x! and x? in (6.49.ii) we see that

clppa®c - x¥ 4+ gafe.x¥) =0, k=12,
so that
(6.50) oyt = —g7lppate xF, k=12

Hence, taking the inner product with v and x!, x? in (6.49.i) and using (6.50) we obtain
the equation

(6.51) clpa®® v+ ppal - v] = —1wv,
. clpi® - x* — g7t ppatc XM = —TwxF, k=12

Also, taking the inner product with v in (6.49.ii) we obtain

(6.52) clppa®v + ga - v) = p;.
Set
1 1
c _ _us,c_u7 c— Zasc. 1,
1=, Ua 3 X
1 1
0§ = =~ x2, v§ = —ah. v,
c c

vV = (Ula U2, U3, U4)t7

a=p—9 '(ps)*
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Then in the new variables, equations (6.51) and (6.52) become

(6.53) CQ[PM + ppva] = —TVW, Pqua = —TVX",
. Aqus = —TrX 2, cz[pfvl + gv4] = py, on S.

Next we use the constitutive equations (c.f. (4.24)),
Tij — (Ace—B§)5ij+2u8,~j(us), pf = _Be_+_M£

with
e=V-u’, ¢=-V-ul,

97

and (6.18) to write the right hand side of (6.53) in terms of the variables (v{)i<i<4. First

note that
£ =—-V- uf;C — _8121}(uf7c)
1 1 1
1 G R BT
Thus,
Tij = (Ac€ii(u”) — Bug)dsj + 2pe;(u™°)
1. 1.
e —()\C’Uf + B,Ui)(s’bj — u(VjEuf,C + Vig’u,;’c> -
Consequently,
c c 1 . 5,C 1 L s.c
v = 7ijvivy = —(Acvi + Bug)divivy - O L R D L
= —(Ae + 2p)v] — Bug,
1. 1.
Tox' = Tijvixh = —(Av§ + Bu§)divixt — Nguf’cvjvix} B Mgug’cuwim}
= —p§,
TVXZ = _/,I/U?C”
Set
p 00 py Aet21 0 0 B
v _ 10 ¢ 0 O ~ 0 L0 0
Alo o o] BT 0 0w o

Then, in matrix form, equation (6.53) becomes

(6.54) A,V = E,ve.
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Next, a calculation similar to that given for the elastic solid case shows that the strain
energy density W (e;;, £) on the surface S can be written in terms of the variables (v{)1<;<a
in the form

Thus, (6.54) can also be stated in the equivalent form

om(ve) = .
Sve =E,v¢=-F, onbé,

(6.55) A AVE =

where F = (tvv, tvx!, rvx?, —py)t.

Set
(6.56) ve = AL/ ?ve,
(6.57) S = A VPE, ATV
Then (6.55) becomes
(6.58) Sv© = *v°.

Also, in terms of V¢ the strain energy density on S can be written in the form

1(v) = T1(v") = 5 (") By
(6.59) 1 : ’ o ) 1
- 5(vc)t(Ap)1/2(Ap)—1/2Ep(Ap)—1/2(Ap)l/zvc - Leysee

Let (¢i)1<i<a be the four positive wave speeds satisfying (6.58); i.e., solutions of the
equation
det(S — c¢*I) = 0.

1/2
Co=C3=\—" 7~ )
P—9 P

and they correspond to the shear modes of propagation. The other two roots are associated
with the compressional models of propagation; i.e., the type I and type Il compressional
waves.
Next, let N;, 1 < i < 4, be the set of orthonormal eigenvectors corresponding to (c;)?,
1 <14 <4, and let N be the matrix containing the eigenvectors N; of S as rows and A the
diagonal matrix containing the eigenvalues (¢;)?, 1 <4 < 4, of S so that S = N* A N.
Next, let

Two of these roots are

z= (0 v,0® x', 0 x*,ul v

be a general velocity on the surface S due to the simultaneous arrival of waves of speeds
(c;), 1 <i<4. Let

(6.60) z=A"z.
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Then we can write z in the form

4 4
(6.61) z=) [N,7.N; =Y [N;, AY2).N;.
=1 =1
Set
~ 1 ~
(6.62) 7% = AY?2% = —[N;, AY?2).N;, 1<i<A4.

Ci

Since z“ is a multiple of N;, we see that

(6.63) Sz = 27",
and

1
(6.64) M(z) = 5(z%)s7°.

Also, using (6.55) we see that the force F; on S associated with z satisfies the equation

(6.65) A e = AfP570 = AP ARG, AP A

= E’pzci = _—F,

It is known that the interaction among the different types of waves arriving at an
interface in a saturated porous medium is small compared with the total energy involved
([6], [15]). Neglecting such interactions, we can write the total strain energy density on S
as the sum of the partial energies; i.e.,

(6.66) (z) = Z (z%),

and the total force F on S as the sum of forces associated with each z“ so that, according
to (6.65),

4 4
(6.67) F = Z}“(i) — _ qu)ﬂsicz-‘
i=1 i=1
On the other hand,
~ 4 ~
(6.68) AP F = IN;, A V2 FLN.
i=1

Consequently,

(6.69) Sz% = —[N;, ASV2F).N;, 1<i<4
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Now using (6.62), (6.63), and (6.69), we see that

7% = Sz° = c?%[Ni, Al?2]) .N; = —[N;, AV FN;,  1<i<A4.
Thus,
(6.70) ci[N;, A %2) = [Ny, ASV2F].,  1<i<d4
In matrix form, the equation above becomes
CNSVRF - AN AN,
Hence, multiplying by AY2N? = (N.A'/2)t, we obtain
—-F = [N.Zzl/z]t AL/ [N/TII,/Z]Z = Byz on S,

which are the first—order absorbing boundary conditions for S.
Note that N.AY2 is nonsingular and, consequently, B, is positive definite.
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