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Seismic waves in fluid-saturated poroelastic materials. I

• Fast compressional or shear waves travelling through a
fluid-saturated porous material (a Biot medium)
containing heterogeneities on the order of centimeters
(mesoscopic scale) suffer attenuation and dispersion
observed in seismic data.

• The mesoscopic loss effect occurs because different
regions of the medium may undergo different strains
and fluid pressures.

• This in turn induces fluid flow and Biot slow waves
causing energy losses and velocity dispersion due to
energy transfer between wave modes.
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Seismic waves in fluid-saturated poroelastic materials. II

• Since extremely fine meshes are needed to represent
these type of mesoscopic-scale heterogeneities,
numerical simulations are very expensive or not feasible.

• Alternative: In the context of Numerical Rock Physics,
perform compressibility and shear time-harmonic
experiments to determine a long-wave equivalent
viscoelastic medium to a highly heterogeneous Biot
medium.

• This viscoelastic medium has in the average the same
attenuation and velocity dispersion than the highly
heterogeneous Biot medium.

• Each experiment is associated with a Boundary Value
Problem (BVP) that is solved using the Finite Element
Method (FEM).
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Biot’s equations in the diffusive range of frequencies.

Frequency-domain stress-strain relations in a Biot medium

τkl(u) = 2G ǫkl(u
s) + δkl

(

λu ∇ · us + B∇ · uf
)

,

pf (u) = −B∇ · us
− M∇ · uf ,

u = (us , uf ), us = (us
1, us

3), uf = (uf
1 , uf

3).

Biot’s equations in the diffusive range:

∇ · τ(u) = 0,

iωµκ−1uf + ∇pf (u) = 0,

µ: fluid viscosity, κ:frame permeability.
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The complex P-wave modulus of the long-wave equivalent

viscoelastic medium. I

Biots’ s equations are be solved in the 2-D case on square
sample Ω = (0, L)2 with boundary Γ = ΓL

∪ ΓB
∪ ΓR

∪ ΓT in
the (x1, x3)-plane. The domain Ω is a representative sample
of our fluid saturated poroelastic material.

Γ
L

= {(x1, x3) ∈ Γ : x1 = 0}, Γ
R

= {(x1, x3) ∈ Γ : x1 = L},

Γ
B

= {(x1, x3) ∈ Γ : x3 = 0}, Γ
T

= {(x1, x3) ∈ Γ : x3 = L}.

For determining the complex plane wave modulus, we solve
Biots’ s equations with the boundary conditions

τ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT ,

τ(u)ν · χ = 0, (x1, x3) ∈ Γ,

us
· ν = 0, (x1, x3) ∈ ΓL

∪ ΓR
∪ ΓB,

uf
· ν = 0, (x1, x3) ∈ Γ.
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The complex P-wave modulus of the long-wave equivalent

viscoelastic medium. II

The equivalent undrained complex plane-wave modulus
Eu(ω) is determined by the relation

∆V (ω)

V
= −

∆P

Eu(ω)
,

valid for a viscoelastic homogeneous medium in the
quasi-static case. V : original volume of the sample.
Then to approximate ∆V (ω) use

∆V (ω) ≈ Lu
s,T
3 (ω),

u
s,T
3 (ω): average vertical solid displacements us

3(x1, L, ω) on
ΓT .
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The complex shear modulus of the long-wave equivalent

viscoelastic medium. I

Solve Biots’ s equations with the boundary conditions

−τ(u)ν = g, (x1, x3) ∈ ΓT
∪ ΓL

∪ ΓR ,

us = 0, (x , y) ∈ ΓB,

uf
· ν = 0, (x , y) ∈ Γ,

g =







(0, ∆G), (x1, x3) ∈ ΓL
,

(0, −∆G), (x1, x3) ∈ ΓR
,

(−∆G, 0), (x1, x3) ∈ ΓT
.

The change in shape of the rock sample allows to recover its
equivalent complex shear modulus Gu(ω) using the relation

tg(θ(ω)) =
∆T

Gu(ω)
,

θ(ω): departure angle from the original positions of the

lateral boundaries
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The complex shear modulus of the long-wave equivalent

viscoelastic medium. II

To find an approximation to tg(θ(ω)), compute the average

horizontal displacement u
s,T
1 (ω) of the horizontal

displacements us
1(x1, L, ω) at the top boundary ΓT . Then use

tg(θ(ω)) ≈ u
s,T
1 (ω)/L,

that allows to determine the shear modulus Gu(ω)
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Phase velocities and Quality factors.

The complex P-wave and shear velocities are

vsc(ω) =

√

Gu(ω)

ρ
vpc(ω) =

√

Eu(ω)

ρ
,

The compressional phase velocities vp(ω), vs(ω) and quality
factor Qp(ω), Qs(ω) are

vp(ω) =

[

Re

(

1

vpc(ω)

)]

−1

,
1

Qp(ω)
=

Im(vpc(ω)2)

Re(vpc(ω)2)
.

vs(ω) =

[

Re

(

1

vsc(ω)

)]

−1

,
1

Qs(ω)
=

Im(vsc(ω)2)

Re(vsc(ω)2)
.
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Schematic representation of the experiments to determine the complex P-wave and shear modulus

(a) (b)

Figures (a) show how to determine Eu(ω), (b) show how to

determine Gu(ω).
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