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Abstract14

The numerical modeling is used in many fields of science to explain the behavior of15

some phenomena understandable. In geophysics, the simulations have application in wave16

propagation, where the media can be characterized through their seismic responses. Due to17

the computational cost, the models have to be as simple as possible, reducing the numerical18

errors that these brings. In this work, we check the approximations (de qu ?) made by19

Nakagawa and Schoenberg with the exact formulas, because of they simplify the proposed20

models for media with fractures, characterizing its shear compliance, dry normal compliance21

and membrane permeability. was the need to22

The verification of the proposed models is done by comparing the reflection and trans-23

mission coefficients obtained with the answer given by the model of the thin layer (para qu24

cosa). In examples comparisons are made by varying the permeability and thickness of the25

fracture; in the last example, three cases of interest were compared; in which the fracture26

saturated with three different fluids, keeping the background with water.27

Contrary to the paper mentioned above, the present paper is devoted to a justified28

treatment of anisotropic elastic media with one, two, or three systems ...29
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FIGURAS EN EL PDF ADJUNTO, ESCRIBAN EL ABSTRACT, INTRODUCCION30

Y CONCLUSIONES, Y DESPUES VEO31

SE VERIFICAN LAS APROXIMACIONES DE NAKAGAWA Y SCHOENBERG CON32

LA FORMULA EXACTA. ESTO ES LO QUE SE HACE. HAY QUE DECIR PORQUE.33

PORQUE SE VAN A IMPLEMENTAR EN MODELADO NUMERICO? OTRO MOTIVO?34

HAY QUE SER CONVINCENTE. CUAL ES LA VENTAJA? EN PRINCIPIO SERIA NO35

USAR CELDAS MUY PEQUENAS, ETC.36
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I. INTRODUCTION Seismic wave propagation in fractured media is an active area of37

research, with applications in many fields such us hydrocarbon geophysics exploration,38

seismic monitoring of reservoir production and mining among others.39

Modeling of fractures may be considered as a special case of the thin layer problem,40

where the fracture is represented by a very thin layer with high permeability and41

compliance.42

There are relatively many works for a layer described by a single-phase (solid) case, e.43

g., (41) and (2) consider the normal incidence case for a thin layer, (25) studied AVO44

effects of a thin layer, while the effect of the thickness of a sedimentary layer has been45

investigated by (17; 18).46

(12) computes the scattering response of a lossy layer having orthorhombic symmetry47

and embedded between two isotropic half-spaces, and (27) obtain the P-wave reflection48

coefficient in isotropic lossless media as a function of the incidence angle.49

Several theories have appeared in the literature to model fractures as boundary50

conditions in the context of wave propagation phenomena.51

The Linear-Slip Interface model (non-welded) for flat viscoelastic two-dimensional52

fractures was proposed by Schoenberg, (40). This model imposes the continuity of the53

stresses and discontinuity of the displacements across the fracture.54

From laboratory experiences, (20; 21; Pyrak-Nolte et al. 1990) have validated the use55



4

of this model. The experiments performed in (20; 21; Pyrak-Nolte et al. 1990) considered56

the propagation of compressional and shear pulses in dry and wet fractured samples,57

allowing to validate the seismic discontinuity displacement theory. Also, (28) have assumed58

thin fractures as an elastic medium very soft in comparison with the frame.(agregar que59

concluyo)60

Concerning wave propagation in fractured fluid-saturated poroelastic media, we61

mention the boundary conditions given by (? ). and later by (? ). In the latter reference,62

several boundary conditions are developped and the corresponding reflection and63

transmission coefficients are computed and analyzed. These boundary conditions first64

consider the most general case in which stresses, velocities and fluid pressure may be65

discontinuous across a fracture, and later several simplifying hipothesis allow to get other66

forms of the boundary conditions, one of whjich reduces to that of (? ).67

In numerical simulations, to model fractures as very thin layers would require the use68

of extremely fine computational meshes, and consequently employing boundary conditions69

becomes a necessity.70

In this paper we determine the frequency range in which the various boundary71

conditions given in (? ) are valid to represent fractures in numerical simulation of waves in72

fractured poroelastic media.73

For this purpose, we compare the reflection and transmission coefficients of waves74
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arriving to a plane fracture within a fluid-saturated porous medium represented either as a75

thin layer or as boundary conditions.76

The calculation of the Reflection and Transmission coefficients at a very thin77

poroelastic separating two poroelastic half-spaces has been perfomed in (? ). The results78

were validated againts limiting cases (elastic solid and inviscid fluids and zero layer79

thickness) and the results predict all wave conversions, critical angles and polarity changes.80

To our knowledge, the explicit calculation of the coefficients for poroelastic media has81

not been addressed. Existing methods are restricted to normal incidence and/or are based82

on numerical algorithms (1; 34; 35; 39). In general, these works are based on a83

constitutive equation described by Biot’s theory of poroelasticity (5; 6; 13; 14), which is84

sufficiently general to model the desired characteristics of wave propagation, in particular,85

the presence of the P waves (type-I and type-II compressional waves) and its effects on86

interfaces (33? ? ? ).87

There are also jobs where we consider two interfaces, as in (42), where the88

system is formed by a fluid-saturated porous solid plate inmersed in fluid, and89

the results are compared with experimental data, and in (22), (? ) and (19),90

where ultrasonic measurements are compared with numerical data in91

poroelastic slabs.92

We solve the scattering problem at all angles of incidence for a single layer embedded93
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between two half-spaces with dissimilar media, where the properties of the media are94

described by Biot’s theory of poroelasticity. The displacement fields are recast in terms of95

potentials and the boundary conditions at the two interfaces impose continuity of the solid96

and fluid displacements, normal and shear stresses and fluid pressure. The methodology is97

analogous to that presented in (37), (36) and Carcione (12; 13), Section 6.4. The results98

are verified for specific limiting cases with already published theoretical equations99

(7; 13; 27; 32; 37).100

The paper is organized as follows. Biot’s theory is reviewed first. Then, we illustrate101

the methodology and finally we present the examples. The final equations are verified with102

limiting cases consisting of a single interface in poroelastic media and a layer, where the103

media can be solids or fluids. The examples are relevant for applications in reflection104

seismology.105

Introduction106

For examining the effect of pore fluids,107

GUITARRA. LA INTRODUCCION CONSISTE EN REVIEW, CLAIM Y LO QUE108

SE HACE EN EL PAPER, 3 PARAGRAFOS109

II. BIOT’S THEORY110

We consider a porous solid saturated by a viscous compressible fluid and assume that111

the whole aggregate is isotropic. Let U and Uf be the averaged displacement vectors of the112
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solid and fluid parts of the medium, respectively. Then, W is defined as the averaged113

relative fluid displacement per unit volume of bulk material,114

W = φ (Uf − U) , (1)

where φ is the effective porosity.115

Let εij and σij denote the strain tensors of the solid and the bulk material,116

respectively, and let Pf denote the fluid pressure. Following (5; 6), the stress-strain117

relations can be written as118

σij = 2µεij(U) + δij (λc∇·U +D∇·W ) , i, j = 1, 2, 3,

Pf = −D∇·U −M∇·W (2)

(13). Here, µ is the wet-rock shear modulus of the bulk material, considered to be equal to119

the shear modulus of the dry-rock. The grains are characterized by density ρs, bulk120

modulus Ks and shear modulus µs, while the fluid by ρf , Kf , and viscosity η. The grains121

are assumed to form an elastic porous matrix characterized by a porosity φ, permeability122

κ, bulk modulus Km, and shear modulus µm. The Lamé constants of the saturated rock123
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are λc and µ. The constants λc, D and M in (2) can be written as (13)124

α = 1 −
Km

Ks

, M =

(
α− φ

Ks

+
φ

Kf

)−1

, D = α M,

Kc = Km + α2M, λc = Kc −
2

3
µ, BKu = D,

B =
1/Km − 1/Ks

1/Km − 1/Ks + φ(1/Kf − 1/Ks)
, (3)

where Ku is the undrained bulk modulus.125

Next, let126

ρb = (1 − φ) ρs + φρf (4)

be the mass density of the bulk material. Also, let g and b denote the mass and viscous127

coupling coefficients between the solid and fluid phases (3; 4):128

g =
Sρf

φ
, b =

η

κ
, S =

1

2

(
1 +

1

φ

)
, (5)

where S is known as the structure factor. If g and b are functions of frequency, we have129

b(ω) = Re

(
η

κ(ω)

)
,

g(ω) =
1

ω
Im

(
η

κ(ω)

)
, (6)

being κ(ω) the dynamic permeability, a complex function defined in (23), and given by130

κ(ω) = κ0

(√
1 + i

4ω

njωj

+ i
ω

ωj

)−1

, (7)
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where κ0 is the absolute permeability, nj is a finite parameter determined by the pore131

geometry and ωj is the viscous-boundary characteristic frequency given by132

ωj = ηφ/(κ0ρfS) (13; 23).133

Then, assuming constant coefficients µ, λc, D, and M in (2), Biot’s equations of134

motion can be stated as (5; 6; 13)135

∇· σ = Hc∇ (∇·U) − µ∇× (∇× U) +D∇ (∇·W )

= ρb

∂2U

∂t2
+ ρf

∂2W

∂t2
,

−∇Pf = D∇ (∇·U) +M∇ (∇·W )

= ρf

∂2U

∂t2
+ g

∂2W

∂t2
+ b

∂W

∂t
, (8)

where Hc = λc + 2µ.136

A plane-wave analysis shows that in this type of media two compressional waves137

(type-I and type-II waves) and one shear of S-wave can propagate (5).138

III. REFLECTION AND TRANSMISSION COEFFICIENTS OF A SINGLE139

LAYER140

The fluid-saturated system consists of three media, Ωn, n = 1, 2, 3 with different141

properties as shown in Figure 1. Let z = 0 be the boundary between Ω1 and Ω2, and z = h142

the boundary between Ω2 and Ω3, and consider a type-I compressional plane wave in Ω1143

incident at z = 0 with an angle θi1 with respect to the vertical z-axis. Following (38), we144
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represent the incident, reflected and transmitted waves using potentials.145

Figure 1: Geometry of the two half-spaces and the embedded layer.

For Ω1 the potentials of the solid and relative fluid displacement are given by146

ϕi1 = Ai1e
i(ωt−qi1·x),

ψi1 = Bi1e
i(ωt−qi1·x), (9)

where147

qi1 = qi1 (sin(θi1), cos(θi1)) ,

is the complex wave vector determining the polarization direction.148

Let ϕ
(1)
rc , ϕ

(1)
rs , ψ

(1)
rc and ψ

(1)
rs be the compressional and shear potentials of the solid and149
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relative fluid displacement, for the reflected waves in Ω1. They are given by150

ϕ(1)
rc = A

(1)
r1 e

i(ωt−q
(1)
r1 ·x) + A

(1)
r2 e

i(ωt−q
(1)
r2 ·x),

ϕ(1)
rs = A(1)

rs e
i(ωt−q

(1)
rs ·x),

ψ(1)
rc = B

(1)
r1 e

i(ωt−q
(1)
r1 ·x) +B

(1)
r2 e

i(ωt−q
(1)
r2 ·x),

ψ(1)
rs = B(1)

rs e
i(ωt−q

(1)
rs ·x), (10)

where the subscript r indicates the reflected wave, c indicates compressional wave and s151

shear wave, the super-index (1) refers to medium 1. Subscripts 1 and 2 indicate type-I and152

type-II waves, respectively.153

In Ω2, the potentials are154

ϕ
(2)
tc = A

(2)
t1 e

i(ωt−q
(2)
t1 ·x) + A

(2)
t2 e

i(ωt−q
(2)
t2 ·x),

ϕ
(2)
ts = A

(2)
ts e

i(ωt−q
(2)
ts ·x),

ψ
(2)
tc = B

(2)
t1 e

i(ωt−q
(2)
t1 ·x) +B

(2)
t2 e

i(ωt−q
(2)
t2 ·x),

ψ
(2)
ts = B

(2)
ts e

i(ωt−q
(2)
ts ·x),

ϕ(2)
rc = A

(2)
r1 e

i(ωt−q
(2)
r1 ·x) + A

(2)
r2 e

i(ωt−q
(2)
r2 ·x),

ϕ(2)
rs = A(2)

rs e
i(ωt−q

(2)
rs ·x),

ψ(2)
rc = B

(2)
r1 e

i(ωt−q
(2)
r1 ·x) +B

(2)
r2 e

i(ωt−q
(2)
r2 ·x),

ψ(2)
rs = B(2)

rs e
i(ωt−q

(2)
rs ·x) (11)
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and the subscript t indicates the transmitted wave.155

Finally, potentials in Ω3 are expressed by156

ϕ
(3)
tc = A

(3)
t1 e

i(ωt−q
(3)
t1 ·x) + A

(3)
t2 e

i(ωt−q
(3)
t2 ·x),

ϕ
(3)
ts = A

(3)
ts e

i(ωt−q
(3)
ts ·x),

ψ
(3)
tc = B

(3)
t1 e

i(ωt−q
(3)
t1 ·x) +B

(3)
t2 e

i(ωt−q
(3)
t2 ·x),

ψ
(3)
ts = B

(3)
ts e

i(ωt−q
(3)
ts ·x). (12)

In general, we determine qlj = (χlj, βlj) = qlj(sin(θlj), cos(θlj)), l = i, r, t and j = 1, 2, s157

for each kind of wave.158

The solid and relative fluid vectors U (n) =
(
U

(n)
x , U

(n)
z

)
and W (n) =

(
W

(n)
x ,W

(n)
z

)
in159

Ωn, n = 1, 2, 3, are given by (37),160

U (1) = ∇ϕi1 + ∇ϕ(1)
rc +

(
−
∂ϕ

(1)
rs

∂z
,
∂ϕ

(1)
rs

∂x

)
,

= U
(1)
i1 + U

(1)
r1 + U

(1)
r2 + U (1)

rs . (13)
161

W (1) = ∇ψi1 + ∇ψ(1)
rc +

(
−
∂ψ

(1)
rs

∂z
,
∂ψ

(1)
rs

∂x

)
,

= W
(1)
i1 +W

(1)
r1 +W

(1)
r2 +W (1)

rs . (14)
162

U (2) = ∇ϕ
(2)
tc +

(
−
∂ϕ

(2)
ts

∂z
,
∂ϕ

(2)
ts

∂x

)
+ ∇ϕ(2)

rc +

(
−
∂ϕ

(2)
rs

∂z
,
∂ϕ

(2)
rs

∂x

)
,

= U
(2)
t1 + U

(2)
t2 + U

(2)
ts + U

(2)
r1 + U

(2)
r2 + U (2)

rs . (15)
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163

W (2) = ∇ψ
(2)
tc +

(
−
∂ψ

(2)
ts

∂z
,
∂ψ

(2)
ts

∂x

)
+ ∇ψ(2)

rc +

(
−
∂ψ

(2)
rs

∂z
,
∂ψ

(2)
rs

∂x

)
,

= W
(2)
t1 +W

(2)
t2 +W

(2)
ts +W

(2)
r1 +W

(2)
r2 +W (2)

rs . (16)

164

U (3) = ∇ϕ
(3)
tc +

(
−
∂ϕ

(3)
ts

∂z
,
∂ϕ

(3)
ts

∂x

)
,

= U
(3)
t1 + U

(3)
t2 + U

(3)
ts . (17)

165

W (3) = ∇ψ(3)
rc +

(
−
∂ψ

(3)
rs

∂z
,
∂ψ

(3)
rs

∂x

)
,

= W
(3)
t1 +W

(3)
t2 +W

(3)
ts . (18)

Here U
(n)
lj and W

(n)
lj , l = i, r, t, j = 1, 2, s, denote the type-I P wave, type-II P wave166

and shear wave components of U (n) and W (n), respectively. The super-index (n) denotes167

any variable associated with the medium Ωn.168

The boundary conditions at the interfaces located at z = 0 and z = h impose169

continuity of the solid and fluid displacements, continuity of the normal and shear stress170

and continuity of the fluid pressure (38). Therefore, at z = 0 and z = h we impose the171



14

conditions172

U (n)
x = U (n+1)

x , (19)

U (n)
z = U (n+1)

z , (20)

σ(n)
zz = σ(n+1)

zz , (21)

σ(n)
xz = σ(n+1)

xz , (22)

P
(n)
f = P

(n+1)
f , (23)

W (n)
z = W (n+1)

z , n = 1, 2. (24)

The amplitude of the reflection and transmission coefficients R
(1)
j and T

(3)
j , j = 1, 2, s,173

for the different waves are defined as the ratio of the solid-displacement amplitude of the174

corresponding wave and that of the incident wave (38), i.e,175

R
(1)
j =

A
(1)
rj q

(1)
rj

A
(1)
i1 q

(1)
i1

, (25)

and176

T
(3)
j =

A
(3)
tj q

(3)
tj

A
(1)
i1 q

(1)
i1

. (26)

Using equations (9)-(12) to obtain expressions for each of the pairs mentioned above177

and substituting them in (8) leads us to the following relationships between the amplitudes178



15

of the solid and the relative amplitudes to the fluid (38):179

B
(n)
lj = γ

(n)
lj A

(n)
lj , j = 1, 2, s, l = r, t, n = 1, 2, 3 ,

Bi1 = γi1Ai1, (27)

with180

γ
(n)
rj =

[
ρ

(n)
b ω2

−

(
q
(n)
rj

)2

H
(n)
c

]

[(
q
(n)
rj

)2

D(n) − ρ
(n)
f ω2

] j = 1, 2 n = 1, 2 ,

γ
(1)
i1 =

[
ρ

(1)
b ω2

−

(
q
(1)
i1

)2

H
(1)
c

]

[(
q
(1)
i1

)2

D(1) − ρ
(1)
f ω2

] ,

γ
(n)
tj =

[
ρ

(n)
b ω2

−

(
q
(n)
tj

)2

H
(n)
c

]

[(
q
(n)
tj

)2

D(n) − ρ
(n)
f ω2

] j = 1, 2 n = 2, 3 ,

γ(n)
rs =

µ(n)
(
q
(n)
rs

)2

− ρ
(n)
b ω2

ρ
(n)
f ω2

n = 1, 2 ,

γ
(n)
ts =

µ(n)
(
q
(n)
ts

)2

− ρ
(n)
b ω2

ρ
(n)
f ω2

n = 2, 3.

The boundary conditions (19)-(24) require that the phase factors at the interfaces181

z = 0 and z = h are the same:182

χi1 = χ
(1)
r1 = χ

(1)
r2 = χ(1)

rs = χ
(2)
t1 = χ

(2)
t2 = χ

(2)
ts = χ

(2)
r1 = χ

(2)
r2 = χ(2)

rs

= χ
(3)
t1 = χ

(3)
t2 = χ

(3)
ts = χ, (28)
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which represents Snell’s law and allows us to obtain the reflected and transmitted angles θlj183

for each type of wave as a function of the incidence angle θi1.184

Application of the boundary conditions (19)-(24) and Snell’s law (28) at z = 0 and185

z = h give two systems of linear equations in the unknowns Ar1 ,Ar2, Ars, At1, At2 and Ats186

(see Appendix A). These two systems have coefficients depending on the wave numbers187

q
(n)
lj , n = 1, 2, 3, l = i, r, t, j = 1, 2, s.188

Set189

C
(n)
lj = A

(n)
lj /Ai1, l = r, t, j = 1, 2, s, n = 1, 2, 3. (29)

Using the matrix notation of Carcione (13), Section 6.4 to relate the fields at z = 0190

and z = h we obtain191

(A1 −B ∗ A3) r = −ip, (30)

where r =
(
C

(1)
r1 , C

(1)
r2 , C

(1)
rs , C

(3)
t1 , C

(3)
t2 , C

(3)
ts

)⊤
,192

ip =
[
−χ,−β

(1)
i1 , ζ

(1)
i1 ,−2µ(1)χβ

(1)
i1 , ξ

(1)
i1 ,−β

(1)
i1 γ

(1)
i1

]⊤
and B = T(0) ∗ (T(h))−1 that acts as a193

boundary condition. The matrices of the system (30) are given in Appendix B.194

The amplitude of the reflection and transmission coefficients for the different types of195
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waves are defined as196

R
(1)
j = C

(1)
rj

q
(1)
rj

q
(1)
i1

,

T
(3)
j = C

(3)
tj

q
(3)
tj

q
(1)
i1

, j = 1, 2, s. (31)

An incident S wave has the same scattering matrix as the P incident wave, but the197

array ip in (30) is replaced by198

is =

[
β

(1)
is ,−χ,−ζ

(1)
is ,−µ

(1)

{
χ2

−

(
β

(1)
is

)2
}
, 0,−γ

(1)
is χ

]⊤
.

IV. SEISMIC BOUNDARY CONDITIONS ACROSS A FRACTURE199

The model developed by (31) assumes that medium 1 and medium 3 have the same200

properties and the thickness of medium 2 tends to zero (h→ 0). They obtain201




U̇
(3)
x − U̇

(1)
x

σ
(3)
zz − σ

(1)
zz

(−P
(3)
f ) − (−P

(1)
f )

σ
(3)
xz − σ

(1)
xz

U̇
(3)
z − U̇

(1)
z

Ẇ
(3)
z − Ẇ

(1)
z




=
iωh

2




0 Q̃XY

Q̃Y X 0







U̇
(3)
x + U̇

(1)
x

σ
(3)
zz + σ

(1)
zz

(−P
(3)
f ) + (−P

(1)
f )

σ
(3)
xz + σ

(1)
xz

U̇
(3)
z + U̇

(1)
z

Ẇ
(3)
z + Ẇ

(1)
z




, (32)
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where the dots over the displacement vector components indicate the time derivate. The202

matrices QXY and QY X are given by203

Q̃XY =




1/G χ/ω 0

χ/ω ρ
(2)
b ρ

(2)
f ·Π

0 ρ
(2)
f ρ̃(2)

·Π



, (33)

and matrix Q̃Y X is gives explicitly as204
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Q̃Y X(1, 1) = −4µ(2)
(χ
ω

)2
(

1 −
µ(2)

H
(2)
c

)
−

(
ρ

(2)
f

)2

− ρ
(2)
b ρ̃(2)

ρ̃(2)

−2µ(2)B̃β̃
(χ
ω

)2
(
−
ρ

(2)
f

ρ̃(2)
+ α(2) 2µ

(2)

H
(2)
c

)
· (1 − Π)

Q̃Y X(1, 2) =
χ

ω

[(
1 −

2µ(2)

H
(2)
c

)
+

(
−
ρ

(2)
f

ρ̃(2)
+ α(2) 2µ

(2)

H
(2)
c

)
B̃· (1 − Π)

]

Q̃Y X(1, 3) =
χ

ω

(
−
ρ

(2)
f

ρ̃(2)
+ α(2) 2µ

(2)

H
(2)
c

)
·Π

Q̃Y X(2, 1) =
χ

ω

(
1 −

2µ(2)

H
(2)
c

+ 2B̃β̃α(2) µ
(2)

H
(2)
c

· (1 − Π)

)

Q̃Y X(2, 2) =
1

H
(2)
c

− α(2)B̃
1

H
(2)
c

· (1 − Π)

Q̃Y X(2, 3) = −α(2) 1

H
(2)
c

·Π

Q̃Y X(3, 1) =
χ

ω

[
−
ρ

(2)
f

ρ̃(2)
+ α(2) 2µ

(2)

H
(2)
c

− 2B̃β̃

((
α(2)
)2 µ(2)

H
(2)
c

+
µ(2)

M (2)
−

(χ
ω

)2 µ(2)

ρ̃(2)

)
· (1 − Π)

]

Q̃Y X(3, 2) = −α(2) 1

H
(2)
c

+

((
α(2)
)2 1

H
(2)
c

+
1

M (2)
−

(χ
ω

)2 1

ρ̃(2)

)
B̃· (1 − Π)

Q̃Y X(3, 3) =

((
α(2)
)2 1

H
(2)
c

+
1

M (2)
−

(χ
ω

)2 1

ρ̃(2)

)
·Π, (34)
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where205

ρ̃ = i
η

ωκ(ω)

1

B̃
≡ α(2) +

H
(2)
c

α(2)M (2)
−

(χ
ω

)2 H
(2)
c

α(2)ρ̃(2)
,

β̃ ≡ 1 −
H

(2)
c ρ

(2)
f

2α(2)µ(2)ρ̃(2)
,

Π ≡
tanh ǫ

ǫ
, ǫ ≡ −

iβ
(2)
t2 h

2
. (35)

The properties of medium 2 can be characterized by:206

ηT ≡
h

µ(2)
(shear compliance), (36)

ηND
≡

h

H
(2)
c

(dry or drained normal compliance), (37)

κ̂(ω) ≡
κ(2)(ω)

h
(membrane permeability). (38)

Simplifying equation (30), equation (52) of (31) is obtained:207





U̇
(3)
x − U̇

(1)
x = (iω) ηTσ

(1)
xz

U̇
(3)
z − U̇

(1)
z = (iω) ηND

[(
1 − α(2)B̃ (1 − Π)

)
σ

(1)
zz − α(2)

−P
(3)
f

+
“
−P

(1)
f

”

2
·Π

]

Ẇ
(3)
z − Ẇ

(1)
z = (iω)α(2)ηND

[
−σ

(1)
zz + 1

eB
−P

(3)
f

+
“
−P

(1)
f

”

2

]
·Π

σ
(3)
xz = σ

(1)
xz

σ
(3)
zz = σ

(1)
zz

−P
(3)
f −

(
−P

(1)
f

)
=

η
(2)
f

bκ(ω)
Ẇ

(3)
z +Ẇ

(1)
z

2
·Π

(39)

where β̃ ≈ 1 and208
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B̃ = α(2)M
(2)

H
(2)
u

,

H(2)
u = K(2)

u +
4µ(2)

3
,

ǫ =
1 − i

2

√
ω
α(2)ηfηND

2 ∗ B̃κ̂0

, κ̂0 = κ0/h. (40)

When the permeability tends to infinity, equation (53) of (31) is obtained.209






U̇
(3)
x − U̇

(1)
x = (iω) ηTσ

(1)
xz

U̇
(3)
z − U̇

(1)
z = (iω) ηND

[
σ

(1)
zz − α(2)

(
−P

(1)
f

)]

Ẇ
(3)
z − Ẇ

(1)
z = (iω)α(2)ηND

[
−σ

(1)
zz + 1

eB

(
−P

(1)
f

)]

σ
(3)
xz = σ

(1)
xz

σ
(3)
zz = σ

(1)
zz

−P
(3)
f = −P

(1)
f

(41)

V. EXAMPLES210

We model the fracture as a thin layer whose reflection coefficient is given by equation211

(30) assuming h much smaller than the signal wavelength (thin-layer model or TL model).212

Let us define the fracture-thickness/wavelength ratio, R, where the wavelength is that of213

the background medium. We consider several cases of interest in reservoir geophysics.214

Media properties and fracture properties are shown in Table 1 and fluid properties are215

shown in Table 2. The following cases are taken into account:216
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Case 1: Comparison between the TL model and equation (30) of (31).217

Case 2: Comparison between the TL model and equation (52) of (31).218

Case 3: Comparison between the TL model and equation (53) of (31).219

Case 4: Calculation of reflection and transmission coefficients for three types of fluid220

in the fracture, with water in the background medium, using the equation (52) of221

(31).222

A. Case 1223

We compute the reflection and transmission coefficients for compressional plane waves224

propagating through a fracture, where the fluid is water everywhere. Considering the225

notation in Figure 1, medium 2 is the fracture.226

Figure 2 shows the magnitude of the reflection and transmission coefficients for the227

TL model and equation (30) of (31), where R = 3.1 × 10−4. When the permeability is very228

small, there are differences between the two models. In Figure 3, R = 3.1 × 10−6 and here229

the coefficients obtained with the two models are the same except at very high frequencies.230

B. Case 2231

In this case, the TL model is compared with equation (52) of (31). The permeability232

is κ0 =10−4 D, the incident wave is a type I P-wave and the thickness of the fracture varies233
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from h = 0.001 m to h = 0.00001 m. When R = 3.1 × 10−5, at approximately 100 Hz,234

there are differences between the two models, see Figure 4. But these differences disappear235

when R = 3.1 × 10−7.236

C. Case 3237

In this case, the permeability is infinite (κ0 → ∞). When h =0.001 m and the238

frequency is 1000 Hz, there are differences in the absolute value of the transmission239

coefficient obtained with the TL model and equation (53) of (31) when R = 3.1 × 10−4. If240

h = 0.00001 m there are no differences between the two models. In this case, it is R = 3.1241

× 10−6 for a frequency of 1000 Hz.242

D. Case 4243

After comparing the present model with that of (31), we proceed to analyze three244

different cases of interest in reservoir geophysics. The medium is saturated with water and245

the fracture contains three different fluids, water, oil and gas. The fluid properties are246

shown in Table 2. The coefficients were calculated for a frequency of 50 Hz and fracture247

thickness h = 0.001 m, which gives R = 1.6 × 10−5
248

The reflection and transmission coefficients are calculated with equation (52) of (31)249

and the results are shown in Figure 6. It can be seen that when the bulk modulus of the250

fluid in the fracture differs from that of the background, the coefficients vary more. When251
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the fluid density in the fracture is much less than that of the background, the two peaks252

appearing in the reflection coefficient of the type I wave (RPI) are closer to each other. Also253

displayed is a peak at 50 degrees in the coefficients of the wave type II (RPII and TPII)254

when there is gas in the fracture.255

VI. CONCLUSIONS256

In all cases shown, when the thickness is too small the fracture ratio / wavelength, the257

results obtained with (31) approximations are similar to the results obtained with the fine258

layer model, especially for low frequencies . A variable that affects the results very259

significantly, is the permeability of the fracture; to cases with low permeability fractures,260

the thickness must be very small, otherwise the approximations and the fine layer model261

differ, especially at high frequencies. This shows that in certain cases the approximations262

do not fit the exact model.263

In the latter case it is observed that when there is gas in the fracture, the coefficient264

of reflection of PI-wave, is very different from the other two cases (water or oil in the265

fracture) and has two lobes between 40 and 60 degrees. Something similar happens with266

the coefficients of reflection and transmission of shear wave, which appears lobe near 50267

degrees only for the case of gas in the fracture. This could be used as an indicator of gas in268

fractures.269
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APPENDIX A: LINEAR SYSTEMS274

Here, we report the linear equations for the unknown amplitude of the reflected and275

transmitted waves. First, application of the boundary conditions (19)-(24) at z = 0 yields276

the linear system277

−χA
(1)
i1 − χA

(1)
r1 − χA

(1)
r2 + β(1)

rs A
(1)
rs = −χA

(2)
t1 − χA

(2)
t2 + β

(2)
ts A

(2)
ts − χA

(2)
r1

−χA
(2)
r2 + β(2)

rs A
(2)
rs . (A-1)

278

−β
(1)
i1 A

(1)
i1 − β

(1)
r1 A

(1)
r1 − β

(1)
r2 A

(1)
r2 − χA(1)

rs = −β
(2)
t1 A

(2)
t1 − β

(2)
t2 A

(2)
t2 − χA

(2)
ts

−β
(2)
r1 A

(2)
r1 − β

(2)
r2 A

(2)
r2 − χA(2)

rs . (A-2)
279

A
(1)
i1 ζ

(1)
i1 + A

(1)
r1 ζ

(1)
r1 + A

(1)
r2 ζ

(1)
r2 −A(1)

rs ζ
(1)
rs = A

(2)
t1 ζ

(2)
t1 + A

(2)
t2 ζ

(2)
t2 −A

(2)
ts ζ

(2)
ts

+A
(2)
r1 ζ

(2)
r1 + A

(2)
r2 ζ

(2)
r2 −A(2)

rs ζ
(2)
rs . (A-3)

280

−2µ(1)Ai1χβ
(1)
i1 − 2µ(1)Ar1χβ

(1)
r1 − 2µ(1)Ar2χβ

(1)
r2 − µ(1)Ars

[
χ2

−
(
β(1)

rs

)2]
=

−2µ(2)At1χβ
(2)
t1 − 2µ(2)At2χβ

(2)
t2 − µ(2)Ats

[
χ2

−

(
β

(2)
ts

)2
]
− 2µ(2)Ar1χβ

(2)
r1

−2µ(2)Ar2χβ
(2)
r2 − µ(2)Ars

[
χ2

−
(
β(2)

rs

)2]
. (A-4)
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281

A
(1)
i1 ξ

(1)
i1 + A

(1)
r1 ξ

(1)
r1 + A

(1)
r2 ξ

(1)
r2 = A

(2)
t1 ξ

(2)
t1 + A

(2)
t2 ξ

(2)
t2 + A

(2)
r1 ξ

(2)
r1 + A

(2)
r2 ξ

(2)
r2 . (A-5)

282

−β
(1)
i1 γ

(1)
2 A

(1)
i1 − β

(1)
r1 γ

(1)
1 A

(1)
r1 − β

(1)
r2 γ

(1)
2 A

(1)
r2 − χγ(1)

rs A
(1)
rs = −β

(2)
t1 γ

(2)
1 A

(2)
t1

−β
(2)
t2 γ

(2)
2 A

(2)
t2 − χγ

(2)
ts A

(2)
ts − β

(2)
r1 γ

(2)
1 A

(2)
r1 − β

(2)
r2 γ

(2)
2 A

(2)
r2 − χγ(2)

rs A
(2)
rs . (A-6)

Similarly, at z = h we obtain283

−χA
(3)
t1 e

−iβ
(3)
t1 h

− χA
(3)
t2 e

−iβ
(3)
t2 h + β

(3)
ts A

(3)
ts e

−iβ
(3)
ts h = −χA

(2)
t1 e

−iβ
(2)
t1 h

−χA
(2)
t2 e

−iβ
(2)
t2 h + β

(2)
ts A

(2)
ts e

−iβ
(2)
ts h

− χA
(2)
r1 e

−iβ
(2)
r1 h

− χA
(2)
r2 e

−iβ
(2)
r2 h

+β(2)
rs A

(2)
rs e

−iβ
(2)
rs . (A-7)

284

−β
(3)
t1 A

(3)
t1 e

−iβ
(3)
t1 h

− β
(3)
t2 A

(3)
t2 e

−iβ
(3)
t2 h

− χA
(3)
ts e

−iβ
(3)
ts h = −β

(2)
t1 A

(2)
t1 e

−iβ
(2)
t1 h

−β
(2)
t2 A

(2)
t2 e

−iβ
(2)
t2 h

− χA
(2)
ts e

−iβ
(2)
ts h

− β
(2)
r1 A

(2)
r1 e

−iβ
(2)
r1 h

− β
(2)
r2 A

(2)
r2 e

−iβ
(2)
r2 h

−χA(2)
rs e

−iβ
(2)
rs h. (A-8)

285

A
(3)
t1 ζ

(3)
t1 e

−iβ
(3)
t1 h + A

(3)
t2 ζ

(3)
t2 e

−iβ
(3)
t2 h

−A
(3)
ts ζ

(3)
ts e

−iβ
(3)
ts h = A

(2)
t1 ζ

(2)
t1 e

−iβt1h

+A
(2)
t2 ζ

(2)
t2 e

−iβ
(2)
t2 h

− A
(2)
ts ζ

(2)
ts e

−iβtsy + A
(2)
r1 ζ

(2)
r1 e

−iβr1h + A
(2)
r2 ζ

(2)
r2 e

−iβr2h

−A(2)
rs ζ

(2)
rs e

−iβrsh. (A-9)
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286

−2µ(3)At1χβ
(3)
t1 e

−iβ
(3)
t1 h

− 2µ(3)At2χβ
(3)
t2 e

−iβ
(3)
t2 h

− µ(3)Ats

[
χ2

−

(
β

(3)
ts

)2
]
e−iβ

(3)
ts h =

−2µ(2)A
(2)
t1 χβ

(2)
t1 e

−iβ
(2)
t1 h

− 2µ(2)A
(2)
t2 χβ

(2)
t2 e

−iβ
(2)
t2 h

− µ(2)A
(2)
ts

[
χ2

−

(
β

(2)
ts

)2
]
e−iβ

(2)
ts h

−2µ(2)A
(2)
r1 χβ

(2)
r1 e

−iβ
(2)
r1 h

− 2µ(2)A
(2)
r2 χβ

(2)
r2 e

−iβ
(2)
r2 h

− µ(2)A(2)
rs

[
χ2

−
(
β(2)

rs

)2]
e−iβ

(2)
rs h. (A-10)

287

A
(3)
t1 ξ

(3)
t1 e

−iβ
(3)
t1 h + A

(3)
t2 ξ

(3)
t2 e

−iβ
(3)
t2 h = A

(2)
t1 ξ

(2)
t1 e

−iβ
(2)
t1 h + A

(2)
t2 ξ

(2)
t2 e

−iβ
(2)
t2 h

+A
(2)
r1 ξ

(2)
r1 e

−iβ
(2)
r1 h + A

(2)
r2 ξ

(2)
r2 e

−iβ
(2)
r2 h. (A-11)

288

−β
(3)
t1 γ

(3)
1 A

(3)
t1 e

−iβ
(3)
t1 h

− β
(3)
t2 γ

(3)
2 A

(3)
t2 e

−iβ
(3)
t2 h

− χγ
(3)
ts A

(3)
ts e

−iβ
(3)
ts h =

−β
(2)
t1 γ

(2)
1 A

(2)
t1 e

−iβ
(2)
t1 h

− β
(2)
t2 γ

(2)
2 A

(2)
t2 e

−iβ
(2)
t2 h

− χγ
(2)
ts A

(2)
ts e

−iβ
(2)
ts h

−β
(2)
r1 γ

(2)
1 A

(2)
r1 e

−iβ
(2)
r1 h

− β
(2)
r2 γ

(2)
2 A

(2)
r2 e

−iβ
(2)
r2 h

− χγ(2)
rs A

(2)
rs e

−iβ
(2)
rs h. (A-12)

The coefficients of the systems (A-1)-(A-6) and (A-7)-(A-12) are given by289

β
(n)
rj = −

√(
q
(n)
rj

)2

− χ2, j = 1, 2, s n = 1, 2 ,

β
(n)
tj =

√(
q
(n)
tj

)2

− χ2, j = 1, 2, s n = 2, 3 ,

ζ
(n)
lj = −

(
q
(n)
lj

)2 (
H(n)

c +D(n)γ
(n)
lj

)
+ 2µ(n)χ2, j = 1, 2 n = 1, 2, 3 l = i, r, t ,

ζ
(n)
ls = 2µ(n)χβ

(n)
ls , n = 1, 2, 3 l = r, t ,

ξ
(n)
lj =

(
D(n) +M (n)γ

(n)
lj

)(
q
(n)
lj

)2

, j = 1, 2 n = 1, 2, 3 l = i, r, t .

(A-13)
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Now, using equations (3) and (5), we obtain the wave numbers q
(n)
lj , n = 1, 2, 3,290

l = i, r, t, and j = 1, 2, s:291

q
(n)
r1 =

√
−F (n) −

√
(F (n))2 − 4G(n)K(n)

2G(n)
, n = 1, 2, 3 ,

q
(n)
r2 =

√
−F (n) +

√
(F (n))2 − 4G(n)K(n)

2G(n)
n = 1, 2, 3 ,

q(n)
rs =

√
N (n) − iV (n), n = 1, 2, 3 ,

q
(1)
r1 = q

(1)
i1 ,

q
(n)
rj = q

(n)
tj , j = 1, 2, s n = 1, 2, 3. (A-14)

Here292

G(n) = M (n)H(n)
c − (D(n))2, n = 1, 2, 3 ,

F (n) = ω2
[
2ρ

(n)
f D(n)

−H(n)
c g(n)

− ρ
(n)
b M (n)

]
+ iH(n)

c b(n)ω, n = 1, 2, 3 ,

K(n) = ω4
[
ρ

(n)
b g(n)

− (ρ
(n)
f )2

]
− iρ

(n)
b b(n)ω3 n = 1, 2, 3 ,

N (n) =
ω2

µ(n)

[
ρ

(n)
b −

(ρ
(n)
f )2ω2g(n)

(g(n))2ω2 + (b(n))2

]
, n = 1, 2, 3 ,

V (n) = (ρ
(n)
f )2 ω3b(n)

µ(n) ((g(n))2ω2 + (b(n))2)
, n = 1, 2, 3 .

APPENDIX B: FINAL SYSTEM OF EQUATIONS293
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Each of the matrices in the system (30) are defined by294

A1 =




−χ −χ β
(1)
rs 0 0 0

−β
(1)
r1 −β

(1)
r2 −χ 0 0 0

ζ
(1)
r1 ζ

(1)
r2 −ζ

(1)
rs 0 0 0

−2µ(1)χβ
(1)
r1 −2µ(1)χβ

(1)
r2 −µ(1)

[
χ2

−

(
β

(1)
rs

)2
]

0 0 0

ξ
(1)
r1 ξ

(1)
r2 0 0 0 0

−γ
(1)
r1 β

(1)
r1 −γ

(1)
r2 β

(1)
r2 −γ

(1)
rs χ 0 0 0




, (B-1)

and295

A3 =




0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
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296

−χe−iβ
(3)
t1 h

−χe−iβ
(3)
t2 h β

(3)
ts e

−iβ
(3)
ts h

−β
(3)
t1 e

−iβ
(3)
t1 h

−β
(3)
t2 e

−iβ
(3)
t2 h

−χe−iβ
(3)
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Finally, B = T(0) ∗ (T(h))−1, and T (z) = S1 ∗ S2(z), being:297
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, (B-3)

and299
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. (B-4)
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Table 1: Baseline material properties used for the numerical examples are shown.

Properties Matrix Fracture

Porosity 0.15 0.5

Solid density (g/m3) 2.7 2.7

Solid bulk modulus (GPa) 36 36

Frame bulk modulus (GPa) 9 0.0556

Frame shear modulus (GPa) 7 0.0333

Permeability (D) 0.1 100 (case 1, 4)

0.0001 (case 1)

0.001 (case 2)

∞ (case 3)

Tortuosity 3 1

USANDO OTRAS UNIDADES SE SIMPLIFICA. VERIFIQUEN412

413
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Table 2: Saturant fluids.

Properties Gas Water Oil

Density (g/m3) 0.1398 1 0.7

Fluid viscosity (Pa s) 0.000022 0.001 0.004

Fluid bulk modulus (GPa) 0.05543 2.25 0.57
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Figure 2: Absolute values of the reflection and transmission coefficients of type I (PI) and

type II (PII) P-waves, for two values of permeability. The incident wave is a type I P-wave.

The thickness of the fracture is h = 0.001 m. NS07 correspond to (31), and TL model to

thin layer model. a) Normal incidence and permeability κ0 = 100 D b) Normal incidence

and permeability κ0 =0.0001 D. c) Frequency: 1000 Hz and permeability κ0 = 100 D. d)

Frequency: 1000 Hz and permeability κ0 =0.0001 D.
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Figure 3: Absolute values of the reflection and transmission coefficients of type I (PI) and

type (PII) P-waves. The incident wave is a type I P-wave. The thickness of fracture is h =

0.00001 m. NS07 correspond to (31), and TL model to thin layer model a) Normal incidence

and permeability κ0 = 0.0001 D. b) The frequency is 1000 Hz and the permeability is κ0 =

0.0001 D.
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Figure 4: Reflection and transmission coefficients of type I and type II P-waves. The incident

wave is a type I P-wave, permeability κ0 =0.001 D and h varies from 0.001 m to 0.00001

m. NS07 correspond to (31), and TL model to thin layer model. a) Absolute value of the

reflection coefficient (type I wave); b) absolute value of the reflection coefficient (type II

wave); c) absolute value of the transmission coefficient (type I wave) ; d) absolute value of

the transmission coefficient (type I wave).
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Figure 5: Reflection and transmission coefficients of type I (PI) and type II (PII) P-waves.

The incident wave is a type I P-wave, permeability κ0 → ∞ and h varies from 0.001 m to

0.00001 m. NS07 correspond to (31), and TL model to thin layer model. a) Absolute value

of the reflection coefficient (type I wave); b) absolute value of the reflection coefficient (type

II wave); c) absolute value of the transmission coefficient (type I wave); e) absolute value of

the transmission coefficient (type I wave).
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Figure 6: Reflection and transmission coefficients of type I (PI), type II (PII) and shear

waves as a function of the incidence angle. The coefficients were calculated using Equation

52 of (31). The incident wave is a type I P-wave of frequency 50 Hz, permeability κ0 = 100

D and h =0.001 m. a) Water in the fracture; b) oil in the fracture; c) gas in the fracture.


