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ABSTRACT

Different theoretical and laboratory studies on the propagation of elastic waves in real
rocks have shown that the presence of heterogeneities larger than the pore and grain
sizes, but smaller than the predominant wavelengths (mesoscopic-scale heterogeneities)
may produce significant effects in the attenuation and velocity dispersion of seismic
waves. Such phenomenon is known as “mesoscopic effect” and is due to equilibration,
via slow-wave diffusion, of wave-induced fluid pressure gradients. In this work, the effec-
tive complex P-wave and shear moduli of highly-heterogeneous fluid-saturated porous
media are obtained by performing numerical gedanken experiments in a Montecarlo
fashion, which allows to determine an effective viscoelastic medium by computing the
moments of the associated phase velocities and inverse quality factors over a set of real-
izations. This numerical upscaling procedure involves the generation of a large number
of realizations of synthetic representative bulk volumes, containing heterogeneities of
different nature characterized by their spectral density distribution. The behavior of
such rock samples is assumed to obey Biot’s equations, which are stated in the space-
frequency domain with appropriate boundary conditions to simulate compressibility
and shear tests. A finite-element method is used to obtain the solutions of the set
of deterministic (local boundary-value) problems associated with each realization of
the Montecarlo procedure. We present numerical examples showing the application
of the proposed upscaling method and analyze the statistical properties of the phase
velocities and inverse quality factors obtained for these kind of highly-heterogeneous
fluid-saturated porous media.

INTRODUCTION

Seismic velocities and absorption properties of rocks are key-parameters in the character-
ization of their properties, and permit to obtain valuable information such as lithology,
types of saturating fluids, physical state and degree of saturation. Consequently, the un-
derstanding of the physics controlling these parameters is of great interest for theoretical
and exploration geophysics and other branches of science.

Recent studies (Pride, S.R. et al., 2004) suggest that the most important mechanism of
attenuation in porous media is wave-induced fluid flow, which can take place at microscopic,
macroscopic and mesoscopic spatial scales. The attenuation mechanism associated with
wave-induced fluid flow at microscopic spatial scales is also known as local fluid flow or
squirt flow, and is due to fluid-filled microcracks which respond with greater fluid-pressure
changes than the main pore fluid producing fluid flow and, consequently, energy loss. This
loss mechanism is able to explain ultrasonic attenuation data but is incapable of explaining
the measured attenuation levels at seismic frequencies (Pride, S.R. et al., 2004).
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The loss mechanism predicted by the theory of Biot (Biot, M.A., 1956a,b, 1962), the
classical Biot’s global fluid flow in homogeneous media, has a macroscopic nature and is due
to wavelength-scale fluid pressure equilibration between the peaks and troughs of the fast
propagating wave. This induces a relative displacement between the solid frame and the
fluid, causing energy dissipation due to viscous friction. Although the attenuation due to
global flow is generally important in the range of ultrasonic frequencies, it is not significant
at the seismic frequency band.

The wave-induced fluid flow at mesoscopic scales takes place when a fast wave trav-
els across an heterogeneous porous medium having inhomogeneities larger than the pore
size but smaller than the predominant wavelengths. Basically, when a compressional wave
squeezes an heterogeneous fluid-saturated porous material, the different regions of the
medium, due to their distinct elastic properties, may undergo different strains and fluid
pressures. This in turn produces fluid flow and Biot slow waves which diffuse away generat-
ing energy loss and velocity dispersion. These effects can also be produced by shear stresses
applied to the medium, particularly when the mesoscopic heterogeneities have some local
anisotropy associated with its shape (Mason, Y.J. and Pride, S.R., 2007). Recent results
have demonstrated the importance of the mesoscopic effects in the context of exploration
geophysics, being the dominant P-wave attenuation mechanism in reservoir rocks at seismic
frequencies (Pride, S.R. et al. (2004)).

White and coauthors (White, J.E. et al., 1975; White, J.E., 1975) were the first to
model the wave-induced fluid flow produced by mesoscopic-scale heterogeneities, showing
that this mechanism can produce important attenuation and velocity dispersion effects at
seismic frequencies in partially saturated rocks. They obtained approximated solutions of
the response of porous layers alternately saturated with gas and water (White, J.E. et al.,
1975) and of gas pockets in a water-saturated porous rock (White, J.E., 1975). Since then,
many authors have made very important contributions to a better understanding of this
subject. Some of them proposed other analytical models to explain the response of fluid-
filled porous materials containing specific mesoscopic-scale heterogeneities. In this sense we
can mention the work of Pride, S.R. and Berryman, J.G. (2003) who obtained an analytical
model for the seismic response of a mixture of two different porous phases having a single
dominant length scale. Other important contribution was due to Johnson, D.L. (2001), who
developed an analytical solution for the case of patchy saturation, while Norris, A.N. (1993)
and Gurevich, B. and Lopatnikov, S.L. (1995) focused on the case of layered porous media.
The major drawback of these analytical theories is that they can only be used in the case
of specific ideal heterogeneous rocks.

Mesoscopic effects have also been studied by performing numerical simulation of wave
propagation, such as in Helle, H.B. et al. (2003) and Rubino, J.G. et al. (2007), among
others. Unlike the before-mentioned analytical expressions this is a more versatile ap-
proach, since it allows to consider heterogeneities of any kind and shape. However, the use
of extremely fine meshes needed to represent the inhomogeneities, and the fact that the
seismic wave has to travel some wavelengths to evidence the mesoscopic effects makes this
methodology computationally expensive or even not feasible. To overcome this limitation,
a different and very interesting approach was recently presented by Mason, Y.J. and Pride,
S.R. (2007). In their work, a time-varying stress is applied to the boundaries of an het-
erogeneous sample and by numerically computing the average stress and strain fields its
effective complex moduli are determined.
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Another important aspect that must be taken into account is that, at mesoscopic scales,
rock parameter distributions are subject to uncertainty due to their high degree of spatial
variability and the fact that direct observations are not possible. For this reason, many
researchers dealing with mesoscopic-scale heterogeneities have represented the media us-
ing stochastic distributions of the rock parameters; for instance, Helle, H.B. et al. (2003)
used the von Karman self-similar correlation function to model patchy fluid distributions,
while Mason, Y.J. and Pride, S.R. (2007) analyzed the behavior of materials having local
properties randomly sampled from certain probability distribution functions.

To analyze the effects of the spatial variability on the seismic response of these kind of
media, it is very useful to perform Montecarlo simulation, which allows to consider multiple
scenarios of the model. In this approach, a set of realizations of the stochastic parameters
under consideration is generated, and for each realization a deterministic problem is solved
to obtain the response of that sample. After a large number of realizations, the statisti-
cal moments of the computed variables are calculated and analyzed, giving the statistical
behavior of the response of the medium.

With this idea, in this work we present a numerical upscaling procedure to obtain the
effective complex P-wave and shear moduli of highly-heterogeneous fluid-saturated porous
media and the corresponding effective phase velocities and inverse quality factors. The
procedure consists in applying the Montecarlo simulation method to obtain the statistical
properties of the response of a set of rock samples containing heterogeneities described
by a given spectral density distribution. The numerical rock samples are subjected to
time-harmonic compressibility and shear stresses, which permits to obtain (statistically)
the effective complex moduli of the media. For each realization, the complex moduli are
calculated by defining locally an equivalent viscoelastic solid having the same attenuation
and velocity dispersion than the original fluid-saturated porous rock; for that purpose,
gedanken experiments are set, which are defined as local boundary-value problems stated in
the space-frequency domain on a representative sample of heterogeneous material. These
numerical experiments are equivalent to oscillatory compressibility and shear tests. Biot’s
theory is used to model the response of the heterogeneous material to the applied stresses,
and the approximate solution is obtained using a finite-element procedure.

We present numerical examples showing the application of the proposed methodology
to obtain the effective complex P-wave and shear moduli, and their corresponding com-
pressional and shear phase velocities and inverse quality factors, of highly-heterogeneous
fluid-saturated porous media such as in the case of gas-water patchy saturation and rocks
with mixtures of shale and sandstone.

REVIEW OF BIOT’S THEORY

The propagation of waves in a porous elastic solid saturated by a single-phase compressible
viscous fluid was first analyzed by M.A. Biot in two important classical papers (Biot, M.A.,
1956a,b). He considered a porous isotropic medium saturated by a single-phase, compress-
ible viscous fluid, and assumed that due to deformation the fluid may flow relative to the
solid frame causing viscous friction. Let us = (usi ) and ũf = (ũfi ), i = 1, · · · , E denote the
averaged displacement vectors of the solid and fluid phases, respectively, where E denotes
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the Euclidean dimension. Also let

uf = φ(ũf − us), (1)

be the average relative fluid displacement per unit volume of bulk material, where φ denotes
the effective porosity. Set u = (us, uf ) and note that

ξ = −∇ · uf , (2)

represents the change in fluid content.

Let εij(u
s) be the strain tensor of the solid phase. Also, let σij , i, j = 1, · · · , E, and pf

denote the stress tensor of the bulk material and the fluid pressure, respectively. Following
Biot, M.A. (1962), the elastic stress-strain relations can be written in the form:

σij(u) = 2µ εij(u
s) + δij(λc∇ · us − α Kav ξ), (3)

pf (u) = −α Kav∇ · us +Kavξ. (4)

The coefficient µ is the shear modulus of the bulk material, considered to be equal to the
shear modulus of the dry matrix. We also introduce

λc = Kc −
2

E
µ, (5)

where Kc is the undrained bulk modulus of the saturated (closed) material. Following
Santos, J.E. et al. (1992) and Gassmann, F. (1951), the coefficients in (3) and (4) can be
obtained from the relations

α = 1− Km

Ks
, (6)

Kav =

(
α− φ
Ks

+
φ

Kf

)−1

(7)

Kc = Km + α2Kav, (8)

where Ks,Km and Kf denote the bulk moduli of the solid grains, the dry matrix and the
saturant fluid, respectively. The coefficient α is known as the effective stress coefficient of
the bulk material. It is also convenient to introduce the undrained plane-wave modulus Mc,
given by

Mc = λc + 2µ. (9)

For the present analysis, we consider that the moduli in the previous expressions are real
and frequency independent.

The equations of motion

Let ρs and ρf denote the mass densities of the solid grains and the fluid and let

ρb = (1− φ)ρs + φρf (10)

denote the mass density of the bulk material. Let the positive definite matrix P and the
nonnegative matrix B be defined by

P =

(
ρbI ρfI
ρfI gI

)
, (11)
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B =

(
I 0I
0I bI

)
, (12)

where I denotes the identity matrix in RE×E . The mass coupling coefficient g represents
the inertial effects associated with dynamic interactions between the solid and fluid phases,
while the coefficient b includes the viscous coupling effects between such phases. They are
given by the relations

b =
η

k
, g =

Sρf
φ
, S =

1

2

(
1 +

1

φ

)
, (13)

where η is the fluid viscosity and k the absolute permeability. The coefficient S is known
as the structure or tortuosity factor, computed according to Berryman, J.G. (1982). Next,
let L(u) be the second-order differential operator defined by

L(u) = (∇ · σ(u),−∇pf (u))t . (14)

Then, if ω = 2πf is the angular frequency, in the absence of body forces, the Biot’s equations
of motion stated in the space-frequency domain can be written in the form (Biot, M.A.,
1956a,b)

−ω2Pu(x, ω) + iωBu(x, ω)− L(u(x, ω)) = 0, (15)

where x denotes the position of an infinitesimal bulk volume in the Cartesian coordinate
system. Considering the homogeneous case, it was shown by Biot, M.A. (1956a,b) that in
these type of media two compressional waves, denoted here as P1 and P2, and one shear or
S wave can propagate. The P1 and S waves correspond to the classical compressional and
shear waves propagating in elastic or viscoelastic isotropic solids. The additional P2 slow
mode is a wave strongly attenuated in the low frequency range, and it is associated with
the motion out of phase of the solid and fluid. In terms of this theory, the physics of the
mesoscopic attenuation and dispersion effects in heterogeneous porous media is basically
the conversion from fast-waves energy into slow-wave energy at the discontinuities within
the rock by means of a pressure diffusion process.

THE NUMERICAL GEDANKEN EXPERIMENTS

As we mentioned before, the numerical simulation of wave propagation can be used to
study the mesoscopic effects that take place in highly-heterogeneous fluid-saturated porous
media (Helle, H.B. et al., 2003; Rubino, J.G. et al., 2007). However, it is computationally
expensive or even not feasible due to the extremely fine meshes that would be needed to
define the mesoscopic-scale heterogeneities and to the fact that the waves should travel
some wavelengths to evidence the mesoscopic effects.

A different and very convenient approach to achieve this goal is to perform numeri-
cal gedanken experiments: by applying time-harmonic compressional and shear stresses to
porous saturated rocks, their equivalent complex P-wave and shear moduli are obtained by
defining locally an equivalent viscoelastic medium having the same attenuation and velocity
dispersion than the original porous rock. The theoretical basis for this procedure were given
in the works of White, J.E. et al. (1975); Dutta, N.C. and Odé, H. (1979) and Johnson,
D.L. (2001).
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The idea is illustrated in Figure 1, which shows a schematic representation of an
undrained oscillatory compressibility test. In this experiment the sample is subjected to a
time-harmonic compression with constant amplitude of the form ∆Peiωt on its top bound-
ary, and no tangential forces are applied on the boundaries of the sample. Also, the solid
is not allowed neither to move on the bottom boundary nor have horizontal displacements
on the lateral boundaries, and the fluid is not allowed to flow into or out of the sample.

Denoting by V the original volume of the sample, its (complex) oscillatory volume
change, ∆V (ω), allows us to define the equivalent undrained complex P-wave modulus
Mc(ω), by using the relation

∆V (ω)

V
= − ∆P

Mc(ω)
, (16)

valid for a viscoelastic homogeneous medium in the quasistatic case.

In order to estimate this volume change, Biot’s equations of motion (15) are solved under
proper boundary conditions. In this sense, let Ω = (0, L)2 be a domain in the (x, y)-plane
representing the rock sample to be compressed in the test. Set Γ the boundary of Ω, given
by Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x, y) ∈ Γ : x = 0}, ΓR = {(x, y) ∈ Γ : x = L},

ΓB = {(x, y) ∈ Γ : y = 0}, ΓT = {(x, y) ∈ Γ : y = L}.

Also, denote by ν the unit outer normal on Γ and let χ be a unit tangent on Γ so that
{ν, χ} is an orthonormal system on Γ. Then, to estimate the volume change ∆V (ω), we
consider the solution of (15) under the following boundary conditions

σ(u)ν = (0,−∆P ), (x, y) ∈ ΓT ,

σ(u)ν · χ = 0, (x, y) ∈ ΓL ∪ ΓR,

us · ν = 0, (x, y) ∈ ΓL ∪ ΓR,

us = 0, (x, y) ∈ ΓB, (17)

uf · ν = 0, (x, y) ∈ Γ,

where the factor eiωt is omitted from now on, since the problem is formulated in the space-
frequency domain.

The vertical displacements us2(x, L, ω) on ΓT allow us to obtain an average vertical

displacement us,T2 (ω) suffered by the boundary ΓT . Then, for each frequency ω, the volume

change produced by the compressibility test can be approximated by ∆V (ω) ≈ Lus,T2 (ω),
which enable us to compute the equivalent complex plane-wave modulus M c(ω) by using
the relation (16). The corresponding complex compressional velocity is given by

Vpc(ω) =

√
M c(ω)

ρb
, (18)

where ρb is the average bulk density of the rock sample. The following relations allow us
to estimate the equivalent compressional phase velocity Vp(ω) and (inverse) quality factor
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Qp(ω) in the form:

Vp(ω) =

[
Re

(
1

Vpc(ω)

)]−1

, (19)

1

Qp(ω)
=

Im(Vpc(ω)2)

Re(Vpc(ω)2)
. (20)

Following the same methodology, to obtain the equivalent complex shear modulus of
the fluid-saturated porous medium, let us consider the solution of (15) under the following
boundary conditions

σ(u)ν = g(x, y), (x, y) ∈ ΓT ∪ ΓL ∪ ΓR,

us = 0, (x, y) ∈ ΓB, (21)

uf · ν = 0, (x, y) ∈ Γ,

where

g(x, y) =


(0,−∆T ), (x, y) ∈ ΓL,

(0,∆T ), (x, y) ∈ ΓR,

(∆T, 0), (x, y) ∈ ΓT ,

(22)

and ∆T denotes the constant amplitude of the external oscillatory stress. This boundary-
value problem is the mathematical representation of a shear experiment as shown in Figure
2, where the solid is not allowed to move on ΓB, the fluid is not allowed to flow into or out
of the sample and shear stresses are applied on the boundaries ΓL, ΓR and ΓT .

The change in shape of the rock sample allows to recover its equivalent complex shear
modulus µc(ω) by using the relation

tg(θ(ω)) =
∆T

µc(ω)
, (23)

where θ(ω) is the departure angle between the original positions of the lateral boundaries
and those after applying the shear stresses (see, for example, Kolsky, H. (1963)). Equa-
tion (23) holds for this experiment in a viscoelastic homogeneous media in the quasistatic
approximation.

The horizontal displacements us1(x, L, ω) at the top boundary ΓT allow us to obtain, for

each frequency, an average horizontal displacement us,T1 (ω) suffered by the boundary ΓT .
This average value allows us to approximate the change in shape suffered by the sample,
given by tg(θ(ω)) = us,T1 (ω)/L, which from (23) let us estimate µc(ω). The complex shear

velocity is given by Vsc(ω) =
√

µc(ω)
ρb

and the equivalent shear phase velocity Vs(ω) and

(inverse) quality factor Qs(ω) are estimated using the relations

Vs(ω) =

[
Re

(
1

Vsc(ω)

)]−1

, (24)

1

Qs(ω)
=

Im(Vsc(ω)2)

Re(Vsc(ω)2)
. (25)
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Numerical approximation

In order to obtain the equivalent complex moduli of a given rock sample, we approximate
the solution of the equations of motion (15) under the boundary conditions (17) or (21)
using a finite-element procedure. With this objective, let us introduce some notation to
state a variational formulation for (15) and either (17) or (21). For X ⊂ RE with boundary
∂X, let (·, ·)X and 〈·, ·〉∂X denote the complex L2(X) and L2(∂X) inner products for scalar,
vector, or matrix valued functions. In addition, if X = Ω or X = Γ, the subscript X may
be omitted such that (·, ·) = (·, ·)Ω or < ·, · >=< ·, · >Γ. Also, let us introduce the spaces

H1,P
0,B (Ω) = {v ∈ (H1(Ω))2 : v · ν = 0 on ΓL ∪ ΓR, v = 0 on ΓB},

H1,T
0,B(Ω) = {v ∈ (H1(Ω))2 : v = 0 on ΓB},

H0(div; Ω) = {v ∈ [L2(Ω)]2 : ∇ · v ∈ L2(Ω), v · ν = 0, on Γ}.

Let us introduce the spaces

V(P ) =
[
H1,P

0,B (Ω)
]2
×H0(div; Ω), V(T ) =

[
H1,T

0,B(Ω)
]2
×H0(div; Ω).

Then, for the compressional experiment multiply equation (15) by v =
(
vs, vf

)t ∈ V(P ),
use integration by parts and apply the boundary conditions (17) to see that the solution
u(P ) = (u(s,P ), u(f,P )) ∈ V(P ) of (15) and (17) satisfies the weak form:

Λ(u(P ), v) = 〈∆p, vs · ν〉ΓT , for all v =
(
vs, vf

)t
∈ V(P ), (26)

where for u = (us, uf ), v = (vs, vf ) ∈ [H1(Ω)]2 × H(div; Ω), the bilinear form Λ(u, v) is
defined by

Λ(u, v) = −ω2 (Pu, v) + iω (Bu, v) +
∑
l,m

(τlm(u), εlm(vs))−
(
pf (u),∇ · vf )

)
.

Similarly, the solution u(T ) = (u(s,T ), u(f,T )) ∈ V(T ) of (15) and (21) satisfies the weak
form:

Λ(u(T ), v) = 〈g, vs〉Γ\ΓB , for all v =
(
vs, vf

)t
∈ V(S). (27)

A functional analysis argument involving Korn’s second inequality (Duvaut, G. and Lions,
J.L., 1976; Nitsche, 1981; Ciarlet, 1978) shows that uniqueness holds for problems (26) and
(27) for ω > 0 and sufficiently small. More specifically, setting

E =

λc + 2µ λc 0
λc λc + 2µ 0
0 0 2µ

 ,

ω must satisfy the inequality:

ω <
1

C1

√
λmin(E)

ρmaxb

, (28)
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where ρmaxb denotes the maximum value of the bulk density and λmin(E) is the minimum
eigenvalue of the matrix E. Also, C1 is a constant associated with Korn’s second inequality
(Santos et al., to appear). Existence for (26) and (27) will be assumed.

In order to approximate the displacements u(P ) and u(T ), we consider a non-overlapping
partition of Ω, T h(Ω), into squares Ωj , j = 1, 2, ..., J of side length h. Two different finite-

element spaces, denoted N h,P
0,B and N h,T

0,B are used to approximate the solid displacement
vector for the compressibility and shear tests, respectively. They are defined as follows

N h,P
0,B = {v : v|Ωj ∈ P1,1 × P1,1, v · ν = 0 on ΓL ∪ ΓR, v = 0 on ΓB} ∩ [C0(Ω)]2,

N h,T
0,B = {v : v|Ωj ∈ P1,1 × P1,1, v = 0 on ΓB} ∩ [C0(Ω)]2,

where P1,1 denotes the polynomials of degree not greater than 1 on each variable.

To approximate the fluid displacement a closed subspace of the vector part of the
Raviart-Thomas-Nedelec space of zero order, denoted Wh

0 , is employed (Raviart, P.A. and
Thomas, J.M. (1975); Nedelec, J.C. (1980)). It is defined as

Wh
0 = {v : v|Ωj ∈ P1,0 × P0,1, v · ν = 0, on Γ}.

Figure 3 shows the local degrees of freedom (dofs) associated with each component of
the solid and the fluid displacement vectors.

Let us define the finite-element spaces

V(h,P ) = N h,P
0,B ×W

h
0 , V(h,T ) = N h,T

0,B ×W
h
0 .

Then, the finite-element procedure to compute the approximate solution of the com-

pressibility problem (26) is defined as follows: find u(h,P ) =
(
u(s,h,P ), u(f,h,P )

)t ∈ Vh,P such
that

Λ(u(h,P ), v) = 〈∆p, vs · ν〉ΓT , v =
(
vs, vf

)t
∈ V(h,P ). (29)

Similarly, the finite-element procedure to compute the approximate solution of the shear

problem (27) is: find u(h,T ) =
(
u(s,h,T ), u(f,h,T )

)t ∈ V(h,T ) such that

Λ(u(h,T ), v) = 〈g, vs〉Γ\ΓB
, v =

(
vs, vf

)t
∈ V(h,T ). (30)

Uniqueness for the solution of (29) and (30) can be demonstrated with the same argument
than for the continuous problems (26) and (27). Existence follows from finite dimensionality.
It can be shown that the error associated with the finite-element problems (29) and (30)
measured in the energy norm is of order h (Santos et al., to appear).

To validate the procedure to estimate the P-wave modulus, we assume that the domain
Ω is composed of two poroelastic layers of equal thickness 0.2 m, one fully saturated with
water and the other fully saturated with gas. The physical properties of the solid matrix are
taken constant in all the domain, and correspond to the sandstone 1 in Table 1, while the
physical properties of the fluids (water and gas) are given in Table 2. The physical properties
of the solid grains and those of the fluids were taken from Carcione, J.M. and Picotti, S.
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(2006); in addition, following their work, the bulk and shear moduli of the dry matrices were
computed using the model of Krief, M. et al. (1990), while the Kozeny-Carman relation was
employed to relate porosity and permeability.

Next, we compare the phase velocities and inverse quality factors obtained using our
numerical approach for 15 frequencies between 0 and 100 Hz with the corresponding values
obtained using the analytical theory of White, J.E. (1975) but, in the last case, considering
a periodic medium composed of alternating layers of equal thickness 0.4 m saturated with
either gas or water. This comparison is valid because the boundary conditions (17) for
the compressibility test can be associated with a compression similar to that proposed by
White, J.E. (1975), but applied to a periodic sample obtained by a mirror reflection with
respect to the x-axis of the domain Ω.

Figures 4 and 5 display the P-wave phase velocities and inverse quality factors, respec-
tively, obtained with the compressibility test (dots) and with the White’s theory (line),
where in both cases an excellent matching between the two approaches can be observed.
Moreover, the position of the peak in the curve of 1

Qp
is in good agreement with the theo-

retical predictions obtained using concepts from standard diffusion and wave propagation
theories (Mavko, G. et al., 1998; Dutta, N.C. and Odé, H., 1979).

To validate the procedure for the estimation of the shear modulus, we suppose that
the domain Ω is composed of two horizontal layers L1 and L2, of thicknesses T1 and T2

respectively, such that T1 +T2 = 1 m. We assume that both layers are saturated with water
but their solid matrices are different: the solid matrix of the layer L1 is the sandstone 1
while the solid matrix of the layer L2 is shale, with the physical parameters given in Table 1.

Figure 6 displays the equivalent shear modulus obtained with the shear test (with points)
for different values of the shale content T2/(T1 + T2) and in the zero-limit frequency. As it
can be seen, we found that these values are in excellent agreement with the shear modulus
obtained using the Reuss average for an effective mixture of sand and shale (Mavko, G.
et al., 1998). As expected, the imaginary part of the modulus is negligible due to the low
frequency used in this experiment.

A MONTECARLO APPROACH TO OBTAIN THE EFFECTIVE
COMPLEX MODULI

The compressibility and shear tests defined in the previous section allow to numerically
estimate the equivalent complex moduli of rock samples when the spatial distribution of
their properties is known in detail. However, as we mentioned before, a precise knowledge
of the spatial distribution of the rock heterogeneities at mesoscopic scales may not be
feasible. Instead, they can be represented as stochastic functions (parameters) with given
spectral density distributions. In this sense, to obtain significant values for the effective
complex moduli in highly-heterogeneous fluid-saturated porous media, we propose to apply
the numerical gedanken experiments in a Montecarlo fashion. Thus, the compressibility
and shear tests are applied to representative volumes of bulk material containing stochastic
heterogeneities characterized by fractal spectral density distributions, and the boundary-
value problems are solved for each realization. The means and variances of the phase
velocities and inverse quality factors associated with the complex moduli are obtained by
averaging over realizations of the stochastic parameters, and they represent the statistical
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behavior of the response of the porous rocks under consideration.

The size of the representative volume, i.e. the computational domain to be used in the
numerical experiments, is not arbitrary: the side length L has to be big enough to contain
a significant number of mesoscopic-scale heterogeneities but, at the same time, it has to
be much smaller than the wavelengths associated to each excitation frequency. To find
an upper bound for L we check that the compressibility and shear tests applied to homo-
geneous samples of side length L, composed of any of the different materials forming the
heterogeneous medium, give negligible attenuation and velocity dispersion in the frequency
range under consideration.

The solution of the numerical problem (15) under the respective boundary conditions
(Eq. (17) or (21)) is approximated using the finite-element procedure explained in the
previous section for different samples for a number of frequencies ωm, m = 1, · · · , NF , from
which the values of V n

p (ωm), V n
s (ωm), 1/Qns (ωm) and 1/Qnp (ωm) are obtained for the nth

realization. This procedure is repeated for a large number of realizations n = 1, · · · , NR,
and the statistical behavior of the phase velocities and inverse quality factors is analyzed
by computing the means and variances of these quantities in the form:

〈β(ωm, NR)〉 =
1

NR

NR∑
n=1

βn(ωm), β = Vp, 1/Qp, Vs, 1/Qs, (31)

σ2
β(ωm, NR) =

1

(NR − 1)

NR∑
n=1

[βn(ωm)− 〈β(ωm, NR)〉]2 . (32)

To analyze the convergence of the Montecarlo approach in terms of the number of
realizations NR, the frequency average of the variances are computed by

‖ σ2
β(NR) ‖=

[
1

NF

NF∑
m=1

σ2
β(ωm, NR)

]1/2

, β = Vp, Vs, 1/Qp, 1/Qs. (33)

Following the criterion used by Guarracino, L. and Santos, J. E. (2004), the Montecarlo
simulations are stopped after N∗R realizations, such that the variances (33) of the computed
quantities stabilize at constant values. Then, the averages 〈β(ωm, N

∗
R)〉 are our effective

velocities and inverse quality factors of the heterogeneous fluid-saturated poroelastic mate-
rial.

NUMERICAL EXAMPLES

To illustrate the application of the proposed methodology to obtain the effective viscoelastic
properties of highly-heterogeneous fluid-saturated porous media, we show some numerical
examples in the case of patchy gas-water saturation and for a composite water-saturated
medium whose rock matrix is a mixture of shale and sandstone.

The patchy gas-water saturation case

A very interesting case may arise in hydrocarbon reservoirs, where regions of non-uniform
patchy saturation may occur at the transition zones between gas and water. Such patchy-



Rubino et al. 12 Effective media for heterogeneous rocks

saturation patterns induce important mesoscopic attenuation effects in the seismic band of
frequencies, as shown by White, J.E. (1975).

In order to study and quantify these effects, we consider a poroelastic sample with a
spatially variable gas-water distribution in the form of irregular patches fully saturated
with gas and zones fully saturated with water. No mixing nor capillary forces are taken
into account and the two fluids are assumed to occupy different mesoscopic regions of the
model. To generate these kind of heterogeneities we use a stochastic fractal field based
on the so-called von Karman self-similar correlation functions. Following Frankel, A. and
Clayton, R.W. (1986) and more recently Santos, J.E. et al. (2005), we consider a particular
case for which the spectral density of the stochastic field is given by:

Sd(kx, ky) = S0(1 + k2a2)−(H+E/2) (34)

where k =
√
k2
x + k2

y is the radial wavenumber, a the correlation length, H is a self-similarity

coefficient (0 < H < 1) and S0 is a normalization constant. Equation (34) corresponds to
a fractal process of dimension D = E + 1−H at scales smaller than a.

The first step to generate a patchy fluid distribution is to assign to each subdomain Ωj

of the partition T h a pseudo-random number using a generator with uniform distribution
associated to a given seed number. This random field is Fourier transformed to the spatial
wavenumber domain and its amplitude spectrum is filtered using equation (34). The result
is then transformed back to the spatial domain, obtaining a micro-heterogeneous water

saturation model S
(j)
w , j = 1, · · · , J . Next, to assign to each Ωj either pure water or pure

gas, we choose a value S∗w so that, for each cell Ωj where S
(j)
w ≤ S∗w, then Ωj is changed to

full gas saturation, while if S
(j)
w > S∗w then Ωj is changed to full water saturation. For this

patchy-saturation model we compute an overall water saturation S̄w with a corresponding
overall gas saturation 1− S̄w.

For this example, we consider that Ω is a square domain of side length L = 0.5 m, and
the partition T h is composed of J = 75 × 75 squares of side length h = 0.5/75 m. The
parameters of the fractal spectral density are respectively E = 2, D = 2.2 , a = 0.1 m. For
each realization, the excitation frequency is varied from 0 to 100 Hz using NF = 15 equally
spaced values. The physical properties of the solid matrix are taken constant in the domain,
and correspond to the sandstone 1 of Table 1, while the physical parameters of the fluids
are those given in Table 2.

We analyze a set of experiments involving NR = 70 realizations, choosing S∗w in each
case so that the overall gas saturation in each realization is fixed and equal to 0.1. An
example of the gas-water distribution for a particular realization is illustrated in Figure 7,
where the black zones correspond to pure gas saturation and the white ones to pure water
saturation.

Let us analyze the induced fluid pressure field for the particular fluid distribution dis-
played in Figure 7. This is shown in Figure 8, where we plot the normalized fluid-pressure
amplitude produced by the compressibility experiment at a frequency of 50 Hz. It should
be remarked that, despite the fact that the volume change in the gas-saturated zones is
greater than in the water-saturated ones, the fluid pressures induced in the water patches
are greater than in the gas patches. This effect can be understood by analyzing (4), and
taking into account that the bulk modulus of the gas is much smaller than that of the
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water, and consequently (from (7)), the same holds for Kav. The associated fluid-pressure
gradient, which has its maximum values at the boundaries between the gas-saturated zones
and the water-saturated ones, produces fluid flow and Biot slow waves which diffuse away
from the interfaces generating energy losses and velocity dispersion.

Next, we analyze the Montecarlo procedure to obtain the effective complex moduli,
velocities and quality factors for the patchy-saturation distributions, as described in the
previous section. Figure 9 shows the variance of the compressional phase velocity averaged
over the whole range of frequencies for different values of the number of realizations NR,
where it can be seen that after 70 realizations this parameter stabilizes at a very low constant
value. The variance of the compressional inverse quality factor presents a similar trend, and
is not included here for brevity. These results suggest that the effective compressional phase
velocity and inverse quality factor are representative parameters for the kind of media and
overall saturation under consideration.

Figure 10 displays the effective compressional phase velocity versus frequency (after 70
realizations) and its corresponding standard deviation interval (indicated with dotted lines).
We observe an important increasing dispersion of the phase velocity with frequency within
the seismic range.

Figure 11 shows the behavior of the effective compressional inverse quality factor ver-
sus frequency and its corresponding standard deviation. Note the very high mesoscopic
attenuation levels in almost all the frequency range under consideration, with a minimum
Qp value on the order of 12 at 40 Hz. This results show the drastic amplitude losses that
would suffer compressional waves propagating through these kind of media. In this context,
it can be remarked that for these fractal-type distributions, because of the different scales
of heterogeneity involved, it is very difficult to predict theoretically the existence of an at-
tenuation peak in the frequency range analyzed. For a general analysis on this subject see
Johnson, D.L. (2001).

In order to obtain the effective complex shear modulus of these samples we also per-
formed the shear tests to the same set of realizations of the patchy-saturated rocks. As
expected, the effective shear modulus resulted to have negligible imaginary part, while its
real part was very close to the shear modulus of the dry matrix. This behavior is due to the
fact that shear tests applied to samples where the heterogeneities are related to fluid inho-
mogeneities induce negligible values of fluid-pressure gradient and consequently negligible
mesoscopic effects.

The shale-sandstone mixture case

Mesoscopic effects can also be created by mesoscopic-scale heterogeneities associated with
the lithology of the rock. In this example, we analyze the response of rocks composed of a
mixture of two different materials: the sandstone 2 of Table 1 and shale (with properties
given in the same Table), fully saturated with water. We consider that the domain Ω is a
square of side length L = 0.07 m, and the partition T h is composed of 75× 75 squares Ωj

of equal side length. For each realization, the excitation frequency is varied from 0 to 100
Hz using NF = 15 equally spaced values.

As in the previous example, we assume that the irregular distribution of shale and
sandstone can be represented using the stochastic fractal field associated to the von Karman
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spectral density (34). The procedure to generate the binary distribution is completely
analogous to that we used to create the patchy gas-water distributions, from which we
obtain a micro-heterogeneous sandstone content model S(j), j = 1, · · · , J . Next, to assign
to the porous matrix of each Ωj either pure shale or pure sandstone, we choose a value S∗ so
that for each subdomain Ωj where S(j) ≤ S∗ the rock matrix is changed to pure shale, while
if S(j) > S∗ the matrix is changed to pure sandstone. In this way, the heterogeneous mixture
model is constructed with a resulting overall sandstone content S̄ for the computational rock
sample.

We consider again a set of experiments involving NR = 70 realizations, choosing S∗

in each case so that the overall sandstone content S̄ of each realization is fixed and equal
to 0.5. The parameters of the fractal spectral density are respectively E = 2, D = 2.2,
and the correlation length a is taken to be 0.0005 m. An example of the distribution of
shale and sandstone for a given realization is illustrated in Figure 12, where the black zones
correspond to pure shale while the white ones to pure sandstone.

To quantify the mesoscopic effects associated with these kind of media, we apply the
Montecarlo procedure to obtain the phase velocities and inverse quality factors associated
with the effective complex moduli. We checked that the variances of both the shear and
compressional velocities and inverse quality factors stabilized at constant values after 70
realizations.

These lithological variations produce non-negligible mesoscopic effects in the case of the
compressibility tests, as it is shown in Figure 13, where the effective compressional inverse
quality factor is plotted as a function of the frequency (solid lines); we can see that for
frequencies around 40 Hz the quality factor Qp is about 70. The associated compressional
phase velocity shows very slight dispersion, with an increase of 2 % between 0 and 100 Hz;
the corresponding Figure is not included for brevity.

These mesoscopic-scale heterogeneities also produce non-negligible pressure gradients in
the case of the shear test. This is illustrated in Figure 14 where we plot the normalized fluid-
pressure amplitude for a frequency of 20 Hz for the particular realization shown in Figure
12. It can be seen that the applied shear stresses induce fluid-pressure gradients, also
causing energy losses and velocity dispersion. This can be appreciated in Figure 15 where
we plot the effective shear inverse quality factor as function of the frequency (solid lines)
and its corresponding standard deviation (dotted lines). It can be seen that the lithological
variations produce non-negligible attenuation effects, with values of Qs of about 75 for
frequencies around 25 Hz. This result demonstrates that shear waves propagating through
these kind of media are also affected by wave-induce fluid flow effects. The associated
effective shear phase velocity shows very slight dispersion, with a 1.5 % increase between 0
and 100 Hz; also in this case we do not include the corresponding Figure for brevity.

CONCLUSIONS

In this paper we presented a numerical upscaling procedure to obtain the effective com-
plex P-wave and shear moduli of highly-heterogeneous fluid-saturated porous media. The
methodology is based on a finite-element solution of the classical Biot’s equations in the
space-frequency domain to simulate oscillatory compressibility and shear tests to obtain the
equivalent complex undrained plane-wave and shear moduli and the corresponding phase
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velocities and quality factors of a given heterogenous sample. The effective viscoelastic
medium is defined in a Montecarlo fashion by computing the moments of the equivalent
phase velocities and inverse quality factors over a set of realizations of the stochastic rock
parameters with a given spectral density distribution. Unlike published theoretical works
for ideal geometries, our method allows to simulate any kind of heterogeneities within the
domain.

In order to illustrate the procedure, numerical experiments were performed to obtain the
effective complex moduli of gas-water patchy-saturated sandstones and of water-saturated
mixtures of sandstone and shale for frequencies lying between 0 and 100 Hz. We veri-
fied that the mesoscopic attenuation and velocity dispersion can be very important in the
case of compressional waves propagating in patchy-saturated media. Also, we showed that
mesoscopic-scale lithological variations can produce non-negligible mesoscopic effects in the
propagation of shear and compressional waves. Although we focused our attention in the
seismic range of frequencies, these experiments can also be performed at higher frequencies,
as long as the domain size and heterogeneity scales are properly chosen.

The proposed numerical upscaling procedure can be used to replace a Biot medium
containing mesoscopic-scale heterogeneities characterized by a given spectral density dis-
tribution by an effective viscoelastic solid where the mesoscopic effects are included by
solving a set of local boundary-value problems. This methodology is particularly important
in the context of exploration geophysics, since performing numerical simulation of wave
propagation employing the viscoelastic equation is computationally less expensive than any
numerical procedure based on the discretization of the full Biot’s equations for the same
order of accuracy. This subject will be investigated in future works.
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Sandstone 1 Sandstone 2 Shale

Ks 37 GPa 37 GPa 25 GPa

ρs 2650 Kg/m3 2650 Kg/m3 2550 Kg/m3

φ 0.3 0.2 0.3

Km 4.8 GPa 12.1 GPa 3.3 GPa

µ 5.7 GPa 14.4 GPa 1.2 GPa

κ 1 Darcy 0.23 Darcy 1.5× 10−5 Darcy

Table 1: Physical properties of the solid materials used in the numerical examples
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Water Gas

Kf 2.25 GPa 0.012 GPa

ρf 1040 Kg/m3 78 Kg/m3

η 0.003Pa·s 0.00015 Pa·s

Table 2: Physical properties of the fluids used in the numerical examples
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FIGURE CAPTIONS

Figure 1. Schematic representation of an oscillatory compressibility test to estimate the
equivalent complex P-wave modulus of a sample.

Figure 2. Schematic representation of an oscillatory shear test to obtain the equivalent
complex shear modulus of a sample.

Figure 3. Local degrees of freedom (dofs) associated with each component of the solid and
the fluid displacement vectors.

Figure 4. P-wave phase velocity obtained from the compressibility test (dots) and using
White’s theory (line) for frequencies lying between 0 and 100 Hz.

Figure 5. P-wave inverse quality factor obtained from the compressibility test (dots) and
using White’s theory (line) for frequencies lying between 0 and 100 Hz.

Figure 6. Equivalent shear modulus vs. shale fraction estimated with the shear test and
the corresponding values given by the Reuss average in the low-frequency limit.

Figure 7. Gas-water distribution for a given realization. The black zones correspond to
pure gas saturation and the white ones to pure water saturation. The overall gas saturation
is 0.1.

Figure 8. Normalized fluid-pressure amplitude for the fluid distribution shown in Figure
7. The excitation frequency is 50 Hz.

Figure 9. Averaged variance of compressional phase velocity as a function of the total
number of realizations NR.

Figure 10. Effective compressional phase velocity as a function of the frequency (solid
lines). Dotted lines indicate the corresponding standard deviations.

Figure 11. Effective compressional inverse quality factor as a function of frequency (solid
lines). Dotted lines indicate the corresponding standard deviations.

Figure 12. Distribution of shale and sandstone for a given realization. The black zones
correspond to pure shale and the white ones to pure sandstone.

Figure 13. Effective compressional inverse quality factor as a function of the frequency
(solid lines). Dotted lines indicate the corresponding standard deviations.

Figure 14. Normalized fluid-pressure amplitude corresponding to the realization shown in
Figure 12 for an excitation frequency of 20 Hz. This field has been truncated in order to
see the normalized fluid pressure amplitude in more detail.
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Figure 15. Effective shear inverse quality factor as a function of the frequency (solid lines).
Dotted lines indicate the corresponding standard deviations.
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