
‡ Universidad Nacional de La Plata, La Plata, Argentina.

Fracture induced anisotropy in poroelastic media saturated

by two-phase fluids

Juan E. Santos∗†‡

∗Universidad de Buenos Aires, Facultad de Ingenieŕıa, Instituto del Gas y del Petróleo,
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ABSTRACT

Wave induced fluid flow (WIFF) due to conversions from fast P-waves to slow diffusion-

type P-waves at mesoscopic scale heterogeneities is a major cause of attenuation in fractured

rocks. Reservoir rocks are saturated by multiphase fluids, and surface tensions induce rela-

tive motions between the nonwetting, wetting and solid phases, modifying the WIFF mech-

anism. To incorporates those effects I use a two-phase Biot model (2PBM) that includes

saturation-dependent capillary pressure and relative permeabilities flow functions.

I use a finite element (FE) upscaling procedure to determine the stiffness components of

a transversally isotropic viscoelastic (TIV) medium long-wave equivalent to an horizontally

fractured poroelastic solid saturated by a two-phase fluid.

To determine the stiffness components of the TIV medium I use time-harmonic experi-
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ments. Each experiment is associated with a boundary value problem (BVP) representing

compressibility and shear experiments applied to a sample of the fractured Biot medium,

and solved using the FE method.

To test the procedure, first I compare the results against a model valid for a fractured

poroelastic solid saturated by a single-phase fluid (a SPBM) by using effective single-phase

fluids. Finally, I applied the proposed methodology to the case of patchy saturation for

two-phase gas-water and oil-water mixtures. The experiments show the necessity of using

flow functions to obtain accurate estimates of attenuation and dispersion of qP and qSV

waves in fractured hydrocarbon reservoir rocks.
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INTRODUCTION

Hydrocarbon reservoirs are porous formations saturated for multiphase fluids. These forma-

tions present in many cases dense sets of aligned fractures (Gurevich, B., 2003; Gurevich,

B. et al., 2009), which are very thin, compliant and highly permeable layers. Fractured

hydrocarbon reservoirs have been the subject of interest in exploration and production geo-

physics, since generally, natural fractures control the permeability of the reservoir (Gurevich,

B. et al., 2009).

The work presented by M. Biot in several classic papers (Biot, M.A., 1956a,b, 1962)

give a model for wave propagation in a poroelastic solid saturated by a single-phase fluid.

In what follows this model will be referred as the single-phase Biot model (SPBM), and

predicts the existence of two compressional waves (P1 or fast wave and P2 or slow wave)

and one shear wave. The P2 wave was first observed in laboratory by Plona (Plona, T.,

1980) at ultrasonic frequencies.

One of the important mechanisms of seismic attenuation in fluid-saturated porous media

is wave-induced fluid flow (WIFF), by which fast compressional (P) and shear (S) waves are

converted to slow (diffusive) Biot waves at mesoscopic-scale (on the order of centimeters)

heterogeneities (Carcione, J.M. and Picotti, S., 2006; Carcione, J.M., 2015).

White an coauthors (White, J.E. et al., 1975) and Dutta and Odé (Dutta, N.C. and Odé,

H., 1979) analyzed the attenuation and dispersion of seismic waves in a brine saturated rock

containing gas using models based on Biot’s equations for single-phase fluids. Mochizuki

(Mochizuki, S., 1982) studied experimental data in partially saturated rocks using Biot’s

theory. The fluids were modeled as a single phase one by means of a volume average for

the density, an apparent viscosity and an effective fluid compressibility. Berryman and
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coauthors (Berryman, J.G. et al., 1988) derived a model for wave propagation in porous

rocks saturated by segregated fluids (liquid and gas) and for the case of mixing of liquid

and gas.

The WIFF is particularly important in fractured poroelastic media. A planar fracture

embedded in a fluid-saturated poroelastic background is a particular case of the thin layer

problem, when one of the layers is very thin, highly permeable and compliant. A dense set

of horizontal fractures in a fluid-saturated poroelastic medium behaves as a TIV medium

when the average fracture distance is much smaller than the predominant wavelength of the

traveling waves (Carcione, J.M., 2015).

For and analysis of anisotropy in stratified media, we mention the early work by Car-

ciones and coauthors (Carcione, J. M. et al., 1991). Gelinsky and Shapiro (Gelinsky, S.

and Shapiro, S. A., 1997) obtained the relaxed and unrelaxed stiffnesses of the equivalent

poro-viscoelastic medium to a finely layered horizontally homogeneous material. Next, as-

suming that the layers are homogeneous and flow is perpendicular to the layering plane,

Krzikalla and Müller (Krzikalla, F. and Müller, T. M., 2011) obtained the five complex and

frequency-dependent stiffnesses of the equivalent transversely isotropic viscoelastic (TIV)

medium. An analysis of anisotropy in fractured poroelastic media using the SPBM appeared

in Carcione, J. M. et al. (2013).

Among works using numerical simulations to analyze dispersion, attenuation and anisotropy

in Biot media we mention the work by Saenger and coauthors Saenger, E. H. et al. (2007),

presenting numerical simulations in two-dimensional (2D) and three- dimensional (3D) me-

dia porous media saturated with fluids to analyze Biots predictions in the high and low fre-

quency limits of poroelasticity. Also, Grechka and Kachanov (Grechka, V. and Kachanov,
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M., 2006) determined effective media corresponding to fractured rocks, performing 3D static

FE simulations adding the individual contributions of the fractures and ignoring their in-

teractions. Furthermore, the works by Wenzlau, F et al. (2010) and (Quintal, B. H. et al.,

2011) use quasistatic FE modeling to analyze attenuation and dispersion effects associated

with WIFF in poroelastic media.

The work by Santos J. E. and Carcione, J. M. (2015) presents a set of five harmonic

compressibility and shear experiments to determine the stiffness coefficients and the corre-

sponding energy velocities and dissipation factors of a long-wave equivalent TIV medium

to a densely fractured SPBM. The experiments are formulated as boundary value problems

(BVP) in the space-frequency domain that are solved using the finite element (FE) method.

Wave propagation theories and mesoscopic-loss effects considering two-phase fluids were

presented by several authors. Auriault et al. (Auriault, J. L. and Lebaigue, O. and Bonnet,

G. , 1989) used an homogenization theory and a description of the capillary effects at the

pore scale, obtaining a generalized Darcy law. Lo et al. (Lo, W. C. et al., 2005) derived

a model for waves traveling in an elastic porous solid permeated by two immiscible fluids

incorporating both inertial and viscous drags in an Eulerian frame of reference, applying

their model to a Columbia fine sandy loam saturated by air-water and oil-water. Qi, Q. et al.

(2014) studied the effect of capillary pressure on the acoustic signature in the framework of

the mesoscopic-loss theory. In this study the effect of capillarity was induced through the

incorporation of a membrane stiffness in a random medium of patchy saturation.

To analyze the WIFF in a poroelastic solid saturated by a two-phase fluid using FE

simulations, I generalize the time-harmonic experiments presented in (Santos J. E. and

Carcione, J. M., 2015) using the model in (Santos, J. E. et al., 1990b,a; Ravazzoli, C.
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L. et al., 2003), to be referred as a two-phase Biot model (2PBM). The 2PBM includes

capillary forces in the constitutive relations and relative permeability functions defined in

terms of two-phase Dacy’s Law (Scheidegger, A. E., 1974; Peaceman, D. W., 1977). The

2PBM predicts the existence of two compressional (P) waves (one fast and two slow) and

one shear (S) wave.

The first section of this paper we state the 2PBM describing the quasistatic behavior

of a poroelastic solid saturated by a 2-phase fluid. The next section presents the time-

harmonic BVP to determine the stiffness coefficients of TIV medium long-wave equivalent

to a densely fractured poroelastic material saturated by a two-phase fluid. The last section

presents first numerical experiments comparing the analytical results with those obtained

using the 2PBM, and finally shows the application of the procedure to the case of patchy

gas-brine and oil-brine patchy saturation.

THE 2PBM DESCRIBING A POROELASTIC SOLID SATURATED

BY A TWO-PHASE FLUID

We consider a porous solid saturated by two immiscible fluids, where we distinguish a

wetting phase and a nonwetting one, to be denoted with the subscripts (or superscripts)

“w” and “n”, respectively. Let x = (x, y, z) and Sw = Sw(x) and Sn = Sn(x) denote

the wetting and nonwetting fluid saturations averaged over the bulk material, respectively,

with Srw and Srn being the corresponding residual saturations. We assume that both fluid

phases completely saturate the porous part and move within the pore space, (Peaceman,

D. W., 1977; Scheidegger, A. E., 1974), so that Sw + Sn = 1. and Srn < Sn < 1− Srw.

Denote by us = (usi ), ũn = (ũni ) and ũw = (ũwi ), i = 1, 2, 3 the time Fourier transforms of
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the averaged displacement vectors of the solid, nonwetting and wetting phases, respectively,

and let φ = φ(x) denote the matrix effective porosity. The relative fluid displacements are

uθ = φ(ũθ − us), ξθ = −∇ · uθ, θ = n,w.

Let εij(u
s) and es = εii(u

s) be the Fourier transforms of the strain tensor of the solid

and its linear invariant, respectively. Also, set u = (us,un,uw).

Let τ = τij and ε = εij , i, j = 1, 2, 3 denote the Fourier transforms infinitesimal changes

in the stress and strain tensors, respectively. Also, let Pn and Pw denote the Fourier trans-

forms of the infinitesimal changes in the nonwetting and wetting fluid pressures, respectively.

These infinitesimal changes are taken with respect to corresponding reference values τ̄ij , P̄n,

and P̄w associated with the initial equilibrium state with associated nonwetting fluid satu-

ration S̄n and porosity φ̄.

Pn and Pw are related through the capillary relation (Peaceman, D. W., 1977; Schei-

degger, A. E., 1974; Santos, J. E. et al., 1990b)

Pca = Pca(Sn + S̄n) = P̄n + Pn − (P̄w + Pw) = Pca(S̄n) + Pn − Pw ≥ 0. (1)

Ignoring hysteresis, Pca is a positive and strictly increasing function of the nonwetting fluid

saturation.

The stress-strain of a 2PBM are (Santos, J. E. et al., 1990b; Ravazzoli, C. L. et al.,

2003):

τij(u) = 2µ εij + δij(λc e
s −B1 ξ

n −B2 ξ
w), (2)

Tn(u) =
(
S̄n + β + ζ

)
Pn − (β + ζ)Pw = −B1 e

s +M1 ξ
n +M3 ξ

w, (3)

Tw(u) =
(
S̄w + ζ

)
Pw − ζ Pn = −B2 e

s +M3 ξ
n +M2 ξ

w, (4)
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where

β =
Pca(Sn)

P ′ca(S̄n)
, ζ =

Pw
P ′ca(S̄n)

. (5)

The quantities τij , Tn and Tw are the generalized forces of the system. The coefficient µ

is the shear modulus of the dry rock (i.e, µ = µm), while λc = Kc − 2
3µ with Kc being

the undrained bulk modulus. The other coefficients in (2)-(4) can be are determined as

indicated in Santos, J. E. et al. (1990b); Ravazzoli, C. L. et al. (2003).

The equations for a 2PBM in the diffusive range of frequencies, stated in the space–

frequency domain are Santos, J. E. et al. (1990b); Ravazzoli, C. L. et al. (2003):

∇ · τ (u) = 0, (6)

iω dn un − iω dnw uw +∇Tn(u) = 0, (7)

iω dw uw − iω dnw un +∇Tw(u) = 0. (8)

The coefficients dn, dw and dnw are taken to be of the form:

dl(S̄l) = (S̄l)
2 ηl
κKrl(S̄l)

, l = n,w, (9)

dr,nw(S̄n, S̄w) = ε
(
dn(S̄n)dw(S̄w)

)
. (10)

Here ηn, ηw are the fluid viscosities and κ, Krn(Sn),Krw(Sw) are the absolute permeability

and the relative permeability functions, respectively, while dr,nw(Sn, Sw) is a cross dissipa-

tive function. In the numerical experiments we choose ε = 0.01.

THE EQUIVALENT TIV MEDIUM

Let us consider x1 and x3 as the horizontal and vertical coordinates, respectively. As shown

by Krzikalla, F. and Müller, T. M. (2011) a fluid-saturated poroelastic solid with a dense
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set of horizontal fractures behaves as a TIV medium with a vertical symmetry axis at long

wavelengths.

Denote by τij(ũs) and εij(ũs) the stress and strain tensor components of the equivalent

TIV medium, where ũs denotes the solid displacement vector at the macroscale. The

corresponding stress-strain relations, stated in the space-frequency domain and assuming a

closed system are (Carcione, J. M., 1992; Carcione, J.M., 2015)

τ11(ũs) = p11 ε11(ũs) + p12 ε22(ũs) + p13 ε33(ũs), (11)

τ22(ũs) = p12 ε11(ũs) + p11 ε22(ũs) + p13 ε33(ũs), (12)

τ33(ũs) = p13 ε11(ũs) + p13 ε22(ũs) + p33 ε33(ũs), (13)

τ23(ũs) = 2 p55 ε23(ũs), (14)

τ13(ũs) = 2 p55 ε13(ũs), (15)

τ12(ũs) = 2 p66 ε12(ũs). (16)

Note that in a TIV medium p12 = p11 − 2 p66, so that only five independent stiffness, i.e.,

p11, p33, p13, p55 and p66 need to be considered.

As shown in Santos J. E. and Carcione, J. M. (2015) these stiffnesses can be determined

using five time-harmonic experiments. Next we present the generalization of those experi-

ments using the 2PBM to represent a fractured poroelastic solid saturated by a two-phase

fluid. We will solve (6)-(8) in the 2D case on a reference square Ω = (0, L)2 with boundary

Γ in the (x1, x3)-plane.

Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where ΓL,ΓR,ΓB and ΓT denote the left, right, bottom

and top boundaries of Ω. Denote by ν the unit outer normal on Γ and let χ be a unit

tangent on Γ oriented counterclockwise so that {ν,χ} is an orthonormal system on Γ. To
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determine the five independent stiffness coefficients, we solve (6)-(8) in Ω with the boundary

conditions

un · ν = 0, uw · ν = (x1, x3) ∈ Γ, (17)

i.e., no fluids enter or leave the sample, and the additional boundary conditions:

for p33:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓT , (18)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (19)

us · ν = 0, (x1, x3) ∈ Γ \ ΓT . (20)

Using the relation

∆V (ω)

V
= − ∆P

p33(ω)
, (21)

where V the original volume of the sample, p33(ω) can be determined from (21) measuring

the volume change ∆V (ω) ≈ Lu
(33,T )
s,3 (ω), where u

(33,T )
s,3 (ω) is the average of the vertical

component of the solid phase at the bounday ΓT .

for p11:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓR, (22)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (23)

us · ν = 0, (x1, x3) ∈ Γ \ ΓR. (24)

Thus, this experiment determines p11 as indicated for p33, measuring the oscillatory volume

change.
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for p13:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT , (25)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ, (26)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB. (27)

From (11) and (13) we get

σ11 = p11ε11 + p13ε33 σ33 = p13ε11 + p33ε33,

with ε11 and ε33 being the (macroscale) strain components at ΓL and ΓT , respectively. Since

σ11 = σ33 = −∆P (c.f.(25)) we obtain p13(ω) as

p13(ω) =
p11ε11 − p33ε33

ε11 − ε33
. (28)

for p55:

−τ (u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (29)

us = 0, (x1, x3) ∈ ΓB, (30)

where

g =



(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .

The change in shape of the rock sample allows to obtain p55(ω) by using the relation

tg(βω)) =
∆G

p55(ω)
, (31)

where β(ω) is the departure angle between the original positions of the lateral boundaries

and those after applying the shear stresses, that can be determined by measuring the average

horizontal displacement at ΓT (Santos J. E. and Carcione, J. M., 2015).
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for p66:

−τ (u)ν = g2, (x1, x2) ∈ ΓB ∪ ΓR ∪ ΓT , (32)

us = 0, (x1, x2) ∈ ΓL, (33)

where

g2 =



(∆G, 0), (x1, x2) ∈ ΓB,

(−∆G, 0), (x1, x2) ∈ ΓT ,

(0,−∆G), (x1, x2) ∈ ΓR.

Then, we proceed as indicated for p55(ω).

The approximate solution of these five BVP was computed using a FE procedure. We

used bilinear functions to approximate each component of the solid displacement vector,

while for the nonwetting and wetting fluid displacements we used a closed subspace of the

vector part of the Raviart-Thomas-Nedelec space of zero order Raviart, P.A. and Thomas,

J.M. (1975). See (Santos J. E. and Carcione, J. M., 2015) for details on the description of

these FE spaces. Also, in the work by Santos J. E. and Carcione, J. M. (2015) it is shown

that the error associated with these finite-element problems, measured in the energy norm,

is on the order of O(h1/2), with h being the size of the computational mesh. The proof can

be generalized to the case of two-phase fluids analyzed here.

NUMERICAL EXPERIMENTS

The FE procedures described above were implemented to determine the five complex stiff-

nesses pIJ(ω) as a function of frequency and the corresponding phase velocities and dis-

sipation coefficients. In all the experiments the numerical samples were discretized using
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a 80 × 80 uniform mesh representing 8 periods of 9 cm background sandstone and 1 cm

fracture thickness. Also, we chose Pw = 0 in (5). Both background and fractures have grain

density ρs = 2650 kg/m3, and bulk modulus Ks = 37 GPa. Porosity and permeability are

φ = 0.25, κ = 1 D in the background and φ = 0.5, κ = 4.44 D in the fractures. The dry

bulk and shear moduli are Km = 4.8 GPa, µ = 5.7 GPa in the background and Km = 0.58

GPa, µ = 0.68 GPa in the fractures.

The saturant fluids were chosen to be two-phase mixtures of gas-brine or oil-brine, with

brine being the wetting phase. The bulk modulus, density and viscosity of the fluids are

2.25 GPa, 1040 kg/m3 and 0.03 Pa·s for brine, 0.012 GPa, 78 Kg/m3 and 0.00015 Pa·s for

gas and 0.57 GPa, 700 Kg/m3 and 0.01 Pa·s for oil, respectively.

The two-phase fluid is described in terms of relative permeabilities, Krn(Sn) , Krw(Sn),

and capillary pressure function, Pca(Sn), taken to be (Douglas, J., Jr. et al., 1997; Ravazzoli,

C. L. et al., 2003):

Krn(Sn) = (1− (1− Sn)/(1− Srn))2 ,

Krw(Sn) = ([1− Sn − Srw] / (1− Srw))2 ,

Pca(Sn) = A
(
1/(Sn + Srw − 1)2 − S2

rn/[Sn(1− Srn − Srw)]2
)
,

where A is the capillary pressure amplitude, chosen to be 30 kPa in all experiments. These

relations are based on laboratory experiments performed on different porous rocks during

imbibition and drainage processes (neglecting hysteresis effects) and are of common use in

multiphase flow reservoir simulation.

The first experiment compares energy velocities and attenuation coefficients of qP, qSV,

and SH waves for a two-phase gas-water mixture defined using the 2PBM with those the

corresponding to the analytical solution using the SPBM as in Krzikalla, F. and Müller, T.

13



M. (2011), with the single-phase fluid determined by weighting the gas and water properties

with the corresponding saturations in background and fractures. To simulate almost full

brine saturation in the background and almost full gas saturation in the fractures, residual

saturations are chosen to be Srn = 0, Srw = 0.01, with Sn = 0.0012 in the background and

Sn = 0.998 in the fractures.

Figures 1 and 2 display polar plots of the energy velocities and attenuation coefficients

of qP and qSV waves for the 2PBM at 50 Hz as functions of the propagation angle and those

the corresponding to the analytical solution using the SPBM. In all Figures 0 and 90 degrees

correspond to waves arriving parallel and normal to the fracture layering, respectively.

It can be seen in Figure 1 that both qP and qSV waves exhibit velocity anisotropy

for both the analytical solution and the 2PBM. Also, qP waves have different anisotropic

behavior, i.e., for waves traveling normally to the fracture layering the analytical model

predicts faster velocities than the 2PBM, while the opposite is predicted for qP waves trav-

eling parallel to the fracture plane. Besides, qSV velocities exhibit quite similar anisotropy

for both models.

Figure 2 show that qP waves atenuation is higher parallel than nornal to the fractures,

an it is much higher for the 2PBM than for the analytical solution for all angles. Further-

more, the 2PBM predicts attenuation for qSV waves, while they are almost lossless for the

analytical solution, with their values shown as a point at the origin. These differences in

attenuation coefficients are due to the combined effect of capillary pressure and relative

permeability functions.

To analyze the behavior of the attenuation coefficient predicted by the 2PBM for qP

waves it is convenient to analyze the L2-norms of the gradients of the fluid pressures T̃ and

14



of the relative nonwetting and wetting fluid displacements for the p11 and p33 experiments,

respectively. For this purpose let us define the total fluid pressure in the 2PBM as T̃ = T n+

T n, with T n and T n being the generalized forces defined in (3) and (4), respectively. Next,

with ‖f ||0 denoting the L2 norm of the function f , let us define the following quantities:

‖∇T̃ ‖{0,II}, Rn,wII =
‖unI ‖{0,II}
‖uwI ‖{0,II}

, , I = 1, 3. (34)

In (34) the subindices I, {0, II} indicate the experiments to determine the stiffness pII , I =

1,3, respectively.

We obtained ‖∇T̃ ‖{0,11} ≈ 0.9Pa, ‖∇T̃ ‖{0,33} ≈ 0.6Pa,Rn,w11 ≈ 3.07, Rn,w33 ≈ 3.45,

so that the gas and brine phases have displacements of the same order of magnitude, and

consequently dissipation due to the motions of the two fluid phases are similar for the

directions parallel and normal to the fracture layering. But gradients of pressure are 50

% larger for parallel than for normal compressions to the fracture layering, explaning the

behavior of the attenuation coefficient for qP waves seen in Figure 2.

Figure 3 shows polar plots of energy velocities of SH waves. They exhibit velocity

anisotropy for both models, but with different behavior, with SH waves traveling faster for

the analytical solution than for the 2PBM when moving normally to the fracture plane.

The opposite behavior is seen in the horizontal plane.

Figures 4 and 5 display phase velocities and attenuation coefficients for the 2PBM and

the analytical solution as function of frequency in the range 1 Hz- 1 kHz for waves parallel

(“11” waves) and normal (“33” waves) to the fracture layering. The two-phase fluid is a

water-gas mixture with the same residual saturations and gas saturations in background

and fractures as in Figures 1, 2 and 3. Attenuation coefficients and phase velocities in

Figures 4 and 5 are denoted Q11, vp11, Q33, vp33 for “11” and “33” waves, respectively
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Figure 4 shows that energy velocities for the analytical model and those computed

using the harmonic experiments for the 2PBM are in perfect agreement. Figure 5 shows

that attenuation values of the analytical solution and the harmonic 2PBM have attenuation

peaks above 100 Hz for both “11” and “33” waves. For the 2PBM the attenuation peaks

for “11” and “33” waves move to lower frequencies.

Next note that in a realistic brine-wet poroelastic sample saturated by a two-phase gas-

brine mixture there exists always a certain percentage of immobile brine, measured by the

value of the residual water saturation Srw. Thus in all the remaining experiments residual

saturations will be chosen to be Srn = 0., Srw = 0.1.

Figures 6 and 7 displays polar plots of energy velocities and attenuation coefficients at

50 Hz for qP and qSV waves for the 2PBM as function of the propagation angle and those of

the analytical solution using effective single-phase fluids. The two-phase fluid is a gas-water

mixture with gas saturation Sn = 0.012 in the background and Sn = 0.898 in the fractures.

Energy velocities of qP and qSV waves in Figure 6 show the same behavior than in

Figure 1, i.e, their anisotropic behavior are little affected by changes in residual saturations

and saturation values of the fluid phases.

Figure 7 display a strong change in attenuation of qP waves. For the 2PBM they

are highly attenuated when traveling close to the direction normal to the fracture plane,

and are almost not attenuated when moving parallel to such plane. For the analytical

solution, qP waves are more attenuated when traveling parallel to the fractures, with twice

the attenuation suffered when moving parallel to that plane. Besides, Figure 7 shows that

the 2PBM predicts qSV waves suffering attenuation, while they are almost lossless for the

analytical solution. Also notice that attenuation of qSV waves is smaller in Figure 7 than
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in Figure 2, indicating that qSV attenuation is sensitive to changes in residual saturations.

The behavior of the attenuation coefficients of qP waves in Figure 7 can be analyzed

as it was done for Figure 2 by computing the norms of the nonwetting and wetting fluid

displacements and the gradients of the total fluid pressure T̃ . In this experiment we have

‖∇T̃ ‖{0,11} ≈ 3.5Pa, |∇T̃ ‖{0,33} ≈ 0.9Pa,Rn,w11 = 22.6, Rn,w33 = 58.4. In this experiment

the displacements of the the gas and brine phase are quite different, being more than one

order of magnitude different for directions normal to the fractures than for parallel to such

direction (about 160 % larger when measured in the L2 norm). Thus in this experiment

the difference in the displacements of both phases is the cause of the attenuation behavior

of qP waves as seen in Figure 7, independently of the fact that gradients of pressure may

indicate the opposite behavior, as seen in the curve for the analytical solution.

This quite different behavior in attenuation of qP waves for the 2PBM as compared with

the analytical solution (that does not take into account the different displacements of the

two fluid phases), is due to the combined effects of residual saturations, capillary pressure

and relative permeability functions.

The case of patchy saturation

Patchy saturation occurs in hydrocarbon reservoirs at gas-brine or oil-brine contact. Patchy-

saturation patterns induce important mesoscopic-loss effects at the seismic band of frequen-

cies, as was first as shown by (White, J.E. et al., 1975).

Figure 8 shows the spatial distribution of the two-phase fluid in the form of patches of

nonwetting saturation values Sn = 0.012 , Sn = 0.2 and Sn = 0.898, with overlall nonwetting

fluid saturation 10 %. The work by Santos J. E. and Carcione, J. M. (2015) explains how

17



to generate this type of stochastic fractal distributions.

Figures 9, 10, 11 and 12 display energy velocities and attenuation coefficients of qP and

qSV waves for the 2PBM and two-phase gas-brine or oil-brine fluid mixtures with residual

saturations Srn = 0, Srw = 0.1 for the following Cases:

• Case 1: Background and fractures are saturated with a gas-brine mixture, background

has gas saturation Sn = 0.012, fractures have gas saturation Sn = 0.898.

• Case 2: Background and fractures are saturated with patches of a gas-brine mixture.

Patches have gas saturation Sn = 0.012, 0.2 and 0.898. Overall gas saturation is 10

%.

• Case 3: Background and fractures are saturated with a oil-brine mixture, background

has oil saturation Sn = 0.012, fractures have oil saturation Sn = 0.898

• Case 4: Background and fractures are saturated with patches of an oil-brine mixture,

Patches have oil saturation Sn = 0.012, 0.2 and 0.898. Overall oil saturation is 10 %.

The labels “fractures with gas” “and fractures with oil” in Figures 9, 10, 11 and 12 corre-

spond to the nonwetting saturations in Cases 1 and 3.

Figure 9 shows velocity anisotropy for all cases, and for Cases 1 and 2 velocities are

always lower for Case 2 (patchy saturation). Instead, for Cases 3 and 4, velocities coincide

for angles up to 30 degrees and then increase until attaining a maximum value at normal

incidence to the fracture layering.

Figure 10 shows a noticeable increase in attenuation of qP waves when patches of the

nonwetting fluid (gas or oil) are present. For the patchy Cases 2 and 4, attenuation co-

efficients can be analyzed as was done before for Figures 2 and 7 by computing the L2
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norm of gradients of pressure and the quotients of L2 norms of nonwetting and wetting

phases associated with the p11 and p33 experiments. For Case 2 (patchy gas-brine) we

have ‖∇T̃ ‖{0,11} ≈ 1.41Pa, ‖∇T̃ ‖{0,33} ≈ 2.9Pa,Rn,w11 ≈ 3.41, Rn,w33 ≈ 3.156. Thus we

have similar attenuation due to differences in displacements of the nonwetting and wetting

phases, but gradients of pressure are about 42 % larger for normal than for parallel direc-

tions to the fracture layering, explaining the behavior of the attenuation coefficients for qP

waves seen in Figure 10. The analysis of values of L2 norms for patchy oil-brine allow to

have the same conclusion about attenuation of qP waves in Case 4.

Besides, the higher attenuation of qP waves seen in Figure 10 for Case 4 (patchy oil-

brine) as compared with Case 2 (patchy gas-brine), can be explained by the much larger

gradients of the total fluid pressure T̃ for Case 4 than for Case 2, with maximum values of

47 Pa/m and 27 Pa/m, respectively, for compressions normal to the fractures. This effect

is illustrated in Figures 13 and 14 displaying gradients of the total fluid pressure at 50 Hz

for these two Cases.

Figure 11 shows energy velocity anisotropy for qSV waves, with decreasing values for

patchy saturation (Cases 2 and 4), with respect to the non-patchy Cases 1 and 3.

Besides, Figure 12 shows that for angles close to 45 degrees, qSV waves suffer atten-

uation, with decreasing attenuation values for Cases 2 and 4 with respect to Cases 1 and

3.

CONCLUSIONS

I proposed the use of a model that includes capillary pressure and relative permeability flow

functions to analyze the WIFF and mesoscopic loss effects when fractured poroelastic rocks
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are saturated by two-phase fluids.

By extending the known upscaling finite element procedures for fractured poroelastic

rocks saturated by single-phase fluids, I observed that energy velocities and attenuation

coefficients suffer significant changes with respec to effective single-phase fluids when using

a proper representation of two-phase fluids using flow functions, which are of common use

in numerical reservoir simulations.

One important observation is that attenuation behavior of qP waves is determined by

the combined effect of the gradients of both fluid pressures and differences between the

displacements of the two fluid phases, the latter being a new energy dissipation effect not

present for single-phase fluids. Furthermore, velocity anisotropy for qP and qSV shows

different behavior for two-phase and effective single-phase fluids.

Thus, the finite element procedure here presented and analyzed allows to determine a

more accurate VTI medium long wave equivalent to a poroelastic solid saturated by a two-

phase fluid, with application to wave propagation analysis and modeling in hidrocarbon

reservoirs.
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FIGURE CAPTIONS

Figure 1. Polar representation of energy velocities of qP and qSV waves of the 2PBM for

a two-phase gas-water fluid mixture and those of the analytical model, the latter computed

using and effective single phase fluids. Residual saturations are Srn = 0, Srw = 0.01.

Figure 2. Polar representation of attenuation coefficients of qP and qSV waves of the

2PBM for a two-phase gas-water fluid mixture and those of the analytical model, the latter

computed using and effective single phase fluids. Residual saturations are Srn = 0, Srw =

0.01.

Figure 3. Polar representation of energy velocities of SH waves of the 2PBM for a two-

phase gas-water fluid mixture and those of the analytical model, the latter computed using

and effective single phase fluids. Residual saturations are Srn = 0, Srw = 0.01.

Figure 4. Phase velocity of “11” and “33” waves as function of frequency for the 2PBM for

a two-phase gas-water fluid mixture and those of the analytical model, the latter computed

using and effective single phase fluids. Residual saturations are Srn = 0, Srw = 0.01.

Figure 5. Attenuation coefficients of “11” and “33” waves as function of frequency for the

2PBM for a two-phase gas-water fluid and those of the analytical model, the latter computed

using and effective single phase fluids. Residual saturations are Srn = 0, Srw = 0.01.

Figure 6. Polar representation of energy velocities of qP and qSV waves of the 2PBM for

a two-phase gas-water fluid mixture and those of the analytical model, the latter computed

using and effective single phase fluids. Residual saturations are Srn = 0., Srw = 0.1.
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Figure 7. Polar representation attenuation coefficient of qP and qSV waves of the 2PBM

for a two-phase gas-water fluid and those of the analytical model, the latter computed using

and effective single phase fluids. Residual saturations are Srn = 0., Srw = 0.1.

Figure 8. Patchy spatial distribution of nonwetting fluids. Nonwetting saturation values

are Sn = 0.012 (black regions) , Sn = 0.2 (blue regions) and Sn = 0.898 (yellow regions).

Overall nonwetting saturation is 10 %.

Figure 9. Polar representation of energy velocity of qP waves at 50 Hz for the 2PBM in

the case of a fractured poroelastic medium with gas or oil saturation Sn = 0.898 in the

fractures, Sn = 0.012 in the background versus patchy gas-brine and oil-brine saturation

(Cases 1, 2, 3, 4). Overall nonwetting saturation is 10 %.

Figure 10. Polar representation of attenuation coefficient of qP waves at 50 Hz for the

2PBM in the case of a fractured poroelastic medium with gas or oil saturation Sn = 0.898 in

the fractures, Sn = 0.012 in the background versus patchy gas-brine and oil-brine saturation

(Cases 1, 2, 3, 4). Overall nonwetting saturation is 10 %.

Figure 11. Polar representation of energy velocity of qSV waves at 50 Hz for the 2PBM

in the case of a fractured poroelastic medium with gas or oil saturation Sn = 0.898 in the

fractures, Sn = 0.012 in the background versus patchy gas-brine and oil-brine saturation

(Cases 1, 2, 3, 4). Overall nonwetting saturation is 10 %.

Figure 12. Polar representation of attenuation coefficient of qSV waves at 50 Hz for the

2PBM in the case of a fractured poroelastic medium with gas or oil saturation Sn = 0.898 in

the fractures, Sn = 0.012 in the background versus patchy gas-brine and oil-brine saturation
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(Cases 1, 2, 3, 4). Overall nonwetting saturation is 10 %.

Figure 13. Gradient of total fluid pressure ‖∇T̃ ‖ at 50 Hz for the 2PBM and compression

normal to the fractures (p33-experiment). Overall patchy gas-brine saturation is 10 %.

Figure 14. Gradient of total fluid pressure ‖∇T̃ ‖ at 50 Hz for the 2PBM and compression

normal to the fractures (p33-experiment). Overall patchy oil-brine saturation is 10 %.
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