A model for wave propagation in a composite solid matrix
saturated by a single-phase fluid

Juan E. Santos®

CONICET-Facultad de Ciencias Astramicas y Geoficas, Universidad Nacional de La Plata, Paseo del
Bosque, S/N, (1900) La Plata, Argentina and Department of Mathematics, Purdue University, 150 N.
UniversityStreet, West Lafayette, Indiana 47907-2067

Claudia L. Ravazzoli
CONICET-Facultad de Ciencias Astramicas y Geoficas, Universidad Nacional de La Plata, Paseo del
Bosque, S/N, (1900) La Plata, Argentina

José M. Carcione
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c,
34010 Sgonico, Trieste, Italy

(Received 19 June 2003; accepted for publication 1 March 2004

This paper presents a theory to describe wave propagation in a porous medium composed of two
solids saturated by a single-phase fluid for spatially variable porosity. This problem has been
previously solved for constant porosity when one of the solids is ice or clay, but that model is not
useful for most realistic situations. The equations for variable porosity are derived from the virtual
work principle, where the generalized coordinates are identified as the displacements of the two
solid phases and a new variable associated with the relative fluid flow, whose divergence is the
change in fluid content. The generalized forces are the fluid pressure and combinations of the stress
tensor of each solid phase and the fluid pressure. The Lagrangian equations of motion are derived
for the isotropic case and a theorem on the existence and uniqueness of their solution is given. The
plane wave analysis reveals the existence of three compressional and two shear waves. The theory
is applied to wave propagation in shaley sandstones showing that phase velocities of the faster P and
S waves agree very well with experimental data for varying porosity and clay content. A simulation
through a plane interface separating two frozen sandstones of different ice contents is presented.
© 2004 Acoustical Society of AmericdDOI: 10.1121/1.1710500
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I. INTRODUCTION Both frozen porous media and shaley sandstones are two

S . . examples of porous materials where the two solid phases are
Wave propagation in composite porous materials has ap- -

L ! . eakly coupledr nonwelded Similar weakly coupledor-
plications in many branches of science and technology, suc

as seismic methods in the presence of shaley sandéone%u?t';ns hlz_iv_r; prewouslcyi/ ttr)]een prli)poseﬁl_. For (;nstﬁ nee,
permafrost® gas-hydrate concentration in ocean-bottom ctoy” explicitly assume € weak coupling and phase

sedimenté, and evaluation of the freezing conditions of connectivity conditions over macro-scale distances. He pro-
foods by ultrasonic techniqués. posed a mixture theory appropriate for the combination of

Leclaire et al® have developed a theory for describing WO acoustic phases
wave propagation in frozen porous media in which solid sub- ~ This work generalizes the theory developed in Refs. 6
strate, ice, and water coexist, under the assumption of thand 4 to the case of nonuniform porosity so that the differ-
existence of a layer of unfrozen water around the solid paréntial equations can be used to perform numerical experi-
ticles isolating them from ice. This model, valid for uniform ments or fit laboratory data related to heterogeneous media.
porosity, predicts the existence of three compressional an@ihe nonweldingcondition between the two solid phases is
two shear waves; the verification that additionalow) assumed when the potential and kinetic energies are defined,
waves can be observed in laboratory experiments was pulwvith proper interaction terms among the solid and fluid
lished by Leclaireet al.’ phases. If the two solid phases would be welded, then addi-

Later, this theory was generalized by Carcione andional slow waves would not be presén©ur approach is
Tinivella* to include the interaction between the solid and icebased on the energy formulation used by Bfotather than
particles and grain cementation with decreasing temperaturgn volume averaging or homogenization methods used, for
Also, Carcioneet al! have applied this theory to study the instance, by Burridge and Kell&t.
acoustic properties of shaley sandstones, assuming that sand |n this paper the virtual work principle for the composite
and clay arenonweldecand form a continuous and interpen- material is stated and the strains in the two solid phases and

etrating porous composite skeleton. the change in fluid content are identified as the state vari-
ables to represent the variation in strain enefjy, conse-
dElectronic mail: santos@fcaglp.feaglp.unip.edu.ar quently identifying the generalized forces. These are the total
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stress tensors in both solid phases, denotedtfyando>T, denote the fluid pressure. These quantities describe small
respectively, and the fluid pressupe. changes with respect to reference values corresponding to an
The kinetic energy density and the dissipation functioninitial equilibrium state. Let us also introduce the tensors
are defined in terms of the generalized coordinates, which are
the two solid displacement vectors and the new variable o V=0 =Si1¢p;8;, oV =0lP—S3ps8;,
associated with the fluid flow relative to the solid composite (2.1
matrix, whose divergence is the change in fluid content.
The Lagrangian formulation of the equations of motionassociated with the total stresse<in and{}3, respectively,
is a genera”zation of the approach of B}B]Santowt a|_,12 so that the total stress tensor in the bulk matefias given
and Carcioné? It is shown that in the case of uniform po- by
rosity, the known theorié$ are recovered. The plane wave

analysis shows the existence of three compressional and two 0ij =0 i(jl'T)Jf o i(jS’T) : (2.2
shear modes of propagation, in agreement with the original _ _
theory derived by Leclairet al® Next the stress—strain relations for our system shall be

An existence and uniqueness result for a general initiaflerived using the virtual work principle, following the deri-
boundary value problem is given, showing that for each time/ation of Biot for the case of a single solid phase. In what
t each Component of the solid disp|acements be|ongs to th@”OWS the Einstein convention is Used, i.e., sSum on repeated
Sobolev spacéil(€2), while the fluid displacement lies in indices. Let)V be the strain energy density aitithe total
the spaceH (div,Q). potential energy. Also leYy denote the total potential energy

The theory is applied to wave propagation in shaleydensity. Then, iff ™, (), (2 represent the surface forces
sandstones showing that the phase velocities of the fastécting on the solid and fluid parts of the boundary (df
waves (the seismic P and S waveagree very well with denoted by}, we have that
experimental data for varying porosity and clay content.

Moreover, in a simulation of waves travelling through a :J' VddX:j WdX—J (FOuD 4 Dy
plane interface separating two frozen sandstones of different Q Q 20
porosity is performed. The numerical solver is a modification

3),,(3
of the pseudospectral modeling algorithm used by Carcione +f2u*)do, (2.3
and Seriarii to model propagation in frozen porous media ) o } ) )
with uniform porosity. and the virtual work principle for the composite fluid—solid

system can be stated in the form:

Il. THE STRAIN ENERGY OF THE COMPOSITE I ) a0 (2)

Let Q) be an elementary cube of porous material com-

(3) (3)
posed of two solid phases, referred to by the subscripts or +H7(0u™))do, 2.4
superscripts 1 and 3, saturated by a fluid phase indicated %h
the subscript or superscript 2. ThU3=Q,UQ,UQ;. Let ere
V; denote the volume of the phask andV, and Vg, the W (1) 3)_ (3 2 _
bulk volume of Q and the solid matrix2s,=Q;UQ3, S0 fiv=oiy vy, fi7=0fv, §7=—¢pdjv, )
that (2.9
Ver=V1+Vs, Vp=V;+V,+Vj;. and 6 denotes virtual changes in the different quantities. Us-

Let S;=V,/Vg,andS;=V;/Vg,, denote the two solid frac- ing Egs.(2.1) and(2.5) in Eq. (2.4) yields

tions of the composite matrix and define the effective poros-

ity as ¢=V,/V,. Let u®, u®, andu® be the averaged 5v=o:f 5de—f (o v 8(u)
solid and fluid displacements over the bulk material. Here Q 90
(2) - .
u'“’ is defined such that on any faéeof the cube(}, +0_i(j3,T)vj 5(Ui(3))_pf5ij v, ow;)do. (2.6)
J¢U(2)Vd0 where
F
is the amount of fluid displaced through while w;= ¢,(ui(2>_slui(l>_53ui(3>)_ 2.7
f S;uPvde, f S;u®vdo Then, transforming the surface integral in Eg.6) into a
F F

volume integral gives
represent the displacements in the two solid part§,ofe-
spectively. Herev=(v;) denotes the unit outward normal to
F anddo the surface measure én
Let of) ando?) denote the stress tensorsiy andQ; ot 3
averaged over the bulk materif), respectively, and lep; +oP0 8(uf¥) — pe oy ow; Jdx. 2.8

d
5v=o=f &Ndx—f — oM s(u)
Q 9X;

2750 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Santos et al.: Wave propagation in composite saturated solids



Since() remains in equilibrium under the action of the vir- lll. THE LINEAR ISOTROPIC STRESS-STRAIN

tual displacements, it follows that RELATIONS
d d d Let us denote the deviatoric strain tensoi(lp, as
v o_i(jl,T):_ a_i(jS,T) =—ps 5” =0,
IX; IX; IX; di(jm): Eij(u(m)) e Omd;, mM=13.

and consequently, using the symmetry of the stress tensofg the linear isotropic case the strain energy denitin Eq.

o i(jl’T) ando i(js'T) we obtain (2.12 is a quadratic positive definite form in the invariants
011 031 é’a (dl)2: dl(Jl) d|(]1) y (d3)2: dl(Jg) d|(]3) and d113
SV=0= fQ&/v— fﬂ(afjma(eij(uﬂn) =d{"d{®. Note that

dm 2_ - (m) . (m)_% O, 2, —1.3,
+0*D8(€;(u®))+prsg)dx, 2.9 (dm)”= € (U™) € (UT) = 3(0m)%, - M

dy 3= €;(uM) g (U®)— 36, 05.
where{= —V-w represents the change in fluid content and 13~ (W) & (W) = 56265
Then,

) ., m=1,3, W=3H1(01)2+ pq(d1)?+ 3H3( 03)%+ pa(d3)2—B16:¢
—B203L+ B3 03+ 5Ky, ()% + py oy 3. (3.1

(m) 1
& (U =3

gu{™ gui™
+
(?Xj (?Xi

denotes the strain tensor €, with linear invariant 6,

=¢;(um). Remark The B; and w43 terms represent elastic interac-
Thus from Eqs(2.1) and(2.9) the following expression tion between the two solid phases.
for the variation in strain energy densigW is finally ob- Thus,
tained:
1) 1) i:o-.(,l)_s dp;S;;
OW=(aij" —S16p: i) 6(&;j(u)) dey(uDy 1 1
(3) _ . (u®
+(U|J S3¢pf5|1)5(€|1(u ))+pf5§- (2.10 :[H101_81§+B303]5ij+2M1di(jl)+/1/1,3di(j3):
Consequently, sincé)V is an exact differential of the vari- (3.2
ablese;;(u), €;(u®), and¢ we have that
aw 3)
%% . ow 5. 0~ S3¢Pi;
o i SméPrdij, m=13, ——=p;. deij(u™)
deij(ut™) ¢ 3 1
(211 =[H303— Byl + B3] + 230> + uq i,
Also, it follows from Eq.(2.10 that (3.3
=ir(g®H— Ve (u 4%
Wzl = Sioped) ey (UT) T =P Bl BalatKad. (3.9
+ (0l — S3ppr ;) (€ (u®) +peL . (2.12 _ _
_ . _ Equations(3.2—(3.4) express the generalized stress¢d
Next, to obtain the expression for tpetential energyf —S,6p;8;, o) —S;4p;8; andp; in terms of the strains

our system, let us consider perturbations of the system frorg._ (1)), ei-(u&)), and/.
the equilibrium state. Using E@2.3), the argument leading . .
to Eq.(2.8) and expressiofi2.10 for sV yields

0 " IV. DETERMINATION OF THE COEFFICIENTS IN THE
OVa=— a_xj["ij —S14p1 8] ou; STRESS—STRAIN RELATIONS

J @) @ 9 This section presents a procedure to determine the coef-
~ o Lo Sadpidij18UiT H - prow; . ficients in the stress—strain relatiof82)—(3.4) for the vari-

J ' able porosity case. It is assumed that the moduli for the case
(2.13 of uniform porosity can be obtained from known expressions

If u®, u®, w, are chosen as generalized coordinates tdiven (izn) a previous formulatiorfsFirst note that setting,
describe our composite system, since the system is assuméd" U~ » for the case of uniform porosity we have that

to be conservative it follows that (= d(S,0,+S305— 6,) 4.2
aVy 9 and consequently, from E¢3.4) we get
W:_K[Ui(jm)_sm(ﬁpf&j]a 5 )
Ju; J —dpi=(B1o—Ky0°S;) 0+ (Bp— K, ,p°S3) 63
Wy 9 +Kayp?6;. 4.2
m=1,3, —=—ps. (2.149 - -
IW; X Next, combining Eqs(3.2), (4.1), and(4.2) yields
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(1)_{[H1+(Sl¢)2Kav 2S,B116;+[S1S30%K oy theoretical(gedgnke_ln experiments shqqld be devised for a
rigorous determination of these coefficients.
—S3¢B1—S1Bo+ B3] 03— (6°S1Kay

= $B1) 02} 8+ 2 i + g 7 (4.3
. V. A LAGRANGIAN FORMULATION OF THE
Also, it follows from Eqgs.(3.3), (4.1), and(4.2) that EQUATIONS OF MOTION
i) ={[Ha+ (S3¢)*Kay— 2S3B3] 03+ [S3S1 4Ky A. The kinetic energy density
—S3¢B;— S, B, +B3]6;— ($?S3K 5y Let 7 denote the kinetic energy density fnand letp,,
3 B m=1, 2, 3 denote the mass density of each solid and fluid
— $B2) 02} 6ij + 230" + g i (4.4 constituent in). Also let =V, /Vyy, m=1, 3 be the frac-
Set tions of the two solid phases in the bulk material.
) ) Let us consider the kinetic energy density in the solid
Ko=Ka®, C12=B1¢p—Kae"Sy, partsQ); andQ ;. Here the argument follows the ideas pre-
Cre=B,h—K d’zss sented in Ref. 4. Let us introduce the relative macrovelocity
znm2 av of each solid phase with respect to the other:
Ki=H;+(S16)?K4—2S,¢B1, 4.
1=H1+(S1¢)Kay—25,¢B; (4.9 gt 9= g UV —u®),  q3V=gyu®—ub), (5.1
— 2
K3=H3+(S3¢)"Kay=25:4B,, and denota™® ands®>? the corresponding relative microv-
Cra=5,5:%K o~ S3bB1— S, B, + B. elocity fields. Assuming that the relative flows of the solid

phases are of laminar type, it follows that
Then, the stress—strain relatiof#2)—(4.4) for constant po-

- (13- g(135(L3 B 531431
rosity can be stated as follows: STT=BiTaT, STT=h qJ . (5.2
U(J )=(K101+C1303+01202)5ij +2M1di(jl)+m,3di(j3), Note that by their definition,
(4.6 1,3 1,3 1 3,1 * (3,0
s( ) dx=q*?, —f sV dx=q3Y. (5.3
a17)=(Kabs+ Cagf1+ Caabl) & + 2uadiy + g Al Ve Vo Ja,
1) J =l
4.7 Then the kinetic energy densitigs and7; in 1, andQ5 are
- (,bpf: C1201+ C2303+ K202. (48) g|Ven by
Relations similar to Eqs(4.6)—(4.8) were derived by Le- 11 J' - (3) 1 (1.3, 11(3) 1 (1.3
: . . == U+ 577) (U +577)dx
claire et al® for the case of uniform porosity and when one 172v, lel( ! o )
of the solid phases is ice; it is also assumed in that paper that
there is no contact between the solid and ice phases. This _ E (3)r (3)+ (3413 4 1 <1 35(1,35(1,3
. . . . P ¢1U u pP1 U qi n qia
situation corresponds to the particular case in whizh
= u13=0. Carcione and Tinivelfageneralized the model of (5.4)
Leclaire et al® to include interaction between the solid and
ice phases and grain cementation with temperature and ob- 1 i (1), (3D (1), (3.D)
tained stress—strain relations in the form given in E4$)— L=5y )3p3(ui +577) (Ui +577)dx
(4.9).

The nonsingular linear system of equatiddsb) yields _ E Bsu a4 ol (31 i 1 n(s D, (3 DD
the following expressions for the coefficients of the variable 2 P3Pt Hi T PeE 2 o
porosity formulation: (5.5

Hi=K;+(S1)?K,+2S,Cyp, where

Ha=K3z+(S3)°Ko+2S55C,3, Nt p, f BB

S$iKz+Cay SsK2+Cas Ve

BFT, 2= (4.9

= pag [, AB X

K
B3=(C1gtS3C121 S Cost $5,Ko), Ka":E' In terms or the original variables®), u® and for the

case of statistical isotropy(i.e., n{" 9, 95, nY
In Appendix A the ideas presented in Refs. 6 and 4 are-n3.1)5.. |), We can rewrite7; and 75 |n the form

used to obtain formulas for the computation of the coeffi- _r 3-(3)

cientskK,, Ky, K3, Cyp, Cy3, Cp3, m1, p3, 13, Which T,=3((0)°nt¥ = p1p) U0 + (pr by

combined with Eq.(4.9) allows for the evaluation of the _ 20 (L3¢ (1)iy(3) 1 17 4 N2 (13 (1) (1)
moduli H;, Hs, B;, B,, Bs, K, needed for this new (¢ NEUTUTF2(f0) U0, (5.6)
formulation. However, it must be remarked that appropriateand
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T3=5(($3)n3Y— pa3pa) UiV uiM + (pa by 1 o
2 e ~ S P2l (510
—(¢2)nONUTUE 4 562 VU (5.7
Next, let us define the macroscopic relative velocities of theWhere
fluid with respect to the two solid phases: 02 1 02 02
(M Z U@ ™) m= mj’ :PZV_J' " amdx, 1=1.3.
w"=¢(ui”—u"), m=13. (5.9 bJQ,

Then if v{™ andv(® denote the corresponding relative mi- Next, using thatu®=w;/¢+S,u®+S,u® in Eq. (5.9
crovelocity fields, the assumption that the relative fluid flowgives

is of laminar type yields
Wit =w;+ S3p(uf¥ —uft),

v =af?w, 1=13. (5.9
. (3) . (D_ (3
Since (Wp)fq,v{"dx=w{, 1=1, 3, the kinetic energy Wi =Wt Sph(ui - ), (5.1)
density7; in the fluid part(}, is given by and
T [ o) of Y < 25 )
2V, Ja
L +(S) XU M) (P U,
boo p2((UP +vi)) (U +0{*))) B3 (1) _ 3
2Vb ()2 2 ! ! ! ! Wi Wi :WiWi+281(;bWi(ui _Ui )
1 oy + 20113 _ (D ,(3) _ (D) _
_§p2¢ui(2>ui<2) (S (U7 =u) (w7 =), - (5.12

wiHw(® = wiw; + (S5~ Sp) gwi (uf¥ —ul?)
=SiSg() (Ui = uf) (ufP —u?).

Using Egs.(5.11) and (5.12) in Eq. (5.10, for the isotropic
case the following expression f@y, is obtained:

1 1
— (D Sy, (1 1,2),5,(1);,(1
=5 p20U; U+ puHwi + >mj (D

1 1
(30,3 4 1(3)(3 32,(3)/(3
+ 5 P20 YU+ oUW+ 5 mif 2 P

To=[3p200+ 3(6)2((S9)° M2+ (81) *m®2) = S3p20— 5(S1) %201

[p2t H(SM? = S;mH2) = S1p Ui Wi+ [ 26— (6)*((Sp) "M M2+ (S)m32) = §; Sypp ] Vi

1 pP2l. . .o
) mt2 4+ m2— E}Wiwi +[pwt ¢(Ssmt? = S5;m32) — S50, w0}
+[3p2¢+ 3(4)%((S9)’ M2+ (8)°m®?) = Sy, — 3(Sg)*pop1uf> U (513
|
The kinetic energy density in ) is therefore netic energy density and the dissipation functio® so that

- for the case of uniform porosity the model presented in Ref.
=Nt Tt T (5.14 4 is obtained. Thus, this new model is a generalization to the
Remark The third term on the right-hand side of Eq. nonuniform porosity case of the previous models proposed in

(5.13 represents dynamic interaction between the two solidRefs. 6 and 4.

phases.

B. Dissipation function C. The differential equations of motion

Set u=(u;)=(u™ ,w;,u®), 1<i<3, 1<j<9. The
Lagrangian formulation of the equations of motion for our

Here it is assumed that the dissipation functibnis a
quadratic non-negative form in the variables¥ — u(*) and
w; . Then, if  denotes the fluid viscosity, in the statistically

) ) A X system is
isotropic case the dissipation function has the form y
. . : . . d({o7T\ D Y
D=3f (U = UM) (U = UD) + 20w, W, Bl il DR <i<
2f11( i i ) i i )+ 3w w; dt &Uj z?Uj ﬂUj ,  1sj=9. (5.1

03— Uy
MREEC s ROAE (5.19 Next, combine Eqs(2.13, (5.6), (5.7), (5.13—(5.16) to
Remark Appendix B contains the derivation of formulas conclude that the equations of motion can be written in the
to compute the mass and dissipation coefficients in the kiform:
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e 1 e . 3 . 1 . . 3
P1al Y + oW+ Paglif ¥ + F01 Y — F 0 — 150

J (1)
:a_xj[o'ij —S1¢p15;1, (5.17)
U i 1 ' : - IPs
P1alif Y+ P + Paglif® — F1U + F i+ f101% = — %’
1
(5.18
Pral ™+ Py + Paglif™ — 13U + f 0 + f1,01°)
I - 3 .
= Lo —Ssdpedyl, =123 (5.19
i

The mass coupling coefficients in Eq&.17—-(5.19 are
given by

P11=p2d+($)%((S3)?m T2+ (S))°m32) - 2S;p, ¢
—(S1)?p20+ (h1)°n1I+ (¢3)°nEY — aps,

P12=Po1=pa+ H(S;M3? —S;mt2) — S, p,,

P13= P31= P2 — () %((S3)°m T2+ (S;)?m3?)
—S1S3p2+ prd1— (1)’ NI+ pachs
—(3)*n37,

(5.20

Dyp=m12 1 m32 P2
¢ 1

P23= P32= pwt H(Ssm P2 —Sm32) —S;p,,
Paz=p2d+ ($)%((S3)°m2+(S;)?m32) = 2S,p, ¢
—(S3)%p20+ (1)°N1I+ (¢3)°n3V — by, .

The coefficientg;; in Eqg. (5.20 can be written in terms
of the tortuositiesa 3, as;, a1, andas, defined in Refs. 4
and 6 as follows:

P1 P3
n(Ld = ajy— ndH= Az —

¢1’ - Ty
P2
m(1,2) — a 23 , m(3,2) = agzz s
(5.21)
ap= _¢1P rpt+l, ag= _¢3p g1,
bp2 bp2
b3p h1p
= rist1, az=—-—rz+1,
B8 o, 18 31 bap 31

wherer;; are the geometrical aspects of the boundaries sepa-

rating the phasesandj (equal to3 for spheresand

_ dp2t P3p3 ,: dp2t Pipy
bty b+ dy
Using the relationg5.21) in Eq. (5.20 yields
P11=p2p(1+(S)) %Azt (S3)%a1,— 28— (S)?)
a1t (ag—1)pads,
P12= p2(S3(1—agy) +S1a3)),

2754 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004

P13= p2d(1—(S))%az,— (S3)%a1— $S3)

+p1o1(1—ae) +pzds(l—asy),

. (5.22
P2o= E (arptag—1),

P23= p2(Si(1—agy) + Sza;0),
Pas= p2d(1+(S))%az+ (S3)%a1,— 25— (S3)?)

t+agpzdst(aiz—1)p1d;.

In Appendix B the mass coefficients; are related to the
mass coefficients of the previous formulations in Refs. 6 and
4.

VI. PLANE WAVE ANALYSIS

Let w denote the angular temporal frequency and let us
define the matricest e R"*7, £ R"* be defined by

m; 0 O mp mg 0 O
0O g0 0 0 O g, O

0O 0 g O 0 0 qg»
M=|mp 0 0 my mg 0 0
msz 0O 0O my mgz O O
0O g, 0 O 0 ag; O
| 0 0 g2 O 0 0 az
and
[Hi+3u; O 0 By Bg+ius O 0]
0 M1 0 0 0 2H13 O
0 0 w1 O 0 0 Zpis
E= B, 0 0 Kg B, 0 0 |,
Bst3mis O 0 By Hytjus O
0 sz 0 O 0 ms 0
L 0 0 3u;3 O 0 0 w3
where
f1s fy f11

. EY .
My =Pr—i—, Mp=pyti—, M=pgti—,
11~ P11 ® 12= P12 ® 13~ P13 ®

m,,= —if—22 Mya= Jrif—12 Ms33= Jrif—11
22~ P22 o’ 23~ P23 o’ 33~ P33 o’
q=m _(mlz)z G,=m _ MyMp3

1 1 Ty, 2=My3 My

a= Mg (mzs)2

37 Mes™ =y

Set
S=£M. (6.2)

Then a generalization of the argument using plane waves
given by Santoet all* shows that after finding the complex
eigenvalues 14,)2, m=1,...,7 of the matrixS by solving
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det(S— (1/c?)1)=0, the phase velocities,, and the attenu-

To state a weak form of problerir.1)—(7.5 some no-

ation coefficientsd,,, (in dB) of the compressional and shear tation needs to be introduced. Let-) and(:,-) denote the

waves are obtained in terms of, from

o d,,=28.685 88 Im(Cr)
“m"Recy)’ M T Re(Cy)

Three of the eigenvalues of the matSxassociated with

. (6.2

the first, fourth, and fifth rows and columns are related with
the compressional modes, while of the other four eigenvalues
only two of them are different and they are related with the

usual inner products i.?(Q) and L%(9Q), respectively.
Also, for any real numbes andE= (), 4 let HS(E) denote
the usual Sobolev space with corresponding ndrihy e .
Let

H(div,Q)={v e[L%(Q)]*:V-veL?(Q)},
(7.6)
V=[HYQ)]EXH(div,Q)xX[HY}Q)]3,

two shear modes of propagation. These wave modes are in h th |
agreement with those predicted previously in Refs. 6, 7, an/Ith the natural norm

4.
The experimental observation of the additiorislow)

waves was reported by Leclaie¢ al.” The slow wave modes
are important to explain attenuation and dispersion effects

lollv=Clo @I o +llv @Iz o+ ||U(2)||£|(div,m]1/2,

v =(U(l),v<2),v(3)) eV.

observed on the faster modes associated with scattering phe-

nomena due to the presence of heterogeneities inside t

composite poroelastic materials being analyzed.

VII. AN EXISTENCE AND UNIQUENESS RESULT

Let the positive definite mass matrike R®*° and the
non-negative dissipation matrixe R®*® be defined by

Pul Pl Pid
P=| Pal P2 P2dl |,
P1al  P2d  Padl
ful = fdl =yl
C=| —fud  fal ol |,
—fl fqdl f 4l

wherel denotes the identity matrix iR3*3. Also, let £(u)
be the second-order differential operator defined by

L(u)={V Lo} (u)~ S pps(u) 5],

—Vpi(u), V0P (u) — Syppy(u) 51}

Then the equations of motid®.17)—(5.19 can be stated in
the form

d%u Cau o=
PFJF o LW =1(x.1),
(x,1) e QX (0,T)=Q X J. (7.9
Let us consider the solution of E{.1) with initial con-
ditions

Ju
—(x,00=0°,

u(x,0)=u°, o xe, (7.2
and boundary conditions

(ol (U)=S1hpr(u) 8 v=—gY,  (x,1) e dQXJ,

(7.3

(o{P(U) = S3pr(U) 5)) vj=—0,  (x,1) e dQXJ,

(7.4

pr(u)=g?, (x,t)edQxJ. (7.5
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A(va):(o'i(jl)(u)_51¢pf(u)5ij ,eij(v(l))+(0'i(f’)(u)
—S30pi(U) i, €;(v®) = (pr(u),V+v?).
(7.7

Next recall that the strain energy density in Eq. (3.1 is a
positive definite quadratic form in the variableg(u®),
&i;j(u®), and¢, which implies that

W(u)=M

> ((6;(uU)2+(e;(u®)) + 2|, (7.9

i]

and consequently applying Korn’s second inequdlit{ it
follows that

A(u.u)zMM; ((&;(uUM)) 2+ (€;(u®))?)

+(v-w)2}dn

=M[|| U(l)HisﬂL [ U<3)||§,n+ ”W”Iz-i(div,Q)]

—Myluldg, VueV. (7.9

In Egs.(7.8) and(7.9 M, M4, andM, denote positive con-

stants depending only on the upper and lower bounds of the

coefficients of our differential problem and the domé&in
Next, the weak form of probleri7.1)—(7.5) is obtained
as usual by multiplying Eq7.1) by v € V and integrating the
result over (), using integration by parts in the
(£L(u),v)-term and applying the boundary conditiof¥%s3)—
(7.5). Thus a variational form for our problem can be formu-
lated as follows: find the map: J—V such that

d%u au
- - 1) 1) (3) ,(3
(Patz,v)Jr(C&t,v)+A(U,v)+<9 0 ) (g0

+ (0@ 0,9V =(f,v), veV, ted. (7.10

Set
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o' ﬁrg(l) TABLE |. Material properties of the clay-bearing sandstone.
2— —
Qr= r r Solid grain Bulk modulusK¢; 39 GPa
gt - 2(0)719 ot % ~1 3
L2(3,[L2(Q)]9) L=(J,[H™Y2(90)13) Shear modulusy; 39 GPa
S+ 1g(D Density,p; 2650kg/n
n g Average radiusRg; 50 um
+1
at' L2(3,[H—Y2(90)]3) Clay Bulk modulus K3 20 GPa
Shear modulustg; 10. GPa
d'g® Density, ps 2650kg/n
+ P Average radiusRg 1 um
% ~12 50713
Lo [HT M) Fluid Bulk modulus K 2.4 GPa
JHig® Density, p, 1000kg/ni
+ — Viscosity, 1.798cP
ot L2, [H™Y200)13)
2 14(2 .
. J'g'? J*ig@ (b), whereA=2 anda=0.5[see Eqs(A6) and(A7)]. To fit
ot g+l ’ the experimental data a frequency of 5 kHz was assumed.
L 1/2¢ 4
(3, HY2(50))

L2Q.HYRo0) Strictly speaking, this is not correct since the data have been

(7.1 acquired at ultrasonic frequencies of the order of hundreds of
(7.12 kilohertz. However, it is well known that Biot-type dissipa-
tion mechanisms alone do not account for the level of attenu-
Let us state a theorem about the existence, uniqueness, aaglon observed in rocks. A correct description of this phe-
regularity of the solutiom of problem(7.1)—(7.5). The proof  nomenon would require the generalization of the different
is similar to that given by Santost al'’ for the case in stiffness moduli to relaxation functiod®However, this fact
which the porous solid matrix consists of only one solidreflects the robustness of the model for this particular ex-
phase and is omitted. ample. The figure shows the compressional and shear veloci-
Theorem 1 Let f, g, g®, g®, u° v° be given and ties versus porosity, where each curve corresponds to a dif-
such that <, Q;<«, P<«, Then there exists a unique
solution ux,t) of (7.1)~(7.5) such that pyou/dte L*(J,V) 6
and 2u/at?e L*(J,[L2(Q)]9). . (a)

P2= (30 + 000+ If(x.0l50+1.

VIIl. EXAMPLES
A. Shaley sandstones

The theory can be applied to various composite media,
such as shaley sandstortgsermafrostr® gas-hydrate bear-
ing sediment$,and frozen foods.Let us consider a shaley
sandstone, and denote the sand fractiorSpyand the clay
fraction byS;. As stated previously, the theory predicts three
compressional waveg® wave$ and two shear wavesS
waves, whose phase velocities can be obtained by solving
the eigensystem resulting from the equation of motion as
indicated in Sec. VIcf. Eq. (6.2)]; see also Ref. 1. In this !
example, we consider the faster P and S waves.

The bulk and shear moduli of the sand and cldyy)
matrices versus porosity are obtained from a relationship
proposed by Kriefet al*° using formulas(A6) and (A7) in
Appendix A. We consider the data set published by Han
et al?° obtained at a confining pressure of 40 MPa. Han and
his co-workers provide ultrasonic measurements of P- and
S-wave velocities for 75 sandstone samples with porosities
ranging from 2% to 30% and clay content from O to 50%.
One feature of this data set is that a small amount of clay 0 5 w20 25 30
significantly softens the rock moduli, leading to reduced ve- Porosity (%)
locities. Table | shows the properties of the different con-gig. 1. velocities of the faster compressiorial and shearb) waves vs
stituents. The friction coefficients and permeabilities are calporosity ¢ for different values of clay conter8s, indicated by the numbers

culated by using the equations given in Appendix B_inside the boxe$l: S;=0%, 2:S;=10%, 3:S;=20%, 4:S;=30% and 5:

s _ _ _ S;=40%). The experimental data, represented with numbers, correspond to
Moreover, - the mass coefficients amg, “M327 1137131 e gata set published by Ha al. (Ref. 20. In this case, 1, 2, 3, 4, and 5
=1/2. The predictions of the theory against the measur€syrespond tes, values in the rangegSs,Ss+5%], S3=0,...,40%. The

ments obtained by Haat al2® are shown in Figs. ® and  frequency is 5 kHz.

Porosity (%)

(b}

V, (knv's)
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ferent value of the clay conter8;. The root-mean-square (a) Vz (sand)
deviation computed for all samples, apart from five outliers ‘ R

for P waves and seven outliers for S waves, is 93 m/s for the
P-wave velocity and 100 m/s for the S-wave velocity.

B. Permafrost

To illustrate the use of the variable-porosity differential
equations, let us consider wave propagation through an in-
terface separating two sandstones with different ice content.
Basically, the model consists of two homogeneous half
spaces separated by a plane boundary. The upper medium is
the sandstone used in the examples of Carcione and
Seriani® with no ice in the pores. It has a porosity of 20%
when the medium is unfrozen. The lower media has 90% ice
content in the pores. In this case the bulk and shear moduli of
the sandstone and ice matrices are computed using a perco-
lation model as indicated in Appendix A. We omit the prop-
grties qf the sandstor(m(_:luding the ice and water proper- (b) Wz (fluid)
ties) since they are given in Ref. 18the properties
correspond to those of Figs() and 3c) of that pape}.

The time stepping method is a Runge—Kutta fourth-
order algorithm, and the spatial derivatives are calculated
with the Fourier method by using the fast Fourier
transform®® This spatial approximation is infinitely accurate
for band-limited periodic functions with cutoff spatial wave
numbers which are smaller than the cutoff wave numbers of
the mesh. Since the presence of quasistatic modes makes the
differential equations stiff, a time-splitting integration algo-
rithm is used to solve the stiff part analytically. Due to the
splitting algorithm, the modeling is second-order accurate in
the time discretization. The method is illustrated in detail in
Carcione and Helfé for a two-phase medium and in Car-
cione and Seriafff for a three-phase medium.

A 357X357 mesh is used, with square cells and a grid
spacing of 14 m(the model has a dimension of approxi-
mately 5<5 km). The source is a vertical force with a domi- FIG- 2. Snapshots of the particle velocities of the frafaeand particle
velocity of the fluid relative to the solid phasés) at 0.6 s. The upper

nant frequency of 12 Hz, applled at 380 m above the Ir]ter'medium is unfrozen and the lower medium has an ice content of 90%. The

face. The time step required by the Runge—Kutta algorithmyource is a vertical force in the frame with a central frequency of 12 Hz. lts
is 0.5 ms. Snapshots of the wave field at 0.6 s are shown ication is 380 m above the interface. The ratio maximum amplitude)in

Fig. 2. The faster P and S waves and planar head waves cihmaximum amplitude irib) is 547.

be seen in the snapshots. Strong converted waves, interpreted

as slow waves, can be observed in the lower medium. The ) ] )
high amplitudes of the slow waves at low frequencies can p&nd the problem of existence and uniqueness of the solution

due to the very high permeability of the ice frame (5 under appropriate initial and boundary conditions was ana-
X104 m?). lyzed. It was shown that five wave modes can propagate in

this composite mediunithree compressional and two shear
waves.

The model was applied to the study of two geophysical

A theory was developed to study the processes of deforproblems. First, the phase velocities of the faster waves in a
mation and wave propagation in porous media composed athaley sandstone were computed for different values of water
three interacting phasdgswo solids and one fluid for the  saturation and clay content. The predictions of our model
case of spatially variable porosity. The model, based on firsagree very well with the observations. The second applica-
principles, can be generalized to the case of multiple solidion consists of the numerical simulation of the wave fields
constituents. Appropriate constitutive relations were estabgenerated by a point source within a frozen sandstone with
lished, and equivalence between the elastic moduli and thosariable ice content. The simulation reveals strong wave-
corresponding to the uniform porosity case, given in previ-mode conversions, indicating that the model can be useful to
ous formulations, was found, which can also be related tstudy the freezing conditions of porous media.
known petrophysical models. Using the classical Lagrangian In future works simulations in heterogeneous media will
approach, the differential equations of motion were obtainedbe performed and the effects that the slow wauesdes

IX. CONCLUSIONS

J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Santos et al.: Wave propagation in composite saturated solids 2757



have on the faster modes will be analyzed. The present paper ) Kejm
has been written to obtaitand justify the differential equa- Kej=Ksjmt (@) Kay,  j=§—-—, j=13.
tions for such media. s (A5)

The moduliKg; and Kg3 are analogous to Gassmann’s
ACKNOWLEDGMENT modulus(a calculation shows thd{s;=H;, H;, j=1,3),

This work was funded in part by CONICET, Argentina While the coefficientsy; and a3 correspond to the effective
(PIP 0363/98 stress coefficients in the classic Biot thedty>The bulk and
shear modulKg; 1, Ksam, tsim @ndussm in Egs.(Al) and
(A5) can be determined in several fashions. In some cases,
they can be obtained from the measurements of compres-
sional and shear wave velocities on the empty rock or alter-

This section presents a form of evaluating the coeffi-natively, they can be estimated using known petrophysical
cients in the stress—strain relatio@6)—(4.8), which com-  models. The procedure used in this paper to determine those
bined with Eq.(4.9) yield the values of the coefficients for moduli for the cases of shaley sandstones and frozen porous
this new variable porosity formulation. media is indicated in the following.

LetKgim, Ksams Msim, andugsy denote the bulk and
shear modulus of the two solidry) frames, respectively. In
Appendices Al and A2 it is indicated how to determine these ~ The porosity dependence of the sand and ¢thy) ma-
moduli for the two examples presented in this paper. Also, letrices is consistent with the concept of critical porosity, since
Kei, ms1, Keg, is3 denote the bulk and shear moduli of the the moduli should vanish above a certain value of the poros-
grains in the two solid phases, respectively, andletlenote ity (usually from 0.4 to 0.5 This dependence is determined
the bulk modulus of the fluid phase. For the coefficignts by the empirical coefficienA in Eqg. (A6). In some rocks

APPENDIX A: A FORM OF COMPUTING THE
COEFFICIENTS IN THE CONSTITUTIVE RELATIONS

1. The case of shaley sandstones

3, anduq; the formulas given in Ref. 4 were used: there is an abrupt change of rock matrix properties with the
addition of a small amount of clay, attributed to softening of
pi=[(1=9)) ;PP ravt psjm:  9;= '“Sivm, i=1,3, cements, clay swelling, and surface efféctdhat is, the
’ bjhs; wave velocities decrease significantly when the clay content
pa=(1—01)(1—gs) by bafiay, (A1) increases from 0O to a few percentages. In order to model this

effect, the shear modulus of the sand matrix is multiplied by
a factor depending on the empirical coefficienh Eq. (A7)
' (this factor tends to 1 wheam— o). If (), represents the sand
and()5 the clay minerals, then the bulk and shear moduli of
the sand and claydry) matrices are assumed to satisfy

-1

(1-91) ¢ N ¢ N (1—03) &3
Mst 207 Ms3

whereg, andg; are the so-called shear consolidation coef-
ficients of the solid frames 1 and®3The symbolw in the

Mav—

definition of x4, abovg denotes the angular frequency. Ksjm=SiKsj(1— ) TA1=4) j=13, (A6)
Also, sinceK,= ¢“K,,, [cf. Eq.(4.5], to determineK, _ a
the following expression foK ,, given in Ref. 4 is used: Ms1m=EXP{ —[(1—S3)S3) | Ksymaess /K1 s a
b1 ¢ b3 -1 Ms3m™ Ks3,mMs3/K53-
Ka=|(1=Cq) o=+ —+(1—-C3) -— (A2)
Ksl Kf KsB

o ) o ) 2. The case of frozen porous media
The remaining elastic coefficients are giverf by ) o )
Following Refs. 6 and 4 it is assumed thi, , is

Ksi .
K; :[(1_Cj)¢j]2Kav+ Kejm: C sim 13, known, and that the other modulus may be computed using a

R ILSE percolation-type model with critical exponent 3%8As ex-
Cro=(1—¢y) by dK (A3)  plained by L(_aclaireet aI.,6_t_he percolation theory is use_d
12 V¥ hav here to describe the transition of a system from the continu-
Ci3=(1—cy)(1—-C3) 193Ky, ous to the discontinuous state, which is governed by a power
law independent of the system material. Heneg,,, mtsam
C23=(1-C3) ph3Kay, andKg;,, are obtained using
wherecy, c; are the bulk consolidation coefficients of the 3.8
solid frames 1and 3. _ =l 1) ] ﬁ +ulm =13,
These elastic moduli for constant porosity can be rewrit- 1
ten in terms of a set of coefficients analogous to those given bs 138 (A8)
by Gassmarfif as follows: Keam=[K@Z K% | [1_ o +K%

Ki=Kgj—2a;Sj¢pKat (S)?Kay, =13, :
1=Ky~ 205 #Kart (5,6)Kav, ] where {729, {7120, andK {729 are computed using Kuster

Cio=Kla1—S14), Co=pK(az—S9), (Ad) and Toksa’s model?® taking the known values df;, sq,
_ _ _ Ks3, ms3 for the background medium with inclusions of air,
Cis=Kal a1 =S1h)(as=S3), with propertiesK,, u,. For the solid matrix2, the concen-
where tration of inclusions i£=1— ¢, and for the ice matriX),
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we consider that the water is totally frozen, ie=s ¢,. The
moduli ud; . 1% m andK,  are appropriate reference val-

ues. Here it is assumed that

o _ 0 _
Ks3,m_ Ms3m™ 0.

pressions given in Refs. 6 and 4.

APPENDIX B: IDENTIFICATION OF THE MASS AND
DISSIPATIVE COEFFICIENTS FROM PREVIOUS
FORMULATIONS

In this section it is shown that under the assumption of
uniform porosity from Eqs(5.17) to (5.19 the equations of
motion in the form presented in Refs. 6 and 4 are obtained.

First, use Egs(2.7) and(5.18 in Eq. (5.17 to obtain

d .
. U'i('l): (P11— 251 P12t (Sl¢)2p22))ui(l)+ b (P12

ax;
~S1P2) U7+ (P13~ S1pP2s— S3hP1z
+5,S5( )22 1Y — p(F 1o+ S p20)
X (U= Uf) = (F1a+ (S = Sg) pf
—$1S5(¢)*f o) (U ¥~ UfY). (B1)
Next, settingo= — ¢ps, it follows from Eq.(5.18 that

J . .
——0=¢(P12— Sl¢p22))ui(l)+ (¢)2p22Ui(2)+ d(P2s

(9Xi
—S3pp2) U7+ (f 15+ S, b ) (U2 —U(Y)
+ (S3pf 2~ F1) (WP =0, (B2)
Also, using Eqs(2.7) and(5.18 in Eqg. (5.19 yields

J .
a—xja?:(pm— S, bPas— SshP1ot+ S1S5()2p2o) U
+ B((P23— S3pP22) U P + (P33~ 2S3hPas
+(S36)2p2) UY = (S35~ 1)

X (ui(Z)_ ui(a))+(fll+(sl_s3)¢f12

—$1S3()2F ) (UP = UfY). (B3)

Using the expressions given in EG.22 a calculation
shows the following equivalence between the mass coeffi-

cients defined in Ref. 4 and the new coefficieps:

P11=P11~ 2S1$P12+ (S16)?P2z
=prd1a13t pado(a;— 1)+ psps(az—1),

p12=P(P12— S19P22) = —p2p(ai— 1)),

P13=P13~ S1 P23~ S3hP12+ S1S3(h)? P22

=—p1¢1(a13—1) —pzdz(az—1),
(B4)
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004

(A9)

For variable temperatures, the porosity water proportion
may be computed as function of temperature using the e

Pp25=()?P2s= papa(a1o+az—1),
p23= P(P23— S3¢P2) = — pop(az—1),

P33= P33~ 2S3Pazt (S3) %P2

=p1di(a13— 1) +padpa(az;— 1)+ padhsas;.
*The expressions for the mass-coupling coefficigrtsn Eq.
(B4) coincide with those given by Carcione and Tinivélla.
Next let us give a procedure to choose the dissipation
coefficientsf44, f,,, andfq,. For the case of frozen porous
media, following Ref. 4, the dissipation coefficiers,,
b,;, andb,; are defined as follows:

7

b12:(¢))2K_1: 7

bos= (¢)2— )

K3

(B5)
b,;=friction coefficient between the ice

and the solid frames,

where 7 denotes the fluid viscosity and the permeability co-
efficientsk,, k5 are defined in terms of the absolute perme-
abilities k1 9, «30 Of the two solid frames bysee also Ref.
6)

Ki1=K —(d))3 K3=K (1= )" £)3 (B6)
Mgy T g2 el

For the case of shaley sandstones, following Ref. 1 the
coefficientb;3 can be assumed to be zero and the friction
coefficientsb,, and b, are taken to be of the form:

b1y=459R%d~ H(1— ) b1,

bas=459RF ¢~ H(1— ) b3, (B7)

whereRg; , Rg3 denote the average radii of the sand and clay
particles, respectively. These expressions are given in Ap-
pendix B3 of Carcionet all (but in that paper the viscous
drag coefficients are respectively denotedy andbgg).

It follows from Egs.(B1) to (B3) that to recover the
uniform porosity formulation in Ref. 4 the coefficients,,
f,,, andf,, must be taken to satisfy the following nonsin-
gular system of equations:

f11+ (S1—Ss) bf 10— S1S3( ) *f 2= by,
D(S3pf o= F12) =Dy,
d(f1o+ Sy 5) =Dyy.

The coefficientd ,,, f1,, andf,, are determined by E¢B8)
with the coefficienb; left as a free parameter chosen so that

(B8)

the condition
(B9)

is satisfied, which is needed in order to have a non-negative
dissipation functiorD in the variables {> —u(™), andw; .
Since the coefficienb, 5 takes into account friction between
the two solid phases, a proper model based, for example, in
Coulomb’s friction theory may be used, but this problem is
beyond the scope of this work. For simplicity in all the nu-
merical examples presented in this article the coeffidggt
was set to be zero.

f11fa—13,=0
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