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Abstract20

Gas-hydrate bearing sediments are composite materials modeled as a porous rock frame21

and gas-hydrates, which consist of an ice-like lattice of water molecules with gas molecules,22

mostly methane, trapped inside. These type of sediments are highly heterogeneous at23

multiple mesoscopic scales, which induce attenuation and dispersion of traveling seismic24

waves due to mode conversions. This work presents a numerical upscaling procedure that25

allows to define a viscoelastic medium that in the average has the same behavior than26

the original heterogeneous sediment. The upscaling procedure consists of determining27

the complex moduli associated with the viscoelastic medium by solving numerically bound-28

ary value problems representing compressibility and shear experiments. The procedure29

is applied to composite media with regions of different ice content of fractal or periodic30

layered distribution. The examples demonstrate that variations in ice content induce strong31

attenuation and dispersion effects on seismic waves due to the WIFF mechanism.32

1 Introduction33

Gas-hydrate bearing sediments are partially frozen porous rocks containing het-34

erogeneities at multiple mesoscopic scales. These structures consist of a water phase and35

two non-welded solid phases, the porous skeleton and gas-hydrates, which are ice-like lat-36

tices of water molecules with gas molecules trapped inside (Ecker et al. (2000), Guerin37

and Goldberg (2005)). These formations, found in permafrost and continental margins,38

are considered as important future energy resources (Ecker et al. (2000)). Their elas-39

tic properties and seismic velocities were analyzed by Lee and Collet (2001), Lee (2002)40

and Carcione and Tinivella (2000).41

A theory to describe the static and dynamic behavior of partially frozen porous me-42

dia was presented by Leclaire et al (1994). The theory, valid for uniform porosity, pre-43

dicts the existence of additional compressional and shear waves which were observed in44

laboratory experiments (Leclaire et al (1995)). Carcione and Seriani (1998) designed a45

generalization of this theory to evaluate gas-hydrate concentration. Carcione et al. (2003)46

and Santos et al. (2004) generalized the theory of Leclaire et al. (1994) to the variable47

porosity case. Numerical simulations of wave propagation in partially frozen porous me-48

dia was presented by Carcione and Seriani (2001) and Carcione et al. (2003).49

Seismic waves traveling through partially frozen porous media with regions of dif-50

ferent ice content suffer mode conversions at interfaces between those regions, generat-51

ing wave-induced fluid flow (WIFF) in what it is known as the mesoscopic loss mech-52

anism. This mechanism was first analyzed by White et al. (1975) for the case of layered53

porous rocks with alternating gas and water saturation.54

Eventhough the generalized theory of Leclaire could in principle be used to sim-55

ulate wave propagation in highly heterogeneous gas-hydrate bearing sediments, large lin-56

ear systems of equations need to be solved to properly represent the heterogeneities As57

an alternative, this work proposes the use of a numerical upscaling procedure allowing58

to obtain an effective viscoelastic isotropic medium (EVIM) that in the average behaves59

as a highly heterogeneous gas-hydrate bearing sediment.60

The complex moduli that determine the EVIM are obtained as solutions of two bound-61

ary value problems (BVP’s) for the quasistatic equations for composite materials derived62

by Santos et al. (2004). The BVP’s impose boundary conditions associated with com-63

pressibility and shear experiments which approximate solution is obtained using a Fi-64

nite Element (FE) procedure.65

For a detailed description of using harmonic experiments combined with FE pro-66

cedures to determine the seismic response of Biot-type media with different types of het-67

erogeneities we refer to Santos and Gauzellino (2017).68
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2 The differential model69

Let us consider an elementary cube Ω composed of two weakly-coupled porous solid70

phases, referred to by the subscripts or superscripts 1 and 3, saturated by a single-phase71

fluid phase indicated by the subscript or superscript 2. Thus, Ω = Ω1 ∪Ω2 ∪Ω3. The72

water content (effective porosity) and the two solid fractions over the bulk material are73

defined as φw =
V2

Vb
, φ1 =

V1

Vb
and φ3 =

V3

Vb
, respectively, where Vb = V1+V2+V3 and74

Vi is the volume of the phase Ωi. The absolute porosity φa, corresponding to the case75

when the porous rock is completely unfrozen is φa = φw + φ3 = 1− φ1.76

The ice content I ′ is defined as I ′ =
φ3

1− φw
, so that 0 ≤ I ′ ≤ 1.77

Let τ (1,T ) = (τ
(1,T )
jk ) and τ (3,T ) = (τ

(3,T )
jk ) denote the stress tensors in Ω1 and

Ω3 averaged over the bulk material Ω, respectively, and let pf denote the fluid pressure.
Also, let u(1), u(2) and u(3) be the averaged solid and fluid displacements over the bulk
material, while the relative fluid displacement is defined as

w = φw

(
u(2) − S1u

(1) − S3u
(3)

)
, (1)

with S1 =
V1

V1 + V3
, S3 =

V3

V1 + V3
and ζ = −∇ · w representing the change in fluid

content. Furthermore, let

ǫij(u
(m)) =

1

2

(
∂u

(m)
i

∂xj
+

∂u
(m)
j

∂xi

)
, m = 1, 3,

denote the strain tensor in Ωm with linear invariant θm = ǫii(u
(m)).78

The diffusive equations for a partially frozen porous medium are (Santos et al. (2004))79

iωf11u
(1) − iωf12u

(2) − iωf11u
(3) = ∇ · τ (1,T), (2)

−iωf12u
(1) + iωf22u

(2) + iωf12u
(3) = −∇pf , (3)

−iωf11u
(1) + iωf12u

(2) + iωf11u
(3) = ∇ · τ (3,T). (4)

where ω is the angular frequency, i =
√
−1 and80

τ
(1,T )
jk =

[
KG1θ1 −B1ζ +B3θ3

]
δjk + 2µ1d

(1)
jk + µ1,3d

(3)
jk , (5)

τ
(3,T )
jk =

[
KG3θ3 −B2ζ +B3θ1

]
δjk + 2µ3d

(3)
jk + µ1,3d

(1)
jk , j, k = 1, 2, 3, (6)

pf = −B1θ1 −B2θ3 +Mζ, (7)

See Santos et al. (2004), Appendices A and B to find a procedure to determine the elas-81

tic coefficients in equations (5)–(7) and the diffusive coefficients f11, f22 and f12 in equa-82

tions (2)-(4).83

3 The Finite Element upscaling procedure84

Let us denote by T (ũs) and E(ũs) the time Fourier transforms of the stress and85

strain tensors of the EVIM, and set Θ̃s = ∇ · ũs, where ũs denotes the solid displace-86

ment vector. The constitutive equations of the EVIM are87

Tjk(ũs) = λΘ̃sδjk + 2µEjk(ũs). (8)

To determine the complex and frequency dependent moduli Eu = λ + 2µ and µ88

equations (2)-(4) are solved on a square Ω = (0, L)2 in the (x1, x3)-plane with bound-89

ary Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT . Here ΓL,ΓR, ΓT and ΓB denote the left, right top and90
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bottom boundaries of Γ. Let {ν,χ} be an orthonormal system on Γ, where ν the unit91

outer normal on Γ and χ be a unit tangent on Γ oriented counterclockwise.92

The complex modulus Eu is determined by solving equations (2)-(4) in Ω with the93

boundary conditions94

τ (m,T )(u)ν · ν = −∆P1, (x1, x3) ∈ ΓT , m = 1, 3, (9)

τ (m,T )(u)ν · χ = 0, (x1, x3) ∈ Γ, m = 1, 3, (10)

u(m) · ν = 0, (x1, x3) ∈ Γ \ ΓT , m = 1, 3, (11)

w · ν = 0, (x1, x3) ∈ Γ. (12)

Note that the solution of this BVP satisfies the relations

ǫ11(u
(1)) = ǫ13(u

(1)) = ǫ11(u
(3)) = ǫ13(u

(3)) = ∇ ·w = 0.

Thus, E11(ũs) = E13(ũs) = 0 and (8) reduces to95

T33 = EuE33. (13)

Now Eu can be determined from (13) by obtaining T33 and E33 as averages of the meso-96

scopic stress and strain tensors associated with the solid 1 phase over the sample Ω, i.e.,97

T33 =
1

Ω

∫

Ω

τ
(1,T )
33 dΩ, E33 =

1

Ω

∫

Ω

ǫ
(1)
33 dΩ. (14)

Next, the complex shear modulus µ is determined by solving (2)-(4) in Ω with the98

boundary conditions99

−τ (1,T )(u)ν = g1, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (15)

−τ (3,T )(u)ν = g3, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (16)

u(m) = 0, (x1, x3) ∈ ΓB , m = 1, 3 (17)

w · ν = 0, (x1, x3) ∈ Γ, (18)

where100

g1 =





(0,∆G1), (x1, x3) ∈ ΓL,

(0,−∆G1), (x1, x3) ∈ ΓR,

(−∆G1, 0), (x1, x3) ∈ ΓT ,

(19)

g3 =





(0,∆G3), (x1, x3) ∈ ΓL,

(0,−∆G3), (x1, x3) ∈ ΓR,

(−∆G3, 0), (x1, x3) ∈ ΓT .

(20)

The solution of this BVP satisfies the conditions101

ǫ11(u
(1)) = ǫ33(u

(1) = ǫ11(u
(3)) = ǫ33(u

(3) = ∇ ·w = 0,

and consequently E11(ũs) = E33(ũs) = 0. Hence, (8) reduces to102

T13 = µE13. (21)

Now µ is obtained from (21) by computing T13 and E13 averaging the mesoscopic stress103

and strain tensors associated with the solid 1 phase over the sample Ω:104

T13 =
1

Ω

∫

Ω

τ
(1)
13 dΩ, E13 =

1

Ω

∫

Ω

ǫ
(1)
13 dΩ. (22)
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The average bulk density of the sample ρ is

ρ = φ1ρ1 + φwρ2 + φ3ρ3,

with ρm,m = 1, 2, 3 denoting the mass density of each solid and fluid constituent in105

Ω. The complex compressional and shear velocities are (Carcione, 2014)106

vPc(ω) =

√
Eu(ω)

ρ
, vSc(ω) =

√
µ(ω)

ρ
.

The effective P and S phase velocities vn(ω) and (inverse) quality factor Qn(ω), n =107

P, S are determined using the relations (Carcione, 2014)108

vn(ω) =

[
Re

(
1

vnc(ω)

)]−1

,
1

Qn(ω)
=

Im(vnc(ω)
2)

Re(vnc(ω)2)
, n = P, S. (23)

The approximate solution (2)-(4) with the boundary conditions (9)–(12) to deter-109

mine Eu and and (15)– (18) to determine µ was obtained using the FE procedure de-110

scribed in Appendix B.111

4 Numerical experiments112

To validate the procedure, we consider a water saturated homogeneous square sam-113

ple of side length 10 cm discretized using a 80 × 80 uniform mesh. Absolute porosity114

is φa = 0.3. The material properties of solid 1, solid 3 (ice) and water are given in Ta-115

ble 1.116

The effective phase velocities vn and dissipation factors 1000/Qn, n = P, S ob-117

tained using the harmonic experiments for the composite model were validated by com-118

parison against those corresponding to the associated classic Biot model defined in Ap-119

pendix A and using plane-wave analysis.120

4.1 Validation varying ice content at 50 Hz and varying frequency for121

ice content I′ = 0.333122

Table 2 shows the results for the effective P-wave phase velocities at 50 Hz vary-123

ing the ice content. Its comparison with the values of the associated classic Biot model124

is displayed in the column of the percentual error. The error decreases with decreasing125

ice content. We consider that this is due to the very different elastic behavior of the solid126

1 and solid 3 (ice) phases.127

Furthermore, the effective P-wave velocities as a function of frequency for ice con-128

tent I ′=0.333 were computed in the range 1 Hz–1 kHz. We obtained an effective P-wave129

velocity of 3992.67 m/s and numerical ∞ for the quality factor Q. We also computed the130

P-wave velocity for the associated classic Biot model defined in Appendix A using a plane-131

wave analysis, obtaining a constant of 4087.86 and dissipation factors in the range 10−2−132

10−5.133

An analog to Table 2 is presented in the Table 3 for the results of the effective S-134

wave phase velocities.135

Table 3 shows that, as for P-waves, errors decrease with decreasing ice content. We136

also computed the effective S-wave velocities as a function of frequency for ice content137

I ′=0.333. In the frequency range 1 Hz–1 kHz we obtained an effective S-wave velocity138

of 2476.96 m/s and numerical ∞ for the shear quality factor Q. The plane-wave anal-139

ysis for the associated classical Biot model gives an S-wave phase velocity of 2477.85 m/s,140

while the dissipation factors are in the range 10−2 − 10−5.141
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5 Effective P-wave phase velocity and dissipation factors in layered142

media with periodic variations in ice content I ′
143

We consider a square sample of side length 18 cm size discretized with a 120 × 120144

uniform mesh. The numerical sample has seven alternating layers of ice contents I ′ =145

0.666 and I ′= 0.166. Absolute porosity is φa = 0.3.146

To determine the FE approximations to the the plane wave modulus Eu(ω), we solved147

the diffusive equations (2) – (4) with the boundary conditions (9)–(12) using the FE method148

for frequencies in the range 1 Hz- 200 Hz.149

The curves labeled Associated classic Biot, theory in Figures 1 and 2 were obtained150

as follows. First we determined the associated classic Biot model for each layer of the151

periodic sequence as indicated in Appendix A. Then, we use the theory presented by Krzikalla152

and Müller (2011) to obtain the theoretical values.153

Figure 1 exhibits effective P-wave phase velocities for the composite model increas-154

ing with increasing, while those of the associated classic Biot model are almost constant155

in the whole frequency range. Furthermore, for almost all frequencies the composite model156

exhibits lower effective velocities than the classic model, due to the high dispersion in-157

duced by the WIFF mechanism. Figure 2 displays the effective dissipation factor of the158

composite model, where it can be observed high attenuation of P-waves due to the in-159

terlayer WIFF mechanism, with an attenuation peak of quality factor Q = 80 at about160

70 Hz. Figure 3 displays the logarithm of the dissipation factor for the composite and161

associated classic Biot models, where attenuation is negligible for the associated classic162

Biot model.163

Figures 4 and 5 show the gradient of fluid pressure for this experiment at 10 Hz164

and 70 Hz, where their higher values can be observed at the interlayer boundaries and165

are due to variations in ice content in the sample. These Figures illustrates the WIFF166

mechanism. Furthermore, these gradients are much higher at 70 Hz than at 10 Hz, in167

accordance with Figure 2.168

6 Patchy ice-content.169

Gas-hydrate bearing sediments have local variations in ice content I ′ at multiple170

mesoscopic scales. To model wave propagation in this type of medium, a convenient ap-171

proach is to use an EVIM as defined in the previous sections. This EVIM takes into ac-172

count the WIFF and the associated dispersion and attenuation effects.173

The water-saturated sample Ω is a square of side length 10 cm and is discretized174

with a 80 × 80 uniform mesh.175

The binary multiscale binary quasi-fractal heterogeneities in ice content were gen-176

erated using the von Karman self-similar correlation function (Frankel and Clayton (1986)).177

The examples used fractal dimension D =2.2 and two correlation lengths, 3.33 cm and178

2.22 cm, respectively, For details on the procedure to construct these type of fractal dis-179

tributions we refer to Santos and Gauzellino (2017).180

Figures 6 and 7 display the patchy ice content distribution I ′ for correlation lengths181

3.33 cm and 2.22 cm, respectively. Overall ice content I ′ is 36 %. Figure 8 shows the Lamé182

shear coefficient µ1 associated with the patchy ice content distribution I ′ in Figure 6,183

where the local heterogeneities in µ1 are due to the local variations in ice content. Fig-184

ures 9 and 10 show effective phase velocities and logarithm of the dissipation factors of185

P-waves as a function of frequency for the composite and associated classic Biot mod-186

els in the range 0.01 Hz–140 Hz and binary ice content I ′ as in Figure 6 (correlation length187

3.33 cm). The results for the associated classic Biot model were obtained using the FE188

upscaling procedure presented by Santos et al. (2009).189
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As in the periodic layered case, P-wave velocities for the composite model are lower190

than those of the associated classic Biot model, show highly dispersive behavior and higher191

values with increasing frequency, while those of the associated classic Biot model are al-192

most constant in all the frequency range.193

Figure 10 shows that attenuation of P-waves is much higher for the composite model194

than for the associated classic Biot model. This attenuation mechanism, due to the in-195

duced WIFF effect, is not present when the associated classic Biot model is used. Fig-196

ure 11 exhibits dissipation factors as a function of frequency for the harmonic compos-197

ite model and the binary ice content distributions in Figures 6 and 7. Two attenuation198

peaks are clearly observed. The peak located at low frequencies corresponds to the larger199

ice patches (Figure 6).200

The last experiment analyzes the behavior of effective shear waves as a function201

of frequency due to variations in ice content. In this case, the sample is a square of side202

length 1 cm with a multiscale quasi-fractal patchy ice content distribution. The patches203

have ice content I ′ = 0.666 and I ′ = 0.166. Absolute porosity is φa = 0.3, correlation204

length is 0.04 cm and fractal dimension is D = 2.2. Overall ice content is 41 %. Figure205

12 displays the shear Lamé coefficient associated with this quasi-fractal ice content dis-206

tribution. It is observed that S-waves suffer very little velocity dispersion, as can be seen207

in Figure 13, and negligible attenuation. We also computed the corresponding effective208

phase velocity and dispersion coefficient of the associated classic Biot model, obtaining209

a constant shear phase velocity of 2428 m/s and negligible attenuation.210

7 Conclusions211

The numerical upscaling procedure presented in this work determines effective com-212

plex and frequency dependent P- and S- wave moduli associated with a heterogeneous213

gas-hydrate bearing poroelastic medium. These moduli define an effective viscoelastic214

isotropic medium that behaves in the average as the heterogeneous gas-hydrate bearing215

medium. The methodology is applied to analyze the seismic response of water saturated216

poroelastic samples for the cases of periodic alternating layers or patches of different ice217

content. The analysis shows that local variations in ice content induce high velocity dis-218

persion and attenuation for P- waves traveling in gas-hydrate bearing sediments, while219

S-waves are less sensitive to these type of heterogeneities.220

8 Appendix A221

In this appendix, we explain a procedure to determine the elastic and dissipative222

factors of an associated classic Biot model that in the low-frequency range is equivalent223

to a composite material. The following notation is used to define the associated classi-224

cal Biot model (Biot, 1962).225

The solid and fluid displacement particle displacements are denoted as û(s), û(f),226

while σ̂ and p̂f denote the total stress and fluid pressure.227

The constitutive relations and the diffusion equation of the classic Biot model are228

σ̂ij =
[
KGθ̂

(s) −Bθ̂(f)
]
δij + 2µd̂

(s)
ij , (24)

p̂f = −Bθ̂(s) − M̂ θ̂(f), (25)

∇ · σ̂ = 0, (26)

iω
η

κ̂
û(f) +∇pf = 0, (27)

where

d̂
(s)
ij = ǫij(û

s))− 1

3
θ̂(s)δij , θ̂(m) = ∇ · û(m),m = s, f.

–7–
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In (24)- (27), KG and µ are the bulk and shear moduli of the saturated material, while229

B and M̂ are elastic coupling coefficients. Furthermore, κ̂ denotes the porous rock per-230

meability.231

Assume that u(1) = u(3) ≡ u(s) (the low-frequency assumption is used here) and232

define the total stress tensor as233

τij = τ
(1,T )
ij + τ

(3,T )
ij . (28)

Then adding (5) and (6), we obtain234

τij =
[
(KG1 +KG3 + 2 B3) θ

(s) − (B1 +B2) θ
(f)]δij (29)

+2 (µ1 + µ3µ13) d
(s)
ij ,

pf = −(B1 +B2)θ(s)−Mθ(f), (30)

Now from (24), (25) and (29), (30), we can identify the elastic coefficients of the asso-235

ciated classic Biot model as follows:236

KG = KG1 +KG3 + 2 B3, (31)

B = B1 +B2, (32)

µ = µ1 + µ3 + µ13, (33)

M̂ = M. (34)

The procedure to determine the coefficients KG, B, M̂ and µ in (31)- (34) can be shown237

to give identical results than when they are computed as presented in Carcione et al. (2005).238

.239

Furthermore, from equation (B5) and (B8) in Santos et al. (2004)240

φ (S3φf22 − f12) = b23, (35)

φ (f12 + S1φf22) = b12, (36)

where241

b12 = φ2 η

κ1
, b23 = φ2 η

κ3
, (37)

Thus, multiply by φ equations (35) and (36) and add the resulting equations to get242

f22 = η

(
1

κ1
+

1

κ3

)
. (38)

Next, from the low-frequency assumption, the f12-terms in (3) cancel and this equation243

reduces to244

iωf22u
(2) +∇pf = 0. (39)

Thus (27), (38) and (39) allow to identify the effective permeability κ̂ of the associated245

classic Biot model by the relation246

1

κ̂
=

(
1

κ1
+

1

κ3

)
. (40)

Equations (31)-(34) and (40) completely define the associated classic Biot media to our247

composite material.248

Remark: Equations (31)-(34) and (40) may also be used in the case of shaley sand-249

stones as presented in Santos et al. (2004).250
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9 Appendix B251

10 Finite element formulation252

Let T h(Ω) be a non-overlapping partition of Ω into rectangles Ωj of diameter bounded253

by h such that Ω = ∪J
JΩj . Denote by Γjk = ∂Ωj ∩ ∂Ωk the common side of two adja-254

cent rectangles Ωj and Ωk. Also, let Γj = ∂Ωj ∩ Γ.255

To approximate the solid displacements u(1) u(3) we use the spaces Wh,P (Ω) (resp.256

Wh,S(Ω)) of vector polynomials v such that each component is globally continuous piece-257

wise bilinear polynomials and also satify the condition v·ν = 0 on Γ\ΓT (resp. v = 0258

on ΓB).259

To approximate the fluid displacement vector u(2) we use the vector part of the Raviart-260

Thomas-Nedelec space of zero order (Raviart and Thomas (1977), Nedelec (1980)). This261

space is denoted as Vh(Ω) and consists of vector polynomials having global divergence262

in L2(Ω) and such that on each element Ωj are of the form P1,0(Ωj)×P0,1(Ωj). Here263

P1,0(Ωj) denotes the polynomials linear in x1 and constant in x3 in Ωj , and P0,1(Ωj) those264

that are constant in x1 and linear in x3 in Ωj .265

Next, for (I) = (P, S) let266

Zh,I(Ω) = Wh,I(Ω)× Vh(Ω)×Wh,I(Ω).

Let (·, ·)X and 〈·, ·〉∂X denote the complex L2(X) and L2(∂X) inner products for267

scalar, vector, or matrix valued functions, with the subscript X being omitted if X =268

Ω or X = Γ. Let us define the bilinear form269

L(u,v) = iω
(
f11u

(1) − f12u
(2) − f11u

(3),v(1)
)

+iω
(
−f12u

(1) + f22u
(2) + f12u

(3),v(2)
)

+iω
(
−f11u

(1) + f12u
(2) + f11u

(3),v(3)
)

+
∑

pq

(
τ (1,T )
pq (u), εpq(v

(1))

)
−
(
pf (u),∇ · v(2)

)

+
∑

pq

(
τ (3,T )
pq (u), εpq(v

(3))

)
.

To determine Eu(ω) we solve the following problem: find u(h,P ) ∈ Zh,P (Ω) such270

that271

L(u(h,P ),v) = −
〈
∆P1,v

(1) · ν
〉
ΓT

−
〈
∆P3,v

(3) · ν
〉
ΓT

, ∀ v ∈ Zh,P (Ω). (41)

Similarly, to determine µ(ω) we solve the problem: find u(h,S) ∈ Zh,S(Ω) such272

that273

L(u(h,S),v) =
〈
g1,v

(1)
〉
Γ\ΓB

+
〈
g3,v

(3)
〉
Γ\ΓB

, ∀ v ∈ Zh,S(Ω), (42)

where g1 and g3 are defined in (19)-(20). The error associated with the FE procedures274

(41) and (42) is on the order O(h1/2) in the energy norm (Santos and Carcione (2015)).275
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Table 1. Material Properties.336

Solid grain bulk modulus, Ks1 38.7 GPa
shear modulus, µs1 39.6 GPa

density, ρs1 2650 kg/m
3

permeability κs1 1.07 10−13 m2

Ice bulk modulus, Ks3 8.58 GPa
shear modulus, µs3 3.32 GPa

density, ρs3 920 kg/m
3

permeability κs3 5 10−4 m2

Water bulk modulus, Kf 2.25 GPa

density, ρ2 1040 kg/m
3

viscosity, η 0.0018 Pa · s

337
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Table 2. Effective P-wave velocities (m/s) at 50 Hz as function of ice content338

I ′. The sample is square of side length 10 cm.339

Ice content I ′ Composite model Associated classic Biot model Error (%)

0.666 4120.23 4291.95 4.0

0.583 4064.1868 4208.35 3.42

0.500 4027.02 4146.20 2.87

0.416 4004.44 4100.76 2.34

0.333 3992.67 4067.86 1.85

0.25 3988.476 4043.88 1.37

0.166 3989.24 4025.78 0.9

340
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Table 3. Effective S-wave phase velocities (m/s) at 50 Hz as function of ice341

content I ′. The sample is square of side length 10 cm.342

Ice content I ′ Composite model Associated classic Biot model Error (%)

0.666 2627.56 2639.26 0.44

0.583 2627.56 2572.3665 0.28

0.500 2565.15 2526.03 0.16

0.416 2493.87 2495.93 0.08

0.333 2476.96 2477.85 0.03

0.25 2467.65 2467.95 0.01

0.166 2462.93 2462.99 0.0

343
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Figure 1. Effective P-wave phase velocity as a function of frequency for the composite and

associated classic Biot models. The numerical sample is a square of side length 18 cm and has

seven alternating layers of ice contents I ′ = 0.666 and I ′= 0.166.
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Figure 2. Effective P-wave dissipation factor as a function of frequency for the composite

model. The numerical sample is a square of side length 18 cm and has seven alternating layers of

ice contents I ′ = 0.666 and I ′= 0.166.
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Figure 3. Logarithm of the effective P-wave dissipation factor as a function of frequency

for the composite and associated classic Biot models. The numerical sample is a square of side

length 18 cm and has seven alternating layers of ice content I ′ = 0.666 and I ′= 0.166.
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Figure 4. Gradient of fluid pressure at 10 Hz for a square numerical sample of side length 18

cm and with seven alternating layers of ice contents I ′ = 0.666 and I ′= 0.166.
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Figure 5. Gradient of fluid pressure at 70 Hz for a square numerical sample of side length 18

cm with seven alternating layers of ice contents I ′ = 0.666 and I ′= 0.166.
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Figure 6. Binary patchy ice content I ′. Black regions have I ′ = 0.666, yellow regions have I ′

= 0.166. Absolute porosity φa = 0.3. Correlation length is 3.33 cm, fractal dimension is is D =

2.22. Overall ice content is 36 %. The sample is a square of side length 10 cm.
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Figure 7. Binary patchy ice content I ′. Black regions have I ′ = 0.666, yellow regions have I ′

= 0.166. Absolute porosity φa = 0.3. Correlation length is 2.22 cm and fractal dimension is D =

2.2. Overall ice content is 36 %. The sample is a square of side length 10 cm.
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Figure 8. Lamé shear coefficient µ1 associated with the binary patchy ice content of cor-

relation length 2.22 cm and and fractal dimension is D = 2.2 Overall ice content is 36 %. The

sample is a square of side length 10 cm.
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Figure 9. Effective P-wave phase velocity as a function of frequency for the composite and

associated classic Biot models and fractal binary ice content I ′ as in Figure 7. Correlation length

is 2.22 cm and Overall ice content is 36 %. The sample is a square of side length 10 cm.
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Figure 10. Effective P-wave dissipation factor as a function of frequency for the composite

and associated classic Biot models and fractal binary ice content I ′ as in Figure 7. Correlation

length is 2.22 cm and Overall ice content is 36 %. The sample is a square of side length 1 cm.
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Figure 11. Effective P-wave dissipation coefficient as a function of frequency for the com-

posite model and fractal binary ice content I ′ as in Figures 6 (Correlation length is 3.33) and 7

(Correlation length is 2.22). The attenuation peak moves to higher frequencies for the shorter

correlation length. Overall ice content is 36 %. The sample is a square of side length 10 cm.
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Figure 12. Lamé shear coefficient µ1 associated with a binary patchy ice content of correla-

tion length is 0.04 cm and fractal dimension is D = 2.2. Overall ice content 41 %. The sample is

a square of side length 1 cm.
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Figure 13. Effective S-wave phase velocity as function of frequency for the composite model

and a binary patchy ice content of correlation length is 0.04 cm and overall ice content is 41 %.

The sample is a square of side length 1 cm.
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