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Waves in non-isothermal poroelastic media. I

• The analysis of the seismic response in fluid saturated
poroelastic media uses the non-isothermal wave
equation, which includes the temperature, stress and
deformation fields.

• The model, which combines the Biot (J.App.Phys.,
1957) and Lord-Shulman theories (J.Mech.Phys.Sol.,
1967), predicts the propagation of four waves: two
compressional P waves, one fast (P1) and one slow
(diffusive) (P2), a slow (diffusive) thermal (T) wave,
and a shear (S) wave (not coupled with the T-wave).

• The T wave is coupled with both P-waves (Sharma
(J.Earth.Sys.Sci, 2008), Carcione et al.(J.Geophys.Res.,
2019).

• The model assumes that the temperature in the porous
solid and in the fluid is the same.
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Waves in non-isothermal poroelastic media. II

• Santos et. al. (J.Math.Anal.App., 2021) demonstrated
the existence and uniqueness of the solution of an initial
boundary value problem (IBVP) for the
Biot/Lord-Shulman formulation in linear
thermo-poroelastic isotropic media.

• The solution of the IBVP is given in terms of
displacements of the solid and fluid phases and
temperature.

• The Finite Element Method (FEM) presented here
provides a tool to study the physics of wave propagation
in this type of medium, including mesoscopic loss effects
(mode conversion of fast waves to T-waves at
mesoscopic-scale heterogeneities).
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Mathematical model. I

Consider a fluid-saturated poroelastic medium, and assume
that the whole aggregate is isotropic.

θ: increment of temperature above a reference absolute
temperature T0 for the state of zero stress and strain.

us = (us
i ), uf = (uf

i ): average particle displacement vectors
of the solid and relative fluid phases, respectively.

u = (us ,uf )

ε(us) = (εij(us)), σ(u, θ) = (σij(u, θ)): strain and stress
tensors of the solid and bulk material, respectively

pf = pf (u, θ): fluid pressure
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Non-isothermal constitutive relations

σij(u, θ) = 2µ εij(us) + δij(λu∇ · us + B∇ · uf − β θ),
pf (u, θ) = −B∇ · us −M∇ · uf + βf θ.

µ is the dry-material shear modulus,

M =
(
α− φ

Ks
+ φ

Kf

)−1
, φ: porosity α = 1− Km/Ks

B = α M, λu = λ+ α2M

Ks ,Km and Kf : bulk moduli of the grains, solid frame and
fluid, respectively.

β and βf : positive thermoelasticity coefficients of the bulk
material and fluid, respectively, β > βf .
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Biot’s dynamical equations

ρbüs + ρf üf −∇ · σ(u, θ) = fs , (1)
ρf üs + g üf + η

κ
u̇f +∇pf (u, θ) = f f . (2)

ρb, ρf : mass density of the bulk material and the fluid

η: fluid viscosity κ:permeability

g = Tρf
φ

: mass coupling parameter, (T: tortuosity)

fs , f f : external sources in the frame and fluid, respectively

REMARK: Ignoring external sources and acceleration
terms, eqn. (1) is the equilibrium equation of the bulk
material and eqn.(2) is Darcy’s law.
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Generalized heat equation

τ c θ̈ + c θ̇ −∇ · (γ∇θ) + βT0∇ · u̇s

+βT0∇ · u̇f + τβT0∇ · üs + τβT0∇ · üf = −q.

γ: bulk coefficient of heat conduction (thermal conductivity)

c: bulk specific heat of the unit volume in the absence of
deformation

τ : Maxwell relaxation time, q: heat source.

These equations assume that the temperature in the solid
and fluid phases is the same.

β, βf , γ and c are considered parameters, obtained from
experiments or from a specific theoretical model.
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Plane wave analysis. Compressional waves. I

Apply the divergence operator in Biot’s dynamical equations
and set ej = ∇ · uj , j = s, f . Let

ej = Cj ei(ωt−kx), j = s, f , θ = Cθei(ωt−kx).

a plane compressional wave of angular frequency ω and wave
number k = kr + i ki

Vc = ω2

k2 : square of the complex velocity. From the dynamic
equations we get a linear system of three homogeneous
equations for the amplitudes Cs ,Cf ,Cθ.
For non-trivial solutions the determinant of the associated
matrix must vanish, which yields a cubic polynomial in V 2

c .
The phase velocity vp and attenuation factor Q−1 are
computed using the relations

vp =
[
Re(V −1

c )
]−1

, Q−1 = −ωIm(V −1
c ) (3)
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Plane wave analysis. Material properties. I

The plane wave analysis is performed with nonzero coupling
coefficients β and βf (coupled case) with the material
properties given in Table 1.

Table 1. Material Properties

Grain bulk modulus, Ks 35 GPa
density, ρs 2650 kg/m3

Frame bulk modulus, Km 1.7 GPa
shear modulus, µm 1.885 GPa

porosity, φ 0.3
permeability, κ 1 darcy

Fluid bulk modulus, Kf 2.4 GPa
density, ρf 1000 kg/m3

viscosity, ηf 0.001 Pa · s
thermoelasticity coefficient, βf 50000 kg/(m s2 K)

Bulk specific heat, c 820 kg/(m s2 K)
thermoelasticity coefficient, β 90000 kg/(m s2 K)
absolute temperature, T0 300 K
thermal conductivity, γ 4.5 ×106 kg/m3

relaxation time, τ 1.5 ×10−2 s
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Plane wave analysis. II
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Figure 1. Phase velocity of the P1, P2 and T waves as a
function of frequency for the coupled case.
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Plane wave analysis. III
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Figure 2. Attenuation factor of P1, P2 and T waves as a
function of frequency for the coupled case. The two slow
waves P2 and T are diffusive, strongly attenuated at low

frequencies.
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Plane wave analysis. IV
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Figure 3. Attenuation factor of P1 wave as a function of
frequency for the coupled case. The P1 wave has two

Zener-like relaxation peaks, associated with the Biot and
thermal loss mechanisms.
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The Initial Bounday Value Problem (IBVP)

The solution of an IBVP for the thermo-poroelasticity
equations was obtained using the Finite Element Method
using C 0-piecewise linear polynomials to represent the
solid and fluid phases and the temperature.

The equations are solved for the 1D case over an interval
Ω = (0, L), L = 166 m discretized using a uniform mesh.

Absorbing boundary conditions are used at the
boundaries {0, L}.

Mesh size h: 0.175 m, time step dt: 7.95 ×10−3 ms.
The material properties are those in Table 1.
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Numerical experiments. I

In the first experiments, the medium is uniform, initially at
rest with a point dilatational source f = (fs , fs , q) located at
xs =1 m on the x -axis with time history

g(t) = cos[2πf0(t − 1.5/f0)]exp[−2f 20 (t − 1.5/f0)2].

f0 = 200 Hz: the dominant frequency. Displacements and
temperature are recorded at 60 m from the source.
The experiments analyzed the coupled and uncoupled Cases
considering the coupling coefficients β and βf nonzero or
null.

14/22



Numerical
simulation of
waves in

non-isothermal
poroelastic media

Juan E. Santos

Wave propagation
in non-isothermal
poroelastic media

Numerical experiments. Uniform material as in Table 1. II
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Figure 4. Snapshot of the temperature field at 48 ms.
Uncoupled and coupled cases, non-zero viscosity. A P1

arrival is seen due to the coupling effect.
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Numerical experiments. Uniform material as in Table 1, non-zero viscosity. III
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Figure 5. Snapshot of the particle displacement of the frame
at 48 ms for the uncoupled and coupled cases with non-zero

viscosity. P1 waves travel faster in the coupled case.
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Numerical experiments. Uniform material as in Table 1, null viscosity. IV
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Figure 6. Time history of the particle displacement of the
frame, null viscosity, uncoupled and coupled cases. P1 and
P2 waves arrive earlier in the coupled case as compared with

the uncoupled one.
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Numerical experiments. Uniform material as in Table 1, non-zero viscosity. V
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Figure 7. Time history of the particle displacement of the
frame, non-zero viscosity, uncoupled and coupled cases. The P1

wave arrives earlier in the coupled case as compared with the uncoupled one. A P2 arrival is also

observed in the coupled case, not present in the uncoupled one (black curve) due to its diffusive behavior.
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Comparison between snapshots for material as in Table 1 and a stiffer and less permeable one. VI
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Figure 8. Frame snapshots for the uniform material in Table
1 and a stiffer, less permeable uniform material, with Km =

5.1 GPa, µ = 5.565 GPa, κ = 0.5 Darcy, the other
properties as in Table 1. Coupled case, non-zero viscosity.
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Numerical experiments. The case of an interface. VII

The last experiment compares time histories of the uniform
medium in Table 1 with those of an inhomogeneous medium
consisting of two intervals I1 = (0, I) and I2 = (I, L) with I =
38 m, L= 116 m, with different material properties in I1 and
I2 .
In I1 the material properties are those in Table 1, while in I2
the material is stiffer and less permeable with Km = 5.1 GPa,
µ = 5.565 GPa, κ = 0.5 Darcy and the other properties as in
Table 1.

Time histories recorded inside the stiffer medium at 84 m
from the source after crossing the interface I are compared
with those corresponding to the uniform medium. The
example analyzes the Coupled case for non-zero viscosity.

20/22



Numerical
simulation of
waves in

non-isothermal
poroelastic media

Juan E. Santos

Wave propagation
in non-isothermal
poroelastic media

Numerical experiments.The case of an interface. VIII
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Figure 9. Time history of the particle displacement of the
frame at the receiver inside the stiffer medium.

P1 waves arrives earlier and P2 and T waves later in the
interface case as compared with the uniform material.
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CONCLUSIONS

• We presented a FEM to solve an IBVP in a
non-isothermal poroelastic medium.

• In this type of media four waves can propagate,
two compressisonal waves (P1, fast, and P2,
diffusive, slow), a Thermal (diffusive) T wave and
a Shear (S) wave.

• We analyzed the behavior of all waves, in particular
the effect of coupling between the Thermal wave
with P1 and P2 waves.

• The inclusion of thermal effects provides a tool to
study attenuation and dispersion effects including
mesoscopic loss effects related to Thermal waves.

• Thanks for your attention !!!!!.
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