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SUMMARY

A Biot medium having a dense set of aligned fractures behaves
as an effective transversely isotropic and viscoelastic (TIV)
medium at the macroscale for wavelengths much larger than
the average distance between fractures. In this work fractures
within a Biot medium are represented using boundary condi-
tions imposing stress continuity, pressure discontinuities pro-
portional to average fluid velocities and displacement discon-
tinuities proportional to stress components and average fluid
pressures along fractures. These boundary conditions take
into account mesoscale effects like wave-induced fluid flow
and fluid-pressure changes across fractures. A set of time-
harmonic Finite Element experiments is used to determine the
stiffness coefficients of an equivalent TIV medium to a highly
heterogeneous fractured Biot medium with aligned fractures.

INTRODUCTION

Hydrocarbon reservoir rocks have in many cases plane com-
pliant discontinuities, like fractures and faults, that in general
control the hydrocarbon flow and production in the reservoir
Gurevich, B. (2003), Gurevich, B. et al. (2009). Also, in many
cases reservoirs rocks contain dense sets of fractures aligned in
preferred directions. A fracture in a fluid-saturated poroelastic
- Biot - medium is a very thin compliant and highly perme-
able layer, with the layer thickness on the order of milimeters.
In this paper, fractures are modeled using the boundary con-
ditions (B.C.) in Nakawa, S. and Schoenberg, M. A. (2007).
These B.C. impose continuity of the stress of the bulk material,
pressure discontinuities proportional to average fluid velocities
and displacement discontinuities proportional to stress com-
ponents and average fluid pressures along fractures. Wave-
induced fluid flow Santos, J. E. et al. (2011); Santos et al.
(2014), by which the fast waves are converted to slow (diffu-
sive) Biot waves when traveling across fractures (mesoscopic-
loss) is well represented by these conditions.

A Biot medium with a dense set of horizontal fractures behaves
as a transversely isotropic and viscoelastic (TIV) medium for
average fracture distances much smaller than the predominant
wavelengths of the traveling waves.

The relaxed and unrelaxed stiffnesses of the equivalent poro-
viscoelastic medium to a finely layered horizontally homoge-
neous material were determined in Gelinsky, S. and Shapiro,
S. A. (1997). Later, the five complex and frequency-dependent
stiffnesses of the equivalent TIV medium were derived in Krzikalla,
F. and Müller, T. (2011).

This work uses the set of five harmonic Finite Element (HFE)
compressibility and shear experiments described in Santos, J.

E. et al. (2011); Santos et al. (2014) to determine the stiffness
coefficients and the corresponding energy velocities and dissi-
pation factors of a long-wave equivalent TIV medium to a hor-
izontally fractured Biot medium. First, the results of the HFE
experiments are validated by comparison with those obtained
using the HFE experiments when fractures are represented as
thin layers as in Santos et al. (2014). Second, the procedure is
applied to analyze the response of a fractured Biot medium for
variable fracture aperture. Finally, the HFE experiments are
applied to analyze the sensitivity of energy velocities in a frac-
tured Biot medium with different volume fractions of fractally
varying heteregeneities.

A FRACTURED BIOT MEDIUM AND THE EQUIVA-
LENT TIV MEDIUM

We consider a fractured isotropic Biot medium Ω = (0,L1)×
(0,L3) with boundary Γ in the (x1,x3)-plane, with x1 and x3
being the horizontal and vertical coordinates, respectively. Let
us and ũ f , denote the averaged displacement vectors of the
solid and fluid phases, respectively. Let u f = φ(ũ f − us) be
the relative fluid displacement, where φ denotes the porosity
and set u = (us,u f ). Let ε(us), τ(u) and p f (u) denote the
strain tensor of the solid, the stress tensor of the bulk material
and the fluid pressure, respectively. The stress-strain relations
are (Biot, M.A., 1962):

τst(u) = 2Gεst(us)+δst(λU ∇ ·us +α M ∇ ·u f ), (1)

p f (u) =−α M ∇ ·us−M(θ)
∇ ·u f . (2)

in (1)) G is the shear modulus of the dry matrix and δst is the
Kroenecker delta. The other coefficients in (1))-(2) can be ob-
tained in terms of Ks,Km and K f , the bulk moduli of the solid
grains, dry matrix and saturant fluid, respectively, (Carcione,
2007). Biot’s equations in the diffusive range and in the ab-
sence of external forces are (Biot, M.A., 1962):

∇ · τ(u) = 0, (3)

iωu f +
µ

κ
∇p f (u) = 0, (4)

where i =
√
−1, ω is the angular frequency, µ is the fluid vis-

cosity and κ is the frame permeability.

Assume that Ω has a set of J( f ) horizontal fractures Γ( f ,l), l =
1, · · · ,J( f ), each one of length L1 and aperture h, so that Ω =

∪J( f )+1
l=1 R(l). Consider a fracture Γ( f ,l) and the two rectangles

R(l) and R(l+1) having as a common side Γ( f ,l). Let νl,l+1 and
χl,l+1 be the unit outer normal and a unit tangent (oriented
counterclockwise) on Γ( f ,l) from R(l) to R(l+1). Let [us], [u f ]
denote the jumps of the solid and fluid displacement vectors
at Γ( f ,l), i.e. [us] =

(
u(l+1)

s −u(l)
s

)
|
Γ( f ,l) , where u(l)

s denotes
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the displacement values in R(l). The following boundary con-
ditions at Γ( f ,l) are derived in Nakawa, S. and Schoenberg, M.
A. (2007):

[us ·ν l,l+1] = ηN
(
(1−αB̃(1−Π))τ(u)νl,l+1 ·ν l,l+1

−α
1
2

(
(−p(l+1)

f )+(−p(l)f )
)

Π

)
, (5)

[us ·χ l,l+1] = ηT τ(u)ν l.l+1 ·χ l,l+1, (6)

[u f ·ν l,l+1] = αηN
(
−τ(u)ν l,l+1 ·ν l,l+1 (7)

+
1

B̃

1
2

(
(−p(l+1)

f )+(−p(l)f )
))

Π,

(−p(l+1)
f )− (−p(l)f ) =

iωµΠ

κ̂

1
2

(
u(l+1)

f +u(l)
f

)
·ν l,l+1.(8)

τ(u)νl,l+1 ·ν l,l+1 = τ(u)νl+1,l ·ν l+1,l (9)

τ(u)νl,l+1 ·χ l,l+1 = τ(u)νl+1,l ·χ l+1,l . (10)

Here ηN and ηT are the normal and tangential fracture com-
pliances, respectively and κ̂ = κ/h f . The fracture dry plane
wave modulus Hm = Km +(4/3)G and the dry fracture shear
modulus G are defined in terms of the fracture aperture h f

and the fracture compliances as ηN =
h f

Hm
, ηT =

h f

G
. Besides,

Π(ε) = tanhε/ε , B̃ = (αM)/HU (HU is the undrained plane
wave modulus) and

ε =
(1+ i)

2

(
ω µ α ηN

2 B̃ κ̂

)1/2
, α = 1−Km/Ks.

A horizontally fractured Biot medium behaves as a TIV medium
with vertical symmetry axis at long wavelengths. The stress-
strain relations of the equivalent TIV medium are Carcione
(2007)

σ11(ũs) = p11 ε11(ũs)+ p12 ε22(ũs)+ p13 ε33(ũs), (11)

σ22(ũs) = p12 ε11(ũs)+ p11 ε22(ũs)+ p13 ε33(ũs), (12)

σ33(ũs) = p13 ε11(ũs)+ p13 ε22(ũs)+ p33 ε33(ũs), (13)

σ23(ũs) = 2 p55 ε23(ũs), (14)

σ13(ũs) = 2 p55 ε13(ũs), (15)

σ12(ũs) = 2 p66 ε12(ũs). (16)

Here ũs, σ(ũs) and ε(ũs) are the displacement, the stress and
the train tensor at the macroscale, respectively.

To determine the complex and frequency dependent stiffness
coefficients pIJ(ω) in (11)-(16), we applied five HFE com-
pressibility and shear tests on 2D representative samples of
fractured poroelastic materials. Each test consists on solving
Biot’ s equations (3) with the fracture B. C. (5)-(10) and ad-
ditional B. C. representing the HFE compressibility and shear
tests. A detailed description of the HFE tests can be found in
(Carcione, J. M. et al., 2011) and (Santos, J. E. et al., 2011).

NUMERICAL EXAMPLES

In the first experiment we validate the results obtained model-
ing the fractures using the B. C. (5)-(10) with those obtained
modeling the fractures as very thin layers. We used a square

Rock properties

Material 1 Material 2 Material 3

Ks (GPa) 36 36 36

ρs (Kg/m3) 2700 2700 2700

φ 0.15 0.5 0.65

Km (GPa) 9.0 0.0055 0.0044

µ (GPa) 7.0 0.0033 0.0022

κ (D) 0.1 10.0 20.0

Table 1: Physical properties of the solid materials used in the
numerical examples

sample of side length 2 m, with 9 equally spaced fractures
of aperture h f = 1 mm. The sample was discretized with a
100× 109 nonuniform mesh when modeling fractures as thin
layers and a 100×100 uniform mesh when fractures were rep-
resented using (5)-(10). The sample contains Material 1 in
the background and Material 2 in the fractures, taken from
Nakawa, S. and Schoenberg, M. A. (2007). In this example,
we consider a brine saturated sample, with brine having den-
sity ρ f = 1040 kg/m3, viscosity µ= 0.0018 Pa·s and bulk mod-
ulus K f = 2.25 GPa.

Figures 1 and 2 show polar plots of the quality factors and
energy velocity vectors for qP, qSV and SH waves as func-
tions of the propagation angle at 60 Hz. Here 0 degrees and
90 degrees correspond to waves arriving parallel and normal
to the fracture layering, respectively. A very good agreement
between the numerical and analytical curves is obtained for all
angles. The qP curves show strong attenuation for waves arriv-
ing normal to the fracture layering. The qSV wave has no loss
along the directions parallel and normal to the fracture layer-
ing, showing maximum attenuation at about 45 degrees. In
Figure 2 is seen that qSV and SH waves have stronger velocity
anisotropy than qP waves, with qSv waves having the typi-
cal cuspidal triangles (or triplications), observed previously in
fracturated media (Carcione, 1996).

The second experiment considers the same sample and mesh
size of the first experiment, with fractures are modeled using
the B. C. (5)-(10) but for two different fractures apertures, h f =
5 mm and h f = 0.5 mm. The saturating fluid in the background
is gas with density ρ f = 500 kg/m3, viscosity µ= 2.0*10−5 Pa·s
and bulk modulus K f = 0.025 GPa. The fractures are saturated
with brine.

Figures 3, 4 and 5 show energy velocities for qP, qSV and SH
waves, respectively. Frequency is 60 Hz. It is observed an
increase in anisotropy as fracture aperture increases. Also, en-
ergy velocities of all waves decrease at angles close to 90 de-
grees, i.e., for waves arriving normally to the fracture layering.

Finally, the third experiment performs a sensitivity analysis
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using the B. C. (5)-(10) to study velocity variations in frac-
tured poroelastic samples due to changes in volume fractions
of Material 3 in the samples, a highly permeable and compli-
ant material that is fractally distributed both in background and
fractures.

The fractal samples are squares with side length 2 m and 9
equally spaced fractures of aperture h f = 1 mm. Both back-
ground and fractures are brine-saturated and a 100x100 uni-
form mesh was used. Figure 6 displays the porosity spatial
distribution in the background of the fractal sample for the case
of 10% volume fraction of Material 3. Note that fracture prop-
erties also vary in fractal form.

Figures 7, 8 and 9 show that energy velocities in the fractal
samples decrese as the volume fraction of Material 3 increases,
an expected results because of the properties of this Material.
Besides, qP and qSV waves tend to behave isotropically as
the volume fraction of Material 3 increases, while SH energy
velocity remains anisotropic.
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Figure 1: Dissipation factor of qP ans qSV waves at 60 Hz.
Fracture aperture is h f = 1 mm. The saturant fluid is brine in
background and fractures. The solid line indicate the numeri-
cal values.
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Figure 2: Polar representation of the energy velocity vector at
60 Hz for qP, qSV ans SH waves. Fracture aperture is h f = 1
mm. The saturant fluid is brine in background and fractures.
The solid line indicate the numerical values.
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Figure 3: Polar representation of the qP energy velocity vector
at 60 Hz. The saturant fluid is gas in background and brine in
fractures. The solid line indicate the numerical values.
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Figure 4: Polar representation of the qSV energy velocity vec-
tor at 60 Hz. The saturant fluid is gas in background and brine
in fractures.
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Figure 5: Polar representation of the SH energy velocity vector
at 60 Hz. The saturant fluid is gas in background and brine in
fractures.
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Figure 6: Porosity spatial distribution in the background of the
fractal sample for the case of 10% volume fraction of Material
3.
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Figure 7: Polar representation of the qP energy velocity vector
at 60 Hz for the case of a fractal sample. Background and
fractures are saturated with brine. Fracture aperture is h f = 1
mm.
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Figure 8: Polar representation of the qSV energy velocity vec-
tor at 60 Hz for the case of a fractal sample. The background
and fractures are saturated with brine. Fracture aperture is h f =
1 mm.
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Figure 9: Polar representation of the SH energy velocity vector
at 60 Hz for the case of a fractal sample. The background and
fractures are saturated with brine. Fracture aperture is h f = 1
mm.

CONCLUSIONS

This work used a Finite Element procedure to determine the
five complex and frequency-dependent stiffnesses of a trans-
versely isotropic and viscoelastic medium long-wave equiva-
lent to a highly heterogenoeus horizontally fractured Biot medium,
with fractures represented as boundary conditions. It is worth
to emphasize that is computationally very convenient to use B.
C. to model fractures, because if fractures were to be repre-
sented instead as fine layers, much smaller meshes would be
needed to discretize the fine layers than those required to dis-
cretize the background. The procedure was first validated com-
paring the results with those obtained for fractures modeled as
fine layers. Then it was applied to analyze the sensitivity of
velocities to variations in fracture aperture and proportions of
fractal heterogeneities present in the fractured poroelastic sam-
ples. In all cases, the experiments show that fractures induce
strong velocity anisotropy. Larges increase in anisotropy was
observed for large increases in the openings of the fractures.
Also, energy velocities for qP and qSV waves were observed
to decrease as the volume fraction of the fractal heterogeneities
increase, with these two waves tending to behave isotropically.
Besides, SH energy velocities remained anisotropic even for
large volume fractions of fractal heterogeneities. The results
of the last two experiments suggest that this FE procedure may
become an useful tool to study variations of velocities in hy-
drocarbon reservoirs subject to hydraulic fracturing.



Anisotropy induced by fractures in porous media

REFERENCES

Biot, M.A., 1962, Mechanics of deformation and acoustic
propagation in porous media: Journal of Applied Physics,
33, 1482–1498.

Carcione, J. M., 1996, Plane-layered models for the analysis of
wave propagation in reservoir environments1: Geophysical
Prospecting, 44, 3–26.

——–, 2007, Wave fields in real media: Wave Propagation in
Anisotropic, Anelastic, Porous and Electromagnetic Media,
Handbook of Geophysical Exploration, vol. 38: Elsevier
(2nd edition, revised and extended).

Carcione, J. M., Santos, J. E., and Picotti, S., 2011,
Anisotropic poroelasticity and wave-induced fluid flow.
Harmonic finite-element simulations: Geophysics Journal
International, 186, 1245–1254.

Gelinsky, S. and Shapiro, S. A., 1997, Poroelastic Backus-
averaging for anisotropic, layered fluid and gas saturated
sediments: Geophysics, 62, 1867–1878.

Gurevich, B., 2003, Elastic properties of saturated porous
rocks with aligned fractures: Journal of Applied Geo-
physics, 54, 203–218.

Gurevich, B., Brajanovski, M., Galvin, R. J., Müller, T. M.,
and Toms-Stewart, J., 2009, P-wave dispersion and attenu-
ation in fractured and porous reservoirs–poroelasticity ap-
proach: Geophysical Prospecting, 57, 225–237.

Krzikalla, F. and Müller, T., 2011, Anisotropic P-SV-wave dis-
persion and attenuation due to interlayer flow in thinly lay-
ered porous rocks: Geophysics, 76, WA135.

Nakawa, S. and Schoenberg, M. A., 2007, Poroelastic model-
ing of seismic boundary conditions across a fracture: Jour-
nal of the Acoustical Society of America, 122, 831–847.

Santos, J. E., R. M. Corredor, and J. M. Carcione, 2014, Seis-
mic velocity and q anisotropy in fractured poroelastic me-
dia: International Journal of Rock Mechanics and Mining
Sciences, 70, 212 – 218.

Santos, J. E., Carcione, J. M., and Picotti, S., 2011, Analysis of
mesoscopic loss effects in anisotropic poroelastic media us-
ing harmonic finite element simulations: 81th Annual Inter-
national Meeting, SEG, Expanded Abstracts, 2211–2215.


