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PREFACE
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ABSTRACT

The complex dynamic Young's and shear moduli, loss factor and Poisson’s ratio
are presented for naturally compacted glacial snow through a density range of 0.4
to 0.9 g/cm®. A frequency dependence of the moduli and its effect on the computation
of Poisson’s ratio is demonstrated. Considerable scatter is exhibited in the loss
factor measurements; however, indications are that the loss factors have negligible
effect on the modulus computations.




SYMBOLS

= density, g/cm*
= maximum amplitude ratio, longitudinal

P
Ry = maximum amplitude ratio, torsjonal
4, = sample length, longitudinal, cm
L7 = sample length, torsional, cm

,R "= vibration frequency at ratio RL
fp = vibration frequency at ratio Ry

(tan 5/2)L = loss factor, longitudinal
(tan 5/2)T = loss factor, torsional

E* = complex dynamic Young’s modulus
G* = complex dynamic shear modulus
#* = complex dynamic Poisson’s ratio

EQUATIONS
tan 8/2 = 2
n Rmax

E*orG* - 16 12pr2Rmax [T+ (tan? 5/2))

E1 or 6;"; = E* or G* cos §
EzorG2 = El orG1 tan §

2 21%

, [(51_201) + <E2-202)]

# =4 M
2G*




DETERMINING THE DYNAMIC PROPERTIES OF SNOW AND
ICE BY FORCED VIBRATION

by
N. Smith

Introduction

The dynamic properties of Greenland snow and ice have been extensively studied using
elastic theory for wave propagation. Velocity measurements of seismic waves from explosive det-
onations on the Greenland Ice Cap by Bentley et al. (1957) were analyzed to develop relationships
for incompressibility (bulk modulus), rigidity (shear modulus) and Poisson’s ratio with depth and
density. J.L. Smith (1964) also made sonic velocity measurements on Greenland snow employing
transducers and a soniscope. However, these elastic theory methods do not provide the loss fac-
tors associated with internal damping.

Nakaya (1959) determined the Young's modulus and corresponding loss factor of Greenland
snow and ice from flexural vibration testing of small rectangular bars. This method of testing is
not conducive to determining the shear modulus or Poisson’s ratio.

Lee (1963) developed a linear viscoelastic criterion for using steady-state sinusoidal vibra-
tions of cylindrical samples to determine the complex Young's and shear moduli, the correspond-
ing loss factors, and a complex Poisson’s ratio. This criterion requires measurements of Rax

(the maximum ratio of the accelerations at the free end of a sample to those at the end attached to
a driver) and f,, (the corresponding vibration frequency) for both the longitudinal and torsional -
modes of vibration.

The vibration apparatus shown in Figure 1 was first tested in Greenland during the summer
of 1963 (N. Smith, 1964). Modifications to the apparatus were made by the author after the initial
tests. Additional experiments on snow with a density of 0.42 to 0.88 g/cm® were conducted at
Camp Century, Greenland, during the summer of 1964.

This report contains an analysis of the data obtained in 1964 (Appendix B).

Test equipment

A schematic drawing of the test apparatus is shown in Figure 2. Electrical power for the
instrumentation was obtained from the camp generators through a 1000 volt-ampere Sola 1% voltage
regulator. The output signal of a Hewlett-Packard, Model 200AB audio oscillator with a frequency
range of 20 to 40,000 Hz was used to drive a Vibrasonics Model VS-10 bench-type permanent-magnet
shaker. The oscillator output was amplified with a 50-w Bogen Model CHB50 power amplifier. The
test stand (Fig. 1) was a Sears, Roebuck and Company drill-press stand which supported the shaker
on the lower platform and the sample vibration table assembly on the upper platform. The sample
vibration table assembly provided a means for producing torsional as well as longitudinal oscilla-
tions in the sample. Also, it transferred dead load, which the shaker could not withstand, to the
upper platform of the stand through two sets of radial wire springs. The shaker was connected to
the table assembly by a 3-v, %-in.-diam electromagnet having a maximum force output of 8 1Ib. The
shaker excited the table assembly axially for the longitudinal mode and through a flex-pivot arrange-

L ‘ent for the torsional mode. -Changing from the longitudinal to the torsional mode was accomplished

by switching off the electromagnetic coupling and rotating the upper platform to align the flex-pivot
drive with the shaker drive. ‘ '
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Figure 1. Laboratory and test apparatus at Camp Century, Greenland.
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Figure 2. Schematic of dynamic test apparatus.
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The oscillations induced in the sample were Measured by Columbjg Research Laboratories.

Voltmeter having 3 voltage range of 1.0 millivolt to 1000 volts 'ms in six decade ranges for g log-
arithmic scale ang a frequency response range of 10 to 250,000 Hz. Frequency readings were

Figure 3. Cylindrical sample cutter,
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6.0 and 7.5 cm in diameter. USA CRREL auger core samples with a densﬁty of 0.78 g/cm‘.were
obtained. Additional cores with a density of 0.88 g/cm® were obtained from the thermal drill
project. All the samples tested in 1964 were cut to a nominal diameter of 7.5 ¢m and had a mini-

formed at ambient temperatures of -15 to -13°C.

Test procedure

The sample vibration table was heated to a temperature slightly above QC by conduction
from a steel plate heated on an electric hot plate. The test sample was set and positioned con-
centrically and perpendicularly on the vibration table. Before vibration of the sample was
started, sufficient time was allowed for the sample to become bonded to the vibration table by

The fundamental resonant vibration frequency of the sample was determined by varying the
input frequency with the oscillator while watching the accelerometer outputs on the oscilloscope.
At resonance, a standing quarter-wave in the sample produced a maximum acceleration at the free
end and a minimum at the attached end. Theoretically, the acceleration of the attached end would
be zero at the nodal point for a perfectly elastic material. Viscoelastic materials develop a
standing quarter-wave dependent upon the damping factor (Lee, 1963). By employing the x-y curve
tracing feature of the oscilloscope the phase shift of approximately 90° between the input and out-
put signals was used as the criterion for rough determination of the fundamental resonance frequency
of the sample. The vibration frequency was then varied by the smallest readable increment on the
interpolation scale for the particular frequency range until the minimum value of the inverse R nax
was determined with the voltage divider. ’

Data analyses

Moduli versus frequency. Samples 29 cm to 55 cm long were tested. Analysis of the data
indicated that the moduli for the two vibration modes on the same sample length did not correlate
to result in a reasonable computed Poisson’s ratio, Figures A1-A3 (Appendix A) show that the
moduli increase with increasing frequency. Values of Poisson’s ratio, computed from complex
Young’s modulus and complex shear modulus measured at a given frequency, are reasonable (see
Table I).

Moduli versus driving force. During the experiments the drive force as indicated by acceler-
ation was held nearly constant: however, there was some variation for different samples. Figures
A4 and A5 show that the moduli do not vary Systematically with the maximum acceleration of the
input wave for the range of driving forces employed in these experiments,
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Table 1. Complex moduli and Poisson’s ratio for frequency of 1000 Hx.
Complex Complex Complex
Young’s ‘ shear Poisson’s
Density modulus modulus ratio
(g/cm’) (10*° dynes/cm?) (10*° dynes/cm?)
: " 0,48 1.35 0.550 0.23
0. 55 2,13 0.848 0.26
’”“ 0. 62 3.38 1.31 ' 0.28
0.68 4,26 ‘ 1.68 0.28
0. 72 4,95 1.92 0.29
0.88 7.65% 2, 98* 0.28
* Frequency = 1200 Hz.
Table II. Loss factors for samples with average length of 31.46 cm.
Sample Longitudinal Torsional
number Density length length Longitudinal Torsional Average
(8/cm?) (cm) (cm) (tan 8/2); (tan 8/2)p (tan 8/2);
81 0.412 32,70 32.70 0.0395 0. 0354 }
. 0. 0359
&1 0.412 32. 70 0. 0327
4-1(a) 0.482 . 31. 16 0. 0233
4- 1(b) 0.482 31, 14 . 3114 0. 0370 0.0317
4- 1(b) 0.482 31, 14 31, 14 0. 0246 0. 0320
4:1(b) 0. 482 31, 14 0.0313
4-1(%) 0.482 - 31, 14 0.0324 & 0.0308
4-1(¢c) 0.482 31. 14 - 8L14, 0. 0230 0.04 14
4-1(c) 0.482 31. 14 31. 14 0. 0346 0. 0506
4-2 0.483 33, 10 33, 10 0.0183 0.0204_
1-1 0.551 29,53 29.53 0. 0386 0. 0299 0.0342
2-2 0.618 30. 50 _ 30. 30 0.0841 0. 0336 0. 0338
6-2 0. 660 32,73 . 32,73 0.0210 0. 0292 0.0251
e 3-3 0. 688 30. 60 31,50 0.0252 0.0210 0.0231
5-2 0.713 30. 70 30. 80 0.0137 0.0154
5-2 0.713 31,63 31.63 0.0152 0.0231 :
52 0.713 31, 63 0.0138 } 0.0192
5-3 0.717 30.54 30. 54 0. 0292 0, 0237
72 0. 735 31.56 31,56 0.0291 0. 0092
7-2 0.735 31.10 ‘ 31. 10 0.0193 0.0150 } 0. 0223
7-2 0. 735 31. 10 0. 0387
C-20 0. 762 31,02 31,02 0. 0243 0. 0334
C-20 0. 762 31..02 0.0136 } 0. 0202
C-20 0. 762 31.02 0. 0095
C-36 0. 781 84, 08 34,08 0, 0070. 0. 0140 0.0105
72C-2 0. 896 32.80 ' 0. 0087 } 0. 0063
72C-2 0.896 81,50 81.50 0. 0049 0.0052

Note: Testing temperature =.-15 to - 13°C,
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Loss factor versus driving force. Figures A11-A13 were plotted to study the effect on the
loss factors of slight variations in driving force. There is a trend to an increase in tan §/2 with
increasing input acceleration, but the scatter of points is so great that quantitative values cannot -
be obtained with a reasonable degree of confidence.

Loss factor versus density. The test data indicate that the scatter in loss factor measure-
ments was less pronounced for the samples having nearly . qual lengths throughout the density
range. Table II lists the loss factors for samples with an average length of 31.46 cm which were
plotted as a function of density in Figure A14. The loss factors for the two vibration modes did
not vary enough in magnitude to warrant separate plots of the relationship to density. Therefore,
Figure A14 shows the general relation of the loss factor to density without separation of the
effect of frequency or mode of vibration.

Moduli versus density. Values of the moduli for a frequency of 1000 Hz as obtained from
Figures A1-A3 are listed in Table I and plotted as a function of density in Figure A15. The moduli
have a linear relationship with density above a density of 0.55 g/cm®; however, below that density
a logarithmic relationship is indicated. Empirical equations were not developed for the special
case of a single frequency. . ’

Poisson’s ratio versus density. Tfi;e computed complex Poisson’s ratio values of Table I
are plotted in Figure A16 as a function of density. Extended extrapolations of the moduli-versus-
frequency curves result in unreasonable values of Poisson’s ratio, indicating that such extrapola-
tion is probably not feasible because the range of frequency used was not sufficient to define the
relationship. '

Summary and conclusions

These experiments have established that the dynamic moduli of naturally compacted glacial
snow vary with frequency. The frequency dependence is more pronounced for the snow with a
density helow 0.6 g/cm’. '

Small variations of the drive force at low drive levels did not seem to affect the moduli and
loss factors.

The loss factor measurements exhibit considerable scatter. However, the magnitude of the
loss factors have negligible effect on the modulus computations.

It is thought that the variations in freeze-bonding the accelerometers to the snow samples
introduced scatter in the loss factor measurements. Ideally, an optical system with sufficient
motion detection resolution should be employed to determine the source of the scatter.

These conclusions may not apply exactly to test results obtained at a testing temperature
different than -15 to ~13~C.
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Figure A13. Loss factor vs driving force.
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