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PRESSURE WAVE PROPAGATION IN SNOW
WITH NONUNIFORM PERMEABILITY

by
Yin-Chao Yen and S.S. T. Fan%

Introduction

The unsteady flow of gases through porous media has been studied by
Duwez and Wheeler (1948), Muskat (1937) and Hetherington et al. (1942).
More recently, Green and Wilts (1951) obtained a numerical solution for
the pressure distribution arising from the unsteady-state, isothermal flow 3
of gas through porous media by means of an electrical analogy. Aronofsky '
and Jenkins (1951) solved the nonlinear differential equation describing
unsteady flow of gases through porous media by the method of finite differ-
ence. Roberts (1951) employed a stepwise linearization process to obtain
an approximate solution to the equations of unsteady flow through porous
media. Bruce et al. (1953) solved the gas flow problem with a digital
computer in connection with a gas production study. However, in these
previous studies, the physical properties of the porous medium and the
imposed boundary conditions have all been assumed or kept constant., The
present study extended the investigation to a medium with nonuniform
permeability. The results have practical application in describing the
propagation of pressure in a deep layer of snow following a massive ex-
plosion or detonation above the surface. In order to simulate the surface
pressure variation resulting from an explosion, the boundary condition
imposed on the snow was made to decay exponentially with time. The
conventional case of constant boundary conditions was also studied. To
facilitate the mathematical analysis, several assumptions were introduced.
The flow was assumed to be isothermal and the gas was assumed to be-
have ideally. The porous medium was considered as a rigid and incom-
pactible mass.

Theory ,

Assuming that Darcy's law holds for the case of unsteady state flow
of gases through porous media with nonuniform permeability resulting
from an impinging pressure front on the surface of the medium, we can
write

2 (ek)-ek w
where
= permeability of the medium
= viscosity of the fluid
= pressure
= distance in the direction of flow
= density of fluid

= porosity

¢ 8 © KT T X
1

= time

%At Department of Chemical Engineering, Univer sity of New Hampshire,
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2 PRESSURE WAVE PROPAGATION IN SNOW

Assuming ideal gas behavior, i.e., p = p/rt, and constant viscosity eq 1
could be written as

1 |9k 8p azgz _ .8
2n [-5; 9x +k8 ‘1"5?‘ (_2)

with the following initial and boundary conditions

p = p; for 0 g xg L, tg O (3)
P = pp,tatx =0, t20 (4)
%E:oatx=L,t>0 (5)

where p; is the initial pressure throughout the medium and Pp,t 1is the
pressure imposed on the boundary. For simplicity in the subsequent
analysis, we define a set of dimensionless variables as follows:

= _P
b o= (6)
Ph, 0
X
k
0= K (8)
K,
_ pb,o ot
. T = '—W (9)
where
Pp o = imposed pressure on the boundary att = 0
L = depth of the porous medium
ko = permeability at the surface,.

Subsequently, eq 2 can be expressed as
1 922 da 82 _ 9
¢[°5b EE ]‘ 7 (10)

and in finite difference form

- ar 1 [%E+ag-"-4
Ve, roar = Vet ORE b [ A <¢2§+A§,7

i -AE,.T) + “g("’zg vat,r TV AL, r - z‘ng,v>]. (11)

To insure stability of the solution (Richtmyer, 1957), AT/A £2 was taken
to be 1/4; hence AT = A €2 /4. The air permeability k and porosity ¢ of



PRESSURE WAVE PROPAGATION IN SNOW 3

snow appearing in eq 2 are functions of the depth x. Representative data
taken from the Arctic ice cap are expressed as

k

It

64 - 0.012x + 84 exp (-0.0013x} (12)

and

¢ 0.463 - 0.0000574x + 0.166 exp (-0.00217x%) (13)
where x is the depth below snow surface in cm (Bader et al., 1955). It
appears from eq 12 that k = 0 at x = 5340 cm. Therefore L was taken to
be 5340 cmn. From eq 7, 8, 12, and 13, we have

64 - 64.0 + 84 -6.942
and
b = 0.462 - 0.3065¢ +0.166 exp (-11.596). (15)

Equation 10 was solved numerically according to its finite difference forms
as shown in eq 11 and employing eq 14 and 15 for the dimensionless per-
meability and porosity terms, respectively.

Computation and re sults

In this study, the solution of eq 10 was obtained for two differenttypes
of boundary conditions.

Case I: Boundary pressure constant for 7 > 0.

In the following discussion the pressure stands for %h, P £
was assumed that at 7T &0, Yg:0 = pi/Pp,o = Vi everywhere in the medi- -
um. At T =0, the pressure on the boundary (£ = 0) was suddenly raised
to $p, o = 1. For computation purposes, Yo, 0 = (. +y;)/2. For
T>0, Yp, 7 = 1. Therefore, the following initial and boundary conditions
were correspondingly established:

g =g for <0, 0€E <! , (16) ..
¢=¢b7=lat7>0,§=0 ) (17)
%% =patg =1 7>0. : ‘ {18)/

The computation was performed on IBM 1620 and IBM 7094 digital
computers with an increment size of A§ = 0.1 for pp,o = O and 500 atm.
The results are presented in Figures la and 1b with pyy plotted versus
rat £ = 0.1, 0.3, 0.5, 0.7, and 0.9 for pp o = 5 and 500 atm, respec-
tively. ppyis defined to be the ratio of (p - Pi)/(Pb, o = Pi)-

Case II: Boundary pressure decays exponentially with time.
The boundary condition for this case vwil'l be represented by

Yy, = Wy T (¥ exp(-BT) | (19)
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PRESSURE WAVE PROPAGATION IN SNOW 5

in which B is a decay constant. To cover a wide range of decay rates, four

values of B, i.e., 10, 20, 30, and 40, were used for all the computations

conducted. In Figures 2a and 2b pyy is plotted versus 7 at various values

of £ for B = 10 and Pp,q = 5 and 500 atm, respectively. A similar plot .
for B = 40 is shown 1r’1C.)E‘igures 2c and 2d. It should be noted that Af =

0.1 was used in all the above computations. To check the adequacy of the

grid size, the computation in Case II for B = 10 and py, o = 5 atm was 5
repeated with A = 0. 05; the results are presented in f?igure 2e. A
comparison between Figures 2a and 2e clearly indicates that, at small 0
values of £, the results are almost identical with those obtained by using
AE = 0.1, Atlarger values of £, the discrepancy becomes more notice-

able; however, the deviations amount to only a few per cent at the most.

For one set of data, the computation time required for A€ = 0.05 was

eight times longer than with Af = 0.1; it was therefore considered justi-

fiable to use the increment A€ = 0.1 in all the computations.

The relationship between the dimensionless time 7 and the real time
t is given in eq 9. Substituting numerical values for p, L, and k, into
eq 9 leads to

¢ = 373 7 (20)
I:‘b,o

which gives a simple relation between the dimensionless time T used in
the plots and the real time t.

o8 T T T T !

Pro =5alm, B=/0

o
o

1

o
*

©
™
e

DIMENSIONLESS PRESSURE, P,

o] 0.1 0.2 0.3 0.4 0.5
DIMENSIONLESS TIME, T .

a

Figure 2. Relationship between Py and 7, Case II,
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Conclusion
S eegston

From the plots in Figures 2a and 2c, it can be noted that the depth and
magnitude of the penetration of the pressure front into the snow layer is
strongly dependent on the decay constant B, The effect of the maximum
pressure pp . on the propagation of a pressure wave in the medium canbe
observed by comparing Figures la and 1b, Figures 2a and 2b, or Figures .
2c and 2d. At high values of Py, the pressure wave propagates more
rapidly and converges more qul’clotly with respect to real time.

One set of the data was plotted as shown in Figure 3 in order to make
a comparison with results from the constant permeability study by
Aronofsky and Jenkins (1951). However, it should be noted that the di-
mensionless time T = kopot/$ pl? employed by Aronofsky and Jenkins dif-
fers from the T = kgpot/2pL% used in this study by a factor of 2/4.

The porosity considered in this case did not vary drastically with
position for 0< § < 0.5. An average value of ¢ = 0.5 was considered for.,
the plot 7 = 0.0l in Figure 3 to make a comparison. According to the
factor 2/p, the plot 7 = 0.0l would correspond to the curve of 7 = 0. 04
in Figure 14 of Aronofsky and Jenkins, which is shown in Figure 3 as the
dashed line. It can readily be noted that the pressure front propagated
much more slowly in this investigation because of the increase in perme-
ability of the medium with depth.

1.0 T T T I T T T I

0.8 -

:
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)
D
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™
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o] 0.2 X
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Figure 3. Comparison of the rate of pressure
wave propagation through porous media with con-
stant (dashed line) and variable permeabilities.
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The assumption of ideal gas flow and a rigid incompactible porous
medium will become questionable under high pressure conditions. There-
fore, it will be interesting to carry out experimental measurements to
check their validity. The analytical study can be continued with other types
of boundary conditions, such as the imposition of a damped sinusoidal pres-
sure on the surface.

The introduction of one of the volume-explicit equations of state for
real gases will eliminate the assumption of ideal gas behavior; however,
the resulting differential equation will become much more complicated.
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