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Study of wave motions in fluid-saturated porous rocks*

C. H. Yew and P. N. Jogi

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin,

Austin, Texas 78712
(Received 5 November 1975; revised 25 March 1976)

In this investigation, Biot’s theory was employed in the study of wave motions in fluid-saturated porous
rocks. Consistent with the described experimental arrangement, Biot’s equations were solved using a
Laplace transformation. The theory predicts two dilatational waves: a slightly dispersed fast wave
propagating ahead of a heavily dispersed and attenuated slow wave. By comparing these results with
experimental results, it becomes evident that the measured waves are in fact the fast waves.

Subject Classification: [43]20.15, [43] 20.40; [43]40.50.

INTRODUCTION

A porous material may be regarded as a material
whose solid portion is continuously connected through-
out the whole volume to form a loosely connected solid
matrix and voids through which the fluid or gas may
flow. The importance in understanding the propagation
of stress waves in such a medium to petroleum engi-~
neers and the geologists need not be emphasized here.
Extensive research in this subject has been carried
out by many authors, '* and different theories regard-
ing the wave propagation in such a ‘medium have been
developed. One of the well established theories is due
to Biot. *7 In his approach, the macroscopic stress—
strain relation of a fluid-saturated porous medium was
derived by assuming the existence of a strain-energy
density function; the coupling effect between the solid
skeleton and the contained fluid was taken into considera-
tion by introducing a mass (inertia) coupling parameter
into the kinetic energy of the system; and the damping
effect of the contained fluid was expressed by dissipa-
tion energy expressed in terms of the relative velocity
between the fluid and the solid. Using Lagrangian
equations, Biot derived the equations of motion for this
system which for a one-dimensional case has the form

82y 2y du 82y 9
Pg;z+Q§z—P11'éTzfplz—rat +bor(-0) "

8% 82U o%u U 9
Qa—x-z+R5;z—Plza—tz'+Pzz—zat by u-1),

where u is the displacement of the solid skeleton and U
is the displacement of the fluid. The parameters P, @,
and R represent the mechanical properties of the fluid-
saturated porous medium. A detailed discussion of
these parameters was made by Biot and Willis.® These
parameters are inherently positive and satisfy the in-
equality

PR- >0, (2)

The parameters p,;, pz,, and p;, are the dynamic co-
efficients that take into account the inertia effect of the
moving fluid. These parameters are related to mass
densities of the solid (p,) and the fluid (o4) by the equa-
tions

Pu+P=(1-B)p, ,

3)
P12+ Paz =B Py
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and satisfy the inequalities /
P11>0, p22> 0, p,<0,
P11P22 — P fz >0, 4)
Ppyz + Rpyy —2Qp,3>0,

where g is the porosity of the medium and pyz is the cou-
pling parameter. The physical significance of these
parameters has been discussed by Biot® and will not be
repeated here.

Finally, the parameter b represents the damping co-
efficient between the fluid and the solid. In analogy to
Darcy’s equation, coefficient » may be related to the
permeability K, the porosity g, and the fluid viscosity
1 by the equation

b=up*/K. (5)

Realizing that the viscosity p may be dependent on the
frequency and geometry of the pores, a method for cor-
rection of u was also developed by Biot. 7

Biot’s theory predicts the existence of two attenuated
dilatational waves (P; and P,) and one attenuated rota-
tional wave (S). Using Biot’s equation, the problems
of the reflection and refraction of waves at the inter-
face, and the surface waves in such a medium were ex-
tensively studied by Jones, ° Deresiewicz, 1913 and
Geertsma and Smit, 14

The experimental investigations on the wave motions
in a fluid-saturated porous medium do not, however,
match the above quoted analytical development. Al-
though the sonic-pulse technique has been extensively
used in determining the well characteristics!® and the
rock properties, 1818 the theoretical foundation of this
technique is based on the consideration of elastic waves
in an elastic anisotropic medium. A qualitative applica-
tion of Biot’s theory in the interpretation of experi-
mental results, to the best of author’s knowledge, is
scarce. Using the sonic pulse technique a great amount
of data on the wave speeds in the fluid-saturated rocks
of various porosities and confining pressures were ob-
tained by Fatt, ®° Wyllie, Gregory, and Gardner?®2! and
Gregory.® The purpose of this study is to make a com-
parative study of these experimental results with that
predicted by Biot’s theory.

In the following sections, Eq. (1), is solved consis-
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FIG. 1. Experimental arrangement.

tent with the experimental arrangement and the char-
acteristics of waves are discussed in detail. The re-
sults are then discussed and compared with Fatt’s and
Gregory’s data.

I. ANALYSIS

The experimental arrangement for obtaining the rock
properties using the sonic pulse technique is sketched
in Fig. 1.17 The fluid-saturated porous specimen is
sandwiched between a pair of resonant-frequency-
matched piezoelectric crystal disks. One of the piezo-
electric disks serves as the driver and the other serves
as the receiver. A train of oscillations, either at a single
frequency or in the form of a wide-band pulse, is tone
bursted into the specimen by the driving disk. The
signal which propagates through the specimen, is moni-
tored by the receiving crystal. The wave speed is then
obtained by dividing the specimen thickness by the mea-
sured transit time. A typical oscilloscope record from
the test is shown in Fig. 2. The detailed experimental
arrangement and technique is described in Refs. 17 and
23 and will not be repeated here,

Consistent with the above-described experimental
arrangement and method, the boundary conditions for
Eq. (1) may be written as

u(0, t)= U0, t) = Uy, sinwt[H(t) - H(t - T)], (6)

where U, is the amplitude of oscillation, H(f)is the

Heaviside step function,  is the angular frequency of
the oscillation, and T isthe time period of the pulse.

- |
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Driving
signal
1.12 mHz

Received

signal

—ﬂ F—.Z U sec

Water Saturated Dolomite (Kasota)
g8 = 0.108
Specimen Thickness = 1 inch

Tested at Atmospheric Pressure

FIG. 2. A typical oscilloscope record for water-saturated do-
lomite (Kasota): B=0,108; thickness=1 in.: tested at at-
mospheric pressure.

Since the wave speed, or the arrival time of the wave,
is of main concern in this experiment, it is reasonable
to assume that the specimen is semi-infinite as long as
the arrival of the waves is not affected by the reflected
waves from the boundaries of the specimen. In the fol-
lowing analysis, we further assume that the output
voltage of the receiving disk is directly proportional
to the average displacement of the fluid and the solid
portion of the specimen over the contact area of the
disk, i.e.,

Vout =K1[u(x; t) + U(x9 t)] ’ (7)

where K, is the calibration constant. [The value of K;,
which depends on the strength of the signal, and rela-
tive stiffness between the crystal disk and specimen,

is difficult to determine accurately.] Again, since the
wave speed is of main concern here, the numerical val-
ue of constant K, is not important in the analysis.

Applying Laplace transformation to Egs. (1) and (6)
and assuming that the medium is initially at rest, the
displacement u(x, ¢)+ U(x, t), after considerable alge-
braic manipulations, has the form

us U= mUppw <J‘ (1 —e'Ts)[sa—f+(sz+ds+fz)1/z] —sh+n+(s?+ds+ 2/ 2]
Br

2mi

1-eTS)[sa-f- (P +ds+ ) 3] sh-n+(s* +ds+ fA)M 3]

(% +wP)(s = n)(s® +ds + fEN/2

Xexp(— A X+ st)ds + f

where A, and A, are the roots of equation

A\t = (Es+ Bs®) 2%+ (Cs*+ Ds®) =0,

By (P +wO)(s = )(s® +ds + f)/2

exp(- xzx+st)ds) , (8)

(9)

The constants in Eqs. (8) and (9), written in terms of Biot’s constants, are defined as follows:
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2 d= 2BE -4DA
A=PR-Q% “~BT-34C °

E
B= Rpy,+ Ppyp — 2Qpy,

I =@ aAonTz

C=py1P2s - Pfa?

7= (R(pyy — 2p;) = (P- 2Q) Dy

(B%-4AC)W/z ’
Bz_4Ac)1/2
D =b(pyy +Paz +2py5), :m s : (10)
P-2Q-
E=(P+R+2Q)b, n=§'¥ﬁQAcs){i)zi s
R(py +2py) — (P+2Q) pap __(R+Q)b
N T R - P

We note that Eq. (9) becomes the dispersion equation for dilatational waves derived by Deresiewicz!® when the
Laplacian parameter s is replaced by iw. Equation (8) obviously suggests the existence of two dilatational waves

in accordance with parameters A, and X,. It should be mentioned here that the nature of the integral in Eq. (8)is
very. similar to the integral obtained in the study of wave motions in fiber reinforced composites.?t A representa-
tive contour for evaluating the integrals in Eq. (8) is shown in Fig. 3. By evaluating the contour enclosed by the
large semicircle on the right half plane and making use of Jordan’s lemma, the propagation speeds of the two waves

may be expressed as

2(PR- Q%)

2 - . 11
Vie [(RP11 + PPz = 2QP12) ¥ [ (RPy; + Pogs — 2Qp12 P — 4(PR — Q%)(011022 — P3) 2 ] a1

Equation (11) has the same form as that obtained by
Biot® and Deresiewicz.!'® Following Biot,® v, and V,
are denoted respectively as the fast wave v and slow
wave v,.

In the following discussions, the integral in Eq. (8) is
evaluated numerically based on the material properties
of kerosene-saturated!® and water-saturated sandstones.??
The material properties and the corresponding Biot’s
coefficients are tabulated in Table I. Referring to Fig.
3, the poles, s=+iw, contribute the steady-state solu-
tion of Eq. (8). After considerable computations, the
results may be summarized as follows: Corresponding
to A, and A,, the two waves with propagation speeds v
and v, have the form

u+ U =A, exp[ik,(x - cot)], (12)

FIG. 3. Contour of integration.
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I

where =1, 2 relates the corresponding contributions
from the parameters A, and X,. The plot of #; with c,
provides the information on the dispersive character-
istics of waves in the medium. Figures 4 and 5 show
the dispersion curves of the fast and slow waves in the
kerosene~ and water-saturated sandstones at various
damping coefficients respectively. The amplitude 4,
of waves of both kinds are not only frequency dependent
but also spacially (distance) dependent, Figures 6-9
show such dependencies with damping factors =1 and
12 for both sandstones.

12 beo 12
. > >

F FAST WAVE ] ,/./ N L $
: [ T e e B

£ 10
> >
= =
%} bao I3}
Q — o ges — 06 o
o T AT 111 @
> ¥ / e >

bx5,
A i
W - (S aa 04w
@ | (b=t A7 A 7]
< | LA A7 / SLOW [WAVE+= | &
x
a - 7 =gy d o
// L1]3 Lt ’/
g ‘}//’ s 02
=
s
10
10° 10* 10°

FREQUENCY Hz

FIG. 4. Dispersion curves of waves in water-saturated Boise
sandstone. :
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TABLE I. Material constants and wave speeds.
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Bulk

Biot—Willis Constants

Compressibility % 108 pai
. psi

Pressure of fluid? Porosity  Density x10™
Material Fluid (psi) x 1078 1b/in.? 8 b sec?/ in.t P R Q
Limestone

(Indiana) Water 10 000 2.0 0.173 2,248 5,654 0,0849 0.0118

(assumed)

Dolomite

(Kasota) Water 5000 2.8 0.108 2.449 8.622 0.0381 0.0063
Limestone

(Indiana) Water 5000 2.8 0.144 2,295 5.632 0.0483 0.0386
Limestone

(Indiana) Water 5000 2.8 0.173 2,245 5,096 0.0584 0.0315
Sandstone

(Beria) Water 5000 2.8 0.207 2.164 4,568 0.0718 0.0159
Sandstone

(Boise) Water 5000 2.8 0.268 2.045 3.118 0.0923 0.0188
Limestone

(Indiana) Water 1000 3.3 0.173 2,242 3.579 0,0454 0.0600
Sandstone

(Boise) Water 1000 3.3 0,268 2,041 2,666 0.0745 0,0450
Chalk Water 1000 3.3 0.306 2,029 1.982 0,0828 0.0548
Chalk Water 1000 3.3 0.388 1.882 1.266 0.1153 0.0183
Sandstone®

(Boise) Kerosene 5000 5.0 0.260 2,446 1.445 0.0473  0.1078

Calculated Velocity
from Eq. (11) Calculated Velocity Measured Velocities
Pp=0 from Egs. (16) and (ft/ sec) Calculated
(ft/sec) 7) (ft/sec) Dry Specimen Wet Specimen P12

Material vy Vg vy Vs 0% Saturation 100% Saturation x 1078
Limestone

(Indiana) 13721 6018 13721 6018 13670 14085 0.61
Dolomite )

(Kasota) 15970 5108 15971 5103 16 340 16 340 4.87
Limestone

(Indiana) 13466 4 946 13460 4962 13430 14270 6.76
Limestone

(Indiana) 13040 4983 13036 4992 12755 13625 . 8.4
Sandstone

(Beria) 12694 5059 12693 5061 12525 13025 6.5
Sandstone

(Boise) 10992 5034 10994 5042 10860 11385 2.8
Limestone ) ‘

(Indiana) 10957 4341 10934 4401 10840 12600 11.7
Sandstone

(Boise) 10187 4500 10175 4529 10130 11160 8,43
Chalk 8918 4417 8892 4469 9310 9825 2.81
Chalk 7642 4614 7637 4624 7930 8135 9.257
Sandstone

(Boise) 7683 3550 -0.001p

(assumed)

. *alues taken from Ref. 26.

The pole s=7 contributes another steady state solu-
tion of Eq. (8). On superimposing this solution with Eq.
(12) the amplitude ratio of the subsequent cycles can
be expressed as

A (—b(Q+R) )
Ay exp QP22 — Rpy2 A7)

where AT is the time period between A, and A4,. It can

(13)
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PData taken from Ref. 19.

be shown that this amplitude ratio is nearly unity for the
material constants used in this investigation.

The square root term in the denominator of the inte-
gral of Eq. (8), and the expressions of X, and X, when
equated to zero separately contribute four branch points
8y, Sz, Ss, and s, as shown in Fig. 3. Thus the inte-
gration along the contour as depicted in Fig. 3 yields
the following expression for displacement due to branch
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kg

Equation (14) contributes small oscillations superimposed on the initial portion of the main pulse. After consider-

_ mUw [J““[-m —f= @ =dr s AR [~ vk —n s (2= dr + £ )2 e " sin(r/24) r[(D/C) - ¥ ]} /2x
- o E=dr + A 1) %+ @?)

dr] . (14)

able numerical evaluations, it can be shown that the contributions from Eq. (14) are small in comparison with the

contributions from the poles in the cases discussed.

Il. CONCLUSION AND DISCUSSION

From the wave analysis presented in the previous
section, it can be concluded that the main bodies of the
waves are two steady states waves due to the poles s
=xiw. These two waves propagate with a constant ve-
locity vy and v, [Eq. (11)] depending upon the material

\\wu

2
—-FAST |WAVE
—SLOW |WAVE
0 | b=l
e 4 S

3 3
X INCHES

, FIG. 6. Amplitude decay of the fast and slow waves in water-
saturated Boise sandstone. Damping coefficient b =1.
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properties of the saturating fluid and the porous me-
dium. The magnitude of these two velocities cannot,
however, be readily calculated from Eq. (11) since the
parameter p,,, which describes the interaction between
the solid and the fluid portion of the medium, is un-
known. Using the same experimental arrangement as
sketched in Fig. 1, Gregory®® and Wyllie?! have made an
extensive investigation on the wave speeds in the fluid-
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FIG. 8. Amplitude decay of fast and slow waves in kerosene-
saturated Boise sandstone. Damping coefficient b=1.
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saturated rocks. For reasons that will be made clear
in the later discussions, only the fast waves (i.e.,
waves traveling with speed 2;) were observed in the ex-
periment (for an example, see Fig. 2). Using Greg-
ory’s data, the parameter p;, for rocks under various
confining pressures is calculated and tabulated in Table
I along with the wave speeds calculated by assuming
p;2=0. It is clear that the magnitude of p,, is small

and its contribution to the magnitude of wave speeds
I

2050(1 — ¢/pyps0fa)

is approximately 13% at the most. It should how-

ever be mentioned here that some errors might have’

been involved in the determination of Biot’s con-
stants P, @, and R. The method of determining
these constants is presented in Appendix I. The
small value of p;, implies that the ‘interaction be-
tween the solid and fluid portions of the medium is
not strong in this type of experiment. By letting
p12 = 0, Eq. (11) may be written as

2
Vie

where a,=(P/p)'/? and oy =(R/p; /2. If further as-
sumptions are made that the terms Q?%/p,p;0? oZ and
4Q23(1 -B)/psps were small in comparison with its other
terms, an approximate formula for computing the fast
and slow wave speeds can be written as

v?:ai/(l—ﬁ):P/p,(l—B) (16)
v2=R/psp . (1

Since P=2u +, where A and u are the Lame constants
for the porous medium, we conclude that the fast wave
is equivalent to the dilatational wave when the porous
material is modelled as a homogeneous elastic medium.
The wave speeds calculated from Egs. (16) and (17) are
tabulated along with the measured wave speeds and
those calculated from Eq. (11) in Table I. The results
in general are in close agreement with each other.

The dispersive characteristics of both fast and slow
waves are shown in Figs. 4 and 5. It is interesting
to note that the fast wave shows very little dispersion.
Furthermore, the dispersion of waves occurs only in
a narrow frequency band (in the present case 103<w<2
x 10° Hz). This result agrees with the analytical pre-
dictions based on the mixture theory.® In the experi-
mental investigation of wave motions in rocks, Podio'’
and Mousselli®® also showed that the waves indeed ex-
hibited very little dispersion. In contrast to the fast
waves, the slow waves are highly dispersive. The
phase velocity, nonetheless, reaches a constant value

l'cl 104 ue
8
~—FAST |WAVE

\

I\

\ \§ s
: Ne §\

4 [

FIG. 9. Amplitude decay of fast and slow waves in kerosene-
saturated Boise sandstone. Damping coefficient b =12.
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T3 1 -B)+ 2Bl = (a1 -B) - 3BT +4Q%B(L - B)/ppp) ' *

(15)

at high frequencies.

The curves in Figs. 6—9 show the amplitude decre-
ment of waves of both kinds with the distance at various
frequencies for a damping factor =1 and b=12. These
curves clearly demonstrate that the rate at which the
amplitude of slow waves decays is much faster than that
of the fast waves. The amplitude of the slow wave de-
creases rapidly with the distance. Consequently it is
difficult to be detected in practice unless a short speci-
men is used in the experiment. Based on this reason,
and on the fact that the recorded waves showed no ob-
servable dispersions, we believe that the waves ob-
served by Gregory, ?® Podio, 17 and Mousselli®*® were the
fast waves. It is also interesting to note that the ampli-
tude decrement of both waves is frequency dependent.

Based on the discussions presented in the above para-
graphs, it seems evident that a great amount of in-
formation on the rock properties and damping effect of
its contained fluid could be estimated by making a
Fourier analysis of the measured fast wave generated by
a wide-band pulse. A more accurate estimation could
be achieved if the slow wave motion could be measured
and analyzed along with the fast wave motion. The
sonic-pulse technique, with the present arrangement,
cannot generate a measurable slow wave. A remedial
arrangement would be to replace the driving crystal
with a device that could generate a high-intensity pulse.
Another alternate means would be analyzing the shear
wave motion along with the fast wave motion. These
problems are currently being studied.
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APPENDIX: DETERMINATION OF BIOT'S
CONSTANTS

From Eq. (21) of Ref. 8, the Biot’s constants P, @,
and R are defined as follows:

P=x+2p, : , (A1)

_B(1-p-5/k)
=V 5=k (42)

2

R %% (43)

u
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_V/k+Bz+(1 -28)(1 - 8/k) 2
A= V+5—52/k _31-1" (A4)
v=B(C-0), “(A5)
where
B =porosity

1 =shear modulus of the bulk material,

k =coefficient of the jacketed compressibility,

0 =coefficient of the unjacketed compressibility,
C =compressibility of the fluid,

v =coefficient of fluid content.

The constants k2, 8, C are not given directly in Ref. 22,
In this investigation, these constants are computed by
using the following method:

(1) & =(the bulk modulus of the dry specimen under
specified confining pressure)™

(2) 6 =(the bulk modulus of a fully saturated specimen
under specified confining pressure)l.

Both bulk moduli are determined from the measured
wave speed in Ref. 22 and C is obtained from Ref. 26.
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