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ABSTRACT

Consider a package of parallel porous layers in which the
porosity, the bulk modulus of the pore fluid, and the bulk modulus
of the mineral phase are constant within each layer but may vary
along the package. We wished to apply Gassmann’s fluid substi-
tution to the entire package now treated as an effective medium
(long-wavelength case). The question is: What are the effective
properties, namely, the mineral’s and fluid’s bulk moduli, to
be used in this operation? The answer depends on the degree
of hydraulic communication between the layers. We have exam-
ined two limiting cases: (1) all layers in the package are in perfect
communication and (2) all layers are hydraulically isolated from
each other. The two mathematical methods relevant to these cases
are (1) the poroelastic Backus average for the former and (2) the
elastic Backus average, respectively. By conducting a sufficient

number of numerical experiments, we have found that, in both
cases, the effective mineral bulk modulus for the package is very
close to the value of the Hill’s average of the bulk moduli of indi-
vidual layers weighted by their solid fraction. In the case of per-
fect hydraulic communication, the effective fluid bulk modulus is
very close to the harmonic average of the individual moduli
weighted by individual porosity. For the case of hydraulically iso-
lated layers, the effective fluid bulk modulus falls between the
porosity-weighted harmonic and arithmetic averages. We have
evaluated approximate close-form solutions for both cases and
found that these approximations cause less than 6% average rel-
ative error in the computed stiffness components. Bearing in mind
that the full communication and complete isolation scenarios are
relevant to very low- and very high-frequency wave propagation,
respectively, our results can be interpreted as the frequency
dispersion of the effective fluid bulk modulus.

INTRODUCTION

Subsurface imaging and estimation of petrophysical parameters
(Avseth et al., 2005; Symes, 2008; Virieux and Operto, 2009) are
partially based on interpretation of a medium’s response to an in-
cident wave. As the wavelength of the incident wave shortens, one
may obtain better resolved features of the subsurface. Features such
as alternating layers of sand and shale are not uncommon (Avseth
et al., 2001; Dejtrakulwong, 2012). If the ratio between the wave-
length λ and the average layer thickness d is such that

λ∕d ≫ 1 (1)

the medium can be described as an effective medium. A layered se-
quence pertaining to this so-called long wavelength limit is often called
finely layered. The effects of unresolved layers on the effective
medium contribute to velocity anisotropy and apparent attenuation

(scattering) of elastic waves (Backus, 1962;Morlet et al., 1982;Marion
et al., 1994; Sams, 1995). Conversely, at the limit d∕λ ≫ 1, wave
propagation within a layered sequence occurs along a raypath, follow-
ing Fermat’s principle (also known as ray theory). At intermediate
scales, apparent attenuation due to interference of multiple reflections
has been reported numerically and experimentally (Schoenberger and
Levin, 1978; Morlet et al., 1982; Marion et al., 1994).
Backus (1962) shows that finely layered media composed of iso-

tropic (or transversely isotropic) linearly elastic materials can be
represented as an effective medium having transversely isotropic
symmetry. This derivation assumed that the layers are in welded
contact. Hence, if the direction of layering is the x3-direction,
in-plain strains (i.e., e11, e22, and e12 ¼ e21) are continuous; other-
wise, the layers would experience relative slip. In addition, it fol-
lows from the welded contact interface assumption that the stresses
acting along the planes parallel to the layering are the same (i.e.,
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σ13 ¼ σ31, σ23 ¼ σ32, and σ33 must be continuous as well; Postma,
1955; Schoenberg and Muir, 1989; Berryman, 1998). In this case,
the effective medium has vertical transversely isotropic symmetry.
Gelinsky and Shapiro (1997) and Berryman (2011) extend finely

layered averaging to linearly elastic porous medium (poroelastic)
based on Biot’s (1956a, 1956b, 1962) theory, incorporating fre-
quency-dependent fluid interaction with the solid frame. Biot’s model
examines a homogeneous effective medium that is isotropic and lin-
early elastic. In addition, the model assumes that the medium has
well-connected pore system, and it is fully saturated by a single fluid.
For poroelastic layered media, Gelinsky and Shapiro (1997) use

self-averaging properties of seismic wavefield parameters to obtain
the effective medium constants, whereas Berryman (2011) follows
the approach of Schoenberg and Muir (1989) and applies it to the
compliance form of the stress-strain relations for linearly elastic com-
posites with the addition of fluid related terms. Berryman (2011) re-
arranges and partitions the stress-strain relations to distinguish
between strain and stress terms that are uniform across a layered
package to those that vary. This formulation allowed to perform vol-
ume averaging perpendicular to the layering direction for strains and
stresses that are not continuous across layer boundaries.
Gelinsky and Shapiro (1997) and Berryman (2011) distinguish

between two limits under the long-wavelength approximation:
quasi-static and no-flow. Small displacement disturbances caused
by wave propagation within a saturated porous medium can give
rise to pressure disequilibrium in the fluid phase. In the quasi-static
limit, the wave-induced pore-pressure differences have sufficient
time to equilibrate across layer boundaries by interlayer flow, hence
resulting in continuity of fluid pressure across the boundaries. On
the other hand, incident waves with higher frequencies (i.e., shorter
wavelengths that still satisfy the long-wavelength approximation)
will inhibit pressure equilibration. Subsequently, at the no-flow
limit, the layers behave as if they are hydraulically isolated from
each other (undrained), which results in an increase in the propa-
gation speed through the medium relative to the quasi-static case.
The most widely used tool for fluid substitution was developed

by Gassmann (1951). Gassmann’s anisotropic formulation predicts
the response of rock with anisotropic dry frame composed of a sin-
gle mineral and interconnected fluid-filled pores. Subresolution
heterogeneity in the form of multimineralic components, aniso-
tropic minerals, and/or partial hydraulic communication in thinly
layered media violates Gassmann’s assumptions. For the case of
a single mineral composing all layers within a package, it is shown
in Appendix A that the Gelinsky and Shapiro (1997) formulation for
the quasi-static limit (low frequencies) reduces to Gassmann’s
anisotropic form. To correctly apply fluid substitution to a package
of hydraulically disconnected thin layers, one must perform fluid
substitution at each layer separately (assuming individual layers ful-
fill Gassmann’s assumptions) and then determine the effective re-
sponse through elastic Backus averaging (Katahara, 2004; Skelt,
2004). Another fluid-substitution scheme in sand-shale sequences
was proposed by Dejtrakulwong and Mavko (2011), which assumes
that the layers are hydraulically disconnected.
In this study, we derive approximate analytic expressions for the

inputs to anisotropic Gassmann’s fluid substitution for a layered
package for hydraulically communicating and isolated cases. Our
results for the effective bulk modulus of the pore fluid can be in-
terpreted as the frequency dispersion of the effective fluid bulk
modulus.

BACKGROUND: ISOTROPY AND ANISOTROPY

Isotropic symmetry

Isotropic symmetry requires two different parameters to describe
a material. For instance, Lame’s first parameter λ and the shear
modulus μ. The corresponding stiffness matrix is given by

2
6666664

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

3
7777775
; (2)

with c11 ¼ λþ 2μ, c12 ¼ λ, and c44 ¼ μ.

Transversely isotropic symmetry

The term transverse isotropy (TI) is slightly misleading as, in fact,
it defines an anisotropic medium. The isotropy is limited to the “trans-
verse” plane (Thomsen, 1986). ATI material is described by five dif-
ferent stiffness constants. The stiffness tensor of a TI medium with
vertical (x3-direction) symmetry axis (VTI) is given by

2
6666664

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

3
7777775
; (3)

with c66 ¼ ðc11 − c12Þ∕2.

PROBLEM FORMULATION

We have a layered package in which each layer is isotropic and
has its individual porosity ϕ; mineral bulk and shear moduli Ks and
μs, respectively; drained elastic bulk and shear moduliKdry and μdry,
respectively; and bulk modulusKf . The effective drained (dry) stiff-
ness matrix c̄drylm (l; m ¼ 1; 2; : : : ; 6) of this package is computed by
applying the Backus average to the dry elastic properties of indi-
vidual layers (Appendix A). The effective porosity ϕ̄ is the volume
average of individual porosities.
Then, for the layers with pore fluids, we need to select the method

of computing the effective stiffness matrix. Here, we select two
methods: (1) the poroelastic Backus-average method, in which it
is assumed that the pore fluids in the layers are in perfect hydraulic
communication, i.e., any wave-induced perturbations of local pore
pressure equilibrate throughout the entire package within the oscil-
lation period, relevant to the zero-frequency limit and (2) the purely
elastic Backus-average method applied to saturated layers, in which
the individual bulk moduli are obtained by applying isotropic Gass-
mann’s fluid substitution to each layer, relevant to the infinite-fre-
quency limit.
Our questions are: If we wish to apply anisotropic Gassmann’s

fluid substitution to the entire package treated as an effective
medium, what should be the effective bulk moduli of the mineral
phase and pore fluid of the upscaled effective medium to be used in
this operation? The proposed method of obtaining the effective bulk
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moduli of the mineral phase and pore fluid for a layered package
having multimineralic components and/or partial hydraulic commu-
nication requires solving an over-determined system of equations.
To mitigate this problem, we find an approximate solution and val-
idate it by exhaustive forward modeling. The resulting average rel-
ative errors in the effective elastic stiffnesses do not exceed 6%.

WORKFLOW: NUMERICAL EXPERIMENTS

Setup

We constructed a layered package containing 100 layers by ran-
domly (uniform distribution) varying the thickness of each layer in
the package such that the total thickness of the package remained
constant. Each layer was composed of two mineral components
(one stiff and the other soft). The mineral bulk and shear moduli
in each layer were computed as the Hill’s average (Mavko et al.,
2009) of those of the soft and the stiff mineral components: the bulk
and shear moduli of the soft component were 21.0 and 7.0 GPa (the
Gulf clay, Mavko et al., 2009), respectively, whereas these values
for the stiff component were 76.8 and 32.9 GPa (calcite). The frac-
tion of the soft mineral was randomly selected from a uniform dis-
tribution in the range of 0.00–1.00. The porosity of each layer was
also randomly assigned between 0.05 and 0.35 using a uniform dis-
tribution. The dry-frame elastic properties (isotropic) for each layer
were then computed from the porosity and the mineral bulk and
shear moduli using the soft-sand model or, separately, the stiff-sand
model with a constant coordination number of six, differential pres-
sure of 12 MPa, critical porosity of 0.4, and shear stiffness correc-
tion factor of one, meaning that the grain-to-grain shear stiffness at
critical porosity was given by the Hertz-Mindlin contact model
(Mavko et al., 2009).

Experiments

We explored the upscaled effective medium properties of 1000
thinly layered packages with layering perpendicular to the x3-direc-
tion. Because each layer was isotropic, the effective elastic anisotropy
of a package had VTI symmetry.
Initially, we determined the five independent effective dry-frame

stiffness matrix components c̄drylm by applying the elastic Backus
average to an entire package using the dry-frame elastic moduli
of individual layers.
In the following numerical experiments, we assumed that the ef-

fective porosity of a package ϕ̄ was the volume average of individ-
ual porosities:

ϕ̄ ¼ hϕi; (4)

where h·i is the averaging operator across all layers. For instance,
given material quantitym, its average value for a stack of N layers is
given by m̄ ¼ hmi ¼ P

N
k¼1 f

ðkÞmðkÞ with fðkÞ and mðkÞ being the
volumetric fraction and the material quantity of the kth layer, re-
spectively. The volumetric fraction satisfies

P
N
k¼1 f

ðkÞ ¼ 1.
The purpose of the first experiment was to determine the Gass-

mann-consistent effective mineral bulk modulus K̄s for an entire
package to be used in Gassmann’s anisotropic fluid substitution.
To do this, we filled all layers with the same fluid so that the fluid
bulk modulus Kf to be used in fluid substitution was known and
fixed (i.e., the effective fluid K̄f equals Kf). First, we assumed that
all layers were in perfect hydraulic communication (quasi-static

limit) and determined the exact effective undrained stiffness com-
ponents c̄QSlm by using the poroelastic Backus average (Gelinsky and
Shapiro, 1997) with equations listed in Appendix A. Then, we
found K̄s for the entire package by requiring that c̄QSlm matched
the undrained stiffness components predicted from the dry-effective
medium using anisotropic Gassmann’s fluid substitution,

c̄GassKL ¼ c̄dryKL þ βKβLM̄; K;L ¼ 1; 2; 3;

c̄Gass44 ¼ c̄dry44 ; c̄Gass66 ¼ c̄dry66 ;

M̄ ¼
�
ϕ̄

K̄f
þ ᾱ − ϕ̄

K̄s

�
−1
;

βJ ¼ 1 −
c̄dry1J þ c̄dry2J þ c̄dry3J

3K̄s
; (5)

with the effective-stress coefficient

ᾱ ¼ 1 −
P

3
K¼1

P
3
L¼1 c̄

dry
KL

9K̄s
: (6)

Note that the fluid-dependent term M̄ does not affect the undrained
shear-stiffness components of the medium. Therefore, c̄Gass44 and
c̄Gass66 are equivalent to the exact solution using the poroleastic
Backus averaging. In addition, as the effective medium has VTI
symmetry, it follows that c̄Gass11 can be expressed as c̄Gass11 ¼
2c̄Gass66 þ c̄Gass12 . Therefore, due to the symmetry of the stiffness ma-
trix, the expression in equation 5 gives three separate conditions on
the effective mineral modulus K̄s (i.e., for c̄Gass12 , c̄Gass13 , and c̄Gass33 ). If
the upscaled c̄QSij (ij ¼ 12; 13; 33) moduli were exactly Gassmann
consistent, then a single K̄s would satisfy all three conditions. In the
case of multimineralic composites, the two models are not equiv-
alent, so the system is overdetermined, and at best we can only find
the optimum K̄s that minimizes the difference between the un-
drained stiffness constants of the two models’ predictions. We
found that matching each of the undrained stiffness constants pro-
duced a different K̄s (Figure 1), and we compared them with the
Voigt KsVϕ and the Reuss KsRϕ averages weighted by the solid frac-
tion (i.e., 1 − ϕ) in each layer,

KsVϕ ¼ 1

h1 − ϕi hð1 − ϕÞKsi; (7)

KsRϕ ¼
�

1

h1 − ϕi
�ð1 − ϕÞ

Ks

��
−1
; (8)

and to their mean (Hill’s average),

KsHϕ ¼ KsVϕ þ KsRϕ

2
: (9)

To ignore the situation of an overdetermined system, we simply
assumed that K̄s ¼ KsHϕ. To justify this assumption, we computed
the three c̄Gassij from anisotropic Gassmann’s fluid substitution using
this K̄s and the uniform K̄f and then compared these stiffnesses
with the exact c̄QSij as given by the poroelastic Backus average
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(Figure 2). We conducted this experiment for two extreme K̄f val-
ues, 0.05 and 3.00 GPa, and we found that the average difference
between c̄Gassij and c̄QSij was less than 2% (first and second columns).
The average relative errors and their respective standard deviations
in percentage Δ̄c̄ij are listed in each plot.
The purpose of the second experiment was to determine the ef-

fective fluid bulk modulus K̄f to be used in Gassmann’s fluid sub-
stitution to match the poroelastic Backus average c̄QSij in cases in
which the fluid varied between the layers. For this purpose, we
populated each layer with a different fluid, whose bulk modulus
was randomly selected from a uniform distribution between 0.05
and 3.00 GPa. In Gassmann’s fluid substitution, we used K̄s given
in equation 9. Once again, as in the mineral bulk modulus case, we
faced an overdetermined system of equations and, to address it, we
assumed that K̄f is the porosity-weighted harmonic (Reuss) average
of individual fluid bulk moduli,

KfRϕ ¼
�

1

hϕi
�

ϕ

Kf

��
−1
: (10)

The average relative difference between c̄QSij and c̄Gassij with this
choice of K̄f did not exceed 2% (Figure 2, third column). Another
possibility was to compute K̄f similar to equation 10 but without
weighting by porosity (Figure 2, fourth column):

KfR ¼
�

1

Kf

�
−1
; (11)

which produced a greater average difference standard deviation (ap-
proximately 4%) compared with using equation 10.
The first and second experiments were repeated for the case,

where the layers were hydraulically isolated from each other
(no-flow limit). The exact effective stiffness components c̄NFij were
found by applying the elastic Backus average to the package in
which the individual elastic properties were obtained by isotropic

Gassmann’s fluid substitution in each layer (Appendix A). For the
two cases of uniform Kf , the three c̄Gassij determined from anisotropic
Gassmann’s fluid substitution using K̄s ¼ KsHϕ and K̄f ¼ Kf were
compared with the exact stiffness components values (Figure 3, first
and second columns). The average relative differences and their re-
spective standard deviations in percentage Δc̄ij are shown in each
plot. The maximum average difference in stiffnesses was less than
3% using K̄s ¼ KsHϕ. Therefore, K̄s ¼ KsHϕ was subsequently used
in the experiments where Kf varied among the layers.
In the case of varying fluid bulk moduli among the layers, the

c̄Gassij computed using K̄f either from equation 10 or 11 did not
match the exact values (Figure 3, the last two columns). As before,
K̄f could be independently found by matching three effective stiff-
nesses: c̄Gass12 , c̄Gass13 , and c̄Gass33 . To address the issue of an over-de-
termined system, we found K̄f that minimized the error in the least-
squares sense among c̄NF12 , c̄

NF
13 , and c̄

NF
33 and their respective effective

stiffnesses obtained using anisotropic Gassmann’s fluid substitu-
tion. This K̄f fell between the Reuss KfRϕ and Voigt KfVϕ bounds
weighted by porosity for the individual fluid bulk moduli (Figure 4,
left column) with the respective bounds given by the following
equation:

KfRϕ ≡
�

1

hϕi
�

ϕ

Kf

��
−1

< K̄f <
1

hϕi hϕKfi ≡ KfVϕ: (12)

Assuming that K̄f can be approximated using a linear combina-
tion of KfRϕ and KfVϕ,

K̄f ¼ aKfRϕ þ bKfVϕ. (13)

We empirically found that the coefficients to be used in the soft-
sand model are a ¼ 0.27 and b ¼ 0.68, whereas in the stiff-sand
model, the coefficients are a ¼ 0.15 and b ¼ 0.86. To validate these
relations, we calculated c̄Gassij and compared them with the exact
c̄NFij . The results are shown in Figure 4 (middle column) along with

Figure 1. Realizations results using the soft-sand
model for fully communicating layers. Three val-
ues of K̄s found using three different stiffness com-
ponents as indicated on the horizontal labels in
each plot. These are plotted versus those obtained
by (a) Voigt KsVϕ, (b) Reuss KsRϕ, and (c) Hill’s
KsHϕ averages of the individual Ks in each layer
weighted by the solid fraction. The upper row is
for uniform fluid with bulk modulus 0.05 GPa,
and the lower row is for uniform fluid with
3.00 GPa. For both pore fluids, the K̄s derived
from c̄Gass12 by many realizations qualitatively fall
around Hill’s average; K̄s derived from c̄Gass13 fall
between Hill’s and Reuss averages, whereas those
from c̄Gass33 fall upon Reuss average.
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Figure 2. Fully communicating layers. Upper row: Soft-sand model. Three effective stiffnesses from anisotropic Gassmann’s fluid substitution
computed using K̄s ¼ KsHϕ and the uniformKf (first two plots) plotted against exact poroelastic Backus stiffnesses. The same crossplot is shown in
the third plot with the same K̄s but now varying the fluid bulk modulus among the layers and using the effective fluid bulk modulus for the uniform
fluid that is the porosity-weighted Reuss average of individualKf (equation 10). The same crossplot is in the fourth plot, but now using the effective
fluid bulk modulus harmonically averaged among the layers but not weighted by individual porosity (equation 11). The average relative errors and
their respective standard deviations in percentage Δ̄c̄ij are listed in each plot. Lower row: Same as top but using the stiff-sand model.

Figure 3. Same as Figure 2, but for hydraulically isolated layers.
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the average relative error between the exact and the approximated
solution stiffnesses. These approximations produced an average rel-
ative error of approximately 0.06� 2.97% for layers modeled with
the soft-sand model and −0.39� 1.69% for layers modeled with the
stiff-sand model.
For a simple analytical approximation for K̄f to be used in both

models, we used the following linear combination:

KfRVϕ ¼ 1

4
KfRϕ þ

3

4
KfVϕ; (14)

and calculated c̄Gassij assuming K̄f ¼ KfRVϕ and compared them

with the exact c̄NFij (third column).
The relative errors listed in Figure 4 hold even for strong elastic

contrast (up to 30% relative to the average values) in the dry-frame
and mineral stiffnesses between the layers.
In the above examples, we used separately the soft- and stiff-sand

models. If we randomly vary the model that will assign the dry elas-
tic properties to a layer in the package (i.e., either soft- or stiff-sand
models) and take K̄s ¼ KsHϕ, the results for the case of communi-
cating layers having K̄f ¼ KfRϕ produce a relative error of less than
1%. For the case of hydraulic isolation between layers, the empiri-
cally determined coefficients used to obtain K̄f were a ¼ 0.23 and
b ¼ 0.81, which produced a relative error of −0.23� 3.34%.

Kf FREQUENCY DISPERSION

We have shown that the effective fluid bulk modulus to be used in
Gassmann’s fluid substitution depends on the conditions of hy-
draulic communication between the layers filled with different flu-
ids. In case of full communication (zero-frequency limit), K̄f is
smaller than in case of hydraulically isolated layers (infinite-
frequency limit). With the same effective porosity (equation 4)
and effective mineral bulk modulus (equation 9), we can use the
anisotropic Gassmann’s fluid substitution for the entire hetero-
geneous layered package for both frequency limits by simply

changing K̄f . It is given in equation 11 for low-frequency limit
and equation 14 for the high-frequency limit. This suggests that
we can describe the frequency dependence of the global response
by introducing the effective fluid bulk modulus versus frequency
dispersion (Figure 5). In Figure 5, we connected the low- and
high-frequency end members for K̄f with a hypothetical curve us-
ing the standard linear solid functional form. The critical frequency
at which the transition from the low- to high-frequency behavior
occurs depends on many concrete variables, such as porosity, per-
meability, and viscosity. This is why the frequency dispersion curve
shown is conceptual and the frequency values are not shown.
This concept of the fluid bulk modulus versus frequency

dispersion was used by Christensen and Olsen (1994) to quantify
the frequency dependence of the adiabatic bulk modulus of glyc-
erol. Later, Vogelaar and Smeulders (2009) introduce the frequency
dependence of the effective modulus of a gas bubble (dynamic pore-
fluid modulus) in the context of White’s (1975) poroelastic solu-

Figure 4. Hydraulically isolated layers. (Left col-
umn) The effective fluid bulk modulus computed
from individual values using porosity-weighted
Voigt (circles) and Reuss (triangles) averages.
(Right column) Three c̄Gassij from anisotropic Gass-
mann’s fluid substitution computed using the
Hill’s average KsHϕ and K̄f obtained from the
combination of Voigt and Reuss averages
weighted by porosity, respectively. The average
relative errors and their respective standard devia-
tions in percentage Δ̄c̄ij are listed in the center and
right columns. Upper row: The soft-sand model.
Lower row: The stiff-sand model.

Figure 5. Apparent frequency dependence of the effective bulk
modulus of the pore fluid for the entire composite. This dispersion
curve is conceptual, connecting the low- and high-frequency end-
points with a standard linear solid curve. This is why specific fre-
quency numbers are not shown.
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tion. Yao et al. (2015) use it to describe the effect of local squirt flow
on the velocity-frequency dispersion in wet rock.

WEAK CONTRAST APPROXIMATION:
GASSMANN FORM

Hydraulically communicating layers

Following the same linearization approach as described in Baku-
lin (2003) and Bakulin and Grechka (2003), we can simplify the
exact poroelastic Backus solution by assuming

jðαðkÞ − hαiÞ∕hαij ≪ 1 (15)

to arrive at the following equations:

c̄Gass
�

KL ¼ c̄dryKL þ hαi2hM−1i−1; K;L ¼ 1; 2; 3;

c̄Gass
�

44 ¼ c̄dry44 ; c̄Gass
�

66 ¼ c̄dry66 ;

α ¼ 1 − Kdry∕Ks; M ¼
�
ϕ

Kf
þ α − ϕ

Ks

�
−1
: (16)

This form is analogous to the anisotropic Gassmann’s fluid substi-
tution equation (equation 5). Furthermore, if we impose additional
constraints on the contrasts among the layers, namely

jðKðkÞ
dry − hKdryiÞ∕hKdryij ≪ 1;

jðμðkÞdry − hμdryiÞ∕hμdryij ≪ 1; (17)

where μdry is the shear modulus that is independent of the pore fluid,
equation 16 reduces to the isotropic Gassmann form

KGass� ¼ hKdryi þ hαi2hM−1i−1; (18)

where the saturated effective medium is considered isotropic having
bulk modulus KGass� .

Hydraulically isolated layers

Using the constraints presented in equations 15 and 17, as well as
requiring

jðHðkÞ − hHiÞ∕hHij ≪ 1; (19)

with H ¼ Kdry þ 4μdry∕3þ α2M, we reduce the exact solution to
the isotropic Gassmann form (neglecting the hαin; n > 2 terms),

Ksat� ¼ hKdryi þ hα2Mi: (20)

It is important to note that although equations 18 and 20 have the
same form, the fluid-dependent term M in equations 18 and 20 is
averaged differently depending on the state of hydraulic communi-
cation among layers. This difference in averaging makes the effec-
tive fluid in the hydraulic isolation case stiffer than in the full
hydraulic communication case.

DISCUSSION

The essence of the question we address here is determining the
effective porosity, dry-frame stiffnesses, and solid and fluid bulk
moduli that can be used as inputs in anisotropic Gassmann’s fluid
substitution equation to arrive at the effective stiffnesses of a hetero-
geneous finely layered package. To satisfy this requirement, we
need to separately match three elastic stiffnesses. These are three
independent equations that can be resolved in terms of three un-
knowns.
Instead of selecting these three unknowns, we simplify the

problem by assuming that the effective porosity is the volume-
averaged porosity and the effective dry-frame stiffnesses are
the Backus averages of the individual elastic constants. We are
left with only two unknowns, the effective Ks and Kf . To obtain
the former, we fill all layers with the same fluid, whose Kf is now
the effective fluid bulk modulus for the entire package (i.e.,
K̄f ¼ Kf). Then, we find a single unknown Ks from three inde-
pendent equations. Naturally, we end up with three different an-
swers. To address the overdetermined system, we postulate that
the effective mineral bulk modulus K̄s is the Hill’s average of indi-
vidual moduli weighted by the mineral fraction and test whether
this selection is appropriate. By testing this assumption on many
numerical simulation, we determine that it is plausible indeed (less
than 2% average relative difference between exact and approxi-
mate stiffness values).
Next, we use this K̄s to obtain K̄f by saturating the layers with

different fluids. Once again, we face an over-determined system of
equations. An approximate solution for hydraulically communicat-
ing layers is the porosity-weighted Reuss average for K̄f (less than
1% average relative difference).
The situation becomes more complicated in which the layers

are hydraulically isolated. Hill’s average for Ks is still appropriate
(less than 2% relative difference between exact and approximate
stiffness values) but, as expected, the porosity-weighted Reuss
average for Kf is not. The appropriate approximation for K̄f in
this case is given in equation 14 (less than 6% average relative
difference).
Let us mention here that there is another method of determining

the effective solid and fluid properties of a layered package, not
related to Gassmann’s fluid substitution. We could have posed
the question differently: What are the hypothetical uniform K̄s

and K̄f to be assigned to each layer such that the poroelastic Backus
average will give the same effective stiffnesses as the exact solu-
tion? It is interesting that using the K̄s and K̄f given in equations 9,
10, and 14 approximately satisfy this condition as well (Ap-
pendix B).
These results are aimed at providing an element of well-data-

based seismic forward modeling eventually to be used in interpre-
tation. Although hydraulic communication is likely to be nonexist-
ent between sand and shale due to the low permeability of the
former, it certainly can occur between two permeable sand layers
saturated with different fluids. Our main finding is that depending
on the frequency of investigation, one should use different fluid
bulk modulus, the one given in equation 10 at low (seismic) fre-
quency and in equation 14 at higher (logging) frequency. A
step-by-step example of conducting frequency-dependent fluid sub-
stitution on a hypothetical two-layer system of sand with gas and
fully brine-saturated sand is given in Appendix C. The result indi-
cates that although the vertical P-wave velocity at the logging fre-
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quency is 2.30 km∕s, the respective velocity at the seismic fre-
quency is 2.05 km∕s, a 0.25 km∕s difference to be accounted
for in forward modeling. In addition, the respective P-wave imped-
ance difference is 11%, which may alter the reflectivity.
One of the immediate applications of our results is synthetic

seismic modeling. A recent example of such usage of somewhat
similar basic science results is provided in Bryndzia et al.
(2016). We also feel that in light of the results of our current work,
direct interpretation of seismically derived impedances for porosity,
lithology, and pore fluid is possible as well. An example of such a
workflow is given in Arévalo-López and Dvorkin (2016). The
authors did not have to use the principle of upscaled pore-fluid
modulus, as the hydrocarbon present was low Gas to Oil Ratio
(GOR) with the compressibility fairly close to that of the formation
brine. The situation becomes more complicated when dealing with
gas. This is an ongoing research to be conducted based on the re-
sults of the current paper.

CONCLUSIONS

The specific issue addressed here is: What are the effective
parameters to be used in Gassmann’s fluid substitution if applied
to a package of layers, and this package is treated as a homo-
geneous medium? In general, it is an issue of upscaling the param-
eters of a rock-physics operator. The concrete situation examined
here is for the transform being Gassmann’s fluid substitution and
the composite being a finely layered package. The answer is that,
strictly speaking, this transform is not applicable to the entire
package. However, we find expressions for the effective parame-
ters to be used in anisotropic Gassmann’s transform that provide
good approximation to the effective anisotropic stiffnesses from
the exact solutions. This result can lead to apply the fluid substi-
tution transform at a coarse scale of seismic resolution that ac-
counts for hydraulic interaction inside the volume. It can also
help in blocking various intervals in well data and making them
suitable for forward seismic modeling.
Finally, by examining two limiting cases of very low and very

high frequency, we find that the same Gassmann’s transform can
be used in both cases by introducing frequency dispersion to the
fluid bulk modulus (dynamic pore fluid modulus).
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APPENDIX A

POROELASTIC BACKUS AVERAGING

Quasi-static limit

The equations given by Gelinsky and Shapiro (1997) for the ef-
fective stiffness constants at the quasi-static limit for finely layered
poroelastic isotropic media with x3-direction as the axis of layering
symmetry are

c̄QS12 ¼2

�
λdryμdry

λdryþ2μdry

�
þ
�

λdry
λdryþ2μdry

�
2
�

1

λdryþ2μdry

�
−1
þP2

R
;

c̄QS33 ¼
�

1

λdryþ2μdry

�
−1
þQ2

R
;

c̄QS13 ¼
�

1

λdryþ2μdry

�
−1
�

λdry
λdryþ2μdry

�
þPQ

R
;

c̄QS44 ¼hðμdryÞ−1i−1;
c̄QS66 ¼hμdryi;

P¼−R
�
2

�
αμdry

λdryþ2μdry

�
þ
�

α

λdryþ2μdry

��
λdry

λdryþ2μdry

�

×
�

1

λdryþ2μdry

�
−1
�
;

Q¼−R
�

α

λdryþ2μdry

��
1

λdryþ2μdry

�
−1
;

R¼
�
hM−1i

�
α2

λdryþ2μdry

�
−
�

α

λdryþ2μdry

�
2
�

1

λdryþ2μdry

�
−1
�−1

:

(A-1)

The subscript dry denotes elastic moduli at drained conditions, α ¼
1 − Kdry∕Ks is the Biot and Willis (1957) parameter with Ks being
the bulk modulus of the grain mineral and h·i is the averaging op-
erator across all layers. For isotropic layers, we have Kdry ¼
λdry þ 2μdry∕3. The poroelastic parameter M is expressed as

M ¼
�
ϕ

Kf
þ α − ϕ

Ks

�
−1
; (A-2)

where ϕ is the porosity and Kf is the pore fluid’s bulk modulus. By
definition ofM, it is assumed that each layer within a model is com-
posed of a single mineral.
Drained effective stiffness matrix c̄drylm is obtained through equa-

tion A-1 by omitting fluid-related terms (i.e., R ¼ 0), which is essen-
tially an elastic Backus averaging on the drained elastic components.

No-flow limit

The equations for the elastic stiffnesses at the no-flow limit for
finely layered media are,

c̄NF12 ¼ 2

�ðH − 2μdryÞμdry
H

�
þ
�
H − 2μdry

H

�
2
�
1

H

�
−1
;

c̄NF33 ¼
�
1

H

�
−1
;

c̄NF13 ¼
�
1

H

�
−1
�
H − 2μdry

H

�
;

c̄NF44 ¼ hðμdryÞ−1i−1;
c̄NF66 ¼ hμdryi; (A-3)

with

H ¼ λdry þ 2μdry þ α2M; (A-4)

which is the undrained P-wave modulus for an isotropic, homo-
geneous, linearly elastic composite of Gassmann’s fluid substitution.
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Special case: Uniform Ks in all layers

When the mineral bulk moduli of all layers within a package are
equal, we show that the poroelastic Backus averaging devolve into
Gassmann’s anisotropic fluid substitution formula. For ease of no-
tation, let EG ¼ λdry þ 2μdry be the dry-rock P-wave modulus. First,
we rewrite R from equation A-1 assuming Ks is constant and using
α ¼ 1 − Kdry∕Ks to obtain

R�¼
�
hM−1iþ 1

K2
s

�
K2

dry

EG

�
−

1

K2
s

�
Kdry

EG

�
2
�

1

EG

�
−1
�−1

;

¼

2
64
�

ϕ

Kf

�
þ
1− 1

Ks

�
hKdryi−

D
K2

dry

EG

E
þ
D
Kdry

EG

E
2
D

1
EG

E
−1
	
−hϕi

Ks

3
75
−1

:

(A-5)

Using the relation in equation 5, we would show that

X3
K¼1

X3
L¼1

c̄dryKL¼9

�
hKdryi−

�
K2

dry

EG

�
þ
�
Kdry

EG

�
2
�

1

EG

�
−1
�
;

¼12

�
λdryμdry
EG

�
þ8

�
μ2dry
EG

�
þ9

�
λdryþ2μdry∕3

EG

�
2
�

1

EG

�
−1
;

¼12

�
λdryμdry
EG

�
þ8

�
μ2dry
EG

�
þ
�
3λdryþ2μdry

EG

�
2
�

1

EG

�
−1
: (A-6)

Indeed, explicitly writing the left side, we obtain

X3
K¼1

X3
L¼1

c̄dryKL¼12

�
λdryμdry
EG

�
þ8

�
μ2dry
EG

�
þ4

��
λdry
EG

�
þ1

2

�
2
�

1

EG

�
−1
;

¼12

�
λdryμdry
EG

�
þ8

�
μ2dry
EG

�
þ4

�
2λdryþEG

2EG

�
2
�

1

EG

�
−1
;

¼12

�
λdryμdry
EG

�
þ8

�
μ2dry
EG

�
þ
�
3λdryþ2μdry

EG

�
2
�

1

EG

�
−1
:

(A-7)

Therefore, R� can be written as

R� ¼

2
64
�

ϕ

Kf

�
þ

1 −
P

3

K¼1

P
3

L¼1
c̄dryKL

9Ks
− hϕi

Ks

3
75
−1

;

(A-8)

resembling the form of M̄ in equation 5. Simi-
larly, the Q term in equation A-1 can be ex-
panded to obtain

Q� ¼ −R
�
1 − Kdry

Ks

EG

��
1

EG

�
−1
;

¼ −R
���

1

EG

�
−

1

Ks

Kdry

EG

��
1

EG

�
−1
�
;

¼ −R
�
1 −

1

Ks

�
Kdry

EG

��
1

EG

�
−1
�
:

(A-9)

The terms in the bracket are equivalent to β3 in equation 5 because

β3 ¼ 1 −
c13 þ c23 þ c33

3Ks
;

¼ 1 −
1

3Ks

�
2

�
λdry
EG

��
1

EG

�
−1

þ
�

1

EG

�
−1
�
;

¼ 1 −
1

3Ks

��
1

EG

�
−1
�
3EG

EG

��
;

¼ 1 −
1

Ks

�
Kdry

EG

��
1

EG

�
−1
:

(A-10)

Similarly, one can show that β1 ¼ β2 ¼ ð−P∕RÞ. We conclude that
the poroelastic Backus averaging is reduced to anisotropic Gass-
mann’s fluid substitution form (equation 5) given Ks is uniform
within the layered package.

APPENDIX B

EFFECTIVE Kf AND Ks USING POROELASTIC
BACKUS AVERAGING EQUATIONS

Here, we duplicate the results obtained under the requirement that
instead of making the poroelastic Backus averaging consistent with
Gassmann’s fluid substitution scheme, we make it consistent with the
poroelastic Backus averaging itself by using “effective” bulk moduli
of the solid and fluid. The question here is: What should be the homo-
geneous K̄s and K̄f that could replace the heterogeneous elemental
values to arrive at approximately the same result as given by the exact
poroelastic Backus equations for full-hydraulic communication and
complete hydraulic isolation cases? To address this question, we re-
peated the same computational experiments as described in the main
text. The results are shown in Figures B-1–B-4 and are analogous to
the respective figures in the main text.
It is interesting that the results for K̄s and K̄f obtained under the

Gassmann-consistency requirement hold in this case. This is likely

Figure B-1. Same as Figure 1, but for the consistency requirements examined here.
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Figure B-2. Same as Figure 2, but for the consistency requirements examined here.

Figure B-3. Same as Figure 3, but for the consistency requirements examined here.

D582 Wollner and Dvorkin

D
ow

nl
oa

de
d 

12
/0

1/
20

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
s:

//l
ib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
16

-0
08

8.
1



because, as shown in the main text, the poroelastic Backus equa-
tions degenerate to anisotropic (or isotropic) Gassmann’s equations
if the contrast between the layers is small. Apparently, this result is
approximately correct even for the high-contrast case.

APPENDIX C

STEP-BY-STEP EXAMPLE OF ANISOTROPIC
GASSMANN’S FLUID SUBSTITUTION AT VARY-

ING FREQUENCY

Consider a two-layer system of high-porosity sand. The upper
layer has 20% water saturation, whereas the lower layer is fully
water saturated. The thickness of each layer is 15 cm. The miner-
alogy is quartz and clay. The elastic properties of the layers are com-
puted using the soft-sand model (Mavko et al., 2009). The
parameters of the layers are listed in Table C-1.
Assume that the viscosity of water η is 1 cPs ¼ 10−3 Pa s, and

the permeability κ of the layers is 500 and 200 mD in the upper
and lower layer, respectively. The diffusion length computed as L ≈
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κKf∕ðηϕfÞ

p
(Mavko et al., 2009) is approximately 60 cm at f ¼

20 Hz (seismic) and 3 cm at f ¼ 10 kHz (logging), meaning that
the layers will not communicate at the logging frequency but will
communicate at seismic frequency. The effective bulk density ρ̄b

and porosity are the volume averages of the re-
spective individual values. The effective bulk
modulus of the mineral phase is computed from
equation 9 (porosity-weighted Hill’s average).
The effective dry-rock stiffness matrix is com-
puted using the elastic Backus average of the indi-
vidual dry-rock elastic moduli (equation A-1).
The low-frequency effective fluid bulk modulus
is the porosity-weighted harmonic average of
the individual moduli according to equation 10
(0.09 GPa), whereas that for high frequency is ac-
cording to equation 14 (1.04 GPa). By conducting
anisotropic Gassmann fluid substitution (equa-
tion 5), we find that the low-frequency effective
stiffness c̄Gass33 is 8.43 GPa, whereas its high-
frequency counterpart is 10.55 GPa, indicating
a noticeable difference. The respective P-wave

velocity VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̄Gass33 ∕ρ̄b

q
in the vertical direction

is 2.05 and 2.30 km∕s. The former value should
be used for well-data upscaling for seismic mod-
eling. This difference is the result of the difference
in K̄f (0.09 versus 1.04 GPa). The former reflects

the effective fluid property behind a recorded seismic amplitude.
In addition, the difference in P-wave impedance IP ¼ ρbVP between
the low- and high-frequency cases is 11%, which may alter the
reflectivity.
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Figure B-4. Same as Figure 4, but for the consistency requirements examined here.

Table C-1. Inputs for the effective elastic properties
computation in this example. Starting with the second
column: porosity, clay content, pore fluid bulk modulus,
bulk density, and the P- and S-wave velocities according to
the soft-sand model.

Layer ϕ C Kf (GPa) ρb (g∕cm3) VP (km∕s) VS (km∕s)

1 0.35 0.00 0.052 1.84 1.78 1.22

2 0.30 0.05 2.86 2.17 2.53 1.21

Effective fluid and grain bulk moduli D583

D
ow

nl
oa

de
d 

12
/0

1/
20

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
s:

//l
ib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
16

-0
08

8.
1

http://dx.doi.org/10.1190/tle35050423.1
http://dx.doi.org/10.1190/tle35050423.1
http://dx.doi.org/10.1190/tle35050423.1
http://dx.doi.org/10.1190/1.1487063
http://dx.doi.org/10.1190/1.1487063
http://dx.doi.org/10.1190/1.1487063
http://dx.doi.org/10.1029/JZ067i011p04427
http://dx.doi.org/10.1029/JZ067i011p04427
http://dx.doi.org/10.1029/JZ067i011p04427
http://dx.doi.org/10.1190/1.1620644
http://dx.doi.org/10.1190/1.1620644
http://dx.doi.org/10.1190/1.1620644
http://dx.doi.org/10.1190/1.1635034
http://dx.doi.org/10.1190/1.1635034
http://dx.doi.org/10.1190/1.1635034
http://dx.doi.org/10.1016/j.ijengsci.2010.06.027
http://dx.doi.org/10.1016/j.ijengsci.2010.06.027
http://dx.doi.org/10.1016/j.ijengsci.2010.06.027
http://dx.doi.org/10.1016/j.ijengsci.2010.06.027
http://dx.doi.org/10.1016/j.ijengsci.2010.06.027
http://dx.doi.org/10.1016/j.ijengsci.2010.06.027
http://dx.doi.org/10.1121/1.1908239
http://dx.doi.org/10.1121/1.1908239
http://dx.doi.org/10.1121/1.1908239
http://dx.doi.org/10.1121/1.1908241
http://dx.doi.org/10.1121/1.1908241
http://dx.doi.org/10.1121/1.1908241
http://dx.doi.org/10.1103/PhysRevB.49.15396
http://dx.doi.org/10.1103/PhysRevB.49.15396
http://dx.doi.org/10.1103/PhysRevB.49.15396
http://dx.doi.org/10.1103/PhysRevB.49.15396


Dejtrakulwong, P., 2012, Rock physics and seismic signatures of sub-reso-
lution sand-shale: Ph.D. thesis, Stanford University.

Dejtrakulwong, P., and G. Mavko, 2011, Fluid substitution for laminated
sandshale sequences: 81st Annual International Meeting, SEG, Expanded
Abstracts, 2183–2187.

Gassmann, F., 1951, Über die Elastizität poröser Medien: Vierteljahrsschrift
der Natur- forschenden Gesellschaft in Zürich, 96, 1–23.

Gelinsky, S., and S. A. Shapiro, 1997, Poroelastic Backus averaging for
anisotropic layered fluid- and gas-saturated sediments: Geophysics, 62,
1867–1878, doi: 10.1190/1.1444287.

Katahara, K. W., 2004, Fluid substitution in laminated shaly sands: 74th
Annual International Meeting, SEG, Expanded Abstracts, 1718–1721.

Marion, D., T. Mukerji, and G. Mavko, 1994, Scale effects on velocity
dispersion: From ray to effective-medium theories in stratified media:
Geophysics, 59, 1613–1619, doi: 10.1190/1.1443550.

Mavko, G., T.Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Tools
for seismic analysis in porous media (2nd ed.): Cambridge University Press.

Morlet, J., G. Arens, E. Fourgeau, and D. Giard, 1982, Wave propagation
and sampling theory. Part I: Complex signal and scattering in multilayered
media: Geophysics, 47, 203–221, doi: 10.1190/1.1441328.

Postma, G. W., 1955, Wave propagation in a stratified medium: Geophysics,
20, 780–806, doi: 10.1190/1.1438187.

Sams, M. S., 1995, Attenuation and anisotropy: The effect of extra fine
layering: Geophysics, 60, 1646–1655, doi: 10.1190/1.1443897.

Schoenberg, M., and F. Muir, 1989, A calculus for finely layered anisotropic
media: Geophysics, 54, 581–589, doi: 10.1190/1.1442685.

Schoenberger, M., and F. K. Levin, 1978, Apparent attenuation due to in-
trabed multiples: Geophysics, 43, 730–737, doi: 10.1190/1.1440849.

Skelt, C., 2004, Fluid substitution in laminated sands: The Leading Edge,
23, 485–493, doi: 10.1190/1.1756839.

Symes, W. W., 2008, Migration velocity analysis and waveform inversion:
Geophysical Prospecting, 56, 765–790, doi: 10.1111/j.1365-2478.2008
.00698.x.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966,
doi: 10.1190/1.1442051.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in
exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10
.1190/1.3238367.

Vogelaar, B. B. S. A., and D. M. J. Smeulders, 2009, Effective Biot theory
for the speed and attenuation of seismic waves in saturated rocks contain-
ing small gas fractions, in H. I. Ling, A. Smyth, and R. Betti, eds., Po-
roMechanics IV: DEStech Publications Inc., 473–478.

White, J. E., 1975, Computed seismic speeds and attenuation in rocks
with partial gas saturation: Geophysics, 40, 224–232, doi: 10.1190/1
.1440520.

Yao, Q., D. H. Han, F. Yan, and L. Zhao, 2015, Modeling attenuation and
dispersion in porous heterogeneous rocks with dynamic fluid modulus:
Geophysics, 80, no. 3, D183–D194, doi: 10.1190/geo2013-0410.1.

D584 Wollner and Dvorkin

D
ow

nl
oa

de
d 

12
/0

1/
20

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
s:

//l
ib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
16

-0
08

8.
1

http://dx.doi.org/10.1190/1.1444287
http://dx.doi.org/10.1190/1.1444287
http://dx.doi.org/10.1190/1.1444287
http://dx.doi.org/10.1190/1.1443550
http://dx.doi.org/10.1190/1.1443550
http://dx.doi.org/10.1190/1.1443550
http://dx.doi.org/10.1190/1.1441328
http://dx.doi.org/10.1190/1.1441328
http://dx.doi.org/10.1190/1.1441328
http://dx.doi.org/10.1190/1.1438187
http://dx.doi.org/10.1190/1.1438187
http://dx.doi.org/10.1190/1.1438187
http://dx.doi.org/10.1190/1.1443897
http://dx.doi.org/10.1190/1.1443897
http://dx.doi.org/10.1190/1.1443897
http://dx.doi.org/10.1190/1.1442685
http://dx.doi.org/10.1190/1.1442685
http://dx.doi.org/10.1190/1.1442685
http://dx.doi.org/10.1190/1.1440849
http://dx.doi.org/10.1190/1.1440849
http://dx.doi.org/10.1190/1.1440849
http://dx.doi.org/10.1190/1.1756839
http://dx.doi.org/10.1190/1.1756839
http://dx.doi.org/10.1190/1.1756839
http://dx.doi.org/10.1111/j.1365-2478.2008.00698.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00698.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00698.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00698.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00698.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00698.x
http://dx.doi.org/10.1190/1.1442051
http://dx.doi.org/10.1190/1.1442051
http://dx.doi.org/10.1190/1.1442051
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.1440520
http://dx.doi.org/10.1190/1.1440520
http://dx.doi.org/10.1190/1.1440520
http://dx.doi.org/10.1190/geo2013-0410.1
http://dx.doi.org/10.1190/geo2013-0410.1
http://dx.doi.org/10.1190/geo2013-0410.1

