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Seismic-scale dependence of the effective bulk modulus of pore fluid upon

water saturation

Uri Wollner' and Jack Dvorkin'

ABSTRACT

We apply a rock-physics model established from fine-scale
data (well or laboratory) to the seismically derived elastic varia-
bles (the impedances and bulk density) to arrive at the seismic-
scale total porosity, clay content, and water saturation. These
three outputs are defined as the volume-averaged porosity, clay
content, and porosity-weighted water saturation, respectively. To
use the rock-physics model, we need to know how to relate the
bulk modulus of the pore fluid to water saturation in the presence
of hydrocarbons. At the wellbore-measurement scale, this relation
is typically the saturation-weighted harmonic average of the bulk
moduli of the water and hydrocarbon. The question posed here is
what this relation is at the seismic scale. The method of solution
is based on the wellbore-scale data. Specifically, we seek the

seismic-scale bulk modulus of the pore fluid that, if used in the
rock-physics model, will yield the Backus-upscaled elastic con-
stants at the well from the above-defined seismic-scale petrophys-
ical variables. The answer depends on the vertical distribution of
all these variables. By using examples of synthetic and real wells
and assuming the lack of hydraulic communication between ad-
jacent rock bodies, we find that this relation trends toward the
arithmetic average of the individual bulk moduli of the pore-fluid
phases. In fact, it falls in between the arithmetic average and the
linear combination of 0.75 arithmetic and 0.25 harmonic aver-
ages. We also develop an approximate analytical solution under
the assumption of weak elastic and porosity contrasts and for
medium-to-high porosity sediment that indicates that the seis-
mic-scale bulk modulus of the pore fluid is close to the arithmetic
average of those in the individual layers.

INTRODUCTION

One of the ultimate goals of seismic interpretation is the quanti-
fication of the petrophysical properties (lithology and porosity) and
conditions (saturation and pore pressure) at the seismic scale. Such
interpretation methods can be divided into three categories: deter-
ministic, probabilistic, and stochastic.

The former category uses deterministic “velocity-porosity” trans-
forms or models that are directly applied to either a velocity model
of the subsurface or to the impedances and density volumes ob-
tained by way of simultaneous impedance inversion (e.g., Russell,
1988), Bayesian linearized AVO inversion (e.g., Buland and Omre,
2003), or other model-based inversion methods such as stochastic
optimization (e.g., Doyen, 2007; Sen and Stoffa, 2013). Examples
of deterministic interpretation for petrophysical properties from
elastic attributes are given in Angeleri and Carpi (1982), Marion
and Jizba (1997), Dolberg et al. (2000), Sams and Saussus
(2010), and Arévalo-Lopez and Dvorkin (2016, 2017).

One can also identify different clusters of “elastic lithofacies,”
such as shale, shaly sand, wet sand, and oil sand, in seismic volumes
as part of a probabilistic interpretation approach (e.g., Mukerji et al.,
2001; Avseth et al., 2005). Such a classification method is based on
previously identified clusters in the elastic domain observed in, for
example, well data that represent a training data set. Once these
elastic clusters are identified in seismic volumes, they can be inter-
preted for the respective lithofacies. Rigorous rock-physics models
or transforms can be incorporated into this method by expanding
the training data set into porosity, fluid, and lithology domains
not represented in the original data set.

Stochastic petrophysical interpretation uses information about
rock properties collected from a data set and relevant prior informa-
tion (such as geologic information) to generate an ensemble of pos-
sible subsurface models (either of rock properties or facies). Next, a
site-specific rock-physics model or transform is used to convert the
rock properties to elastic properties in the volume under examina-
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tion. These are used to generate synthetic seismograms by convolu-
tional or full-waveform simulation methods emulating the actual
survey geometry. Finally, an optimization procedure is carried
out to find the set of earth models with the closest match between
the synthetic and real seismograms. The output of the stochastic
interpretation is a probability density function of rock properties
at each depth station. A more general approach to the above-
mentioned stochastic interpretation is Bayesian analysis. Examples
of such methods can be found in Bortoli et al. (1992), Haas and
Dubrule (1994), Eidsvik et al. (2004), Bachrach (2006), Sengupta
and Bachrach (2007), Spikes et al. (2007), Grana and Della Rossa
(2010), and Grana (2016).

The required rock-physics transform that is inherent to all these
methods can be either derived as a best-fit regression from available
laboratory (e.g., Han, 1986) or well-log data, or it can be based on
theoretical rock-physics models calibrated at the well. The latter
process is called rock-physics diagnostics (Dvorkin et al., 2014). In
some cases, the transform can be simply assumed during frontier
exploration based on geologic and depositional information.

In this work, we concentrate on the interpretation of the seismic-
scale elastic variables for the petrophysical variables rather than the
procedure of the impedance inversion of seismic data. By seismic
scale, we mean the size of an individual reading in a volume of seis-
mically derived impedances. This size can be on the order of tens of
feet as opposed to the wellbore scale, where this size is approximately
0.3 m (1 ft).

To formulate the inverse problem of estimating petrophysical var-
iables from seismically inverted impedances as well as bulk density,
we first relate the impedances to the bulk (K) and shear (G) moduli
under the assumption of isotropy as

I, =\/pp(K+4G/3); I, =+/p,G. )]

A rock-physics model usually relates these elastic moduli to the
total porosity ¢, the elastic moduli of the isotropic mineral matrix,
K, and G, as well as to the bulk modulus of the pore fluid K,

K:FK((!’v stGs’Kf); G:FG(¢’K&’G$)’ (2)
where Fg and F are the rock-physics transforms.

Notice that only K depends on K, because, according to Gass-
mann’s (1951) assumption, G is not affected by the pore fluid.

The bulk density p; depends on the total porosity ¢ and the den-
sity of the mineral matrix p; and that of the pore fluid p; as

pp = (1=d)ps + ¢py, 3)
where, in a simple case of binary quartz/clay mineralogy,
ps = (1=C)pg + Cpc. 4

where p, and p¢ are the densities of quartz and clay, respectively.

The density of the pore fluid p; is a function of those of water p,,
and gas p, and the water saturation S,,

Pr= Swpw + (1 - Sw)pg' (5)

Notice now that K in equation 2 is a direct function of K, rather

than S,,. Hence, to resolve equations 1-5 for ¢, C, and S,,, we need

to know how to relate Ky to S,,. This is the ultimate question we
pose here.

The solution is not obvious because, as previous works (e.g.,
Domenico, 1976; Cadoret, 1993; Brie et al., 1995; Wollner and
Dvorkin, 2016; Dvorkin and Wollner, 2017) show, K £ is not nec-
essarily the harmonic average of the bulk moduli of the water and
hydrocarbon as commonly assumed where the fluid phases coexist
at the pore scale. This observed deviation from the harmonic aver-
age is related to the absence of hydraulic communication between
domains in rock saturated with different fluids, often called patchy
saturation, which is especially prevalent at the seismic scale.

In addition, this deterministic approach raises an important basic-
science issue. A transform or model (e.g., granular or inclusion
models) established at one scale of measurement (0.15 m [approx-
imately 0.5 ft] in the well) may not necessarily be valid at a different
scale (30.4 m [approximately 100 ft] in seismic data). Although
the issue may not directly affect the interpretation results under the
stochastic/Bayesian framework, it does so in the deterministic
approach.

Dvorkin and Wollner (2017) show through forward modeling
that a rock-physics model established from fine-scale (e.g., bore-
hole-scale) measurements can accurately predict the elastic proper-
ties of heterogeneous media at a coarser scale (e.g., seismic-scale)
given the appropriate inputs are used. Specifically, they consider
the case of layered geometry, where the adjacent layers do not hy-
draulically communicate at the time scale of elastic-wave propaga-
tion. Then, the inputs to the model should be the arithmetically
volume-averaged porosity and clay content (in a simple quartz/clay
setting) and, approximately, the arithmetically volume-averaged
bulk modulus of the pore fluid. In other words, at the seismic scale,
the mixing law that relates water saturation to the effective pore-
fluid bulk modulus in a layered medium should not be computed
using the harmonic average of individual pore-fluid bulk moduli
weighted by their volume fraction (as is usually assumed at the well
scale). Hence, deterministic interpretation of rock properties from
seismic-scale elastic attributes can lead to large errors in the esti-
mates if the appropriate mixing law is not considered.

This work addresses the issue of such mixing laws within the
deterministic interpretation approach. The issue of impedance in-
version is beyond the scope of this paper. We assume that Backus
(1962) averaging applied to fine-scale elastic properties is represen-
tative of the coarse-scale elastic parameters (see Appendix A). Be-
cause rock-physics models or transforms calibrated to well data are
site specific, it is reasonable to assume that the mixing laws relating
water saturation to the seismic-scale pore-fluid bulk modulus are
site specific as well. Here, we propose a methodology to obtain
locally calibrated mixing laws and use forward modeling to under-
stand how reservoir thickness and water saturation affect these laws.
Finally, we implement this method on real well data from a clastic
environment and deterministically interpret the upscaled P- and
S-wave impedances and density for the seismic-scale total porosity,
clay content, and water-saturation profiles.

METHODS

We propose to relate K to S,, by using well data. In real wells,
the data should be sufficient to compute the total porosity and
water saturation, as well as to quantify the mineralogy. We also re-
quire the bulk density and the P- and S-wave velocity (Vp and Vi,
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respectively), as well as the densities and bulk moduli of the com-
ponents of the pore fluid.

Once such a data set is available, the question becomes how
to relate K¢ to S,, at a coarser (seismic) scale. To approach this
problem, we

1) Apply the running window Backus (1962) average to the iso-
tropic elastic moduli at the well to compute the upscaled elastic
stiffnesses Cs3 and C, (see Appendix A). These variables are
the upscaled P-wave H = C;; and S-wave moduli G = Cy,
in the vertical direction. We define the respective bulk modulus
K as

K=H--G. (6)

W[ &

Although Backus (1962) averaging produces an anisotropic
(vertical transverse isotropic) effective medium, we assume
for simplicity that, with regard to fluid substitution, we can treat
the layered sequence as an isotropic material with these bulk,
shear, and compressional moduli. This approximation is justi-
fied in the presence of weak elastic contrast (Mavko and Ban-
dyopadhyay, 2009). Specifically, the Thompsen’s parameter &
has to be small. In all our examples, it does not fall outside the
—0.05 to 0.05 interval. Mavko and Bandyopadhyay (2009)
show that in this case, the difference between the isotropic
and anisotropic Gassmann’s (1951) fluid substitution for the
P-wave velocity is less than 1.5%.

The upscaled bulk density p,, is obtained from the well-scale p,,
by arithmetically averaging the latter using the same running
window as in the Backus averaging. The upscaled impedances
1 p» and I, in the vertical direction are computed as

I, =K +4G/3): 1,=\/;C. ()

and the upscaled Poisson’s ratio (PR) v as

1B/P -2

S ®)
21/ -1

l_/:

Note that we use the Backus-upscaled elastic properties as
proxies to those obtained from seismic data by impedance
inversion. We discuss this approximation in Appendix A and
show that if the running window size is smaller than or equal
to approximately one-sixteenth of the wavelength, the synthetic
seismograms from the wellbore-scale elastic curves and from
those obtained by Backus averaging are practically identical.

2) By using the same running window as for the Backus average,
we compute the arithmetically upscaled total porosity ¢ and the
clay content C. Instead of arithmetically upscaling the S,, curve,
we wish to upscale the fractional volume of the hydrocarbon in
the interval. At each depth station, this volume is ¢(1 —S,,).
Hence, the fractional volume of the hydrocarbon within the
averaging window, assuming that the thickness of each layer
is the same, is

N N
Jue = Z¢i(1 - Sw.i)/zqsi’ €))
pu i1

where N is the number of the layers in the running window and
the subscript “i” refers to the properties of ith layer. As a result,
the upscaled water saturation S,, is computed as

B N N
S0 =" #:Suil Y_ b (10)
i=1 i=1

This is the definition of averaged water saturation that we aspire
to obtain from the seismically derived impedances and bulk
density.

3) The dry-rock bulk modulus Ky, is computed at each depth
station in the interval using isotropic Gassmann’s (1951) fluid
substitution. To conduct this operation, we obtain the effective
bulk modulus of the pore fluid K as

—tw 2 Pw (1n

which is the S,,-weighted harmonic average of the bulk moduli
of water K, and gas K. The bulk modulus of the mineral ma-
trix required for this operation is computed at each depth station
using the clay content C, for the case of a simple quartz/clay
mineralogy, with Hill’s (1952) average. The upscaled dry-rock
P-wave modulus (I_{Dry) is computed using the same Backus
averaging window applied to the well-scale Hp,, defined as
Hpyy = Kpyy +4G/3. The upscaled dry-rock modulus Kp,y
is then computed using Hp,, and Gpy = G in equation 6.

4) Finally, we use the isotropic Gassmann’s (1951) fluid-substitu-
tion equation to find the as yet unknown upscaled bulk modulus
of the pore fluid K, as

where K| is the upscaled bulk modulus of the mineral phase
computed from the upscaled clay content C by using Hill’s
(1952) average.

The K ¢ and S,,, thus upscaled along the interval using the se-
lected running averaging window, are related to each other to find
the required dependence between these two variables.

What follows is a numerical investigation of the K to S, relation
at a coarser scale with vertical synthetic wells built on the basis of a
selected rock-physics model that relates the elastic properties to
porosity, mineralogy, and water saturation. We also assume that at
each depth station where water and hydrocarbons (gas) are present,
the effective bulk modulus of the pore fluid K, required by the
model is related to S,, in equation 11.
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RESULTS

Synthetic-well examples

Wollner and Dvorkin

Figure 1 shows three synthetic wells, where a gas reservoir is
placed in between two identical shale layers. The only difference
between the wells is the thickness of the gas sand. When computing
the elastic properties, we used the total porosity and clay content

a)

shown in Figure 1 (binary quartz/clay mineralogy) as inputs to
the constant-cement model (Dvorkin et al., 2014), in which the dif-
ferential pressure was 16.5 MPa, the coordination number was 14,
the critical porosity was 0.40, and shear correction factor was 1. The
densities and elastic moduli of the rock constituents used in our
modeling are listed in Table 1. In this example, we used the “stan-

dard” clay properties from Table 1.

20m

TVD (m)

0 0.20.4060.8 1 01 02 03 002040608 1 1 2 3 4 5556657758 0 0.10.20.30.40.5
Clay Porosity Sw Velocity (km/s) Ip (km/s g/cc) PR
b)
20m

TVD (m)
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Figure 1. Three synthetic wells, where a gas reservoir is placed in between two shale layers. In each row, the tracks (left to right) show the clay
content, the total porosity, water saturation, P- and S-wave velocity, P-wave impedance, and PR versus the true vertical depth (TVD). The well-
scale curves are black, whereas the upscaled curves (5 m running window) are red. The three wells shown are identical except for the thickness
of the reservoir that is (a) 25, (b) 5, and (c) 2.5 m.
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All property profiles shown in Figure 1 were upscaled as
explained in the previous section using a 5 m running window
(approximately one-sixteenth of the wavelength). The respective
upscaled profiles are plotted in red. Next, these upscaled profiles
were used to compute the upscaled bulk modulus of the pore fluid
I_(_ s at each depth station according to equation 12. It is plotted ver-
sus the upscaled S, in Figure 2.

Also in Figure 2, we plot, versus S,,, the bulk modulus of the pore
fluid upscaled from the well-scale K ; and, using the same running
window, with the arithmetic (AR) and harmonic (HR) averages, as
well as a linear combination of these two averages 0.75 AR +
0.25 HR, as originally proposed by Dvorkin and Wollner (2017).

In all three synthetic wells, the relation between K rand S, is the
same. However, we only observe parts of the K, versus §,, trend
where the reservoir is relatively thin (Figure 2b and 2¢) and S, does
not span the entire range between 0.20 and 1.00, as opposed to the
thick reservoir case (Figure 2a). In the lower S,, range, K + appears
to be very close to the 0.75 AR + 0.25 HR linear combination. At a
higher saturation, it falls in between AR and 0.75 AR + 0.25 HR.
The harmonic average HR falls far below K.

In the next example (Figure 3), we use the same setup as shown in
Figure 1, but the thickness of the reservoir is a constant 25 m,
whereas S,, in the reservoir varies from (a) 0.20 to (b) 0.50 and

Table 1. Densities and elastic moduli of the materials used in
modeling examples.

MR85

to (c) 0.75 between the wells. The upscaling was conducted in
the same way as in the first example. The resulting K ¢ is plotted
versus S, in Figure 4 in the same way as it is done in Figure 2
for the first example.

The results shown in Figure 4a are identical to those shown in
Figure 2a. In the remaining two cases (b and c), because the res-
ervoir is thick and, hence, the entire saturation range is still present
in the S,, profiles, the K ¢ versus §,, relations span the entire ranges
between water saturation in the reservoir and 100%. Once again, the
0.75 AR + 0.25 HR approximation is close to K + in the lower parts
of the §,, ranges in each case.

Real-well example

In this section, we explore the K 7 versus S,, relations using three
wells (X, Y, and Z) drilled through a gas reservoir. This data set was
examined by Wollner et al. (2017), where a rock-physics model (the
constant-cement model) was found to accurately match the P-wave
data. The input parameters were the differential pressure 16.5 MPa,
coordination number 14, critical porosity 0.40, and shear correction
factor 1. The S-wave data appeared to be spurious and were cor-
rected according to this model. The mineralogy in this sediment
was ternary, quartz, clay, and feldspar, with assumed constant feld-
spar content of 20% in the nonclay part of the mineral matrix. It was
also established that the appropriate elastic moduli for the clay were
10.5 GPa for the bulk and 3.5 GPa for the shear moduli. These are
the properties of “soft clay” listed in Table 1. The rock properties for
these wells are plotted versus the true vertical depth (TVD) in
Figure 5.

The same methodology as used with the synthetic wells was ap-

. Den51t3y Bulk modulus Shear modulus plied to these data to obtain the K  Versus S,, relation. The results
Material (g/cm?) (GPa) (GPa) - .
are shown in Figure 6a—6¢ for wells X, Y, and Z, respectively. The
Quartz 2.65 36.60 45.00 K versus S,, trends are slightly different from each other between
Clay (standard) 2.65 21.00 7.00 :he wells andt glsczhbifurca:i: in X and Z due to multiple reservoir
ayers present in these wells.
Clay (soft) 2.65 10.50 3.50 To obtain a single general trend applicable to the entire volume
Feldspar 2.65 75.60 25.60 containing the three wells, we binned the S,, axes in Figure 6a—6¢
Water 1.01 2.61 0.00 into 15 equal intervals between the minimum S,, and S,, = 1 and
Gas 0.18 0.06 0.00 then computed the means of K + values in each bin for all three wells
together. The result is displayed in Figure 6d.
a) 3 b 3 9 3
AR J, AR (L AR |
® Equation 12 Fad ® Equation 12 Fad ® Equation 12 o
~o9 0.75AR+0.25HR o * ~o9 0.75AR+0.25HR %l ~9 0.75AR+0.25HR .,.’
£ HR : £ HR R £ HR
e c o S
. 4 -
e 1 1 il
0 : 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Sw Sw Sw

Figure 2. Upscaled K (equation 12) versus upscaled §,, (equation 10) for the three pseudowells (a-c) shown in Figure 1 (black circles). The
AR running average is shown as gray pointed upward triangles; 0.75 AR + 0.25 HR is shown as gray circles; and HR is shown as gray pointed-
downward triangles. The dashed line is a linear connector between the 0.20 and 1.00 saturation end points.
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It appears that in this example, the AR approximation is practi-
cally the same as the binned and averaged K + values in the entire S,
interval.

Finally, to implement this result, we interpret the Backus-up-
scaled (5 m running window) I, and I, as well as the arithmetically
upscaled p;, for the seismic-scale porosity (Pierp), clay content
(Crnterp)» and water saturation (S,,pyerp) in €ach of the three wells.
This interpretation is based on the constant-cement model estab-
lished for these wells (Wollner et al., 2017), which provides the

rock-physics transform functions Fx and F; in equation 2. To solve
this inverse problem, we supplement equations 1-5 with the K £ ver-
sus S, relation shown in Figure 6d as black circles.

The resulting (Z)Imerp, Clmerp, and Swlmerp are shown in Figure 7 in
black. These values are very close to the ¢, C, and S,, (bold gray in
Figure 7) upscaled from ¢, C, and S,, at the wells with a 5 m running
window.

The same interpretation is next conducted using the 0.75 AR +
0.25 HR approximation shown in red in Figure 6d. The results are

a)
20 m
E
2
0 02040608 1 0 01 02 03 002040608 1 1 2 3 4 5556657758 0 0.10.20.3040.5
Clay Porosity Sy Velocity (km/s) Ip (km/s glcc) PR
b)
20 m
E
2
0 0.20.4060.8 1 0 01 02 03 002040608 1 1 2 3 4 5556657758 0 0.10.20.3040.5
Clay Porosity Sy Velocity (km/s) Ip (km/s g/cc) PR
)
20 m
E —
o
= Lt
0 0.20.4060.8 1 0 01 02 03 002040608 1 1 2 3 4 5556657758 0 0.10.20.3040.5
Clay Porosity Siw Velocity (km/s) I, (km/s glce) PR

Figure 3. The same as Figure 1, but with a constant reservoir thickness (25 m) and varying water saturation.
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1 K 1 1
0 gyvv vV 0 GV Y 0
0 02 04 06 038 0 02 04 06 08 1 0 02 04 06 038 1
Sw Sw Sw
Figure 4. The same as Figure 2, but for the cases shown in Figure 3.
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Figure 5. Depth profiles of gamma ray; clay content in black and S,, in blue; the total porosity; bulk density; Vp and V; I,,; and PR for wells

(@) X, (0) Y, and (c) Z.
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shown in red in Figure 7. They are very close to the results of the
first interpretation (black curves in Figure 7).

DISCUSSION

Essentially, all effective medium models used in rock physics
treat a heterogeneous volume of rock as spatially homogeneous,
meaning that they relate a single set of elastic constants to a single
set of petrophysical properties and conditions, such as porosity, clay
content, stress, and water saturation. In other words, rock physics
treats a volume of rock as a point in space. The porosity, mineral-
ogical fractions, and water saturation of an effective medium is the
volume average of these quantities. However, the effective
elastic constants of the medium depend on the spatial configuration
of the elastic bodies composing the rock volume. For the case of
layered geometry, as is assumed here, Dvorkin and Wollner
(2017) show that an isotropic rock-physics transform linking
the elastic to petrophysical rock properties can approximately de-
scribe such a volume treated as an effective medium. Yet, in their
work, one link was missing: how to relate the “effective” bulk
modulus of the pore fluid containing more than one constituent
to the average water saturation. This is the subject of our present
investigation.

This relation is required in forward modeling because many rock-
physics models compute first the dry-frame elastic constants and
then obtain the saturated-rock constants via fluid substitution. In
contrast, these models can also be used in the inverse mode to derive
the petrophysical properties from elastic measurements at the seis-
mic scale. Once again, an appropriate I_{f—S’w relation is required for
this purpose.

Here, we show examples of such interpretation using K f-S‘w
relations established via forward modeling at synthetic and real
wells. These relations are much closer to the arithmetic than to
the harmonic average of the individual bulk moduli of the fluid
components. The synthetic examples presented in Figures 1 and
2 suggest that regardless of whether the reservoir is resolved at a
coarse scale or not, the K f-S‘W relations remain the same given that
only the thickness of the reservoir changes. On the other hand, Fig-
ures 3 and 4 show that if the hydrocarbon content in the reservoir
changes, the K f—S'w relations vary as well. Hence, to minimize the
uncertainty in an interpretation of seismic data, K-S, relations
should be locally calibrated.
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Such a locally calibrated relation based on well data is shown
in Figure 6d. It is used to interpret the coarse-scale impedances
and bulk density in the wells for the total porosity, clay content,
and water saturation (Figure 7). This interpretation is in agreement
with these variables independently upscaled in the well, no matter
whether we use the averaged relation for the three wells or its
0.75 AR + 0.25 HR approximation. This fact is not trivial because
we did not use a local relation at each well, but rather their binned
average.

Still, for the same reason, our interpretation may seem overly op-
timistic. To address this concern, we repeat the interpretation proc-
ess in each of the three wells, but now based on only the binned and
averaged I_(f—S'W relations computed in well X. The results are dis-
played in Figure 8 (black). Once again, the agreement between the
interpreted and the true upscaled quantities is quite satisfactory.

In frontier exploration, where well data are unavailable, the re-
quired I_(f—S’w relations must be somehow approximated. One way is
to assume a rock-physics model consistent with local geology and
then use this model to construct pseudowells and compute the re-
quired K f—S'W trends as shown above. Of course, to construct such
wells and constrain the resulting relations, we need prior informa-
tion (most likely an assumption) about S,, ranges in the reservoir. A
set of such “training” wells can be constructed statistically as in
Grana and Della Rossa (2010). Then, we will have a distribution
of the I_( f—S‘w curves allowing for introducing uncertainty into
our deterministic framework.

If no such information is available, S, can be assumed constant.
The bulk modulus of the pore fluid at this endpoint in the I_{f—S‘w
plane can be computed as the harmonic average of the individual
bulk moduli of the fluid components weighted by this S,, value.
This endpoint can then be connected to the S,, = 100% endpoint
by either a straight line representing the arithmetic average or by
a 0.75 AR + 0.25 HR curve. An example of using this linear com-
bination and assuming the S,, = 0 endpoint, is shown in Figure 8 in
red. As expected, because the S,, endpoint was chosen zero instead
of approximately 20%, the interpreted S,, (red in Figure 8) is under-
estimated. At the same time, the interpreted porosity and clay con-
tent match the upscaled measurements very well simply because the
sensitivity of the elastic constants to water saturation in the low S|,
range is small.

Finally, let us note that the interpretation results may strongly
depend on the input parameters. Therefore, if the seismic-scale
impedances and bulk density as obtained, for example, from simul-

c) 3 d) 3
AR AR l
® Equation 12 ® Equation 12 o
— * 0.75AR+0.25HR S —_ * 0.75AR+0.25HR °.
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) o ol
@ o
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Figure 6. The same as Figures 2 and 4, but for the wells (a) X, (b) Y, and (c) Z shown in Figure 5. For visualization purposes, 0.75 AR +
0.25 HR is shown in red. The binned and averaged results (as explained in the text) are shown in (d).



Downloaded 12/01/20 to 128.210.126.199. Redistribution subject to SEG license or copyright; see Terms of Use at https://library.seg.org/page/policies/terms
DOI:10.1190/ge02017-0293.1

Fluid bulk modulus versus saturation MR89

taneous impedance inversion significantly differ from these proper-
ties measured in the well, the resulting interpreted values will likely
not match the well data either. To quantify such a deterministic mis-
match, statistical uncertainty can be introduced, together with the
site-specific K f-S'W relations, to obtain probability distributions

a)

TVD (m)

20 m

0 0.20.40.60.8 1 0 01020304 00.204060.8 1
Clay Porosity
b)
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Clay Porosity Sw

Figure 7. Depth profiles of upscaled and interpreted total porosity,
clay content, and water saturation for wells (a) X, (b) Y, and (c) Z
obtained as explained in the text. The bold gray curves are the up-
scaled well data. The black curves are the interpreted variables us-
ing the fluid bulk modulus versus water-saturation relation shown in
black in Figure 6d. The red curves are the interpreted variables
using the 0.75 AR + 0.25 HR approximation (the red symbols
in Figure 6d).

for the seismic-scale ¢, C, and §,, at each depth level (e.g., Grana
and Della Rossa, 2010). Of course, the significance of the mixing
law to the interpretation process is reduced if the elastic contrast
between the bulk moduli of individual pore-fluid phases is not large
(Arévalo-Lopez and Dvorkin, 2017).
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Figure 8. The same as Figure 7, but with the interpreted curves
computed based on the binned and averaged bulk modulus-satura-
tion relation computed only in well X. The bold gray curves are the
upscaled well data. The black curves are the interpreted variables.
The red curves are the interpreted variables using the 0.75 AR +
0.25 HR approximation established assuming zero water saturation
in the reservoir.
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CONCLUSION

The specific technical objective of this work appears to be very
specialized and narrow — relating the effective bulk modulus of
the pore fluid to water saturation at the seismic scale. Yet, this task
appears to be a crucial element of a much more general and impor-
tant problem, which is rock-physics-based interpretation of simul-
taneous impedance inversion results for petrophysical variables,
porosity, clay content, and water saturation. The results, now that
they have been rigorously derived, also appear almost obvious. In-
deed, in the examples provided here, a K-S, relation is much
closer to that for the patchy saturation pattern than to the uniform
one. Still, we feel that to improve the quality of interpretation, this
relation has to be locally calibrated using well data. The method-
ology presented here is valid for any rock-physics model and,
hence, it should be used with a site-specific transform.
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APPENDIX A
BACKUS AVERAGE

A linearly elastic isotropic body can be described by the follow-
ing fourth-order stiffness tensor C;; written in Voigt notation as

Ci, Cn Ca 0 0 0
C» C, Ca 0 0 0

|lcn € Ccp 0 0 0

i=lo 0 0 Cy 0O 0]
0 0 0 0 Cyu O
0 0 0 0 0 Cy

where C;; = K+4G/3, Ci, = K —2G/3, and Cyy, = G. Backus
(1962) shows that in the long-wavelength limit, a medium composed
of a sequence of isotropic layers with the axis of layering perpen-
dicular to the x3-direction can be represented as an effective medium
having transverse isotropy with the following elastic constants:

(A-1)

. /4G +G) RCYAVERE
C“C22< A+2G >+</1—|—2G> </1+2G>’

e 2G/1+ 1 \-1/ 1 \2
2=\ 1+ 26 142G 1+2G/ "

N <A +12(;>_] <ﬂ +lzc>’

Ces = (G)71, (A-2)

where A = K —2G/3 and (-) is the arithmetic averaging operator
across all layers. For instance, given material quantity m, its average
value for a stack of N layers is given by

N N
(m) =" fum; Y fi=1, (A3)
k=1 k=1

with f and m; being the volume fraction and the material quantity of
kth layer, respectively.

In this work, we assume that the Backus-upscaled elastic proper-
ties in the vertical (x3) direction can serve as proxies for the seismi-
cally derived impedance from simultaneous impedance inversion.
To test this assumption, we compare the normal-incidence full-wave-
form synthetic seismograms obtained from (1) the borehole-scale
elastic properties and (2) Backus-upscaled elastic properties. If these
two seismograms are identical, our assumption is corroborated.

An example of this numerical experiment using wells X, Y, and Z
(see the main text) is shown in Figure A-1. If the size of the upscaling
window is 5 m (approximately one-sixteenth of the wavelength) or
smaller, the two seismograms are identical in all three wells (Fig-
ure A-1la). If the window size is 15 m, the seismograms are qualita-
tively the same apart from small qualitative mismatch in peaks and
troughs (Figure A-1b).

APPENDIX B
ANALYTICAL APPROXIMATION

a) b)

Time (s)
Time (s)

0.1s

— Without upscaling
—With upscaling (15 m)
T T :

—Without upscaling
—With upscaling (5 m)
T T T

z Here, we present an asymptotic analytical
approximation to our solution obtained under the
assumption of small elastic contrast between the
layers resolved in wellbore data.

Specifically, let us assume that

Ky, — (Ko / (Kpry) < 1.

IGY - (G)|/(G) < 1,
) — (a)|/{a) < 1, (B-1)

Figure A-1. Synthetic seismograms in wells X, Y, and Z generated using the borehole-
scale elastic data (black) and Backus-upscaled elastic data (red). (a) 5 m upscaling win-

dow and (b) 15 m upscaling window.

where a =1 - Kp, /K, is the Biot and Willis
(1957) coefficient and the superscript i refers to
the properties of ith layer. Because their variations
are small, the elastic properties of the upscaled
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medium can then be approximated by arithmetic averages as K Dry =
(Kpry), G = (G),and @ = (a). As aresult, Gassmann’s (1951) fluid-
substitution equation assuming hydraulic isolation between layers

can be written as (Norris, 1993; Wollner and Dvorkin, 2016)

K = Kp,y + a*(M), (B-2)
where
_[¢ a=g]"
o

Let us now ask ourselves what will I_(f obtained from equation B-2
be if (M) used in this equation is

7 =~ _ $H]-1
= |2 a9 (B-4)
K I K,
Then, from equations B-2 and B-4, we find
K K
f f
= . B-5)
- Ki(a—@) < K (a—¢)>
Assume next that
Ki(a—-¢) -
f
_ < B-6
X ¢ (B-6)
and
K:(a—
M < ¢, (B-7)

K

s

which is plausible in rock with high mineral bulk modulus and
medium to high porosity. As a result, equation B-5 becomes

_ K\ -
If we further assume that
)~ @l/d < 1. (B-9)
this equation becomes
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