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ABSTRACT

A key task of exploration geophysics is to find relationships between seismic attributes
(velocities and attenuation) and fluid properties (saturation and pore pressure). Ex-
perimental data suggest that at least three different factors affect these relationships,
which are not well explained by classical Gassmann, Biot, squirt-flow, mesoscopic-
flow and gas dissolution/exsolution models. Some of these additional factors include
(i) effect of wettability and surface tension between immiscible fluids, (ii) saturation
history effects (drainage versus imbibition) and (iii) effects of wave amplitude and
effective stress. We apply a new rock physics model to explain the role of all these
additional factors on seismic properties of a partially saturated rock. The model is
based on a well-known effect in surface chemistry: hysteresis of liquid bridges. This
effect is taking place in cracks, which are partially saturated with two immiscible
fluids. Using our model, we investigated (i) physical factors affecting empirical Brie
correlation for effective bulk modulus of fluid, (ii) the role of liquids on seismic at-
tenuation in the low frequency (static) limit, (iii) water-weakening effects and (iv)
saturation history effects. Our model is applicable in the low frequency limit (seismic
frequencies) when capillary forces dominate over viscous forces during wave-induced
two-phase fluid flow. The model is relevant for the seismic characterization of immis-
cible fluids with high contrast in compressibilities, that is, for shallow gas exploration
and CO, monitoring.

Key words: Rock physics, surface phenomena, seismic rock properties, partial
saturation.

1 INTRODUCTION Schmitt and Wang (2015) suggests that the discrepancy be-

. tween the experimental data and Biot-Gassmann models is
Key challenges of shallow gas exploration and CO, mon- . . o .
. - . . . . related to the slip at the solid—fluid interface, where the slip
itoring are finding relationships between seismic attributes o o
condition depends on the wettability of the rock (Lauga, Bren-

ner and Stone 2007). Wang ef al. (2015) argued that, due to
the slippage at the solid—fluid interface, the stiffness of the

(velocities and attenuation) and fluid properties (saturation
and pore pressure). Several factors affect seismic velocities,
which are not well explained by Gassmann, Biot, squirt-flow, ] . .
. P ) Y . . q rock will be lower than predicted by Biot—-Gassmann models,
mesoscopic-flow and gas dissolution/exsolution models. The i ) .
which assume Stoke’s no-slip boundary conditions between
fluid and solid. Knight ez al. (2010) argued that the change

of seismic velocities observed during drainage and imbibition

effect of surface phenomena on elastic wave velocity in porous
media has been observed 70 years ago, after Wyllie, Gre-

d Gard 1958) who ob d the effect of wetta-
gory and Gardner { ) who observed the effect of wetta is related to the change of the interfacial area between im-

miscible fluids. Furthermore, Knight ez al. (2010) argued that

the bridges of interface menisci restrict the relative motion

bility on seismic wave velocity. More recent work of Wang,
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of immiscible fluids during wave-induced fluid flow, which
increases the apparent stiffness of the rock. This implies that
two competing processes are taking place on the interfaces
between gas, liquid and solid:

1. The presence of interface menisci and the contact-line pin-
ning effects restrict the relative motion of the fluids during
wave-induced two-phase fluid flow, causing increase in the
effective stiffness of a partially saturated rock;

2. Wettability-dependent Stoke’s no-slip boundary condition
may not always apply in submicron pores and at the contact
line location, causing the fluid molecule to slip and roll over
the surface of solid. This reduces the effective stiffness of a
partially saturated rock and causes the attenuation of wave
energy.

Murphy (1984) and Murphy, Winkler and Kleinberg
(1986) suggested the model, explaining the frame mod-
ulus reduction in sedimentary rocks due to the effect of
adsorption on a grain contact. They demonstrated that the
water-weakening effect is taking place even in unconsoli-
dated sandstones, which excludes other water-weakening
mechanisms, such as swelling of clay cement, osmotic suction
and dissolution and precipitation of calcite. The review of
different water-weakening mechanisms of dynamic rock
moduli can be found in Li et al. (2017).

Previous research suggested that the impact of partial sat-
uration on the bulk modulus can be attributed to an effective
fluid modulus of a single-phase fluid (e.g. Mavko, Mukerji
and Dvorkin 2009; Papageorgiou, Amalokwu and Chapman
2016). Mavko and Mukerji (1998) proposed upper and lower
bounds (Voigt and Reuss bounds) on low-frequency seismic
velocity in a partially saturated rock. Their model considers
different averaging methods (isostrain versus isostress) for the
effective bulk moduli of the fluid and do not consider any
solid—fluid and fluid—fluid interactions, which can potentially
change these bounds and explain the diversity of the experi-
mental results.

Brie et al. (1995) suggested an empirical correlation be-
tween effective fluid bulk modulus and gas saturation. Their
model is consistent with the upper and lower bounds of
Mavko and Mukerji (1998) and depends on the empirical
parameter. Papageorgiou et al. (2016) demonstrated that this
empirical parameter is related to pore-scale capillary effects
and may not be necessarily related to the patch size, as it is
usually considered (Mavko and Mukerji 1998). Similar con-
clusions about the importance of pore-scaled capillarity were
discussed by Qi et al. (2014a) and Qi, Miiller and Rubino
(2014b). Wollner and Dvorkin (2018) argued that an effective

fluid bulk modulus can be approximated by a linear combi-
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nation of Voigt and Reuss bounds, depending on the elastic
moduli of the rock and the pore fluids. However, the depen-
dence of an averaging method on elastic properties of solid
and fluids does not follow directly from the model of Wollner
and Dvorkin (2018). They argued that the relative contrast
between the gas and water is larger in a soft rock than in rock
with a stiffer frame.

The group around Prof. H.A. Spetzler (e.g. Moerig
et al. 1996; Waite, Moerig and Spetzler 1997) designed
an experiment on an artificial partially saturated crack to
test the effect of physicochemical interactions at liquid—gas,
liquid-solid and gas—solid interfaces on seismic attenuation
and stiffness. Spetzler et al. observed that the low frequency
stiffness of a partially saturated crack is larger than the stiff-
ness predicted by local fluid-flow models. The authors argued
that the observed stiffening is related to surface tension forces
between immiscible fluids, which cannot be explained by
Gassmann-type models (Gassmann 1951), because Gassmann
explicitly excluded capillary forces in his analysis. Moreover,
these authors argued that the observed seismic attenuation
is related to a contact line friction during wave-induced
contact line motion, an attenuation mechanism that was not
considered before. The contact line friction occurs by the
slippage and rolling of fluid molecules over the surface of
the solid at the contact line location, that is, in 1D (Ren
and E 2007). They found that chemical contamination had a
significant effect on interfacial tension and contact angle hys-
teresis, affecting the contact line frictional force, and a minor
effect on the compressibilities and viscosities of fluids. From
these experiments, the authors observed that contamination
significantly affects seismic attenuation and crack stiffness
in the low frequency range, which cannot be explained by
the change of fluid compressibilities and the fluid viscosities.
Furthermore, Moerig et al. (1996) observed that seismic
attenuation can either increase or decrease with frequency in
the range from 0.001 to 5 Hz, depending on chemical treat-
ment of the crack surface. Available classical models (Pride,
Berryman and Harris 2004; Mavko et al. 2009; Miiller, Gure-
vich and Lebedev 2010) would rather predict a linear increase
of seismic attenuation in the low frequency limit. It must be
noted here that effects of frictional dissipation between two
solids in a contact on seismic wave attenuation and dispersion
are well studied (see literature overview in Yarushina and
Podladtchikov 2010). Those frictional dissipation mecha-
nisms include sliding on crack surfaces and grain boundaries,
that is, it occurs over a certain surface area in 2D. Viscous
dissipation during wave-induced fluid flow on various length
scales occurs due to interaction of fluid molecules moving
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Table 1 Input parameters for case 1

Material parameters of the rock around a crack

Young’s modulus (E) 30 GPa
Poisson’s ratio (v) 0.3
Properties of immiscible fluids inside the crack

Water (brine) bulk modulus (K,) 2.69 GPa
Gas bulk modulus (K,,,,) 0.131 MPa
Surface tension (y) 0.073 Pa x m
Advancing contact angle for wetting phase (,) 50°
Receding contact angle for wetting phase (6,) 30°

Crack properties

Initial crack porosity (7,) 2x 1074
Major semi-axis (a) 1072 m

Aspect ratio (b/a) 1073
Effective stress
Effective stress (o + p,,,)

with different velocities in a bulk volume of flowing fluid, that
is, in 3D, while the contact line friction occurs at the contact
line location, that is, in 1D. All these attenuation mechanisms
convert elastic wave energy into the heat. The equivalence be-
tween lost mechanical energy (dissipation) and an increase in
temperature was discovered by James Prescott Joule in 1851.

Pride et al. (2004) argued that the contact line of an
air—water meniscus will remain pinned in porous media dur-
ing stress perturbations induced by linear seismic waves,
that is, waves with the stress perturbation amplitude of
~ (10%...10%) Pa. As a wave passes, the menisci will bulge
and change shape but will not slip away. In this paper, we
demonstrate that the depinning of the contact line will occur in
partially saturated cracks with aspect ratio ~ 1073... 107%.
This range of the aspect ratio is typical for sandstones and
other rocks (e.g. Zimmerman 1990). Thus, Pride ez al.’s (2004)
conclusion is not applicable for compliant (soft) pores, such
as microcracks. Here, by cracks in granular materials, we un-
derstand compliant pores due to imperfectly bonded grain
contacts, which, mathematically, can be described by ellipti-
cal cavities (e.g. Zimmerman 1990). Furthermore, as it will
be demonstrated in the paper that the depinning condition of
the contact line depends also on other parameters, given in
Table 1, and on boundary conditions for immiscible fluids. In
this paper, we considered an isolated crack that is partially sat-
urated with a water and gas system and demonstrated that the
depinning conditions are taking place during the propagation
of linear seismic waves. For an oil-water system with much
lower contrast in compressibility of fluids, the depinning of
the contact line will not take place in isolated crack during
the propagation of linear seismic waves. Much greater wave

amplitudes are required to initiate the depinning in isolated
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Figure 1 Deformation of the liquid bridge between two parallel plates.

crack, partially saturated with oil and water. However, the sit-
uation will be different if the crack is connected to other pores
of different compliances. For non-isolated crack, partially
saturated with oil and water, the contact line will slip during
the propagation of linear seismic waves. Non-isolated crack
is not considered in this paper; however, in Appendix A.6 we
discuss how to modify equations presented in this paper, to
address the non-isolated crack case.

In this paper, we extend the previous publication of
Rozhko and Bauer (2018) by considering the hysteresis of
liquid bridges’ effect in the partially saturated rock. We ar-
gue that the hysteresis of liquid bridges is manifested in the
form of (i) the water-weakening effect, (ii) effects of the wave
amplitude, (iii) the frequency effects and (iv) the saturation
history effects on seismic velocity and attenuation in the low
frequency range. Furthermore, we demonstrate that this ef-
fect leads to a non-zero attenuation at zero frequency limit,
where all porous diffusion-based models predict zero atten-
uation. We will start with introduction to published experi-
mental data, explaining the hysteresis of liquid bridges’ effect
between parallel plates. In numerical examples, we investi-
gate the influence of different physical factors affecting bulk
modulus and attenuation of a partially saturated rock in the
low frequency limit and addressing the “water-weakening”
effects. Afterwards, we apply our model to explain the hys-
teresis effect of seismic properties observed during drainage
and imbibition. The Appendix contains mathematical deriva-
tions of the rock physics model.

2 HYSTERESIS OF LIQUID BRIDGES
BETWEEN PARALLEL PLATES (LAB
DATA)

This section will introduce the hysteresis of liquid bridges,
a well-known effect in surface chemistry literature (e.g. De
Souza et al. 2008; Chen, Amirfazli and Tang 2013; Zhang
2016; Shi et al. 2018). Figure 1 shows a typical experimental
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setup used to investigate the hysteresis of liquid bridges be-
tween parallel plates. The aperture between two plates is w,
the diameter of wetted area is / and F is the force between
two plates. A liquid drop is placed between two plates. The
upper and the lower contact angles are 6, and 6,. The change
of aperture within a certain time ¢ is Aw. Aperture changes in-
duce changes in the force AF and the diameter of the wetted
area Al. Experiments are typically conducted under condi-
tions when time # is large enough so that the viscous forces
can be neglected. Typically, the evaporation of the liquid drop
is also neglected when the time ¢ is not too large. Of course,
the evaporation of the liquid drop may take place, but it is
not necessary to consider this mechanism in the explanation
of experimental data, presented below.

Figure 2 describes more details about the hysteresis of lig-
uid bridges observed experimentally (e.g. De Souza et al. 2008;
Chen et al. 2013; Zhang 2016; Shi et al. 2018). Figure 2(a)
shows capillary force versus aperture between parallel plates;
Fig. 2(b) shows contact angles versus aperture; and Fig. 2(c)
shows the diameter of the wetted area versus aperture. Over-
all, the hysteresis of liquid bridges can be divided into four
continuous stages:

Pinning (stretching)
Slipping (receding)
Pinning (compression)

AW N =

Slipping (advancing)

When the contact angle is greater than the receding angle,
the aperture increase will result in an increase in the force due
to pinning (stage 1). This will be accompanied by a reduc-
tion in the contact angle until the receding angle is achieved
when the force begins to decrease and the contact line starts
to slip inward (stage 2). If the aperture starts to decrease, the
contact angle begins to increase until it reaches the advancing
angle (stage 3). In this stage, the pinning stage occurs again,
which corresponds to the reduction of the capillary force. If
the aperture keeps decreasing to the initial aperture, the con-
tact line will slip outwards with the contact angle equal to the
advancing angle (stage 4). The energy dissipated per cycle is
proportional to the hysteresis area of Fig. 2(a). The contact
line friction is the dominant mechanism of energy dissipa-
tion in these experiments. The intermolecular forces acting
between molecules of the solid and those of the liquid, which
pin the contact line to the substrate, are responsible for the
contact line friction, which occurs not over the entire solid—
liquid interface, but only at the three-phase line (Yaminsky
2010; Bormashenko 2013a,b). Contact line friction occurs
due to the slippage and rolling of fluid molecules over the
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Figure 2 Schematic, four stages of liquid bridge hysteresis observed
in laboratory tests (e.g. De Souza et al. 2008; Chen et al. 2013; Zhang
20165 Shi et al. 2018). (a) Capillary force versus aperture (between
two parallel plates); (b) contact angles versus aperture; (¢) diameter
of the wetted area (contact line displacement) versus aperture.

surface of the solid at the contact line location, that is, in 1D
(Ren and E 2007).

Four continuous stages are possible if the amplitude of
aperture deformation is sufficiently large, otherwise it will be
only one periodic stage, when the contact line is pinned and
the contact angle is changing within the range 6, <0 < 6,.
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There is no energy dissipation (by the contact line friction)
when the contact line is pinned.

Viscous dissipations are also taking place in these experi-
ments, which are proportional to the frequency of oscillations
in the low frequency limit (e.g. Mavko and Nur 1979; Hud-
son 1988). Thus, at low frequencies, the contact line frictional
dissipation may dominate over viscous dissipation. However,
if the wave amplitude is small and the contact line is pinned,
then the viscous dissipation will be the only dissipation mech-
anism in these experiments.

Contact angle hysteresis is responsible for the hys-
teresis of liquid bridges and contact-line friction effects
(Bormashenko 2013a,b). It depends on the contact line ve-
locity (Bonn et al. 2009), as shown schematically in Fig. 3(a).
At zero velocity, a spectrum of static contact angles is observed
(Bormashenko 2013a,b). This effect is called a static contact
angle hysteresis. Figure 3(a) shows that the advancing contact
angle increases with the contact line advancing velocity, while
the receding contact angle decreases with the contact line re-
ceding velocity. This effect is called a dynamic contact angle
hysteresis. At zero frequency limit, the contact line motion ve-
locity is also zero, thus dynamic contact angle hysteresis can
be neglected. While the static contact angle hysteresis is not
zero and can be as large as tens of degrees (Ethington 1990).
Thus, at low frequency, viscous dissipation is small (and thus
neglected), while the contact line frictional dissipation is not
small due to the static contact angle hysteresis effect.

The equilibrium configuration of the static contact line
was the topic of classical work of Young, Laplace and Gauss.
It is described by Young’s equation, which relates the three
coefficients of interfacial tension to the Young’s contact angle
(0y) formed by the fluid—fluid interface with the solid sur-
face (de Gennes, Brochard-Wyart and Quéré 2013). The equi-
librium Young’s contact angle can also be calculated from
advancing and receding contact angles, as was shown theo-
retically by Tadmor (2004) and confirmed experimentally by
Chibowski (2008).

Using the experimental setup, shown in Fig. 1, we could
also investigate the effect of frequency. Figure 3(b) and 3(c)
show schematically the effect of the aperture deformation ve-
locity (i.e. frequency) increase on the hysteresis of capillary
forces and contact angles, observed experimentally by Zhang
(2016) and Shi et al. (2018). Figure 3(c) shows that with
the frequency increase (when Aw is the same), the hystere-
sis of contact angles (6, — 6,) also increase, affecting contact
line pinning forces, as shown in Fig. 3(b). Figure 3(b) and 3(c)
shows the manifestation of the dynamic contact angle hystere-
sis, which depends on the contact line velocity (Al/¢), accord-

ing to Fig. 1. However, the contact line velocity depends on
the aperture deformation velocity (Aw/¢) and amplitude of the
aperture deformation Aw. If the amplitude Aw is small, the
contact line remains pinned, while the contact line is slipping
if Aw is sufficiently large; thus, the frequency dependence (i.e.
dependence on 1/t) is rather non-trivial. Furthermore, with
the frequency increase, viscous dissipations will also increase,
which will affect, at certain stage, the experimental results,
shown in Fig. 3(b) and 3(c). At this paper, we focus only on
the low frequency limit, when dynamic effects of the contact
angle hysteresis are neglected, and thus viscous dissipations
are also neglected.

Figure 2(a) shows rather a non-trivial behaviour of the
local stiffness, where the stiffness is the local slope of the
force—displacement curve. According to experimental data
(Fig. 2a), local stiffness can be either positive or negative. In
other words, experimental data of Fig. 2(a) show that the hys-
teresis of the capillary force cannot be explained by Hooke’s
law. However, all linear theories of wave propagation are
based on fundamental Hooke’s law assumption. These non-
trivial effects were observed experimentally between two par-
allel plates. We argue here that the same non-trivial effects
are taking place in natural rocks. Natural rocks are very het-
erogeneous and anisotropic. Acoustic properties of natural
rocks are affected by many factors, including pore geome-
try, mineral composition, saturation and distribution of pore
liquids, size scale and frequency effects, rock wettability and
so on. This makes it quite challenging to design good ex-
periments for discriminating between the different possible
mechanisms affecting seismic attenuation and dynamic stiff-
ness. Many mechanisms may contribute to seismic attenuation
and velocity dispersion simultaneously, including Biot’s flow,
scattering, squirt flow, mesoscopic flow (e.g. Pride et al. 2004;
Mavko et al. 2009; Miiller et al. 2010), plasticity and solid
friction (e.g. Yarushina and Podladtchikov 2010), effects of
dissolution and exsolution of gas into and from the liquid
(e.g. Tisato et al. 2014, 2015). In laboratory experiments, we
can control some of the factors influencing seismic proper-
ties, but it is very challenging to control all factors in nat-
ural rocks. At field scale, we do not have the opportunity
to control the medium in the same way as in the labora-
tory, which means that interpretation of field results is (of-
ten — and unfortunately) prone to guesswork. This section
describes the sort of “an ideal experiment”: the hysteresis
of liquid bridges between two parallel plates (e.g. De Souza
et al. 2008; Chen et al. 2013; Zhang 2016; Shi et al. 2018).
This effect cannot be explained by Biot’s flow, scattering,
squirt flow, mesoscopic flow, plasticity and solid friction,
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Figure 3 Frequency (velocity) effect on
the hysteresis of liquid bridges. (a) Static
and dynamic contact angles versus con-
tact line velocity. At zero velocity, a spec-
trum of static contact angles is observed.
(b) and (c) show (schematically) the fre-
quency effect on the hysteresis of liquid
bridges, based on published laboratory
data (e.g. Zhang 2016; Shi et al. 2018).

(c)

(a) "@/

effects of dissolution and exsolution of gas into and from
the liquid, because it is related to a static contact angle
hysteresis effect. A static contact angle hysteresis was not
previously considered until a recent work of Rozhko and
Bauer (2018). Previous authors (Miksis 1988; Moerig et al.
1996; Waite et al. 1997; Brunner and Spetzler 2001; Broad-
head 2012) considered only a dynamic contact angle hysteresis
in a crack that is partially saturated with a water and gas sys-
tem. These authors assumed a unique value of the contact
angle at zero contact line velocity. This assumption makes
it impossible to explain a liquid bridge hysteresis, shown in
Fig. 2, because this assumption neglects two effects: a con-
tact line pinning and a static contact line friction. Thus, un-
derstanding of the liquid bridge hysteresis at ideal laboratory
conditions will help us to understand its effect on seismic rock
properties with the help of the mathematical model described
in the next section.

3 HYSTERESIS OF LIQUID BRIDGES INSIDE
THE CRACK (MODEL)

3.1 Rock physics model

In this section, we investigate the effect of hysteresis of lig-
uid bridges in a partially saturated crack, shown in Fig. 4(a).
The initial geometry of the crack is approximated by a de-
formable elliptical cavity with semi-axes @ and b. In our calcu-
lations, we consider very narrow cracks, a >> b. We use a 2D
plane-strain approximation, widely used in geomechanics and
rock physics to address 3D problems (e.g. Zimmerman 1990;

w With an increase in frequency, the hystere-
sis of capillary force and contact angles is
Frequency .
(velocity) increased, as shown by dashed tetragons,
increase while the amplitude of deformation re-
mains the same.
w

Mavko et al. 2009; Vernik and Kachanov 2012). The wetting
liquid phase occupies thin parts of the crack (tips), while the
non-wetting gas phase occupies wide parts of the crack (cen-
tre). Such distribution of fluids is energetically favourable (e.g.
Preuss and Tsang 1990). Previous research (e.g. Mavko and
Nur 1979; Hudson 1988; Miksis 1988) considered the distri-
bution of fluids where the liquid phase occupied the central
part of the crack. This distribution is possible, but energet-
ically not favourable and is discussed in Section 4.4. Pres-
sures in the non-wetting (p,,,) and wetting (p,,.) fluid phases
are different due to interfacial tension and denoted here as
capillary pressure (p,,) (e.g. Barenblatt, Entov and Ryzhik
1990):

pcap = Pow — Pwe- (1)

The fluid pressure acting on the crack surface is p,,, if
|x| <c and p,,. if ¢ < |x| <a. The coordinate |x| = ¢ de-
fines the location of the contact line, as shown in Fig. 4(a)
and 4(b). To simplify calculations, we consider the case that
is independent of the crack orientation with respect to the
confining stress and wave propagation directions. Therefore,
we consider a uniform far-field confining stress o, acting on
the external boundary of the representative elementary vol-
ume (REV), as shown in Fig. 4(a). Our equations can still
be applied to more general case, if the hydrostatic confin-
ing stress and wave-induced stress perturbations are replaced
with its normal components, acting on the crack surface. Our
rock physics model is based on a recently published ana-
lytical solution describing equilibrium stresses and displace-
ments around partially saturated cracks (Rozhko 2016). This

© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1404-1430
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Figure 4 (a) Partially saturated crack (modified after Rozhko and Bauer 2018), plane-strain (2D) approximation. The wetting fluid phase
symmetrically occupies the crack tips while the non-wetting phase is in the centre. (b) The contact angle of the wetting phase with the crack
surface is 0. The coordinate |x| = c¢ defines the location of the contact line. (c and d) Perturbation of the far-field total stress (Ac) along the

external boundary of an REV. The change in stress induces deformations of the crack and REV (Aw,, AR), as well as changes in pressures

(A Pye> APDyy) and volumes of the wetting and non-wetting fluid phases (A'V,

analytical solution was derived using the method of com-
plex potentials (Muskhelishvili 1977) and conformal mapping
methods (Lavrentiev and Shabbat 1973). The capillary pres-
sure predicted by our model using the classical Young-Laplace
equation is two-way coupled to crack aperture changes.
Appendix A.1 provides analytical solutions predicting cap-
illary pressure (p.,,,), total crack volume (V,,;) and volume of
the wetting phase (V,,) at the equilibrium. Those equations
depend on static contact angle (9), surface tension between
liquid and gas (y), crack length (a), contact line location (c)
and initial aspect ratio (b/a), far-field confining stress (o),
pressure in the wetting phase (p,..), Young’s modulus (E) and
Poisson’s ratio (v) of the rock around the crack.

wes AV, ), contact angle (A6) and contact line location (Ac).

Next, we consider the perturbations of the equilibrium
state caused by a change in stress (as, e.g., induced by
a seismic wave). The strain amplitude induced by seismic
waves, which can be recorded by seismometers, is very small,
typically around 107% to 107° (dimensionless units). For the
rock with Young’s modulus of E ~ 10 GPa, this strain in-
duces stress perturbations around Ao ~ 10% to 10* Pa, which
correspond to the stress perturbation range induced by linear
seismic waves.

Figure 4(c) shows an isotropic perturbation of the far-
field total stress (Ao) along the external boundary of REV.
Again, for simplicity, we consider the case independent of
the crack orientation; therefore, a uniform (isotropic) stress

© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1404-1430



perturbation is considered on the external boundary of REV.
The size of REV (R) is much smaller than the wavelength;
therefore, Ao is uniform. Perturbation of the far-field total
stress (Ao ) induces perturbations to the following parameters:

the total crack volume AV, the volume of the wetting phase

toty
inside the crack AV, pressure in the wetting phase inside the
crack Ap,., capillary pressure A p,,,, contact line location Ac
and contact angle Af. There is no liquid or gas flow in or
out of the crack during the wave period, that is, undrained
boundary conditions for both fluid phases are used in calcu-
lations. Thus, in our model, the masses of the wetting fluid
and non-wetting fluid remain the same in the crack. In this
case, changes of volumes of the wetting and non-wetting fluid
phases are related to changes of pressures in those phases via
the bulk moduli of the wetting (K

fluid phases as follows:

) and non-wetting (K

we nw )

AVwe Kwe = _Vwe pre (2)
and
Av;w an = _‘/nw Ain' (3)

The contact line slipping condition can be described by
a critical stress perturbation, Ao, required for the onset of
the contact line motion. When the wave-induced stress per-
turbation is sufficiently small, that is, when |Ac | < |Ac,|, the
contact line will be pinned to the crack surface, and wave-
induced deformations will only cause bending of the liquid—
gas interface meniscus. Otherwise, when |Ao| > |Ao,|, the
contact line will move. Here, Ao, is calculated analytically in
Appendix A.2. If |Ao| > |Ac,|, the wave-induced deforma-
tion of REV can be split into two parts: when the contact
line is pinned and when the contact line is moving. These two
parts are described by a different set of equations derived in
Appendix A.2. The analytic model described in Appendix A.2
is based on linearization (Taylor’s expansion) of equilibrium
equations of Appendix A.1 together with mass conserva-
tion equations (2) and (3) of this section. Additionally, we
use iterations to solve the system of equations, since not all
parameters are small during the propagation of linear seis-
mic waves with a strain amplitude of 1078 to 107° (or stress
amplitudes of Ao ~ 10? to10* Pa). As demonstrated below,
changes of contact angles are not small (A8 ~ 0, — 6,) during
linear seismic wave propagation. Thus, we consider the iter-
b &1,
required for Taylor’s expansion (see Appendix A4 for
details).

. . e g
ation parameter N,.,, which satisfies the condition -
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Figure 5 Periodic stress perturbation, acting on the external boundary
of REV. The first cycle (N = 1) is shown by continuous black curve;
subsequent cycles are shown by the red dashed curve.

3.2 Effect of wave amplitude on the hysteresis of liquid
bridges

Next, we investigate numerically the effect of wave amplitude
on the hysteresis of liquid bridges inside partially saturated
crack. In calculations, we apply a periodic stress perturbation
to the external boundary of REV, as shown in Fig. 5. The
first (N = 1) cycle is shown by a continuous black curve
while subsequent cycles (N > 2) are shown by the red dashed
curve.

In calculations, we will investigate the effect of wave am-

plitude on changes of six independent parameters:

total crack volume AV, ;
contact angle Af;

contact line location Ac;
capillary pressure Ap,,.;

pressure in the wetting phase inside the crack Ap,.;

mTEOOFR

volume of the wetting phase inside the crack AV,,.

These parameters are predicted by equations derived in
Appendix A.2. These six parameters are independent, which
implies that changes of other parameters (AS,.= changes
of crack saturation, 2Aw,= changes of crack aperture, etc.)
can be related to changes of the above six independent pa-
rameters. Thus, only independent parameters will be investi-
gated in this section. For simplicity, some of the parameters
will be displayed in dimensionless units, such as AV,../ V.,
AVye/ Y,
periodic stress perturbation (Ao) will be considered: 1, 5 and

o« and Ac/b. The following amplitudes of the applied
50 kPa. Initial crack saturation considered in calculations be-
low is S,, = 0.75. Other input parameters to calculations
are given in Table 1. In calculation, we considered that the
initial contact angle is equal to equilibrium Young’s angle,
calculated using Tadmor’s (2004) equation (see also Rozhko
and Bauer 2018), giving approximately the intermediate result
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Figure 6 Effect of the hysteresis of liquid bridges on (a) changes of the crack volume (dimensionless units); (b) changes of contact angle (degrees);
(c) contact line displacement (dimensionless units); (d) changes of capillary pressure (Pa); (e) changes of pressure in the wetting phase (Pa);
(f) changes of the wetting phase volume inside the crack (dimensionless units). Horizontal axis shows the magnitude of transient stress (Pa).

Initial (equilibrium) crack saturation is S, = 0.75. The initial contact angle is equal to the Young’s angle. Other input parameters are given
in Table 1. The amplitude of the applied periodic stress perturbation (Ao) is 1 kPa. Similar to Fig. 5, the first cycle (N = 1) is shown by a
continuous black curve, while subsequent cycles are shown by a red dashed curve.

(0y ~ 40°) between the advancing (6, = 50°) and receding
(6, = 30°) angles.

The case when the amplitude of applied periodic stress
perturbation (Ac) is 1 kPa is shown in Fig. 6(a—f). In this
case, the amplitude of the applied periodic stress perturbation
(Ac) is too small to cause the slippage of the contact line, as
shown in Fig. 6(c). Figure 6(b) shows that changes of the con-
tact angle are in the range 6, < 0 < 0,. Figure 6(a) shows that
the change of the crack volume is linear with no hysteresis;
thus, the elastic energy is not dissipated by the contact line
friction effect. Changes of the capillary pressure Ap,,, (in
Fig. 6d) and pressure in the wetting phase Ap,. (in
Fig. 6¢) are also linear with no hysteresis effects. Amplitudes of
AP, and Ap,, are dependent on the choice of input param-

eters. In this case, amplitudes of Ap,,, and Ap,,. (shown in
Fig. 6d and 6e) are nearly equal to the amplitude of Ao,
while amplitudes could be different if input parameters are
changed. Changes of volume of the wetting phase AV, (in
Fig. 6f) are much smaller than changes of the total crack
volume (AV,

e = AV + AV ), because a gas is much more

compressible than water. Calculations (Fig. 6) show that when
the contact line is pinned, there is no hysteresis in changes of
six independent parameters.

The case when the amplitude of applied periodic stress
perturbation (Ao ) is 5 kPa is shown in Fig. 7(a—f). In this case,
the amplitude of the applied periodic stress perturbation (Ao)
is sufficient to cause the slippage of the contact line, as shown
in Fig. 7(c). In this case, the model predicts the hysteresis of
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Figure 7 Effect of the hysteresis of liquid bridges on (a) changes of the crack volume (dimensionless units); (b) changes of contact angle (degrees);

(c) contact line displacement (dimensionless units); (d) changes of capillary pressure (Pa); (e) changes of pressure in the wetting phase (Pa); (f)

changes of the wetting phase volume inside the crack (dimensionless units). Horizontal axis shows the magnitude of transient stress (Pa). The

initial (equilibrium) crack saturation is S, = 0.75. The initial contact angle is equal to the Young’s angle. Other input parameters are given in

Table 1. The amplitude of applied periodic stress perturbation (Ac) is § kPa. Similar to Fig. 3, the first cycle (N = 1) is shown by a continuous

black curve, while subsequent cycles are shown by a red dashed curve.

all six independent parameters. The elastic wave energy is
dissipated to the heat in this case, due to hysteresis effect,
according to equation (9). Similar to Fig. 5, the first cycle
(N = 1) is shown by a continuous black curve, while sub-
sequent cycles are shown by the red dashed curve. Figure 7
shows that subsequent cycles (red dashed curves) follow the
same path and will not return to the initial state. It implies
that the passage of elastic waves will induce the residual
changes of all six independent parameters. The residual
changes of fluid pressure and porosity, caused by the passage
of seismic waves, were reported in various publications (see
Manga et al. 2012 for literature review) and predicted by
our model. Similar to laboratory data (Fig. 2), there are
four stages of the hysteresis of liquid bridges inside partially
saturated crack, predicted in Fig. 7(a—f):

. Pinning (stretching)
. Slipping (receding)

. Pinning (compression)

AW DN =

. Slipping (advancing)

It is interesting to note here that the change of the ap-
plied stress by a factor 5 caused the change of crack porosity
by a factor 17, as shown in Figs 6(a) and 7(a). When the con-
tact line is pinned, the interface menisci restricts the relative
motion of fluids during the wave-induced fluid flow, while
when the contact line is slipping, the fluids can move and
the stiffness of the partially saturated crack is much lower.
It explains a highly non-linear scaling of the crack porosity
(volume) perturbation with applied stress perturbation. It is
possible to demonstrate that this scaling can be even more
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Figure 8 Effect of the hysteresis of liquid bridges on (a) changes of the crack volume (dimensionless units); (b) changes of contact angle (degrees);
(c) contact line displacement (dimensionless units); (d) changes of capillary pressure (Pa); (e) changes of pressure in the wetting phase (Pa);
(f) changes of the wetting phase volume inside the crack (dimensionless units). Horizontal axis shows the magnitude of transient stress (Pa).

Initial (equilibrium) crack saturation is S, = 0.75. The initial contact angle is equal to the Young’s angle. Other input parameters are given
in Table 1. The amplitude of the applied periodic stress perturbation (Ac) is 50 kPa. Similar to Fig. 3, the first cycle (N = 1) is shown by a
continuous black curve, while subsequent cycles are shown by a red dashed curve.

significant, depending on the choice of input parameters. Am-
plitudes of Ap,,, and Ap,, perturbations (Fig. 7d and 7e) are
predicted to be lower than the amplitude of Ao. Depending
on the choice of input parameters, these amplitudes can also
be higher than the amplitude of the stress perturbation.

The case when the amplitude of the applied periodic stress
perturbation (Ao) is 50 kPa is shown in Fig. 8(a—f). In this
case, the meniscus bending is much smaller than the contact
line motion, because the wave amplitude is large. The hystere-
sis effect is also predicted for all six independent parameters.
The hysteresis effect of the crack volume (Fig. 8a) is small be-
cause the bending of interface meniscus is much smaller than
the contact line motion.

Calculations of this section show that the hysteresis of
liquid bridges strongly depends on the amplitude of wave-

induced stress perturbation. In the next section, we explain
how to relate this effect to the effective properties of the rep-
resentative elementary volume (REV), such as bulk moduli
and attenuation. The influence of other parameters—effective
stress, wettability, crack size and frequency—is investigated

in Section 4.3.

4 EFFECTIVE BULK MODULI AND
ATTENUATION

4.1 Effective properties of the REV

In this section, we calculate effective properties of the REV,
such as compressibility, bulk modulus and quality (attenua-
tion) factor. The apparent compressibility of the REV (Cgpy)
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can be calculated using Betti’s reciprocal theorem (e.g. Walsh
1965; Mavko and Jizba 1991):
1 AV,

tOt’ 4
Vepy Ao @

CREV = C +

where C is the compressibility of the solid material around
a crack, Vipy is the volume of REV, and AV, is the change
of total pore (crack) volume for a given stress perturbation
Ao . Plane-strain compressibility of the solid material around
a crack is related to the Young’s modulus (E) and Poisson’s
ratio (v) of the material:
2(1+v)(1=2v)

C =
E

(5)

The REV volume per unit length in z—directions, perpen-
dicular to the plane of Fig. 4, is calculated as Vppy = 7 R%.
Here, R is the radius of the REV (see Fig. 4), which can be
related to the initial crack porosity, 7., by R = \/ab/n,_ . The
initial crack porosity is the porosity at zero effective stress.
Thus, the REV volume can be calculated as follows:

b (6)
n

c

Viey =

Thus, the compressibility of REV is proportional to the
slope of AV, versus Ao curves, shown in Figs 6(a), 7(a)
and 8(a). Due to hysteresis effect, we approximate this slope
by the slope of the largest diagonal of the parallelogram,
shown in Figs 7(a) and 8(a) or by the slope of line shown
in Fig. 6(a). This choice of the slope would predict correctly
the maximum strain for a given stress perturbation Ac. Note
here that, due to non-linear effects, the definition of REV com-
pressibility is not unique. Zimmerman (1990) discussed that
the compressibility of REV can be calculated by two different
methods. The first method conserves the elastic strain, while
the second method conserves the elastic wave energy. The dif-
ference between these two methods is small when the hystere-
sis (non-linearity) is small. In this paper, we choose the first
method in the calculation of REV compressibility and the sec-
ond method in the calculation of the wave energy dissipation.

The effective bulk modulus of REV (Bggy) is the recipro-
cal of REV compressibility:

1

_— 7
Cory 7)

BREV =

The elastic energy, W, per unit volume of REV is calcu-
lated using equation W = 1 Cgpy Ac? (Mavko et al. 2009)
as follows:

W = 1 <CAO‘ + %) Ao. (8)

2 REV

Surface phenomena and seismic response 1415

However, the attenuated energy (§ W) per period and per
unit volume of REV is proportional to the area of the par-
allelogram in Figs 6(a), 7(a) and 8(a). When the contact line
is pinned, there is no energy attenuation due to contact line
friction (Fig. 6a). In other cases (Figs 7a and 8a), the elastic
wave energy is converted to the heat due to the contact line
friction mechanism.

Mathematically, § W is calculated by integration of the

area of the parallelogram as follows:

8W:§£AVMdAU ’ 9)
Vrev
where the integral is taken over the period of seismic wave (we
consider subsequent cycles, when the hysteresis loop is estab-
lished). Note here that the attenuated wave energy per cycle
in equation (9) does not depend on the calculation method of
REV compressibility discussed above.
The quality or attenuation factor in the fraction of energy
loss per period is calculated as follows (Mavko et al. 2009):
w
Q=2 W (10)
Note here that the O-factor is large when (i) § W is small
or when (i) W is large. The case when § W is small (= 0) is
shown in Fig. 6(a), while the case when W is large is shown
in Fig. 8(a). The minimum value of the QO-factor is at the
intermediate stage, shown in Fig. 7(a).

4.2 Voigt and Reuss bounds

It has been demonstrated that the impact of partial saturation
on the bulk modulus of REV can be attributed to an effec-
tive fluid modulus of a single-phase fluid (e.g. Mavko er al.
2009; Papageorgiou et al. 2016). Mavko and Mukerji (1998)
suggested that the upper and lower bounds on low-frequency
seismic velocity in a partially saturated rock are controlled by
Voigt and Reuss averaging equations of fluid bulk moduli.
The Voigt upper bound of the effective bulk modulus of fluid

is calculated by arithmetic volume average:
Kﬂ = KWCSVVC +an(l _ch)v (11)

while the Reuss lower bound is calculated by harmonic volume

average:
1 S 1-38

= Pwe we 12
Kﬂ Kwe " an ( )
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Brie ef al. (1995) suggested the following empirical mix-
ing law for liquids and gases, based on the experimental testing
of partially saturated sandstone:

Kﬂ = (Kwe - an) (Swe)e + K (13)

nw*

Here, the gas is always the non-wetting phase relative to
most liquids, except mercury. e is the empirical constant in the
above equation with a typical value equal to 3. Brie empiri-
cal correlation recovers the Voigt upper bound when e = 1
and predicts values close to the Reuss lower bound when
e ~ 50. Thus, Brie correlation predicts values between Voigt
and Reuss bounds, depending on the empirical e parameter.

The Voigt and Reuss bounds are also known as isostrain
and isostress averages, respectively, because they give the ratio
of average stress to average strain when all constituents are
assumed to have either the same strain or the same stress. The
upper and lower bounds, suggested by Mavko and Mukerji
(1998), consider only different averaging methods of fluid
moduli and do not consider any solid—fluid and fluid—fluid
interactions, which can potentially lead to either weakening
or strengthening effects of the effective fluid moduli.

In this paper, we compare results of our model with
predictions using the upper and lower bounds for the fluid
modulus. To do so, we need to derive the equation for REV
compressibility, considering that the crack is fully saturated
by a single-phase fluid with effective properties. In this case,
the expression for the REV compressibility is calculated as
follows (see Appendix A.5):

20+v)(1-2v)  n.  pato+pa

C = . 14
K E Pa pa+o + py+ Ky (14

There are two uncertainties in this equation: effective
fluid pressure (py) and effective fluid bulk modulus (Kjy).
Bounds for the effective fluid bulk modulus are discussed
above. Due to capillary pressure, the effective fluid pressure is
not well defined. Some of the researchers suggested to use vol-
umetric averaging for the effective fluid pressure (e.g. Santos
et al. 1990; Papageorgiou et al. 2016).

Pa = Dwe +pcap(l_swe)’ (15)

In our previous publication (Rozhko 2016), we demon-
strated that the volume of a partially saturated crack is con-
trolled by the effective stress in which fluid pressure is calcu-
lated by the above equation.

Next, by substituting equations (11) and (15) into equa-
tion (14), we calculate the Voigt upper bound for the effective
compressibility of REV. The Reuss lower bound is calculated

in a similar way.

Table 2 Table shows which input parameters for cases 2—4 are
different from case 1 (see Table 1)

Case 2 (Frequency effect)

Advancing contact angle for wetting phase (6,) 54°
Receding contact angle for wetting phase (6,) 26°

Case 3 (Stress effect)

Effective stress (0 + pPye) —15 MPa
Case 4 (Wettability effect)

Advancing contact angle for wetting phase (6,) 5°
Receding contact angle for wetting phase (6,) 3°

Major semi-axis (a) 1074 m

4.3 Numerical results

In this section, we present numerical results for bulk moduli
(Bgrey) and seismic attenuation (1/Q), calculated for a repre-
sentative elementary volume with a partially saturated crack.
We will investigate the role of different input parameters,
given in Tables 1 and 2. In Fig. 9 (case 1) we investigate
the effect of wave amplitude and liquid saturation (liquid/gas
system) on bulk moduli and seismic attenuation.

Figure 9(a) shows that the bulk modulus of REV is highly
sensitive to the wave amplitude, shown on the colour scale.
Higher bulk moduli correspond to smaller wave amplitude.
It is consistent with laboratory measurements (e.g. Iwasaki,
Tatsuoka and Takagi 1978; Tutuncu et al. 1998; Mashinskii
2004; Nourifard and Lebedev 2018). Grey and black curves in
Fig. 9(a) show the Voigt and Reuss upper and lower bounds,
calculated in the previous section. The upper Voigt bound,
calculated in Fig. 9(a), reaches its nearly maximum value at
a few percentage of water saturation. One may argue that
this behaviour is not realistic. In this paper, we consider an
REV with a single isolated crack, and this upper bound is
correct for the case we are considering. Natural rocks contain
many cracks of different sizes and aspect ratios plus matrix
porosity. Thus, for natural rocks the Voigt bound will not
be that steep at small saturations, due to averaging over dif-
ferent cracks and pores. When the wave amplitude is large,
the bulk modulus is close to the Reuss bound (Fig. 9a), while
the bulk modulus for small wave amplitudes shows interme-
diate values between the Voigt and Reuss bound values. This
intermediate value is sometimes referred in the literature as
the Voigt—-Reuss—Hill average (e.g. Mavko et al. 2009). Note
here that the Brie empirical correlation also predicts interme-
diate values between Voigt and Reuss bounds values, as dis-
cussed in Section 4.2. These intermediate values are predicted
in the limit when the wave amplitude is small, and the contact

line is pinned. In this case, the interface meniscus restricts the
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Figure 9 (a) Bulk modulus of REV versus wetting phase saturation, calculated for different magnitudes of wave-induced stress perturbation,

shown on the colour scale. Grey and black curves show the Voigt and Reuss upper and lower bounds. (b) Attenuation 1000/ O factor is shown

on the colour scale, as a function of wave-induced stress perturbation magnitude and wetting phase saturation, shown on abscissa and ordinate,

respectively. See Table 1 for input parameters for case 1.

relative motion of fluids during wave-induced two-phase fluid
flow. Figure 9(b) shows seismic attenuation 1000/Q-factor
as a function of wave-induced stress perturbation magnitude
and wetting phase saturation. When the wave amplitude is
small Ac = 1 kPa, there is no attenuation of seismic energy,
because the contact line is pinned. When the wave amplitude
is large enough, the contact line will slip, causing the dissi-
pation of the wave energy to the heat due to the contact line
friction mechanism. Thus, the energy loss increases with wave
amplitude; however, the attenuation factor depends on the ra-
tio between the wave energy and attenuated energy, according
to equation (10). Maximum of 1/Q will be achieved at certain
stress amplitude as shown in Fig. 9(b), which also depends on
the saturation.

In Fig. 10 (case 2) we consider the effect of frequency
increase, which we relate in our model to the change of con-
tact angle hysteresis (Table 2), while other input parameters
for case 2 are the same as for case 1. In Section 2, we dis-
cussed that the effect of frequency change can be related to
the effect of the contact angle hysteresis change, according
to experimental observations. The exact relation between fre-
quency and contact angles is complex, because it also depends
on the wave amplitude (Section 2). Thus, in calculations of
Fig. 10, we focus only on the effect of the contact angle hys-
teresis change. Figure 10(a) shows that the increase of the
contact angle hysteresis increases pinning forces for interface

menisci. This results in increase of bulk moduli for given wave

amplitude, as can be seen by comparing Figs 9(a) and 10(a).
Figures 9(b) and 10(b) show that the increase of the contact
angle hysteresis shifts the attenuation peak towards higher
stress amplitudes, while the maximum value of 1/Q does not
change significantly for selected input parameters. Since the
attenuation peak has shifted with the frequency on the colour
map of Figs 9(b) and 10(b), it implies that the attenuation
can either increase or decrease with frequency (in the low fre-
quency range). Experimental results of Moerig et al. (1996)
confirmed that seismic attenuation can either increase or de-
crease with frequency in the low frequency range from 0.001
to 5 Hz, depending on chemical treatment of the crack sur-
face. Note here that standard theories would predict a linear
increase of attenuation with frequency, in the low frequency
range due to viscous dissipation in the bulk (Pride ez al. 2004;
Mavko et al. 2009; Miiller et al. 2010). Our model predicts
seismic attenuation due to a contact line friction mechanism,
which occurs at the contact line location and is responsible for
more complex dependence of attenuation on the frequency, as
observed by Moerig et al. (1996).

In Fig. 11 (case 3) we study the effect of stress increase,
considering that the initial p,, is the same as in all previous
cases. Note here that fluid bulk moduli, surface tension and
contact angles are functions of fluid pressure, which must be
taken into account when the initial fluid pressure is differ-
ent, but the effective stress is the same. Thus, in a general

case when both total stresses and pore pressure change, the
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Figure 10 (a) Bulk modulus of REV versus wetting phase saturation, calculated for different magnitudes of wave-induced stress perturbation,

shown on the colour scale. Grey and black curves show the Voigt and Reuss upper and lower bounds. (b) Attenuation 1000/ QO factor is shown

on the colour scale, as a function of wave-induced stress perturbation magnitude and wetting phase saturation, shown on abscissa and ordinate,

respectively. See Tables 1 and 2 for input parameters for case 2 (frequency effect).
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Figure 11 (a) Bulk modulus of REV versus wetting phase saturation, calculated for different magnitudes of wave-induced stress perturbation,

shown on the colour scale. Grey and black curves show the Voigt and Reuss upper and lower bounds. (b) Attenuation 1000/ O factor is shown
on the colour scale, as a function of wave-induced stress perturbation magnitude and wetting phase saturation, shown on abscissa and ordinate,
respectively. See Tables 1 and 2 for input parameters for case 3 (stress effect).

dependence on the effective stress would be more complex,
because the aforesaid parameters will also change with the
fluid pressure. Figure 11(a) shows that the increase of total
confining stress causes an increase in bulk moduli, as one
can see by comparing with Fig. 9(a). Furthermore, when the
bulk saturation is low (S,,. — 1), the bulk moduli for small
wave amplitudes follow an upper Voigt bound. Figures 9(b)
and 11(b) show that the increase in total stress shifts the

attenuation peak towards higher stress amplitudes and the

maximum value of 1/Q slightly increases for selected input
parameters.

In Fig. 12 (case 4) we study the effect of wettability
increase, which we relate to the decrease of contact angles,
according to Table 2. Furthermore, to amplify the surface
phenomenon effects, we consider the smaller length of
the crack having the same aspect ratio as in case 1. The
upper and lower bounds, proposed by Mavko and Mukerji
(1998), consider only different averaging methods of fluid
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Figure 12 (a) Bulk modulus of REV versus wetting phase saturation, calculated for different magnitudes of wave-induced stress perturbation,

shown on the colour scale. Grey and black curves show the Voigt and Reuss upper and lower bounds. (b) Attenuation 1000/ O factor is shown

on the colour scale, as a function of wave-induced stress perturbation magnitude and wetting phase saturation, shown on abscissa and ordinate,
respectively. See Tables 1 and 2 for input parameters for case 4 (wettability effect).

moduli and do not consider any solid—fluid and fluid—fluid
interactions. Thus, due to interactions at solid, liquid and gas
interfaces, we may expect the deviation from Reuss and Voigt
bounds. Figure 12(a) shows that such deviation (weakening)
is possible due to surface phenomenon effects. Figure 12(b)
shows that the amplitude of seismic attenuation (maximum
value) increases significantly, compared with cases 1-3.
Note the difference in colour scales between Fig. 12(b) and
Figs 9(b)-11(b). The weakening effect of pore liquids is widely
reported in the literature (e.g. see Li et al. 2017 for review). Al-
though many water-weakening mechanisms are proposed in
the literature, Murphy (1984) and Murphy et al. (1986) sug-
gested the experiment to demonstrate that water-weakening
effect takes place even in unconsolidated sandstones, where
other weakening mechanisms (swelling of clay cement,
osmotic suction and dissolution and dissolution of calcite) are
excluded. Murphy (1984) and Murphy ez al. (1986) proposed
a model that explains the frame modulus reduction in
sedimentary rocks by adsorption of liquid on a grain contact.
In contrast, our model suggests the frame modulus reduction
due to adsorption at the crack surface. Zimmerman (1990)
suggested that in granular materials some pores are very thin
“crack-like” that exist along grain boundaries. Furthermore,
Zimmerman (1990) argued that even though the crack poros-
ity can be a small fraction of the total porosity, “crack-like”
pores may have a significant effect on the compressibility
of sandstones. Thus, the contact angle hysteresis can be
important even for granular materials, in which the liquid is

adsorbed in crack-like pores along grain boundaries. In the
next section, we discuss adsorption—desorption effects inside a
crack.

4.4 Drainage-imbibition hysteresis

Laboratory data suggest that seismic properties of sandstone
are highly sensitive to the saturation history. Knight and
Nolen-Hoeksema (1990) reported experimental data for the
P-wave velocity of a tight gas sandstone measured as wa-
ter saturation was first increased (imbibition) and then de-
creased (drainage). They observed that P-wave velocity dur-
ing drainage is larger than during imbibition. Similar con-
clusions were observed by other researchers, for example,
by Zhang et al. (2015), who conducted P-wave velocity and
its attenuation measurements on low-permeability sandstone
during drainage (CO, injection) and imbibition (brine injec-
tion), as shown in Fig 13(a) and 13(b). Furthermore, they
observed that seismic attenuation during imbibition is larger
than during drainage, as shown in Fig. 13(b). Different expla-
nations for the hysteresis of acoustic properties are proposed
in the literature. Patch-size-dependent models are a common
approach to explain hysteresis in the geophysical literature
(Zhang et al. 2015; Mavko et al. 2009). Other researchers
argued that effective bulk moduli of fluid are dependent on
the pore-scale capillarity and on the interface area between
immiscible fluids (Papageorgiou et al. 2016; Knight ef al.
2010).
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Figure 13 (a, b) Laboratory measurements of P-wave velocity and its attenuation on low-permeability sandstone during drainage (CO, injection)
and imbibition (brine injection) (modified after Zhang et al. 2015). (c, d) Calculated bulk moduli and attenuation hysteresis during drainage
and imbibition, see Table 1 for input parameters and Fig. 14 for the “inkbottle” effect during drainage and imbibition. Horizontal scale in (a)
and (b) shows gas saturation of the core sample, while in (c) and (d) shows gas saturation of the crack. Both experimental and numerical results
predict higher velocity and bulk moduli during drainage and lower attenuation during drainage at gas saturations below 50%.

In order to better understand how the pore-scale cap-
illarity affects the interface area and how this is related to
our liquid-bridge hysteresis model, let us consider the pore-
blocking effect. We refer to the pore-blocking effect, which
is one of the earliest concepts used to describe the hystere-
sis of physical properties during drainage and imbibition ex-
periments (Kraemer 1931; McBain 1935; Libby and Mon-
son 2004; Coussy 2011). This concept can be described in
terms of a pore geometry that has come to be known as the
‘inkbottle’. This geometry consists of a larger pore space in
contact with a bulk vapour through one or more narrower
pore spaces or ‘necks’, as shown schematically in Fig. 14.
The classical explanation for the phenomenon of hysteresis
in such pores assumes that desorption (drainage) from the
larger cavity is retarded by the presence of liquid-saturated
regions in the smaller necks. Desorption (drainage) from the
larger cavity occurs when all the channels connecting it to the
bulk region are empty, as shown schematically in Fig. 14(a).
Fluid in the larger cavity is blocked from evaporating, even

below pressures low enough for it to be thermodynamically
unstable. This implies the possibility of the energetically un-
favourable distribution of fluids during drainage. During ad-
sorption (imbibition), small necks are filled first by capillary

(a) Desorption (Drainage)

6=0,

(b) Adsorption (Imbibition)

0=0,

Figure 14 Drainage/imbibition hysteresis due to “inkbottle effect” in
the crack-like pore. (a) Desorption, brine is in centre (wide) part. (b)
Adsorption, air is in centre (wide) part. In this geometry, open area
of the crack is in contact with a bulk vapour through permeable tips
of the open crack.
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condensation mechanisms (Fig. 14b). In addition to the pore-
blocking and patch-size effects, there are also other hysteresis
mechanisms suggested in the literature: contact angles hys-
teresis, trapping of air bubble, clay swelling and dissolution
and precipitation of minerals. Note here that the “inkbottle”
concept is flexible enough to include contact angles hysteresis
and trapping of air bubble effects into account. For example,
Fig. 14 shows that contact angles during drainage and imbi-
bition are different. However, the trapping of air bubbles can
be modelled by considering the adsorption process (Fig. 14b),
which started on the top of an unfinished desorption process
(Fig. 14a).

In this paper, we derived equations (see Appendix) for
the case when the wetting liquid phase occupies thin parts
of the crack (tips), while the non-wetting gas phase occu-
pies wide parts of the crack (centre). Such distribution of flu-
ids is energetically favourable and corresponds to adsorption
(imbibition) case, shown in Fig. 14(b). Our equations, after
small modifications, are also applicable to the case when the
wetting fluid phase is in the central part of the crack, while
tips of the crack are occupied by air. The following modifi-
cations of input and output parameters should be made for
s Kow = K
Pwe = Prw> Paw = Puwes Peap = —Peap and Sye > 1= 8.

Figure 13(c) and 13(d) shows calculated bulk modulus

and seismic attenuation during drainage and imbibition. In-

this case: K, - K wes 0, > —0,,6, > 71 —0,

put parameters for calculations are given in Table 1 and
calculated for wave-induced stress perturbation amplitude of
Ao = 4 kPa. Calculations in Fig. 13(c) show that bulk mod-
ulus during drainage is higher than during imbibition for gas
saturation S, < 0.5. A similar trend was observed for P-wave
velocity shown in Fig. 13(a). Calculations in Fig. 13(d) show
that the seismic attenuation factor during drainage is smaller

than during imbibition for gas saturation S, < 0.5. A similar

nw
trend was observed in the lab as shown in Fig. 13(b). Thus, our
model suggests that the hysteresis of seismic properties during
drainage and imbibition is controlled by pore-scale capillarity

effects during absorption and desorption.

5 DISCUSSIONS

In this paper, we investigated the hysteresis of liquid bridges
effect in an isolated partially saturated crack. For simplicity,
we focused only on interface phenomenon effects by consider-
ing a uniform far-field compressive stress and uniform wave-
induced stress perturbations. Natural rocks contain many
cracks of different length and aspect ratios. Furthermore, di-

rections of preferred crack orientation, i situ stress directions
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and the wave propagation direction could be different. These
will introduce anisotropy into the wave response. The current
model can be extended towards this more complex situation,
combining both interface phenomena and anisotropy effects.
In our model, we approximated the crack by smoothed-wall
elliptical geometry. Cracks in natural rocks are not smoothed
wall. The roughness of the crack surface will affect advancing
and receding contact angles, which will depend on the con-
tact line location, that is, 6,(c) and 6, (c). In our calculations,
we consider 6, and 6, to be independent on the contact line
locations; however, the incremental approach, developed in
this paper, allows one to address this more complex situation,
if 0,(c) and 6, (c) are known. A theoretical model shows that
seismic velocities of the partially saturated rock depends not
only on the pore pressure and gas saturation, but also on the
amplitude (and frequency) of the seismic wave. These can be
used to run acoustic logs and seismic surveys not only in the
multi-frequency range, but also in the multi-amplitude range.
This methodology will allow one to extract more information
from seismic data, considering both the frequency and ampli-
tude effects. Where the amplitude effects were not analysed
before, acquisition of additional data (the multi-amplitude
data) will allow the interpretation of seismic velocities and
acoustic logs both for pore pressure and gas saturation using
a new rock physics model. The new model considers a phys-
ical process called ‘liquid bridge hysteresis’, which was not
considered before by a rock physics community.

The model developed in this paper is applicable for the
low frequency limit (seismic frequencies) when capillary forces
dominate over viscous forces during wave-induced two-phase
fluid flow. Wave-induced viscous forces are proportional to
gradients of pore pressure, while in the low frequency limit,
gradients of pore pressure are zero; thus, viscous forces are
also zero, causing zero seismic attenuation (e.g. Mavko et al.
2009). However, the change of the capillary forces, caused by
the deformation of liquid bridges, is not equal to zero in the
low frequency limit, causing a non-negligible seismic attenua-
tion. Thus, the wave-induced two-phase fluid flow in the low
frequency is dominated by capillary forces, which are typi-
cally neglected in Biot-Gassmann’s models (e.g. Mavko et al.
2009). To estimate the effect produced by viscous forces at
seismic frequency, we can apply results of Mavko and Nur
(1979) who considered viscous dissipations in a partially sat-
urated crack. Calculations of Mavko and Nur (1979) show
that for the crack porosity of 7, = 2 x 10~* and crack as-
pect ratio of 1073, the attenuation factor, calculated for Boise
sandstone at frequency = 1.6 Hz and uniform 50% water sat-
uration is Q™' = 4.2 x 1075, Calculations presented in our
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paper, using elastic parameters, typical for Boise sandstone
and using the same crack porosity, aspect ratio and water
saturation, show that (Figs 9b-12b) typical values for Q!
are about two orders of magnitude higher than Mavko and
Nur (1979) results. Furthermore, Mavko and Nur (1979) pre-
dicted a liner scaling of the Q™! with the frequency, in the low
frequency limit. It implies that we can estimate the frequency
range where the contact line friction dominates over viscous
dissipation. Simple calculations suggest that the contact line
friction may dominate viscous dissipations in Boise sandstone
at frequencies below 200 Hz, that is, at seismic frequencies.
Contact line frictional dissipations depend also on the wave
amplitude. If the wave amplitude is small and the contact line
is pinned, then dissipations caused by the contact line fric-
tions are zero. In this case, when the contact line is pinned,
viscous dissipations will dominate seismic attenuation, while
the surface tension will still affect the effective bulk modu-
lus of fluid, by restricting the relative motion of fluids during
wave-induced two-phase fluid flow.

In this paper, we demonstrated that a negligibly small
fraction of free gas (~ n_S,,, < 0.01% of the total sample vol-
ume) could be enough to cause seismic attenuation in the low
frequency limit due to the hysteresis of liquid bridges. At the
same time, several authors discussed that it is extremely diffi-
cult to achieve 100% saturation of the rock sample, especially
if the rock sample is tight (e.g. Murphy 1984; Verwer et al.
20105 Li et al. 2017). Even after applying different advanced
saturation techniques, there might be some pores that are not
completely saturated. For example, Li et al. (2017) argued that
the maximum water saturation, achieved in tight sandstone,
was ~ 98%. Thus, our results can be applied to analyse exper-
imental data, conducted on an almost fully saturated rock. At
100% saturation, this effect, however, will disappear if there
is only one saturating phase.

To conclude, it is difficult to apply this model to the pub-
lished laboratory data, because many input parameters of the
model are not reported in the published literature. For exam-
ple, our model depends on the wettability towards different
saturating fluids, described by the advancing and receding
contact angles. Also, the applied wave amplitude could be
different in different experiments. These details are not pre-
sented in the published literature, because it is not common
yet to pay attention to interface phenomenon effects. How-
ever, we can present examples of published laboratory data,
showing that a non-zero seismic attenuation at zero frequency
limit depends on the pore fluid and this cannot be explained by
diffusion-based models. Laboratory data presented by Spencer
and Shine (2016) showed that it is not possible to explain

the fluid effect on small seismic attenuation at low frequency
limit using the Cole—Cole fit. The Cole—Cole fit is based on
the permeability and viscosity scaling and thus predicting zero
attenuation at low frequency limit. The amplitude of P-wave
attenuation in the low frequency limit, reported by Spencer
and Shine (2016) for different pore fluids in sandstone sam-
ples, was around Q7! ~ 0.005, while the reported precision
of laboratory measurements was around AQ~!' ~ £0.002.
Thus, the observed fluid effect on non-zero attenuation at zero
frequency limit could be related to the contact line friction;
however, this interpretation is not unique, because it can also
be related to the frequency- and amplitude-independent plas-
tic yielding mechanism (Yarushina and Podladtchikov 2010).
To differentiate between these two possible interpretations,
it is important to investigate the effect of wave amplitude on

seismic attenuation in the low frequency limit.

6 CONCLUSIONS

In this paper, we investigated the effect of the hysteresis of
liquid bridges on seismic attenuation and bulk moduli of a
partially saturated rock. Our model considers physicochemi-
cal interactions on interfaces between liquid—gas, liquid—solid
and gas—solid. The role of these interfaces is not studied by
classical rock physics models, which are based on the classical
theory of poroelasticity and mixing theories. Mixing theories
consider different methods of volumetric averaging (of lig-
uids, gas, and solid) and do not consider interactions between
three phases. Understanding of this interaction is important
to explain certain experimental observations, which cannot
be understood using classical models, such as Biot, Gassmann
and squirt flow.
Using our model, we demonstrated the following:

® The Brie-like behaviour for the effective bulk modulus of
pore fluid is controlled by the hysteresis of liquid bridges,
which is sensitive to the following parameters: the wave am-
plitude, elastic properties of the solid and fluids, crack ge-
ometry (length and aspect ratio), effective confining stress,
rock wettability (advancing and receding contact angles)
and surface tension between immiscible fluids.

® The effect of drainage and imbibition on dynamic bulk
moduli and attenuation are explained by the inkbottle
(pore-blocking) effect in the partially saturated crack. This
effect suggests that the saturation distribution inside the
crack is different during drainage (gas injection) and during
imbibition (water injection). This will affect the hysteresis
of liquid bridges inside the partially saturated crack.
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® Wettability has a significant control on the water-
weakening effect, which can be explained by physicochem-
ical interactions on interfaces between three phases.

® The role of immiscible fluids on the low-frequency seismic
attenuation is rather non-trivial; it can either increase or
decrease with frequency (in the range from 0.001 to 5 Hz).
The attenuation mechanism in this frequency range can
be dominated by the contact line friction, rather than by
viscous dissipation in the bulk.

® The model predicts the residual changes of fluid pressure,
saturation and crack porosity caused by the passage of seis-

mic waves.

Closed-form analytical solutions are proposed for the de-
scription of the hysteresis of liquid bridges in a representative
elementary volume (REV) containing a crack that is partially
saturated with two immiscible fluids. The model is sensitive
towards the following input parameters: effective stress, wave
amplitude (wave-induced perturbation of stress), elastic mod-
uli of the rock around a crack, advancing and receding contact
angles, surface tension, bulk moduli of liquid and gas, satu-
ration degree, crack porosity, crack length and aspect ratio.
In the next step of our research, we will apply the model for
shallow gas exploration and CO, monitoring.
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APPENDIX: EQUATIONS OF THE ROCK
PHYSICS MODEL

In this appendix, we introduce equations describing the hys-
teresis of liquid bridges in an isolated partially saturated crack.

A.1 Equilibrium state

An analytical solution describing equilibrium stresses and dis-
placements around partially saturated cracks can be found in
Rozhko (2016). The half-opening of the crack aperture at a
given contact line location is calculated as follows (Rozhko
2016):

w—£<p +o
a_pC] cl
+zmy+(”_zﬂ_zaj“”mkmﬂﬂ”>nm>gnWy

(A1)

The capillary pressure is calculated using equation (A1)
and the Laplace equation, p,, = %’(9) , as follows (Rozhko
2016):

4
pcap = Z (pcl +o+ pwc)

1 [1—gyp, reos®) (B+cot(B)In[cos(B)]—7/2)
5 J P o b)) (A2)
B+ cot (B)In[cos (B)] — /2 ’

where p, is the crack closure pressure, calculated as (Rozhko
2016)

bE

2a(l—v) (A3)

Pa =
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where E and v are Young’s modulus and Poisson’s ratio of the
rock around a crack. The angle 8 in equations (A1) and (A2)
defines the location of the contact line:

c

cos(B) = o (A4)

The total volume of a partially saturated crack (V,,,) is
calculated as (Rozhko 2016)

nab_ pcl '

(AS)

The volume of the wetting fluid inside the partially satu-
rated crack (V) is calculated as (Rozhko 2016)

=~

_g2 281
R B o = .
.
wab De) (A6)
o 2B=sin(2p))
T

Equations (A5) and (A6) calculate volumes per unit
length in z—directions, perpendicular to the plane of Fig. 2;
therefore, the V,, and V. in equations (AS) and (A6) have
the dimension of an area.

The above equations neglect the additional small volume
occupied by the non-wetting phase due to the curvature of the
interface menisci. Half of this additional volume is shown in
white in Fig. 4(b) for |x| > c. It is not difficult to demonstrate
that this additional volume reduction can be calculated as

follows:
SV, = _(rr — 26 ; sin (26))w§, (A7)
cos? (6)

where §V,, < V... Thus, corrected volumes of the wetting
and non-wetting fluid phases inside the crack will be

Ve = Vo +8V,, (A8)
and
Viw = Vior = Vower (A9)
The wetting phase saturation of the crack, (S,.), is de-
fined as
v,
Swe = Vwe . (A10)

tot

While the small correction term, § V., can be neglected in
the calculation of the crack saturation, it cannot be neglected
in calculations of the crack stiffness (see the next section)
because it affects the effective compressibility of the fluid when
gas saturations are small. Saturation degree of the non-wetting
phase is calculated as S, = 1 — S..

Due to the curvature of the interface menisci, the maxi-
mum value of the wetting phase saturation, predicted in the
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limit when ¢ — 0 (Fig. 4a), is smaller than one. Using the
above equations, it can be calculated:

(mr —20 —sin(20)) b (1

Sewe) = 1 — —
max (Sye) mcos? (9) a

+a+pwe).
cl

(A11)

Note that 1 — g < max(S,.) < 1. The saturation range

we)

max(S,.

this saturation range corresponds to the transition zone be-

) < Sy < 1 is not considered by our model, because

tween complete wetting phase saturation and entry of the
non-wetting phase into the crack. A stable contact line geom-
etry does not exist in this transition zone. Similar arguments
are applied when ¢ — a (Fig. 4a). In this case, the interface
menisci cannot overlap with the crack tip. Thus, the model
has the lower bound of applicability, which is similar to equa-
tion (A11) limited by 0 < min(S,,.) < g Hence, our model is

applicable for the following saturations range of the crack:

b b

;§Swe§1—;.

(A12)

In calculations, we consider very narrow cracks, a > b;
thus, our model is applicable almost for the entire range of

saturations.

A.2 Wave-induced perturbation of equilibrium state

Perturbation of stress and all equilibrium parameters can be
split in two parts: (i) when the contact line is pinned and (ii)
when the contact line is moving. Perturbation of stress is given

by the equation

Ao = AoV + Ao, (A13)

where AoV = Ao, and A ¢® = Ao — Ac,.
Corresponding perturbations of equilibrium parameters
are calculated as follows:

AV = AVY! + AV, (A14)
AV, = AV + AV, (A15)
Apye = APL) + APLY, (A16)
AP, = ApL) + ApG), (A17)
Ac = AcY + AP (A18)
and

AO = A0V 4+ AGP, (A19)

Note here that A ¢V = 0 and A 6% = 0; therefore,
Ac = Ac? and A = AOY. When Ao is applied, first, the
interface meniscus deforms to its extreme value (6, or 6,, de-
pending on the polarity of stress perturbation and compress-
ibilities of immiscible fluid phases) and second, the contact line
will move without changing the contact angle. The bending
and moving directions of the interface meniscus and contact
line must coincide. The initial contact angle is assumed to be
equal to the equilibrium Young’s angle, that is, 6, = 6y. In
the first part, when a critical stress perturbation AoV = Ao,
is applied, the contact angle will change from the initial an-
gle 6, to its maximum or minimum value. The maximum or
minimum value for the contact angle corresponds to the ad-
vancing or receding contact angle (6, or 6,). In the second part,
with further increase of stress perturbation, the contact line
will slip with the advancing or receding angle. We consider a
low frequency limit when a slip velocity is quasi-static, that
is, when 0, and 6, are constant values.

In the next two subsections, we define the complete set
of equations, which will allow us to find the wave-induced
perturbations of the following parameters: AV, ,, AV,.., Apy.,
APy Ac, A

A.2.1 Part 1: Bending of the interface meniscus

In this section, we will present equations for the case when the
contact line is pinned to the crack surface and wave-induced
deformations cause bending of the liquid—gas interface menis-
cus due to the change of the contact angle and deformation
of the crack aperture. Using a linear elasticity assumption,
we will find the following perturbations: AV, AV, Apll),
Aplh), and A caused by an applied stress perturbation Ao1).
Here, we consider that the contact line is fixed, that is, Ac!!) =
0, which also implies AB = 0, according to equation (A4).

Equations (2) and (3) can be rewritten in the form (using
equations (1) and (A9)):

AV Ko = =V, AplL, (A20)

and

(A\/t(olt) - A\/\,Elle)) an = - (‘/tot - ‘/we) (Ap\ge) + Ap(c}ii)) .

(A21)

Next, let us consider Taylor’s expansions for capillary

pressure, p,,; total volume of partially saturated crack, V,;
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and volume of the wetting phase inside a partially saturated
crack, V,

we*

pLap pLap pC(lp
A A A0, A22
p(.ap 9o U + apw pwe 90 ( )
aV, aV, Vi
AVE,U — tot A (1) t()tA (1) tot A (1) A23
tot do o+ apwe pwe + apcap pcap ( )
and
AVv(vle) — 8Vwe Aa_(l) + 8Vwe APSS) avwe Ap(_a
do apwe apcap
v,
=2 A6, A24
+ a6 ( )

All partial derivatives are calculated analytically in Ap-
pendix A.3, using analytical solutions for p,,, Vo and V,
presented in Section A.1. Equations (A20)—(A24) are five lin-
ear equations, which have a unique solution for the following
five unknown parameters: A VS, AV, Apll), Apcqp and A#.
With the application of a stress perturbation Ac'!, the con-
tact angle will be changed as follows: 6 = 6, + A9, where A0
) and the fluid

properties. The range of possible values for the contact angle

could be positive or negative, depending on Ao !

is limited by the advancing and receding angles: 6, <6 < 4,.
It will not be possible to bend the interface meniscus fur-
ther when the contact angle has reached 6 =6, or 6 =6,.
At this point, the contact line will start to slip. Substituting
AcM = Ac.and A§ =6, — 6, (or A =6, —6,) in equa-
tions (A20)—(A24) allows us to find the critical stress pertur-
bation Ao,. Analytical solutions for Ao, and other parameters
can be written in the matrix form as follows:

Ao, 0 0 v. 0 K
Apg;’ 0 th - Vwe Vtot - Vwc an _an
Apll) | = — A8 Bpmp/aa -1 3 Peap/IPye 0 0
AVY(Olt) tot/ac 0 to[/apup [ot/apwe -1 0
AV Vel 90 Vo) Ibeap Vie/3Dye 0 =1

0

0

x| 0p,, /00 (A25)
0
aV,,./00

If |Ac| > |Ac,|, the contact line will move and we need
to use additional equations from the next section. If |Ac| <
| Ao, |, the contact line will not move, but the interface menis-
cus will deform. The general solution of equations (A20)-
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(A24) is given in the following form:
-1
N 0 0 V.., 0 K,
1
Apéa)P 0 Vtot - Vwe Vtot Vwe an an
_ 1
APSe) - AU( chap/ae -1 apcap/apwe 0 0
Avt(olt) 0 aVot/apcnp aVot/apwe -1 0
Avwe BV /80 av\ve/apmp 0 we/apwe 0 -1
x dpu,,,/aa (A26)
[Ot/da-
0 vwe/da

The solution of this system of equations is dependent on
four independent variables: the contact angle 6, the applied
far-field stress o, the pressure in the wetting (water) phase
Dwe> and the position of the contact line B. All matrix coef-
ficients of equations (A25) and (A26) are calculated for the
following independent variables: 0 = 6,0 = 0y, Dye = Pweo
and B = B,. After calculations of this part, the independent
variables will be changed to § = 0 4+ A0, 0 = o + AcV

Pue = Pue + APl and B = B+0.

A.2.2 Part 2: Contact line motion

In this section, we present equations for the case when the
contact line is mobilized, assuming that the contact angle 6 is
equal to either 6, or 6, and does not change during contact
= 0). Next we will calculate the follow-
V2, Ap2, AplZh, Ac® = Acand
AB® = AB, caused by an applied stress perturbatlon Ac®?

line motion (A6
ing perturbations: A V., A

Considering a Taylor’s expansion of equation (A4), we
can write
Ac = —asin(B) AB. (A27)

Similar to equations (A20) and (A21), we can write

A Vvslzc) ch = - Vwc Ap\(zgc) (AZS)
and
(AVES = AVLP) Ky = = (Vo = Vauo) (802 + ApZ}) . (A29)

are different
0, while
0 and A6 # 0. The expressions for Taylor’s

Taylor’s expansions of p.,,, Vi, and V.
from part 1, because in part 2, Ac # 0 and AG =
in part 1, Ac =

expansions are written as follows:

pmp A (2)+ apcap Ap\(}ge)_’_ 8pcap Aﬂ,

o (A30)
do O Pye ap

Apkap
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AV = aa\; Ao + g;’w AP+ 3;/;"‘ AB
+%Az]ﬁ; (A31)
and
AV = Bane Ac? + %Apifc’ + %Aﬁ
o 9 Pe 9B
T (A32)

All partial derivatives are calculated analytically in A.3.

-1

AB 0 0 Vie 0 K.
Ap) 0 Vo= Vie V= Vee Koy =Koy,
A | == 2P ap /08 —1  0py,/dp.. O O
AV Vioe/0B Vior/ ey Vioe/IPe =1 0
AVR Vo) OB Vo) Peay 0Vie/3bye O —1
0
0
X | 3 peap/d0 (A33)
3V, /00
IVye/d0

Here again, all matrix coefficients of equation (A33) are
calculated at the point of independent variables: 0, o, p,.
and B, which were updated in calculations of part 1. After
part 2, these independent variables will be updated in the fol-
lowing way: 0 = 0 +0,0 = o +Ac?, p,, = Py + APR
and B = B+ AB. Here, we presented a bilinear approxima-
tion to model the deformation of the interface meniscus and
contact line motion caused by a change of stress (Ac’). Note
that we do not prescribe the polarity (sign) of the stress per-
turbation during loading phase; it can be either positive or
negative. During unloading, we consider a stress perturbation
with opposite sign (—Ac), as well as a change in initial val-
ues of independent variables caused by the preceding loading

sequence.

A.3 Partial derivatives

In this section, we derive partial derivatives of p,,, V;, and
Ve = Ve +8V,

we?d

A.2.1and A.2.2.

which are used in equations of sections

First, we will start with partial derivatives of p,,. To
simplify equations, we introduce the following auxiliary pa-
rameters X and Y:

ycos (0) (B + cot(B)In[cos (B)] — 5)

X = 1-8p, A34
P o b s Y

and

Y = B+ cot(B)In[cos (B)] — % (A35)

Partial derivatives of capillary pressure are calculated as fol-

lows:

apcap - T (pcl +o+ pwe)
B 8sin (8) YvV/X

(VX~1) Infcos (8)]

x | (X=1)cos(B) — NTING . (A36)
eap 7 1-X
=y (V-5 (437
ad ap..
pcap _ pcap (A38)
9 Pye do
and
apcap ﬂ(X_l)(p~l+G+p')
= < ne 0). A39
20 8YVX tan () (A39)
Next, we calculate partial derivatives of V.
aV, 2ab
= cos(28)—1 , A40
3B Du ( ( :8) )pcap ( )
AV, znab (1+sm(2ﬁ)—2,3>’ (A41)
apcap Dal s
V., :ymb 7 (A42)
do pcl
8‘/“1( — a‘ltot (A43)
0 Dye do
and
Wor _ g, (A44)
a0
And, finally, we calculate partial derivatives for V,, = V,, +
8V,.. We start with V,:
aV,. 2ab (p totp
= C o we
B pa \'°
Peap 4sin (28)In [cos (B)]
T (” - 1 —cos28)
x (1 —cos(28)), (A45)
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oWy _ ab
3pcap B pcl
(1 N 4 [Bsin(2) — B% + 2cos? (8) In [cos (B)] )
* p 28 —sin(2B)
X (28 —sin(28)), (A46)
e _ b o5 Gin2p)), (A47)
do cl
8Vwc — avwc (A48)
apwe a(f
and
Woe _ o, (A49)
260
And continue with §V,:
sV, bsin (B) 28V,
Ye — (x — 28 — 2cot (B) InJcos —,
Doy ( B (B) In[cos (B)]) — w,
(AS0)
90V _ ppgin (g) DVoe (AS1)
do pzlwﬂ
aavwe — a(SVwe , (ASZ)
ap\’ve aa
Ve B , ((m —20) tan(0) — 2)
06 Va cos? (0) (433
and
08V, 28V,
8/3 = w, pCl bCOS(IB) (pcl+(7+vae
+ % (m — 2B + 2tan(B) In [cos (ﬁ)])) . (AS4)

A.4 Applicability of the model for large contact angle
hysteresis

In this section, we will discuss the applicability of the pro-
posed model. Taylor’s expansions and partial derivatives, cal-
culated in the previous sections, imply that changes of all
parameters are small, including the change in contact angle.
However, experimental data, reported by Ethington (1990),
suggest that a contact angle hysteresis of water—air interface
on calcite, quartz, and biotite surfaces could be as much as
40°, thatis, 8, — 6, ~ 40° = 0.3491 radians. Thus, the value
of A0 =6, — 6, ~ 20° may be outside the validity envelope
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of the system of linearized equations, derived from Section
A.2.1. In order to get more accurate results, the contact angle

perturbation A9 =6, — 6, can be subdivided in N smaller

0,0,
N

Section A.2.1 is solved subsequently for N perturbation steps

intervals, A = and the set of linearized equations of
A6 < 1. A similar approach is used if the perturbation of the
contact line location, AB, is getting large. In this case, the

stress perturbation Ac® can be subdivided in N smaller in-
o Ac

tervals, Ac?) = , and the set of linearized equations of

N
Section A.2.2 is solved subsequently for N perturbation steps
Ao @), Calculations following this approach are implemented

in the Matlab.

A.5 Single-phase compressibility

In this section, we derive equation (14), considering that the
crack is fully saturated by a single-phase fluid with effective
properties. In this case, the capillary pressure in equation (A5)

is neglected, and the total crack volume (V) is calculated as

follows:
V o0+ Py

tot — 1 .
wab +

(ASS)
cl

Equations (A20) and (A21), representing undrained
boundary conditions for two-phase fluids inside the crack,
are reduced to the following equation:

AV,

ror Ko = — Ve Apg. (AS6)

While the perturbation of the crack volume is calculated
using equation, similar to equation (A23), in which the capil-
lary pressure is neglected:

Vv, aV,

AV, =LA A py. AS57
tot 9o ° + 3 P ( )
Next, using equations (A56) and (A57), we get
v,
AV, —lo
tot — do : . (A58)
Ao (1 + Ky &)
Vt()t apy

Next, by combining equations (A58), (4), (5), (6), (A42)
and (A43), we derive equation (14).

A.6 Different boundary conditions on immiscible fluids

In this paper, we developed a rock physics model for isolated
partially saturated crack and discussed in the introduction that
the depinning of the contact line strongly depends on many
parameters, given in Table 1, including wave amplitude and
the pore-fluid system. We also discussed in the introduction
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that much greater wave amplitudes are required for the con-
tact line slippage in the crack, partially saturated with an oil
and water system. Using the theoretical model, developed in
this paper, it is possible to demonstrated that the contact line
will slip in a crack, partially saturated with oil and water if
different boundary conditions on fluids are used. If the crack
is not isolated, but connected with matrix pores, the seismic
wave will induce two-phase fluid flow between the crack and
the matrix (Pride et al. 2004; Miiller et al. 2011). In this case,
when both matrix and crack pores are connected, it is relevant
to consider drained versus undrained boundary conditions in
the model (Mavko et al. 2009). During drained (unjacketed)
boundary conditions, pore fluids can flow freely in or out of
the sample (or representative elementary volume) to ensure

constant pore pressure in each fluid phase, that is,

Apye=0 (A59)
and
APy = 0. (A60)

During undrained (jacketed)

the fluids cannot flow in or flow out of the sample (or

boundary conditions,

representative elementary volume). In this case, wave-induced
changes of fluid pressure are described by two Skempton’s
coefficients B, and B,, for the wetting and non-wetting
phases as follows (Skempton 1954; Pride et al. 2004; Miiller

et al. 2011; Fredlund, Rahardjo and Fredlund 2012):

Ap,. = —B,.Ac (A61)
and
Apnw = _anAG7 (A62)

where 0 < B, <1 and 0 < B,, < 1. Note here that we use
a sign convention when compressive stresses and compressive
strains are negative, while fluid pressure is positive. In the

partially saturated rock, the coefficients B,, and B, are not

the material constants, but coefficients that may depend on
the saturation (Fredlund et al. 2012). Thus, these parameters
can be used phenomenologically.

Using equations (A59)-(A60) or (A61)-(A62) instead of
equations (2)—(3), it is possible to demonstrate that in the
water—oil system the critical stress (Ao, ), required for slippage
of the contact line, is in the range 10> to 10* Pa, that is, typical

for linear seismic waves.
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