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ABSTRACT 

Capillary pressure and relative permeability are 
important parameters in geothermal reservoir 
engineering. It is essential to represent capillary 
pressure curves mathematically in an appropriate 
way. The Brooks-Corey capillary pressure model has 
been accepted widely, however it has been found that 
the Brooks-Corey model cannot represent capillary 
pressure curves of The Geysers rock samples. In fact, 
few existing capillary pressure models work for these 
rock samples. To this end, the porous media were 
modeled using fractal geometry and a universal 
capillary pressure model was derived theoretically. It 
was found that the universal capillary pressure model 
could be reduced to the frequently-used Brooks-
Corey capillary pressure model and the Li-Horne 
imbibition model when the fractal dimension of the 
porous media takes a limiting value. This also 
demonstrates that the Brooks-Corey model and the 
Li-Horne model, which have been considered to be 
empirical, have a solid theoretical base. The results 
demonstrated that the new capillary pressure model 
could represent the capillary pressure curves of The 
Geysers rock while the Brooks-Corey model cannot. 
A relative permeability model was also developed 
from the universal capillary pressure model. Fractal 
dimension, a parameter associated with the 
heterogeneity of the rock, determines the shape of 
relative permeability curves according to the new 
relative permeability model. The new model can also 
be reduced to the Brooks-Corey relative permeability 
model. The relative permeability data of The Geysers 
rock were calculated using the typical values of the 
fractal dimension inferred from the mercury intrusion 
capillary pressure curves. 

INTRODUCTION 

Experimental data showed that the capillary pressure 
curves of rock samples with many fractures (The 
Geysers rock) were different from those of rock 
samples without fractures (for example, Berea 
sandstone). It was found that the Brooks-Corey 

(1964) capillary pressure model could be used to 
represent the curves of the rock without fractures but 
did not work for The Geysers rock samples with 
many fractures (Li and Horne, 2003). For example, 
Fig. 1 shows that the capillary pressure curve of 
Berea sandstone is a straight line on a log-log plot, 
which implies that the Brooks-Corey capillary 
pressure model works for Berea sandstone. However 
the capillary pressure curves of The Geysers rock are 
not straight lines, which demonstrates that the 
Brooks-Corey capillary pressure model does not 
work for The Geysers rock. The capillary pressure 
curves were measured using a mercury intrusion 
technique. It would be helpful for reservoir engineers 
to have a mathematical model to represent such 
capillary pressure curves appropriately. 
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Figure 1: Capillary pressure curves of The Geysers 

rock and Berea sandstone. 
 
In Fig. 1, the open squares represent the capillary 
pressure data of Berea sandstone. All the other 
symbols represent the capillary pressure curves of 
The Geysers rock from different wells. 
 
Interestingly, Li and Horne (2003) found that fractal 
curves inferred from capillary pressure curves were 
good straight lines for all the rock samples, both 
those with and those without fractures, as shown in 
Fig. 2. The fractal curves represent the relationship 



between the number of pores and the radius of the 
pore throats.  
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Figure 2: Fractal Curves of The Geysers rock and 

Berea sandstone. 
 
This finding implies that a general capillary pressure 
model may exist to represent both the rock in which 
the Brooks-Corey model works and the rock in which 
the Brooks-Corey model does not work. In this study, 
such a general capillary pressure model was derived 
theoretically from fractal modeling of porous media. 
A general relative permeability model was also 
developed based on the universal capillary pressure 
model. Experimental data of capillary pressure from  
The Geysers rock were used to test the new capillary 
pressure and relative permeability model. 

THEORY 

According to the basic concept of fractal geometry, 
the following expression applies to a fractal object: 
 

fD
rrN

−∝)(     (1) 
 
where r is the radius (or characteristic length) of a 
unit chosen to fill the fractal object, N(r) is the 
number of the units (with a radius of r) required to 
fill the entire fractal object, and Df is the so-called 
fractal dimension. The fractal dimension is a 
representation of the heterogeneity of the fractal 
object. The greater the fractal dimension, the more 
heterogeneous the fractal object. 
 
Capillary pressure curves measured by a mercury-
intrusion technique are often used to infer the pore 
size distribution of rock samples. In making this 
inference, rock with solid skeleton and pores is 
represented by using a capillary tube model. N(r) can 
be calculated easily once capillary pressure curves 
measured using a mercury-intrusion technique are 
available. The unit chosen in this study was a 
cylindrical capillary tube with a radius of r and a 
length of l. So the volume of the unit is equal to πr2l 
and N(r) at a given radius of r is then calculated 
easily. 

A universal capillary pressure model 
Once N(r) is known, the value of fractal dimension, 
Df, can be determined from the relationship between 
N(r) and r. The relationship between N(r) and r 
should be linear on a log-log plot if the pore system 
of the rock is fractal. 
 
According to the capillary tube model, N(r) can be 
calculated as follows: 
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where l is the length of a capillary tube and VHg is the 
cumulative volume of mercury intruded in the rock 
sample when capillary pressure is measured. 
 
Combining Eq. 1 and Eq. 2: 
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Arranging Eq. 3: 
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Considering a capillary tube model, capillary 
pressure can be calculated as follows: 
 

r
Pc

θσ cos2=     (5) 

 
where Pc is the capillary pressure, σ is the surface 
tension, and θ is the contact angle. 
 
Substituting Eq. 5 into Eq. 4: 
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The mercury saturation is calculated as follows: 
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where SHg is the mercury saturation and Vp is the pore 
volume of the core sample. 
 
Substituting Eq. 7 into Eq. 6: 
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here a is a constant. 
 



When VHg increases from 0 to 0+, the corresponding 
capillary pressure increases from 0 to pe. According 
to Eq. 8: 
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where ε is an infinite small positive value close to 
zero and pe is the entry capillary pressure of the rock 
sample. 
 
Similarly the capillary pressure reaches a maximum 
value (it can also be infinite) when VHg equals a 
maximum value. According to Eq. 8: 
 

)2(
max,max,

fD
cHg aPS −−=    (10) 

 
where SHg,max is the maximum mercury saturation and 
Pc,max is the maximum capillary pressure at SHg,max. 
 
Combining Eqs. 8, 9, and 10, one can obtain: 
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Considering ε→0, Eq. 11 may be reduced to: 
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Using the wetting-phase saturation (the wetting-phase 
during mercury intrusion is air), Eq. 12 can be 
expressed as: 
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where Sw is the wetting-phase saturation and Swr is the 
residual saturation of the wetting-phase. 
 
Eq. 13 can be rearranged as: 
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The normalized wetting-phase saturation is defined 
as: 
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Substituting Eq. 15 into Eq. 14: 
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Arranging Eq. 16: 
 

λλλλ
1

*
max,max, ])([

−−−− −−= weccc SpPPP  (17) 

 
where λ = 2 - Df. 
 
Eq. 17 can be reduced as follows: 
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where b is a constant and expressed as follows: 
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For Df<2, if Pc,max approaches infinity, then Eq. 17 or 
18 can be reduced: 
 

λ
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Eq. 20a is the frequently-used Brooks-Corey model, 
which was proposed empirically by Brooks and 
Corey (1964).  
 
According to the derivation in this paper, one can see 
that the Brooks-Corey capillary pressure model has a 
solid theoretical basis. This may be why the Brooks-
Corey model can be a good fit to capillary pressure 
curves of many rock samples. 
 
In the case in which b=1, Eq. 18 can be reduced to: 
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Eq. 20b is the imbibition capillary pressure model 
proposed by Li and Horne (2001) empirically (for 
Df>2). 
 
In the case in which b=0, Eq. 18 can be reduced as: 
 

max,cc PP =     (20c) 

 
Eq. 20c may be considered a capillary pressure model 
for a single capillary tube. 
 
One can see that Eq. 18, as a general capillary 
pressure model, could be applied in both complicated 



porous media and in a single capillary tube as well as 
in both drainage and imbibition cases. 
 
Differentiating Eq. 16: 
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Eq. 21 can also be expressed as: 
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Eq. 22 is similar to the equation derived by Friesen 
and Mikula (1987): 
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Note that the same equation could be obtained if a 
three-dimensional pore model, instead of a two-
dimensional capillary tube model, were used to 
calculate the number of pores in the porous media. 

A new relative permeability model 
There are two main ways to infer relative 
permeability from capillary pressure data. One is the 
Purcell approach (1949) and another is the Burdine 
approach (1953). In this section, relative permeability 
models will be derived theoretically based on the new 
capillary pressure model (Eq. 18) using both the 
Purcell and the Burdine approaches. 

Based on the Purcell approach 
Purcell (1949) developed an equation to compute 
rock permeability by using capillary pressure data. 
This equation can be extended readily to the 
calculation of multiphase relative permeability. In 
two-phase flow, the relative permeability of the 
wetting phase can be calculated as follows: 
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where krw and Sw are the relative permeability and 
saturation of the wetting phase; Pc is the capillary 
pressure as a function of Sw. 
 
Similarly, the relative permeability of the nonwetting 
phase can be calculated as follows: 
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where krnw is the relative permeability of the 
nonwetting phase. It can be seen from Eqs. 24 and 25 
that the sum of the wetting and nonwetting phase 
relative permeabilities at a specific saturation is equal 
to one. This may not be true in most porous media. 
Comparing the experimental data with the modeling 
data, Li and Horne (2002) found that the Purcell 
model (Eqs. 24 and 25) may be the best fit to the 
experimental data of the wetting phase relative 
permeability for both drainage and imbibition 
processes but may not be a good fit for the 
nonwetting phase. 
 
Substituting Eq. 18 into Eq. 24: 
 

∫ −−

∫ −−
=

−−−

−−−

1
0

*
2

*
max,max,

*

0
*

2
*

max,max,

])([

])([

wwecc

wS
wwecc

rw

dSSpPP

dSSpPP
k

λλλλ

λλλλ

 

   (26) 
 
Defining: 
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one can obtain: 
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Substituting Eqs. 27 and 28 into Eq. 26: 
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where: 
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After integrating: 
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Eq. 32 can be expressed as: 
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According to Eq. 25, the relative permeability of the 
nonwetting phase can be calculated as follows: 
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Eq. 34 can also be expressed as: 
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According to Eq. 33: 
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and 
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According to Eq. 35: 
 

1)0( * ==wrnw Sk     (38) 
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The previous results of end-point relative 
permeability for both wetting phase and nonwetting 
phase show, to some extent, the validity of the new 
relative permeability model. 
 
One can see from Eqs. 33 and 35 that relative 
permeability depends not only upon the heterogeneity 
(represented by fractal dimension through the 
parameter λ) but also upon the pore size of porous 
media, represented by the entry capillary pressure 
and the maximum capillary pressure, in some cases. 
 
when Df<2 and Pc,max approaches infinity, Eqs. 33 
and 35 can be reduced to the simple Purcell relative 
permeability model expressed as follows: 
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Therefore the new relative permeability model (Eqs. 
33 and 35) encompasses the Purcell relative 
permeability model (Eqs. 40 and 41). 
 
In cases where Pc,max has a finite value, Eqs. 33 and 
35 can be reduced as follows: 
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where b is defined in Eq. 19 and m is expressed as 
follows: 
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Note that m is a parameter associated with the 
heterogeneity of the porous media because the fractal 
dimension Df is a representation of heterogeneity. 
Parameter b is associated with the size of the pore in 
porous media. 

Based on the Burdine model 
Burdine (1953) developed equations similar to 
Purcell's method by introducing a tortuosity factor as 
a function of wetting phase saturation. The relative 
permeability of the wetting phase can be computed as 
follows: 
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where λrw is the tortuosity ratio of the wetting phase. 
According to Burdine (1953), λrw could be calculated 
as follows: 
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where Sm is the minimum wetting phase saturation 
from the capillary pressure curve; τw(1.0) and τw(Sw) 
are the tortuosities of the wetting phase when the 
wetting phase saturation is equal to 100% and Sw 
respectively. 
 
In the same way, relative permeabilities of the 
nonwetting phase can be calculated by introducing a 



tortuosity ratio of the nonwetting phase. The equation 
can be expressed as follows: 
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where λrnw is the tortuosity ratio of the nonwetting 
phase, which can be calculated as follows: 
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Here Se is the equilibrium saturation of the 
nonwetting phase; τnw is the tortuosity of the 
nonwetting phase. 
 
Using a similar procedure to that used to derive Eqs. 
33 and 35, one can obtain: 
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when Df<2 and Pc,max approaches infinity, Eqs. 49 
and 50 can be reduced to the simple Brooks-Corey 
relative permeability model. The model is expressed 
as follows: 
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Therefore the new relative permeability model (Eqs. 
49 and 50) encompasses the Brooks-Corey relative 
permeability model (Eqs. 51 and 52). 
 
In the case in which Pc,max has a finite value, Eqs. 49 
and 50 can be reduced as follows: 
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In the case in which b=1 and m>0, Eqs. 53 and 54 
can be reduced as follows: 
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In the case in which m=0, Eqs. 55 and 57 can be 
reduced as follows: 
 

2* )( wrw Sk =     (57) 
 

2* )1( wrnw Sk −=     (58) 
 
Eqs. 57 and 58 are the relative permeability model in 
a single capillary tube. 
 
Eqs. 51 and 52 have been tested against experimental 
data in many cases (Li and Horne, 2002). However 
the new relative permeability models developed in 
this study are yet to be verified. 

RESULTS 

The theoretical capillary pressure data were 
calculated using Eq. 18 with different values of 
fractal dimension and the results are shown in Fig. 3. 
The values of fractal dimension used in the 
calculation were 1.0, 2.1, and 2.8. The values of 
maximum capillary pressure and entry capillary 
pressure were 100 MPa and 0.4 MPa respectively in 
all of the cases. The residual wetting-phase saturation 
was 20%. For Df<2.0, the capillary pressure curve 
looks like the often-observed capillary pressure curve 
(for example, the capillary pressure curve of Berea 
sandstone). This type of capillary pressure curve can 
usually be represented mathematically by the Brooks-
Corey model. For Df>2.0, the capillary pressure curve 
is concave to the axis of the wetting-phase saturation. 
The capillary pressure curves of The Geysers rock 
have such a feature. 
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Figure 3: Typical capillary pressure curves 

calculated using the new model with 
different values of fractal dimension. 



 
A typical capillary pressure curve of The Geysers 
rock is shown in Fig. 4. It is obvious that the Brooks-
Corey model cannot represent such a capillary 
pressure curve. The new capillary pressure model 
developed in this study was used to match the data 
and the results are demonstrated in Fig. 4. One can 
see that the new capillary pressure model can 
represent the capillary pressure curve of The Geysers 
rock satisfactorily. The values of parameters obtained 
by the match were: Pc, max=198.8 MPa, b=0.999, and 
λ=0.65. The value of fractal dimension calculated 
using the value of λ was 3.538. 
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Figure 4: Typical capillary pressure curve of The 

Geysers rock and the match by using the 
universal model.. 

 
Relative permeability curves were calculated 
according to the new model (see Eqs. 53 and 54) 
using different values of fractal dimension. The 
results are plotted in Fig. 5. One can see that the 
relative permeability curves of the nonwetting phase 
(represented by steam phase in Fig. 3) are almost the 
same for different values of fractal dimension. 
However, the relative permeability curves of the 
wetting phase (represented by water phase in Fig. 5) 
are different for different values of fractal dimension. 
The fractal dimension of The Geysers rock is greater 
than 2.3 (Li and Horne, 2003). Fig. 5 shows that the 
corresponding relative permeability curves have 
different features from those with fractal dimension 
less than 2.0, as predicted by the model (see Eqs. 53 
and 54). One can see that the values of the water 
phase relative permeability for the fractal dimension 
over 2.3 are very small until the normalized water 
saturation reaches about 90%. This phenomenon may 
be verified by future experimental data of steam and 
water relative permeability measured in The Geysers 
rock. 
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Figure 5: Typical relative permeability curves 

calculated using the new model with 
different values of fractal dimension. 

 
The comparison of the experimental steam-water 
relative permeability in Berea sandstone with the 
model prediction is shown in Fig. 6. The end-point 
values of the experimental relative permeability 
curves were also used as the end-point values of the 
model relative permeability curves. The experimental 
steam-water relative permeability data shown in Fig. 
6 were measured in the drainage case with the initial 
water saturation of 100% (Li and Horne, 2001). 
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Figure 6: Comparison of experimental with model 

relative permeability curves. 
 
One can see from Fig. 6 that the model data 
calculated using the general relative permeability 
model developed in this study are close to the 
experimental data once the end-point values are 
known. Also shown in Fig. 6 is the fit obtained using 
the Brooks-Corey relative permeability model for the 
nonwetting phase and using the Purcell relative 
permeability model for the wetting phase. The reason 
to use different models for different phases was 
because we found previously that the Purcell model 
may be the best fit to the experimental data of the 
wetting phase relative permeability while the Brooks-
Corey model is proposed to calculate the nonwetting 
phase relative permeability (Li and Horne, 2002). 
 



As mentioned previously, few experimental data of 
steam-water relative permeability in The Geysers 
rock have been available in the literature. However 
Reyes et al. (2003) reported the residual water 
saturation (Swr) with an experimental value of about 
70%. The steam relative permeability at Swr is chosen 
to be equal to 0.6. The water relative permeability at 
Swr is equal to zero. The end-point values at a water 
saturation of 100% are known (the water relative 
permeability is equal to 1.0 and the steam relative 
permeability is equal to zero). The shape of the 
relative permeability can be determined using the 
general relative permeability model with the value of 
the fractal dimension. Then the steam-water relative 
permeability curve of The Geysers rock can be 
obtained and the results are shown in Fig. 7. The 
value of the fractal dimension chosen was 2.3, which 
is the typical value of The Geysers rock. 
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Figure 7: A typical relative permeability curve of The 

Geysers rock predicted using the general 
model (Eqs. 49 and 50). 

 
The water phase relative permeability decreases 
sharply as the water saturation decreases from 100% 
(see Fig. 7). The speculated explanation is as follows. 
There are many microfractures in The Geysers rock. 
In the beginning of the drainage process (the water 
saturation decreases from 100%), water drains 
through the microfractures. The water phase relative 
permeability is great during this period. After the 
water resided in the microfractures has been drained, 
the drainage of water in the matrix starts but the flow 
rate is very low because of the extremely low 
permeability of the matrix. Accordingly the water 
phase relative permeability during this period is very 
small, which forms the sharp drop of the water phase 
relative permeability as shown in Fig. 7. 
 
It is known that it is difficult to measure steam-water 
relative permeability because of the mass transfer and 
the phase transformation as pressure changes. The 
general relative permeability model derived in this 
study may facilitate the solution to this problem. 
Based on the relative permeability model, the shape 
of the relative permeability curve can be obtained 
once the capillary pressure curve is known. The 

capillary pressure curve can be measured easily using 
a mercury intrusion technique. Therefore the entire 
steam-water relative permeability curve can be 
determined once the end-point values are known. 
This implies that we may only need to measure the 
end-point values to obtain the entire steam-water 
relative permeability curve. By doing so, much 
experimental time and cost can be saved. 

CONCLUSION 

Based on the present study, the following conclusions 
may be drawn: 
1. Using fractal geometry, a universal model has 

been developed to represent capillary pressure 
curves of porous and fractured media. 

2. The new capillary pressure model can represent 
the experimental data of The Geysers rock 
satisfactorily. However the Brooks-Corey 
capillary pressure model cannot.  

3. The theoretical derivation conducted in this 
study demonstrated that the Brooks-Corey 
capillary pressure model may have a solid 
theoretical base.  

4. Relative permeability models for both wetting-
phase and nonwetting-phase have been 
developed accordingly. 

5. The relative permeability curves of The Geysers 
rock may have different features from that of 
Berea sandstone. For example, the water relative 
permeability of The Geysers rock may decrease 
sharply as water saturation decreases. 
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