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Summary

Fractures in a fluid-saturated poroelastic -Biot- medium are very thin, compliant and highly
permeable layers. Fracture apertures in reservoir rocks are on the order of millimeters,
much smaller that the wavelengths of the predominant travelling waves. Thus, any finite
element (FE) procedure would require extremely fine meshes to represent fractures. Here
fractures within a Biot medium are modeled using boundary conditions. Besides, a Biot
medium with a dense set of aligned fractures behaves as an effective transversely
Isotropic and viscoelastic (TIV) medium at the macroscale when the predominant
wavelengths are much larger than the average distance between fractures. In this work a
set of time-harmonic FE experiments are used to determine the stiffness coefficients of a
TIV medium equivalent to a horizontally fractured Biot medium. The methodology is first
validated against a theory valid for flow perpendicular to the fracture layering and then
applied in the case of patchy gas-brine saturation for which no analytical solutions are
available.

Stress-strain relations

T (u) = 2Geg (ug) + 85 (AyV - ug + aMV - uy)
pr(u) = —aMV -ug — MV - ug

ug, Uy: solid and fluid displacements. u; = ¢(U; —ug), u= (us,us) and ¢:
porosity.

The boundary conditions at a fracture

QO=(0,L)x(0,L3) : a Biot medium, T
boundary of (0. Assume that () has a set of

horizontal fractures TV [ =1,.--,]U) each
one of length L, and aperture h. This set of
fractures divides ( in nonoverlapping

()
rectangles, so that @ = U;_, " RW. Consider

two rectangles R and R(l“) having as a
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Vi1, X1i+1. the unit outer normal and a unit
tangent on TV from RW to RU+D).
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0, u,Y : displacement values in RW.




The following boundary conditions on I''*Y are derived in Nakagawa, S. and
Schoenberg, M. A. (JASA, 2007):
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Ny, N Normal and tangencial fracture compliances,

G, H,, = K,, + (4/3)G: dry shear and plane wave modulus, respectively. They are

h

defined in terms of the fracture aperture h as n, = —— N = E [1(e) =tanh e /&,

o | 1/2
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u.: solid displacement at the macroscale,
o;j(Ug) , &;(ug): stress and strain tensor components of the equivalent TIV
medium.

The stress-strain relations for the TIV medium:

* 011(Ug) = p11611(Us) + Pr2&22(05) + py3esz(U)
* 032(Ug) = P12&11(Ug) + Pr1E22(U5) + pr3€s3(Us)
* 033(Us) = P13€11(Ug) + Py3&2(Ug) + p3zéss(Uy)
* 033(U5) = 2psséa3(Us)
* 013(U;) = EPSEEIS(ﬁs)
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To determine the above coefficients, we applied five compressibility and shear FE
numerical tests to a representative 2D sample of the fractured poroelastic

material.
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Numerical examples

In all the experiments we used square samples of side length 4 m, with 19
fractures at equal distance of 20 cm and fracture aperture 1 mm. Both
background and fractures have grain density p.=2700 kg/m?> and bulk modulus

K.=36 GPa.

* The first experiment (Figures 1 and 2) validate the FE procedure against the
analytical solution given in Krzikalla, F. and Muller, T. (2011). The background
has dry modulus K,,=9.15 GPa, shear modulus ¢=3.16 GPa, porosity ¢=0.28
and permeability k=0.37 D, while the corresponding values for the fractures are
K.,,=0.00722 GPa, (=0.00249 GPa, $=0.64 and k=18.2 D. In this example,
we consider a brine saturated sample, with brine having density p.= 1000

kg/m> , viscosity u= 0.001 Pa - s and bulk modulus Ke=2.25 GPa.

gP waves show velocity anisotropy and strong attenuation along directions
normal to the fracture layering, SV waves have stronger velocity anisotropy
than gP waves, maximum attenuation at about 45 degrees and no loss along
the directions parallel and normal to the fracture layering. Velocity of qSV
waves has the typical cuspidal triangles (triplications), observed In fractured
media. SH waves are lossless and show velocity anisotropy.
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Polar representation of the energy velocity as function of the propagation angle. Frequency is 60 Hz.
The symbols correspond to the FE experiments, while solid lines indicate the analytical values. (a)

(@)

gP waves. (b) gSV waves. (c) SH waves.
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Polar representation of the dissipation factor [(1000/Q)(sinf, cos6)] as function of the propagation
angle. Freqguency Is 60 Hz. The symbols correspond to the FE experiments, while solid lines indicate

the analytical values. (a) gP waves. (b) gSV waves.

The second experiment considers the same sample but for full brine saturation,
full gas saturation and 15% and 50% patchy brine-gas saturation. Brine has the
same properties of the first experiment, while gas has density 78 kg/m?3,
viscosity 0.00015 Pa - s and bulk modulus 0.012 GPa. Frequency is 60 Hz and a
100 x 100 mesh was employed.



Velocity of gP waves decreases as gas saturation increases, while ¢P
anisotropy Is enhanced by patchy saturation, and decreases as gas saturation
Increases. For gSV waves, velocity decreases as gas saturation increases,
dissipation factor for gSV waves, shows maximum attenuation at 15% gas

saturation,

In the fluid pressure distribution, the higher pressure values occur at

and decreasing anisotropy as gas saturation Increases. Patchy
saturation breaks the symmetry of the curves (see the cuspidal triangles).

the

fracture locations, while the darker regions values identify the gas patches.
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Polar representation of the energy velocity as function of the propagation angle for full brine, full gas,
15% and 50% patchy gas-brine saturation. Frequency is 60 Hz. (a) gP waves. (b) gSV waves.
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Polar representation of the dissipation factor [(1000/Q)(sin6, cos@)] as function of the propagation
angle. Frequency is 60 Hz for full brine, full gas, 15% and 50% patchy gas-brine saturation. (a) P
waves. (b) gSV waves.
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Fluid pressure for normal compression to the fracture plane at 15% and 50% patchy gas-brine
saturation. Frequency is 60 Hz. (a) 15% Gas. (b) 50% Gas.

Conclusions

We presented a procedure to determine the five complex and frequency-
dependent stiffnesses of the TIV medium equivalent to a fractured Biot medium,
with fractures modeled as internal boundary conditions. The methodology Is first
validated against a theory that holds for homogeneous layers and fluid flow normal
to the fracture layering, and then applied to the case of patchy gas-brine
saturation.



