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MONOTONE FUNCTIONS AND MAPS

SAUGATA BASU, ANDREI GABRIELOV, AND NICOLAI VOROBJOV

Abstract. In [1] we defined semi-monotone sets, as open bounded sets, de-
finable in an o-minimal structure over the reals, and having connected inter-
sections with all translated coordinate cones in R

n. In this paper we develop
this theory further by defining monotone functions and maps, and studying
their fundamental geometric properties. We prove several equivalent condi-
tions for a bounded continuous definable function or map to be monotone. We
show that the class of graphs of monotone maps is closed under intersections
with affine coordinate subspaces and projections to coordinate subspaces. We
prove that the graph of a monotone map is a topologically regular cell. These
results generalize and expand the corresponding results obtained in [1] for
semi-monotone sets.

Introduction

This paper is a continuation of the work initiated in an earlier paper [1] where
the authors define a particular class of open definable subsets of Rn, called semi-
monotone sets, in an o-minimal structure over R. One of the main results in [1]
is that semi-monotone sets are topologically regular cells. Here we generalize this
result to the sets of any codimension. The immediate motivation for defining this
class of definable sets was to prove the existence of definable triangulations “com-
patible” with a given definable function – more precisely, the following conjecture.

Conjecture 0.1 ([1]). Let f : K → R, be a definable function on a compact
definable set K ⊂ R

m. Then there exists a definable triangulation of K such that,
for each n ≤ dimK and for each open n-simplex ∆ of the triangulation,

(1) the graph Γ := {(x, t)| x ∈ ∆, t = f(x)} of the restriction of f on ∆ is a
topologically regular n-cell (see Definition 6.3);

(2) either f is a constant on ∆ or each non-empty level set Γ ∩ {t = const} is
a topologically regular (n− 1)-cell.

Conjecture 0.1 is part of a larger program of obtaining combinatorial classi-
fication of monotone families of definable sets discussed in [1]. The triangulation
described in the conjecture can be viewed as a topological resolution of singularities
of definable functions.

The role of semi-monotone sets in the proposed proof of the above conjecture
is as follows. We first hope to prove the existence of a definable, regular cell
decomposition of K, such that the properties (i) and (ii) are satisfied for each
cell of the decomposition. The triangulation will then be obtained by generalized
barycentric subdivision of these cells. In order for such an approach to work, one
needs a good supply of definable cells guaranteed to be regular.

The first author was supported in part by NSF grant CCF-0915954. The second author was
supported in part by NSF grants DMS-0801050 and DMS-1067886.
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The semi-monotone sets fit this requirement. Non-empty semi-monotone sets
are topologically regular cells [1]. Moreover, the class of semi-monotone sets is
stable under maps that permute the coordinates of Rn. However, non-empty semi-
monotone sets are open (and hence full dimensional) definable subsets of R

n. In
this paper, we introduce a certain class of definable maps f : X → R

k where X is
a semi-monotone subset of Rn. We call these maps monotone maps (see Definition
3.3 below). We give several characterizations of monotone maps. Our main result
(Theorem 5.1 below) states that the graphs of monotone maps are topologically
regular cells. We also prove that monotone maps satisfy a suitable generalization
of the coordinate exchange property satisfied by semi-monotone sets – namely, if
F ⊂ R

n × R
k is a graph of a monotone map f : X → R

k, then for any subset of
n coordinates such that the image X ′ of F under projection to the span of these
coordinates is n-dimensional, X ′ is a semi-monotone set, and F is the graph of a
monotone map on X ′ (see Theorem 3.13 below).

For k = 0, we recover the main statements about semi-monotone sets proved in
[1]. Moreover, the proof here is simpler than in [1]. As a result we now have a full
supply of regular cells (of all dimensions), and hence we are a step nearer to the
proof of Conjecture 0.1.

Note that Conjecture 0.1 does not follow from results in the literature on the
existence of definable triangulations adapted to a given finite family of definable
subsets of Rn (such as [7, 3]), since all the proofs use a preparatory linear change
of coordinates in order for the given definable sets to be in a good position with
respect to coordinate projections. Since we are concerned with the graphs and
the level sets of a function, in order to prove Conjecture 0.1 we are not allowed
to make any change of coordinates which involves the last coordinate. Paw lucki
[4] has considered the problem of obtaining a regular cell decomposition with a
restriction on the allowed change in coordinates – namely, only permutations of the
coordinates are allowed. In this setting Paw lucki obtains a decomposition whose full
dimensional cells are regular. Note that even if this decomposition can be carried
through so that all cells (including those of positive codimension) are regular, it
would not be enough for our purposes since we cannot allow a change of the last
coordinate.

1. Semi-monotone sets

In what follows we fix an o-minimal structure over R, and consider only sets and
maps that are definable in this structure (unless explicitly stated otherwise).

Definition 1.1. Let Lj,σ,c := {x = (x1, . . . , xn) ∈ R
n| xjσc} for j = 1, . . . , n,

σ ∈ {<,=, >}, and c ∈ R. Each intersection of the kind

C := Lj1,σ1,c1 ∩ · · · ∩ Ljm,σm,cm ⊂ R
n,

where m = 0, . . . , n, 1 ≤ j1 < · · · < jm ≤ n, σ1, . . . , σm ∈ {<,=, >}, and
c1, . . . , cm ∈ R, is called a coordinate cone in R

n.
Each intersection of the kind

S := Lj1,=,c1 ∩ · · · ∩ Ljm,=,cm ⊂ R
n,

where m = 0, . . . , n, 1 ≤ j1 < · · · < jm ≤ n, and c1, . . . , cm ∈ R, is called an affine
coordinate subspace in R

n.
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In particular, the space R
n itself is both a coordinate cone and an affine coordi-

nate subspace in R
n.

Throughout the paper we assume that the empty set is connected.

Definition 1.2 ([1]). An open (possibly, empty) bounded set X ⊂ R
n is called

semi-monotone if for each coordinate cone C the intersection X ∩ C is connected.

Proposition 1.3 ([1], Lemma 1.2, Corollary 1.4). The projection of a semi-monotone
set X on any coordinate subspace, and the intersection X ∩ C with a coordinate
cone C are semi-monotone sets.

The following necessary and sufficient condition of semi-monotonicity shows that
in the definition it is enough to consider the intersections of X with affine coordinate
subspaces.

Theorem 1.4. An open (possibly, empty) bounded set X ⊂ R
n is semi-monotone if

and only if for each affine coordinate subspace S the intersection X∩S is connected.

Lemma 1.5. If X ⊂ R
n is any connected definable set such that for some j ∈

{1, . . . n} and each b ∈ R the intersection X ∩ {xj = b} is connected, then the sets
X ∩ {xj < c} and X ∩ {xj > c} are connected for all c ∈ R.

Proof. Observe that connectedness is equivalent to path-connectedness for definable
sets. Consider any two points y, z ∈ X ∩ {xj < c}, then there is a path γ ⊂ X
connecting them. Suppose, for definiteness, that yj ≤ zj. Let w be the point in
γ ∩X ∩ {xj = zj} which is closest to y in γ. Then the union of the segment of γ
between y and w, and a path in X ∩ {xj = zj}, that connects w with z, is a path
in X ∩ {xj < c} connecting y with z.

The similar argument shows that X ∩ {xj > c} is path-connected. �

Proof of Theorem1.4. If X is semi-monotone, then X ∩ S is always connected by
the definition.

To prove the converse, observe that since X is connected, and X ∩ {xj = b} is
connected for every j = 1, . . . , n and every b ∈ R, the intersections X ∩ {xj < c}
and X ∩ {xj > c} are connected for every c ∈ R, by Lemma 1.5. The theorem
follows, by the induction on the number of half-spaces which form a coordinate
cone, since these intersections can then be taken as X . �

Corollary 1.6. An open (possibly, empty) bounded set X ⊂ R
n is semi-monotone

if and only if the intersection X ∩ Lj,=,c is semi-monotone for every j = 1, . . . , n
and every c ∈ R.

Proof. The statement easily follows from Theorem 1.4 by induction on n. �

Definition 1.7. A bounded upper semi-continuous function f defined on a non-
empty semi-monotone set X ⊂ R

n is submonotone if, for any b ∈ R, the set
{x ∈ X | f(x) < b} is semi-monotone. A function f is supermonotone if (−f)
is submonotone.

Notation 1.8. Let the space R
n have coordinate functions x1, . . . , xn. Given a

subset I = {xj1 , . . . , xjm} ⊂ {x1, . . . , xn}, let W be the linear subspace of R
n

where all coordinates in I are equal to zero. By a slight abuse of notation we will
denote by span{xj1 , . . . , xjm} the quotient space R

n/W . Similarly, for any affine
coordinate subspace S ⊂ R

n on which all the functions xj 6∈ I are constant, we will
identify S with its image under the canonical surjection to R

n/W .
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Lemma 1.9. Let the function f : X → R be submonotone (respectively, super-
monotone), and let X ′ be the image of the projection of X to span{x1, . . . , xn−1}.
Then the function infxn

f : X ′ → R (respectively, supxn
f : X ′ → R) is submono-

tone (respectively, supermonotone).

Proof. According to Proposition 1.3, the set X ′ is semi-monotone. Assume that f is
submonotone. Then for any b ∈ R the image X ′

b of the projection of {x ∈ X |f(x) <
b} to span{x1, . . . , xn−1} coincides with {(x1, . . . , xn−1) ∈ X ′| infxn

f(x) < b}.
Since, by Proposition 1.3, X ′

b is semi-monotone, the function infxn
f satisfies the

definition of submonotonicity.
The proof that supxn

f is supermonotone is analogous. �

Proposition 1.10 ([1], Theorem 1.7). An open non-empty bounded set X ⊂ R
n is

semi-monotone if and only if it satisfies the following conditions. If X ⊂ R
1 then

X is an open interval. If X ⊂ R
n then

X = {(x, y)| x ∈ X ′, f(x) < y < g(x)}

for a submonotone function f and a supermonotone function g, both defined on a
semi-monotone set X ′ ⊂ R

n−1, with f(x) < g(x) for all x ∈ X ′.

The rest of the paper is organized as follows.
In Section 2, we define the class of monotone functions. These are a special

type of definable functions f : X → R where X is any non-empty semi-monotone
set. We give several different characterizations of monotone functions (Lemma 2.8,
Corollary 2.9, and Theorem 2.17). In particular, Lemma 2.8 should be compared
with the Definition 1.2 above of semi-monotone sets, and Theorem 2.17 should be
compared with the corresponding result, Corollary 1.6, for semi-monotone sets. We
also prove a few useful topological results in this section. In particular, we prove a
topological property of semi-monotone sets and graphs of monotone functions that
could be viewed as an analog of Schönflies Theorem for semi-monotone sets (see
Lemma 2.15 below).

In Section 3, we generalize the definition of monotone functions and define mono-
tone maps f : X → R

k, where X ⊂ R
n is a non-empty semi-monotone subset of Rn

(see Definition 3.3 below). The definition is inductive (induction on n) and is more
complicated than the definitions of semi-monotone sets and monotone functions.
The combinatorial information regarding the dependence or independence of the
map f with respect to the various coordinates is more subtle and is recorded in a
matroid, m, of rank n (see Theorem 3.12), which is associated with f . We prove
several important properties of monotone maps and their associated matroids in
Section 3. In particular, we show that if F ⊂ R

n+k is the graph of a monotone map
f : X → R

k, where X ⊂ R
n, and I ⊂ {x1, . . . , xn, y1, . . . , yk} is a basis of its associ-

ated matroid, then the image of F under the projection to spanI is a semi-monotone
set, and F is also the graph of a monotone map defined on this set. We also iden-
tify a key property of monotone maps, of being quasi-affine (Definition 3.14, and
Theorem 3.16) which will be used later in an essential way.

In Section 4, we prove several different characterizations of monotone maps in-
cluding Theorem 4.3 (which generalizes Lemma 2.8 from functions to maps) and
Theorem 4.7 (generalizing similarly Theorem 2.17 from functions to maps). We
also prove a topological result namely Theorem 4.6 (generalizing Lemma 2.15).

It was proved in [1] that every semi-monotone set is a regular cell. In Section 5
we generalize this theorem to graphs of monotone maps (see Theorem 5.1). The
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proof of Theorem 5.1 is new even in the case of semi-monotone sets, and simpler,
as it avoids a more advanced machinery from PL topology that was used in [1].

2. Monotone functions

Definition 2.1 ([7]). A definable function f on a non-empty open set X ⊂ R
n

is called strictly increasing in the coordinate xj , where j = 1, . . . , n, if for any two
points x,y ∈ X that differ only in the coordinate xj , with xj < yj , we have f(x) <
f(y). Similarly we define the notions of f strictly decreasing in the coordinate
xj and f independent of the coordinate xj , the latter meaning that f(x) = f(y)
whenever x,y ∈ X differ only in the coordinate xj .

Definition 2.2. A definable function f defined on a non-empty semi-monotone set
X ⊂ R

n is called monotone if it is

(i) both sub- and supermonotone (in particular, bounded and continuous, see
Definition 1.7);

(ii) either strictly increasing in, or strictly decreasing in, or independent of xj ,
for each j = 1, . . . , n.

Example 2.3. The function x21 + x22 on the semi-monotone set

X = {x1 > 0, x2 > 0, x1 + x2 < 1} ⊂ R
2

satisfies (ii) in Definition 2.2, is submonotone but not supermonotone. Hence this
function is not monotone. On the other hand, the function x21 + x22 on the semi-
monotone set (0, 1)2 is monotone.

Remark 2.4. It follows from the definition that the restriction of a monotone func-
tion f to a non-empty set X∩{xj = c} for any j = 1, . . . , n and c ∈ R is a monotone
function in n − 1 variables. Lemma 2.8 below implies that the restriction of f to
a non-empty X ∩ C, where C is a coordinate cone in R

n, is also a monotone func-
tion. However, as exhibited in Example 2.3, the restriction of a monotone function
f : X → R to a semi-monotone subset Y ⊂ X is not necessarily monotone.

Example 2.5. The function on the semi-monotone set X = (0, 1) × (−1, 1) ⊂ R
2

defined as:
x1x2 when x2 ≥ 0, and (1 − x1)x2 when x2 ≤ 0,

is sub- and supermonotone, strictly increasing in x2 on X , strictly increasing in x1
on X ∩ {x2 6= 0}, but is constant on X ∩ {x2 = 0}. Hence this function is not
monotone.

Definition 2.6. We say that a monotone function f is non-constant in xj if it is
either strictly increasing or strictly decreasing in xj .

Let a monotone function f : X → R on a semi-monotone set X ⊂ R
n be

non-constant in xn. Let

F := {(x, y)| x ∈ X, y = f(x)} ⊂ R
n+1

be the graph of f and U be the projection of F to span{x1, . . . , xn−1, y}.

Lemma 2.7. The set U is semi-monotone, and

F = {(x, y)| x ∈ X, xn = g(x1, . . . , xn−1, y)}

is the graph of a continuous function g on U .
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Proof. Since the projection of U to span{x1, . . . , xn−1}, coincides with the projec-
tion X ′ of X to the same space, it is a semi-monotone set by Proposition 1.3.

Observe that

U = {(x1, . . . , xn−1, y)| (x1, . . . , xn−1) ∈ X ′, inf
xn

f < y < sup
xn

f}.

According to Lemma 1.9, infxn
f is submonotone and supxn

f is supermonotone.
Moreover, supxn

f(x1, . . . , xn−1) < infxn
f(x1, . . . , xn−1), for each (x1, . . . , xn−1) ∈

X ′, since f is non-constant in xn. Therefore the set U is semi-monotone, by Propo-
sition 1.10.

The function g is defined, since f is non-constant in xn, and continuous since f
is continuous and these functions have the same graph F . �

Lemma 2.8. Let f be a bounded continuous function defined on an open bounded
non-empty set X ⊂ R

n, either strictly increasing in, strictly decreasing in, or inde-
pendent of xj , for each j = 1, . . . , n. Let F be the graph of f . The following three
statements are equivalent.

(i) The function f is monotone.
(ii) For each coordinate cone C in R

n+1 the intersection C ∩ F is connected.
(iii) For each affine coordinate subspace S in R

n+1 the intersection S ∩ F is
connected.

Proof. We first prove that (i) is equivalent to (ii).
Let f be monotone (in particular, X is semi-monotone), and let C be a coor-

dinate cone in R
n+1. It is sufficient to consider the cases when C is defined by

a sign condition on the variable y, otherwise, by Proposition 1.3, the situation is
reduced to f defined on a smaller semi-monotone set, the intersection of X with a
coordinate cone in span{x1, . . . , xn}. If C = {y < c} for some c ∈ R, then, since
f is submonotone, the projection of C ∩ F to span{x1, . . . , xn} is semi-monotone,
hence connected. Since f is continuous, the pre-image of this projection in F is
connected. Similar argument applies in the case when C = {y > c}.

Suppose that C = {y = c}. Due to Lemma 2.7, the intersection U ∩ {y = c}
is semi-monotone, hence connected, and since the function g is continuous, the
pre-image of U ∩ {y = c} in F is connected.

Conversely, let for each coordinate cone C in R
n+1 the intersection C ∩ F be

connected. Let C′ be a coordinate cone in span{x1, . . . , xn}. Then the intersection
F ∩ (C′ ×R) is connected, hence the image of its projection, C′ ∩X , is connected.
It follows that X is semi-monotone. We need to prove that f is both sub- and
supermonotone. Let c ∈ R. Then the set C′ ∩ {f < c} is the image under the
projection to R

n of the connected set C ∩ F where C := (C′ ×R) ∩ {y < c}. Since
f is continuous, C′ ∩ {f < c} is connected, hence f is submonotone. The similar
arguments show that f is supermonotone.

Now we prove that (ii) is equivalent to (iii).
If (ii) is satisfied, then for each S the intersection S ∩ F is connected, since S

ia a particular case of the coordinate cone. The converse follows from Lemma 1.5
by a straightforward induction on the number of strict inequalities defining the
coordinate cone. �

Corollary 2.9. Under the conditions of Lemma 2.8, the non-constant function f
is monotone if and only if
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(i) for every xj and every c ∈ R the intersection F ∩{xj = c} is either empty,
or the graph of a monotone function in n− 1 variables, and

(ii) for every b ∈ R the intersection F ∩ {y = b} is either empty, or the graph
of a monotone function in n− 1 variables.

Proof. The statement easily follows from Lemma 2.8 by induction on n. �

Remark 2.10. In Lemma 2.16 we will prove that the requirement (ii) alone in Corol-
lary 2.9 is a necessary and sufficient for f to be monotone. In Theorem 2.17 we will
show that fixing any j in the part (i) of Corollary 2.9, and adding the requirement
for infxj

f and supxj
f to be sub- and supermonotone functions respectively, makes

(i) also a necessary and sufficient condition for f to be monotone.

Lemma 2.11. In the conditions of Lemma 2.7, the function g(x1, . . . , xn−1, y) is
monotone.

Proof. The function g is defined on the semi-monotone set U . It has the same graph
as the monotone function f , and hence, by Lemma 2.8, is itself monotone. �

Remark 2.12. The function g was constructed from f with respect to the variable
xn. An analogous function gj(x1, . . . , xj−1, y, xj+1, . . . , xn) can be constructed from
f with respect to any variable xj in which f is non-constant, and Lemma 2.11
implies that gj is monotone. If gj is non-constant in a variable xℓ, then the function
constructed from gj with respect to xℓ, coincides with the function

gℓ(x1, . . . , xℓ−1, y, xℓ+1, . . . , xn).

The function constructed from gj with respect to y coincides with f . All these
functions have the same graph F as f .

Lemma 2.13. Let X be an open, simply connected subset in R
n, and let Σ ⊂ X

be a non-empty connected (n− 1)-dimensional manifold closed in X. Then X \ Σ
has two connected components.

Proof. There is a short exact sequence (a combination of a cohomological exact
sequence of the pair (X,Σ) and the Poincare duality)

0 = H1(X) → H0(Σ) → H0(X \ Σ) → H0(X) → 0

which, given H0(Σ) = H0(X) = Z, implies that rank(H0(X \ Σ)) = 2. �

Remark 2.14. Here is an alternative proof of Lemma 2.13, not using an exact
sequence.

If Σ is not orientable, choose a normal at a point x ∈ Σ and find a path in Σ that
changes its orientation. Lift a path in the direction of the normal and connect its
ends. The result is a loop in X intersecting Σ transversally at x. This loop cannot
be contractible in X since its intersection index with Σ is ±1. It follows that Σ is
orientable.

If X \ Σ is connected, take a segment transversal to Σ and connect its ends in
X \ Σ. We get a loop in X which intersection index with Σ is ±1. Thus, X \ Σ is
not connected.

Assume Σ is oriented. Every point x ∈ X \ Σ can be connected in X \ Σ to a
point v ∈ Σ by a path γ such that γ \ {v} ⊂ X \ Σ. If the path γ′ for a point x′

gets to Σ at the point v′ from the same side of Σ as x, connect v and v′ by a path
ρ in Σ, then lift ρ along the normals to Σ. We get a path connecting x and x′ in
X \ Σ. It follows that X \ Σ has exactly two connected components.
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Lemma 2.15. Let X be a semi-monotone set in R
n and Σ ⊂ X a graph of a

monotone function xn = hn(x1, . . . , xn−1) on some semi-monotone Y ⊂ R
n−1,

such that ∂Σ ⊂ ∂X. Then X \ Σ is a union of two semi-monotone sets.

Proof. First notice that, by Lemma 2.13, X \ Σ has two connected components,
X+ and X−. For any variable xj , j = 1, . . . , n, and any c ∈ R the intersection
X ∩ {xj = c} is semi-monotone due to Corollary 1.6, while Σ ∩ {xj = c} is either
empty or the graph of a monotone function due to Corollary 2.9.

The rest of the proof is by induction on n, the base for n = 1 being triv-
ial. If hn is constant in each variable x1, . . . , xn−1 then the statement of the
theorem is trivially true. Let X ∩ {xj = c} be non-empty for some variable
xj , j = 1, . . . , n, and some c ∈ R. Note that if hn is non-constant in xj , where
j < n, then according to Remark 2.12, Σ is the graph of a monotone func-
tion xj = hj(x1, . . . , xj−1, xj+1, . . . , xn) on some semi-monotone set Yj . Now let
j = 1, . . . , n. If Σ ∩ {xj = c} = ∅, then either X+ ∩ {xj = c} = X ∩ {xj = c}
or X− ∩ {xj = c} = X ∩ {xj = c}, in any case the intersection is semi-monotone.
Assume now that Σ ∩ {xj = c} 6= ∅. Observe that Σ 6⊂ {xj = c}, since hn is not a
constant function, and Σ is the graph of hn. Hence, (X+ ∪X−) ∩ {xj = c} 6= ∅.

Both intersections, X+ ∩ {xj = c} and X− ∩ {xj = c} are non-empty. Indeed,
if j < n and {xj = c} contains a point p ∈ Σ, it also includes an open interval of
a straight line parallel to xn-axis containing p. The two parts into which p divides
that interval belong one to X+ and another to X−. If j = n then the restriction of
the function hn to a straight line parallel to xi-axis, such that hn is non-constant
in xi, has the graph which is a subset of Σ and has non-empty intersections with
both {xn < 0} and {xn > 0}.

By the inductive hypothesis, (X ∩ {xj = c}) \ (Σ ∩ {xj = c}) is a union of two
semi-monotone sets. It follows that one of the connected components of (X ∩{xj =
c}) \ (Σ ∩ {xj = c}) lies in X+ while another in X−. Hence, the intersection of
{xj = c} with each of X+ and X− is semi-monotone.

Finally, in the case when hn is independent of xj , j < n, the set Σ is a cylinder
over the graph Σ ∩ {xj = c} of a monotone function, for any c ∈ R, and therefore
one of the connected components of (X ∩ {xj = c}) \ (Σ ∩ {xj = c}) lies in X+

while another X−. It follows that the intersection of {xj = c} with each of X+ and
X− is semi-monotone.

Corollary 1.6 now implies that each of X+ and X− is semi-monotone. �

Lemma 2.16. Let f : X → R be a continuous, bounded, non-constant function
defined on a non-empty semi-monotone set X. The function f is monotone if and
only if

(i) it is either strictly increasing in, or strictly decreasing in, or independent
of xj, for each j = 1, . . . , n;

(ii) for every b ∈ R the set {x ∈ X | f(x) = b} is either empty, or a graph of a
monotone function in n− 1 variables.

Proof. If f is monotone, then (i) follows from the definition of a monotone function,
while (ii) is the statement of Corollary 2.9.

Conversely, suppose the conditions (i), (ii) are true.
Let Σ := X ∩ {f(x) = b}. Since Σ is a level set of a continuous function,

∂Σ ⊂ ∂X . By Lemma 2.15, X \ Σ is a union of two semi-monotone sets. The
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condition (i) implies that one of these sets is X ∩ {f(x) < b} and another is
X ∩ {f(x) > b}. It follows that f is both sub- and supermonotone. �

Theorem 2.17. A continuous function f , defined on a non-empty open bounded
set X ⊂ R

n, and not independent of xn, is monotone if and only if it satisfies the
following properties:

(i) f is either strictly increasing in or strictly decreasing in or independent of
each of the variables xj , where j = 1, . . . , n;

(ii) infxn
f and supxn

f are sub- and supermonotone functions, respectively, in
variables x1, . . . , xn−1;

(iii) the restriction of f to each non-empty set X ∩ {xn = a}, where a ∈ R, is a
monotone function.

Proof. Assume that f , not independent of xn, satisfies the properties (i)–(iii). Let
F be the graph of f . Then F can be represented as in Lemma 2.7,

F = {(x, y)| x ∈ X, xn = g(x1, . . . , xn−1, y)},

with the function g defined on the domain

U = {(x1, . . . , xn−1, y)| (x1, . . . , xn−1) ∈ X ′, inf
xn

f < y < sup
xn

f},

where X ′ is the projection of X to span{x1, . . . , xn−1}. Observe that F is also
the graph of g. By the property (ii), and by Proposition 1.10, the domain U is
semi-monotone.

Applying Lemma 2.16 to g, and using (iii), we conclude that this function is
monotone. Hence, by Lemma 2.8, f is also monotone.

Conversely, suppose that a function f : X → R, not independent of xn, is
monotone. Then property (i) follows from the definition of a monotone function.
By Lemma 2.7 the set U is semi-monotone, hence, by Proposition 1.10, the property
(ii) is satisfied. Property (iii) follows immediately from Lemma 2.8. �

3. Monotone maps

Definition 3.1. For a non-empty semi-monotone set X ⊂ R
n and k ≥ 1, let

f = (f1, . . . , fk) : X → R
k

be a continuous and bounded map. Let

H := {xj1 , . . . , xjα , yi1 , . . . , yiβ} ⊂ {x1, . . . , xn, y1, . . . , yk},

where α+ β = n. The set H is called a basis if the map

(xj1 , . . . , xjα , fi1 , . . . , fiβ ) : X → R
n

is injective. Thus, a system of basis sets is associated with f .

Lemma 3.2. If k = 1, then the system of basis sets associated with f = (f1) :
X → R consists of {x1, . . . , xn}, and each set {x1, . . . , xj−1, y, xj+1, . . . , xn} such
that the function f1 is either strictly increasing in xj, or strictly decreasing in xj
(see Definition 2.1).

Proof. Clearly, {x1, . . . , xn} is a basis set.
If f1 is either strictly increasing in xj , or strictly decreasing in xj , then the

set {x1, . . . , xj−1, y, xj+1, . . . , xn} is obviously a basis. Conversely, suppose that
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{x1, . . . , xj−1, y, xj+1, . . . , xn} is a basis set, i.e., the restriction of f1 to every non-
empty interval

X ∩ {x1 = c1, . . . , xj−1 = cj−1, xj+1 = cj+1, . . . , xn = cn},

where c = (c1, . . . , cj−1, cj+1, . . . , cn) ∈ R
n−1, is either strictly increasing or strictly

decreasing. Let A (respectively, B) be the set of points c for which the restriction
is strictly increasing (respectively, strictly decreasing), and X ′ the projection of X
to span{x1, . . . , xj−1, xj+1, . . . , xn}. Thus, X ′ = A ∪ B. Because f1 is continuous,
both sets, A and B, are open in X ′. Since, by Proposition 1.3, X ′ is connected, we
conclude that either X ′ = A or X ′ = B. �

Definition 3.3. For a non-empty semi-monotone set X ⊂ R
n and k ≥ 1, let

f = (f1, . . . , fk) : X → R
k

be a continuous and bounded map and let F := {(x,y)| x ∈ X, y = f(x)} ⊂ R
n+k

be its graph. Associate with f a system m of basis sets as in Definition 3.1. Define
a map f to be monotone, by induction on n ≥ 1.

If n = 1, the map f is monotone if for every i the function fi is monotone.
Assume that monotone maps on non-empty semi-monotone subsets of Rn−1 are

defined.
A map f is monotone if for every i = 1, . . . , k, and every j = 1, . . . , n such that

fi is not independent of xj , the following holds.

(i) For every b ∈ R, the intersection F ∩ {yi = b} (considered as a set in
span{x1, . . . , xn, y1, . . . , yi−1, yi+1, . . . , yk}), when non-empty, is the graph
of a monotone map, denoted by fi,j,b, from a semi-monotone subset of
span{x1, . . . , xj−1, xj+1, . . . , xn}, into span{y1, . . . , yi−1, xj , yi+1, . . . , yk}.

(ii) The system of basis sets associated with fi,j,b does not depend on b ∈ R.

Remark 3.4. It follows from Theorem 3.12 that if the conditions in Definition 3.3
hold for any one j, then they hold for every j such that fi is not independent of xj .

Lemma 3.5. If the map f := (f1, . . . , fk) : X → R
k is monotone, then the map

(f1, . . . , fk−1) : X → R
k−1 is also monotone.

Proof. For any map g : X → R
k, let [g] : X → R

k−1 denote the map obtained
from g by removing the k-th component.

The proof is by induction on n, with the base n = 1 being trivial. Choose any
b ∈ R. By the inductive hypothesis applied to the monotone map fi,j,b, where
i 6= k, the map [fi,j,b] is monotone. But [fi,j,b] coincides with [f ]i,j,b. Hence the
requirements (i) and (ii) in Definition 3.3 are proved for [f ]. �

Theorem 3.6. The map f = (f1) : X → R is monotone if and only if the function
f1 is monotone.

Proof. Suppose that f is a monotone map, let F be its graph. If f1 is a constant
function, then it is trivially monotone. Suppose that f1 is non-constant. Then, by
item (i) of Definition 3.3, the item (ii) of Lemma 2.16 is satisfied.

It remains to show that the condition (i) of Lemma 2.16 is also valid for the
function f1. We prove this by induction on n, the base for n = 1 being a requirement
in Definition 3.3.

Suppose that for some c1, . . . , cn−1 ∈ R the set X∩{x1 = c1, . . . , xn−1 = cn−1} is
non-empty, and the restriction of f1 to this set is independent of xn, i.e., identically
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equal to some b ∈ R. We now prove that f1 is independent of xn, i.e., remains a
constant for all fixed values of x1, . . . , xn−1.

Since we assumed f1 to be non-constant on X , there exists j such that f1 is
not independent of xj . As f is a monotone map, by item (i) in Definition 3.3,
F ∩ {y1 = b} is a graph of a monotone map f1,j,b = (f1,j,b) defined on a semi-
monotone subset of span{x1, . . . , xj−1, xj+1, . . . , xn}. Then j 6= n, since F ∩ {x1 =
c1, . . . , xn−1 = cn−1, y1 = b} contains a non-empty interval.

The function f1,j,b is monotone by the inductive hypothesis. The restriction of
f1,j,b on {x1 = c1, . . . , xj−1 = cj−1, xj+1 = cj+1, . . . , xn−1 = cn−1} is constant
(identically equal to cj). Then, by item (i) of Lemma 2.16, f1,j,b is constant for all
fixed values of x1, . . . , xj−1, xj+1, . . . , xn−1. Since, by item (ii) of Definition 3.3, the
system of basis sets associated with the map f1,j,b does not depend on b ∈ R, the
property of f1,j,b to be constant for all fixed values of x1, . . . , xj−1, xj+1, . . . , xn−1

holds for all b. Since the graph {xj = f1,j,b} of the function f1,j,b is the level set
of f1 at b, and the union of all level sets for all values b is X , it follows that for all
fixed values of variables x1, . . . , xn−1 the function f1 is independent of xn.

It follows that if the restriction of f1 to X ∩ {x1 = c1, . . . , xn−1 = cn−1} is not
independent of xn for some c1, . . . , cn−1 ∈ R, then it is not independent for all fixed
values of x1, . . . , xn−1. Repeating the argument from the proof of Lemma 3.2 (for
j = n), we conclude that f1 is either strictly increasing in, or strictly decreasing in,
or independent of xn.

Replacing in this argument n by each of 1, . . . , n− 1, we conclude that the item
(i) of Lemma 2.16 is satisfied, and therefore the function f1 is monotone.

Now suppose the function f1 is monotone. Then, by item (ii) in Lemma 2.16,
the map f = (f1) satisfies (i) in Definition 3.3. To prove that f satisfies also
(ii) in Definition 3.3, fix the numbers b ∈ R and j ∈ {1, . . . , n}. Suppose that
{x1, . . . , xn−1} is a basis set of f1,j,b, i.e., the fibre {x1 = c1, . . . , xn−1 = cn−1, f1 =
b}, whenever non-empty, is a single point for each sequence c1, . . . cn−1 ∈ R. Then,
according to (ii) in Definition 2.2, f1 is non-constant on {x1 = c1, . . . , xn−1 = cn−1},
in particular, the fibre {x1 = c1, . . . , xn−1 = cn−1, f1 = a}, whenever non-empty, is
a single point for any other value a ∈ R of f1. It follows that the set {x1, . . . , xn−1}
is a basis also for f1,j,a.

Replacing in this argument n by each of 1, . . . , n−1, we conclude that the system
of basis sets of f1,j,b does not depend on b, hence f is monotone. �

Corollary 3.7. If the map f = (f1, . . . , fk) : X → R
k is monotone, then every

function fi is monotone.

Proof. Lemma 3.5 implies that the map (fi) : X → R is monotone for every
i = 1, . . . , k. Then, by Theorem 3.6, the function fi is monotone. �

Remark 3.8. The converse to Corollary 3.7 is false when n > 1 and k > 1. For
example, consider the map f = (f1, f2) : (12 , 1)2 → R

2, where

f1 = x2/x1 and f2 = x1 − x2.

Both functions, f1 and f2, are monotone on (12 , 1)2 but their level curves, {f1 = 1}
and {f2 = 0}, coincide while all other pairs of level curves are different. It follows
that the map f1,1,1 has two basis sets, {x1} and {x2}, while f1,1,2 has three basis
sets, {x1}, {x2} and {y2}. Thus, the condition (ii) of Definition 3.3 is not satisfied
for f .
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Lemma 3.9. Let f : X → R
k be a monotone map, F the graph of f . Then for

any {i1, . . . , iβ} ⊂ {1, . . . , k} and b1, . . . , bβ ∈ R, where β ≤ k, the intersection
Fβ := F∩{yi1 = b1, . . . , yiβ = bβ} is either empty or the graph of a monotone map
defined on a semi-monotone set in some space span{xj1 , . . . , xjα}, where α+β ≥ n.

Proof. The proof is by induction on β. If β = 0 (the base of the induction), then
F0 = F and hence is the graph of a monotone map from X ⊂ span{x1, . . . , xn} to
span{y1, . . . , yk}. Let I0 = ∅, and J0 = {x1, . . . , xn}.

By the inductive hypothesis,

Fβ−1 := F ∩ {yi1 = b1, . . . , yiβ−1
= bβ−1}

is a graph of a monotone map h = (h1, . . . , hk) from a semi-monotone subset of
span Jβ−1 to

span(({y1, . . . , yk} \ Iβ−1) ∪ ({x1, . . . , xn} \ Jβ−1)).

If the function hiβ is constant in each of the variables in Jβ−1, then the graph
Fβ−1 lies in {yiβ = c} for some c ∈ R, hence the intersection Fβ = Fβ−1∩{yiβ = bβ}
is either empty (when c 6= bβ), or coincides with the graph Fβ−1 (when c = bβ).
In this case we consider Fβ as the graph of the same map h, and assume Iβ =
Iβ−1, Jβ = Jβ−1.

Suppose now that hiβ is not constant in some of Jβ−1, let it be, for definiteness,
xjα+1 . Let Iβ := Iβ−1 ∪ {yiβ} and Jβ := Jβ−1 \ {xjα+1}. Then, by Definition 3.3,
Fβ = Fβ−1 ∩ {yiβ = bβ} is the graph of the monotone map hiβ ,xjα+1

,bβ from a

semi-monotone subset of span(Jβ) to

span(({y1, . . . , yk} \ Iβ) ∪ ({x1, . . . , xn} \ Jβ)).

�

Notation 3.10. For a subset H ⊂ {x1, . . . , xn, y1, . . . , yk}, let f(H) : X → R
|H|

denote a map defined by the functions corresponding to the elements of H .

Lemma 3.11. If H is a basis set of a monotone map f : X → R
k, then every

component of f(H) is non-constant on X.

Proof. If all components of f(H) are coordinate functions, then this is obvious. If
non-coordinate functions exist and all are constants, then the dimension of each
non-empty fibre of f(H) equals to the number of these functions, i.e., greater than
zero, which contradicts to H being a basis set. Take a component fi of f(H) which
is not a constant on X , thus it is non-constant in some variable xj . Then each
non-empty fibre of fi is the graph of a monotone map fi,j,b, according to (i) in the
Definition 3.3. Observe that H \ {yi} is a basis set for the map fi,j,b, since the
fibres of fi,j,b(H \ {yi}) are exactly those fibres of f(H) on which fi = b. If each
component in f(H \{yi}) is constant on all (n−1)-dimensional fibres of fi, then we
get a contradiction with H \ {yi} being a basis for fi,j,b. Continuing by induction,
we conclude that all non-coordinate functions of f(H) are non-constant on X . �

Theorem 3.12. Let f : X → R
k be a monotone map on a non-empty semi-

monotone X ⊂ R
n, and F its graph. Then

(i) The system m of basis sets associated with f is a matroid of rank n.



MONOTONE FUNCTIONS AND MAPS 13

(ii) For each independent set I = {xj1 , . . . , xjα , yi1 , . . . , yiβ} of m, and all se-
quences c1, . . . , cα, b1, . . . , bβ ∈ R, the non-empty intersections

F ∩ {xj1 = c1, . . . , xjα = cα, yi1 = b1, . . . , yiβ = bβ}

are graphs of monotone maps, having the same associated matroid mI of
rank n − α − β (the contraction of m by I). In particular, all such inter-
sections have the same dimension n− α− β.

Proof. By the definition of a matroid, to prove (i), we need to check the basis axiom
([8], p. 8), which states that for any two basis subsetsH,G ⊂ {x1, . . . , xn, y1, . . . , yk},
if h ∈ H \G then there exists g ∈ G \H such that the set {g}∪ (H \ {h}) is a basis
set. We prove this property by induction on n simultaneously with the property
(ii). The base for n = 1 is obvious for both (i) and (ii).

First we prove the inductive step for (i). Fix any two basis subsets H, G, and
an element h ∈ (H \G). Consider the set Z = H \ {h}. We prove that each non-
empty fibre of f(Z) is a graph of a univariate monotone map. This is obvious if all
components of f(Z) are coordinate functions. If some non-coordinate functions exist
then, by Lemma 3.11, they are non-constant. Let fi be one of them. In particular,
fi is not independent of some variable xj . According to (i) in the Definition 3.3,
each non-empty set F ∩ {yi = b} is the graph of a monotone map fi,j,b. Observe
that H \ {yi} is a basis set for the map fi,j,b since the fibres of fi,j,b(H \ {yi}) are
exactly those fibres of f(H) on which fi = b. Note that the matroid mi associated
with fi,j,b is the contraction of the matroid m by yi. Since H is a basis set for
f , all these fibres are single points, hence fi,j,b(H \ {yi}) is injective. Recall that
H \ {yi} = Z \ {h}.

By the inductive hypothesis of (ii), all non-empty fibres of fi,j,b(H \ {yi}) are
one-dimensional graphs of monotone functions. Since these fibres coincide with the
fibres of f(Z) on which fi = b, we conclude that all non-empty fibres of f(Z) are
one-dimensional graphs of monotone maps.

Now let z ∈ {x1, . . . , xn, y1, . . . , yk}, and let ψ be the corresponding function.
Suppose that Z ∪ {z} is not a basis set. Then the restriction of ψ to some fibre
Ψ of the map f(Z) has fibres of dimension greater than zero. But, as we proved
above, all fibres of f(Z) are one-dimensional graphs of monotone maps, hence ψ is
constant on Ψ. Then item (ii) in the inductive hypothesis implies that ψ is constant
on each fibre of f(Z).

Suppose that the basis axiom is violated, i.e., given h ∈ H , for every g ∈ G \H
the set Z ∪ {g} is not a basis. It follows that the function corresponding to every
g ∈ G \ H is constant on fibres of f(Z) (which are curves). On the other hand,
G ∩ H ⊂ Z, so any function corresponding to g ∈ G ∩ H is constant on fibres of
f(Z). Therefore functions corresponding to all g ∈ G are constant on fibres of f(Z),
hence fibres of f(G) are curves, thus G is not a basis set, which is a contradiction.

Now we prove the inductive step of (ii). It is sufficient to prove the statement
for |I| = 1 since the case of the general I will follow by induction on |I|.

If I = {fi} for some i = 1, . . . , k, then according to Lemma 3.11, fi is not a
constant, and the statement follows immediately from Definition 3.3.

Now suppose that I = {xℓ}.
By Definition 3.3 it is sufficient to prove that
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(a) for all i = 1, . . . k, j = 1, . . . , n and b ∈ R, such that fi is non-constant in xj ,
the intersection F∩{xℓ = c}∩ {yi = b} is the graph of a monotone map gb

on a semi-monotone set in span{x1, . . . , xℓ−1, xℓ+1, . . . , xj−1, xj+1, . . . , xn};
(b) The matroid associated with gb is the same for every b ∈ R.

By Definition 3.3, the set F ∩ {yi = b} is the graph of a monotone map fi,j,b.
Applying the inductive hypothesis to this monotone map we conclude that the set
F∩{yi = b}∩{xℓ = c} is the graph of a monotone map gb on an (n−2)-dimensional
semi-monotone set. Hence, (a) is established.

By Definition 3.3, the maps fi,j,b have the same system of basis sets for all b ∈ R.
By the inductive hypothesis, this system is the matroid mi. The common matroid
for the maps gb is obtained from mi as follows. Select all basis sets in mi which
contain the element xℓ, and remove this element from each of the selected sets. The
resulting system of sets forms the matroid for gb. Note that this matroid is the
contraction of mi by xℓ. Since mi is independent of b, so does this matroid, which
proves (b). �

For any I ⊂ {x1, . . . , xn, y1, . . . , yk}, and F ⊂ R
n+k, let T := span(I), and

ρT : F → T be the projection map.

Theorem 3.13. Let f : X → R
k be a monotone map on a non-empty semi-

monotone X ⊂ R
n having the graph F ⊂ R

n+k. Let m be the matroid associated
with f , H a basis set of m, and T := span(H). Then ρT (F) is semi-monotone, and
F is the graph of a monotone map on ρT (F).

Proof. Suppose that H = {x1, . . . , xj−1, yi, xj+1, . . . , xn} for some i and j.
Lemma 2.7 implies that ρT (F) is a semi-monotone set. Observe that F is the

graph of a continuous map (f1, . . . , fi−1, xj , fi+1, . . . , fk) on ρT (F). This map
is monotone by the definition, since according to Theorem 3.12, for each h ∈
{y1, . . . , yi−1, xj , yi+1, . . . , yk} and for each b ∈ R, the intersection F ∩ {h = b},
if non-empty, is the graph of a monotone map with the matroid independent of b.

For an arbitrary basis H , by the matroid’s basis axiom, there exists a sequence

H0 := {x1, . . . , xn}, H1, . . . , Ht−1, Ht = H

such that the basis Hℓ+1 is obtained from the basis Hℓ by replacing a variable of
the kind xj by a variable of the kind yi. Applying the argument, described above
to each such replacement, we conclude the proof. �

Definition 3.14. Let a bounded continuous map f = (f1, . . . , fk) defined on an
open bounded non-empty set X ⊂ R

n have the graph F ⊂ R
n+k. We say that f

is quasi-affine if for any T := span{xj1 , . . . , xjα , yi1 , . . . , yiβ}, where α+ β = n, the
projection ρT is injective if and only if the image ρT (F) is n-dimensional.

Remark 3.15. Observe that in Definition 3.14 the property of ρT to be injective is
equivalent to {xj1 , . . . , xjα , yi1 , . . . , yiβ} being a basis set associated with f .

In the case of a function, the property to be quasi-affine is equivalent to the
condition on the function to be either strictly increasing in, strictly decreasing in,
or independent of any variable.

Theorem 3.16. Every monotone map f : X → R
k is quasi-affine.

Proof. Let f : X → R
k be a monotone map having the graph F ⊂ R

n+k, and
T := span{xj1 , . . . , xjα , yi1 , . . . , yiβ}, where α+ β = n.
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If the projection ρT is injective, then obviously ρT (F) is n-dimensional.
Conversely, observe that, by Lemma 3.5, the map g := (fi1 , . . . , fiβ ) is monotone.

Suppose that, contrary to the claim, ρT is not injective. Lemma 3.9 implies that if
the fiber of a monotone map over a value is 0-dimensional then it is a single point.
Hence, there are two points

(aj1 , . . . , ajα , ai1 , . . . , aiβ ) and (bj1 , . . . , bjα , bi1 , . . . , biβ )

in span{xj1 , . . . , xjα , yi1 , . . . , yiβ} such that the fiber of g′ := g|xj1=aj1 ,...,xjα=ajα

over (ai1 , . . . , aiβ ) is a single point, while the fiber of g′′ := g|xj1=bj1 ,...,xjα=bjα
over

(bi1 , . . . , biβ ) has the positive dimension. By the part (ii) of Theorem 3.12, applied
to the independent set {xj1 , . . . , xjα} as I, the matroids, associated with g′ and g′′

coincide. In particular, there exists a point (b
(0)
i1
, . . . , b

(0)
iβ

) such that the fiber of g′

over this point has the positive dimension. Let G0 be the graph of g′.
We proceed by induction on ν = 0, 1, . . . , β. According to Lemma 3.9, for every

ν ≤ β the intersection Gν := G0 ∩ {yi1 = ai1 . . . , yiν = aiν} is the graph of a
monotone map g(ν) (since the fiber of g′ over ai1 , . . . , aiβ is 0-dimensional, the set

Gν is non-empty). Also, since the fiber of g′ is 0-dimensional, the map g(ν) is of the

form g
(ν−1)
iν ,j,aiν

for an appropriate j. Because g(ν−1) is monotone, the map g
(ν−1)

iν ,j,b
(ν−1)
iν

has the same matroid as g
(ν−1)
iν ,j,aiν

. In particular, there exists a point (b
(ν)
iν+1

, . . . , b
(ν)
iβ

)

such that the fiber of g
(ν−1)
iν ,j,aiν

over this point has the positive dimension.

On the last step, for ν = β − 1 and an appropriate j, the two maps, g(β−1) =

g
(β−2)
iβ−1,j,aiβ−1

and g
(β−2)

iβ−1,j,b
(β−2)
iβ−1

, defined on an interval, have the same matroids. On

the other hand, the component of g
(β−2)
iβ−1,j,aiβ−1

, corresponding to yiβ , is a non-

constant monotone function on that interval, while the component of g
(β−2)

iβ−1,j,b
(β−2)
iβ−1

,

corresponding to yiβ , is a constant function. We get a contradiction. �

Corollary 3.17. Let a monotone map f : X → R
k have the graph F ⊂ R

n+k and
the associated matroid m. A subset H ⊂ {x1, . . . , xn, y1, . . . , yk} is an independent
set of m if and only if dim(ρL(F)) = |H |, where L := spanH.

Proof. Let |H | = m. If H is an independent set of m then, by the matroid theory’s
Augmentation Theorem ([8], Ch. 1, Section 5), there is a basis set I of m such
that H ⊂ I. By Theorem 3.16, dim(ρT (F)) = n, where T := span I, and therefore
dim(ρL(F)) = m, since ρL(F) is the image of the projection of ρT (F) to L.

Conversely, suppose that dim(ρL(F)) = m. Clearly, m ≤ n. Observe that for
any definable pure-dimensional set U in R

n+k, with dimU = n, if ρL(U) = m then
there is a subset I ⊂ {x1, . . . , xn, y1, . . . , yk} such that H ⊂ I and dim(ρT (U)) = n,
where T = spanI. Since F, being the graph of continuous map on an open set in R

n,
satisfies all the properties of U , there exists a subset I such that dim(ρT (F)) = n.
Then H is an independent set of m, being a subset of its basis. �

4. Equivalent definitions of a monotone map, and their corollaries

Lemma 4.1. Let f : X → R
k be a monotone map on a semi-monotone set X ⊂ R

n,
and C a coordinate cone in R

n. Then the restriction f |C : X ∩ C → R
k is a

monotone map.
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Proof. It is sufficient to consider just the cases of C = {xℓ = c} and C = {xℓ > c}.
The first case follows directly from Theorem 3.12, (ii). The proof for the case
C = {xℓ > c} can be conducted by induction on n, completely analogous to the
last part of the proof of Theorem 3.12. �

Corollary 4.2. Let F ⊂ R
n+k be the graph of a monotone map f : X → R

k, and
let

P :=
⋂

1≤j≤n+k

{(z1, . . . , zn+k)| aj < zj < bj} ⊂ R
n+k

for some aj , bj ∈ R, j = 1, . . . , n+ k. Then F ∩ P is either empty or the graph of
a monotone function.

Proof. Let P ′ be the image of the projection of P to X . By Lemma 4.1, the
restriction fP ′ : P ′ → R

k is a monotone map. Theorem 3.13 allows to apply the
same argument to projections of P to other subspaces of Rn+k. �

The following theorem is a generalization of Lemma 2.8 from monotone functions
to monotone maps.

Theorem 4.3. Let a bounded continuous quasi-affine map f = (f1, . . . , fk) defined
on an open bounded non-empty set X ⊂ R

n have the graph F ⊂ R
n+k. The

following three statements are equivalent.

(i) The map f is monotone.
(ii) For each affine coordinate subspace S in R

n+k the intersection F ∩ S is
connected.

(iii) For each coordinate cone C in R
n+k the intersection F ∩ C is connected.

Proof. We first prove that (i) implies (ii). Suppose that f is monotone. Consider an
affine coordinate subspace S = {xj1 = c1, . . . , xjα = cα, yi1 = b1, . . . , yiβ = bβ} in

R
n+k. Lemma 4.1 implies that the intersection F ∩ {xj1 = c1, . . . , xjα = cα} is the

graph of a monotone map g, and hence connected. Applying Lemma 3.9 to g, we
conclude that F∩S is also the graph of a monotone map, and therefore connected.

The part (ii) implies the part (iii) by Lemma 1.5 and a straightforward induction
on the number of strict inequalities defining the coordinate cone.

Now we prove that (iii) implies (i). Suppose the condition (iii) is satisfied. Let
C′ be a coordinate cone in span{x1, . . . , xn}. Then the intersection F∩ (C′×R

k) is
connected, hence the image of its projection, C′ ∩X , is connected. It follows that
X is semi-monotone.

We prove that f is a monotone map by induction on n, the base for n = 1
being trivial. Choose any i and j such that fi is non-constant in xj , and consider
the map fi,j,b for some b ∈ R. This map and its graph F ∩ {yi = b} inherit
from f and F properties (i) and (ii) in the conditions of the theorem. Thus, by
the inductive hypothesis, fi,j,b is a monotone map. It remains to prove that the
system of basis sets associated with fi,j,b does not depend on b ∈ R. Let T =
span{x1, . . . , xj−1, xj+1, . . . , xn}. Any basis set of fi,j,b is a subset

{xj1 , . . . , xjα , yi1 , . . . , yiβ} ⊂ {x1, . . . , xn, y1, . . . , yi−1, yi+1, . . . , yk},

where α+ β = n− 1, such that the map

(xj1 , . . . , xjα , fi1 , . . . , fiβ ) : ρT (F ∩ {yi = b}) → R
n−1

is injective. Since f is quasi-affine, the injectivity does not depend on the choice of
b. �
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The following corollary is a generalization of Definition 2.2 from monotone func-
tions to monotone maps.

Corollary 4.4. Let a bounded continuous map f = (f1, . . . , fk) on a non-empty
semi-monotone set X ⊂ R

n have the graph F ⊂ R
n+k. The map f is monotone if

and only if

(i) it is quasi-affine;
(ii) for every subset {i1, . . . , im} ⊂ {1, . . . , k} the intersection

Si1,...,im :=
⋂

1≤ℓ≤m

{fiℓσℓ0} ⊂ X,

where σℓ ∈ {<,>}, is semi-monotone.

Proof. Suppose that the map f is monotone. Then, by Theorem 4.3, the condition
(i) is satisfied. Let C be a coordinate cone in span{x1, . . . , xn}. The intersection
Si1,...,im ∩C is the projection on span{x1, . . . , xn} of the intersection of F with the
coordinate cone

K := (C × R
k) ∩

⋂

1≤ℓ≤m

{yiℓσℓ0}

in span{x1, . . . , xn, y1, . . . , yk}. By item (ii) in Theorem 4.3, this intersection is
connected, hence the projection is also connected. It follows that Si1,...,im is semi-
monotone.

Conversely, suppose that the conditions (i) and (ii) of the theorem are satisfied,
and letK be a coordinate cone in span{x1, . . . , xn, y1, . . . , yk}. The projection of F∩
K on span{x1, . . . , xn} is of the kind Si1,...,im ∩C for some {i1, . . . , im} ⊂ {1, . . . , k}
and a coordinate cone C in span{x1, . . . , xn}. Since Si1,...,im is semi-monotone, its
intersection with C is connected. Because F is the graph of a continuous map,
the intersection F ∩ K is also connected, hence, by Theorem 4.3, the map f is
monotone. �

The following theorem is another corollary to Theorem 4.3

Theorem 4.5. Let f : X → R
k be a monotone map defined on a semi-monotone

set X ⊂ R
n, with the associated matroid m, and graph F ⊂ R

n+k. Then for
any subset I ⊂ {x1, . . . , xn, y1, . . . , yk}, with T := span I, the image ρT (F) under
the projection map ρT : F → T is either a semi-monotone set or the graph of a
monotone map, whose matroid is a minor of m.

Proof. By Theorem 4.3, it is sufficient to prove that G := ρT (F) is either a semi-
monotone set or the graph of a quasi-affine map, and that for each affine coordinate
subspace S in span I the intersection ρT (F) ∩ S is connected.

Let dimG = m and assume first that m < dimT .
Let H be a subset of I such that |H | = m and dim(λL(G)) = m, where L :=

spanH , and λL : G → L is the projection map (obviously, there is such a subspace).
By Corollary 3.17, there exists a subset J ⊂ {x1, . . . , xn, y1, . . . , yk} such that
J ∩ I = H , |J | = n, and dim(ρN (F)) = n, where N := span J .

Since f is quasi-affine, the projection map ρN : F → N is injective. We now
prove that the projection map λL is also injective. Because ρN is injective, the set
J is a basis of m, and therefore its subset H is an independent set of m. According
to Theorem 3.12, all non-empty fibers of ρL : F → L are graphs of monotone
maps, having the same matroids of rank n−m. Since dimG = m, the image of the
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projection to T of a generic fiber of ρL (hence every fiber of ρL, since all matroids
are the same) to T is 0-dimensional, thus it is a single point. We conclude that λL
is injective, hence G is the graph of a map, defined on λL(G), and that this map
is quasi-affine. Denote this map by g.

Let S be an affine coordinate subspace in T . Since f is monotone, the intersection
F∩(S×(span(J\H))) is connected. It follows that G∩S = ρL(F∩(S×(span(J\H)))
is connected, hence, by Theorem 4.3, g is a monotone map.

Let mI be the matroid associated with g. Observe that if the projection map ρT
is injective, then the family of all independent sets of mI consists of subsets H ⊂ I
which are independent sets of m. It follows that mI is a restriction of the matroid
m to I ([8], Ch. 4, Section 2). In fact, mI includes some basis sets of m. In the
case of a general projection map, the family of all independent sets of m consists of
subsets H ⊂ I which can be appended by maximal independent subsets of J \H so
that to become independent sets of m. Thus, mI is a contraction of m ([8], Ch. 4
Section 3). In fact, for each basis set of mI there is a subset of J \ H such that
their union is a basis of m. It follows that mI is a minor of m.

Now let dimG = m = dimT . By Corollary 3.17, I is an independent set of
the matroid m, hence, by the matroid theory’s Augmentation Theorem ([8], Ch. 1,
Section 5), there is a basis J of m, containing I. The image of the projection of F
to span J is a semi-monotone set, according to Theorems 3.16 and 3.13. Then, by
Proposition 1.3, G is also a semi-monotone set. �

Theorem 4.6. Let F be the graph of a monotone map f : X → R
k on a semi-

monotone set X ⊂ R
n. Let G ⊂ F be the graph of a monotone map g such that

dimG = n − 1, and ∂G ⊂ ∂F. Then F \ G is a disjoint union of two graphs of
some monotone maps.

Proof. Let T := span{x1, . . . , xn}. According to Theorem 4.5, ρT (G) is a graph
of a monotone function, hence, by Lemma 2.15, X \ ρT (G) has two connected
components, each of which is a semi-monotone set. Their pre-images in F are the
two connected components of F \ G, we denote them by F+ and F−, which are
graphs of some continuous maps, f+ and f−. We prove that f+ and f− are monotone
maps by checking that they satisfy Definition 3.3.

Suppose that there exist i ∈ {1, . . . , k} and j ∈ {1, . . . , n} such that the compo-
nent fi of f is not independent of a coordinate xj , otherwise f is identically constant
on X , and the theorem becomes trivially true. Fix one such pair i, j.

The intersection F ∩ {yi = b} is either empty or the graph of a monotone map,
due to Definition 3.3. If G ⊂ F ∩ {yi = b}, then G = F ∩ {yi = b}, and hence
(F+∪F−)∩{yi = b} = ∅. We now prove, by induction on n, that if F∩{yi = b} 6= ∅
and G 6⊂ F ∩ {yi = b}, then each of intersections F+ ∩ {yi = b} and F− ∩ {yi = b}
is either empty or the graph of a monotone map. The base of the induction, for
n = 1, is trivial.

If G∩{yi = b} = ∅, then either F+∩{yi = b} = F∩{yi = b} or F−∩{yi = b} =
F ∩ {yi = b}. In any case, one of the two intersections is the graph of a monotone
map and the other one is empty. Assume now that G ∩ {yi = b} 6= ∅. Then both
intersections, F+ ∩ {yi = b} and F− ∩ {yi = b} are non-empty. Indeed, if one of
them is empty, then the component gi of g attains the global extremum b at some
point in its domain, which contradicts the monotonicity of gi.

By the inductive hypothesis, (F∩{yi = b})\ (G∩{yi = b}) is a disjoint union of
two graphs of some monotone maps. One of its connected components lies in F+
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while another in F−. Hence, both intersections F+ ∩ {yi = b} and F− ∩ {yi = b}
are graphs of monotone maps, for example, of the maps f+ i,j,b and f− i,j,b. Thus,
the part (i) of Definition 3.3 is proved for f+ and f−.

Observe that the matroid associated with the monotone map fi,j,b does not
depend on b (by the part (ii) of Definition 3.3), and, since fi,j,b is quasi-affine (by
Theorem 3.16), coincides with systems of basis sets of each of the maps f+ i,j,b and
f− i,j,b. It follows that the systems of basis sets f+ i,j,b and f− i,j,b do not depend
on b, which proves the part (ii) of Definition 3.3 for f+ and f−.

We conclude that the maps f+ and f− are monotone. �

The following theorem is a version for monotone maps of Theorem 2.17.

Theorem 4.7. Let a bounded continuous quasi-affine map f = (f1, . . . , fk) on a
non-empty semi-monotone set X ⊂ R

n have the graph F ⊂ R
n+k. Let

{xj1 , . . . , xjα , yi1 , . . . , yiβ} ⊂ {x1, . . . , xn, y1, . . . , yk},

where α+ β = k, and

T := span({x1, . . . , xn, y1, . . . , yk} \ {xj1 , . . . , xjα , yi1 , . . . , yiβ}).

Assume that ρT (F) is n-dimensional. The map f is monotone if and only if

(i) The image ρT (F) is a semi-monotone set.
(ii) For every j ∈ {j1, . . . , jα} and every i ∈ {i1, . . . , iβ}, such that the function

fi is not independent of a variable form {x1, . . . , xn} \ {xj1 , . . . , xjα}, all
non-empty intersections F ∩ {xj = a} and F ∩ {yi = a}, where a ∈ R, are
either empty or graphs of monotone maps.

Proof. Suppose that f is a monotone map. Then (i) and (ii) are satisfied by Theo-
rem 3.13, because f is quasi-affine.

Conversely, assume that a bounded continuous quasi-affine map f satisfies the
properties (i) and (ii). Because f is quasi-affine and (i) is satisfied, F is the graph of
a map g : ρT (F) → span{xj1 , . . . , xjα , yi1 , . . . , yiβ}. Again, since f is quasi-affine,
all monotone (according to (ii)) maps, with graphs F∩ {xj = a} and F∩ {yi = a},
have associated matroids that don’t depend on a. It follows from Definition 3.3
that g is monotone. Since f and g have the same graph, Theorem 4.3 implies that
that f is also monotone. �

5. Graphs of monotone maps are regular cells

It is known (see Proposition 6.1) that any compact definable set X ⊂ R
n is

definably homeomorphic to a finite simplicial complex X̃, which is a polyhedron [5].
In this section we will use Lemma 6.2 and some known results from PL topology
(formulated, for the reader’s convenience, in Section 6) to introduce or to prove
some definable homeomorphisms of definable sets. Thus, the relation X ∼ Y (“X

is definably homeomorphic to Y ”) we will understand as X̃ ∼PL Ỹ (“X̃ is PL

homeomorphic to Ỹ ”).
Throughout this section the term “regular cell” means “topologically regular

cell”. In line with the convention above, we will actually use a slightly stronger
version of this notion than the one in Definition 6.3. Namely, we say that a definable

set V is a closed n-ball if Ṽ ∼PL [−1, 1]n, and is an (n − 1)-sphere if Ṽ ∼PL

([−1, 1]n \ (−1, 1)n). A definable bounded open set U ⊂ R
n is called (topologically)
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regular cell if U is a closed ball, and the frontier U \ U is an (n − 1)-sphere. By
Proposition 6.5, such U is also a regular cell in the sense of Definition 6.3.

Theorem 5.1. The graph F ⊂ R
n+k of a monotone map f : X → R

k on a semi-
monotone set X ⊂ span{x1, . . . , xn} is a regular n-cell.

We are going to prove Theorem 5.1 by induction on the dimension n of a regular
cell. For n = 1 the statement is obvious. Assume it to be true for n − 1, we will
refer to this statement as to the global inductive hypothesis.

Lemma 5.2. Let F ⊂ R
n+k be a graph of a monotone map. Let

F0 := F ∩Xj,=,c, F+ := F ∩Xj,>,c, and F− := F ∩Xj,<,c

for some 1 ≤ j ≤ n+ k and c ∈ R. Then F+ ∩ F− = F0.

Proof. Let a point x = (x1, . . . , xn) ∈ Xj,=,c \ F0 belong to F+ ∩ F−. Then there
is an ε > 0 such that an open cube centered at x,

Pε :=
⋂

1≤j≤n+k

{(y1, . . . , yn+k)| |xj − yj| < ε} ⊂ R
n+k,

has non-empty intersections with both F+ and F− and the empty intersection
with F0. Thus, Pε ∩ F is not connected, which is not possible since, according to
Corollary 4.2, Pε ∩ F is the graph of a monotone map. �

Corollary 5.3. Let F ⊂ R
n+k be a graph of a monotone map. If F+ and F− in

Lemma 5.2 are regular cells, then F is a regular cell.

Proof. We need to prove that F is a closed n-ball, and that the frontier F \F is an
(n− 1)-sphere. The only non-trivial case is when F0 is non-empty.

Since F0 is the graph of a monotone function due to Theorem 3.12 (ii), F0 is a
regular (n− 1)-cell by the inductive hypothesis. Thus, F0, F+, and F− are closed
balls, while F0 \ F is an (n − 2)-sphere. Hence F is obtained by gluing together
two closed n-balls, F+ and F− along closed (n − 1)-ball F0 (see Definition 6.4).
Proposition 6.7 implies that F is a closed n-ball.

According to Proposition 6.6, the sets F+ \F = ∂F+ \F0 and F− \F = ∂F− \F0

are closed (n− 1)-balls. The frontier F \ F of F is obtained by gluing F+ \ F and
F− \ F along the set (F+ ∩ F−) \ F which, by Lemma 5.2, is equal to F0 \ F and
thus, is an (n− 2)-sphere, the common boundary of F+ \F and F− \F. It follows
from Proposition 6.5 that F \ F is an (n− 1)-sphere. �

Lemma 5.4. If F and F− in Lemma 5.2 are regular cells, then F+ is also a regular
cell.

Proof. Proposition 6.8 implies that F+ is a closed n-ball. By the global inductive
hypothesis of the Theorem 5.1, F0 is a regular cell. By Proposition 6.6, F+ \ F =
∂F+ \ F0 is a closed (n− 1)-ball. Then the frontier F+ \ F+ of F+ is obtained by
gluing two closed (n − 1)-balls, F+ \ F and F0 along the (n − 2)-sphere F0 \ F.
Therefore, by Proposition 6.5, the frontier of F+ is an (n− 1)-sphere. �

The following lemma is used on the inductive step of the proof of Theorem 5.1
and assumes the global inductive hypothesis (that a graph of a monotone map in
less than n variables is a regular cell).
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Lemma 5.5. Let F be a graph in R
n+k
+ of a monotone map f on a semi-monotone

set X ⊂ span{x1, . . . , xn}, such that the origin is in F. Let c(t) = (c1(t), . . . , cn+k(t))
be a definable curve inside the smooth locus of F converging to the origin as t→ 0.
Then, for all small positive t, the set

Ft := F ∩ {x1 < c1(t), . . . , xn+k < cn+k(t)}

is a cone with the vertex at the origin and a regular cell as the base, i.e., Ft is a
regular n-cell.

Proof. For a non-empty subset J := {j1, . . . , ji} ⊂ {1, . . . , n+ k}, let

CJ,t := F ∩ {xj1 = cj1(t), . . . , xji = cji(t), xℓ < cℓ(t) for all ℓ 6= j1, . . . , ji}.

Due to the theorem on triangulation of definable functions ([3], Th. 4.5), for all
small positive t, Ft is definably homeomorphic to a closed cone with the vertex
at the origin and the base definably homeomorphic to Ct, where Ct is the union
of non-empty CJ,t for all non-empty J . To complete the proof of the lemma, it is
enough to show that Ct is a regular cell.

According to Theorem 3.12 (ii), for every non-empty J the (n− i)-dimensional
set CJ,t is either empty or a graph of a monotone map. Hence, by the global

inductive hypothesis, CJ,t is a regular (n − i)-cell. Its closure, CJ,t, is a closed
cell (i.e., is definably homeomorphic to the closed cube [0, 1]n−i). Note that if
J ⊂ K ⊂ {1, . . . , n+ k} then the closed cell CK,t is a face of CJ,t.

We prove by induction on n the following claim. If F is a graph in R
n+k
+ of a

monotone map on a semi-monotone set X ⊂ R
n
+, and c(t) is a smooth point in F

(i.e., we don’t assume that that the origin is necessarily in F), then Ct is a regular
cell. The base for n = 1 is obvious. The case of an arbitrary n we prove according
to the following plan.

(a) Prove that for all J the difference CJ,t \ ĈJ,t, where ĈJ,t :=
⋃

K⊃J CK,t, is

a closed cell. Then Ct is an (n− 1)-dimensional cell complex (we will use
the same notation for a complex and its underlying polyhedron), consisting

of the closed cells CJ,t and the closed cells CJ,t \ ĈJ,t for all J .

(b) Construct a linear cell complex, Dt, similar to Ct, replacing F by the
tangent space to F at c(t), and prove that Dt is a regular cell.

(c) Prove that Ct and Dt are abstractly isomorphic, which implies that the
pairs (Ct, Ct) and (Dt, Dt) are homeomorphic.

To prove (a) observe that, since CJ,t is a regular (n−i)-cell, its boundary ∂CJ,t is

the PL (n−i−1)-sphere, while by the inductive hypothesis the difference ĈJ,t\CJ,t

is a regular (n− i− 1)-cell. Since

(CJ,t \ ĈJ,t) ∪ (ĈJ,t \ CJ,t) = ∂CJ,t,

the difference CJ,t \ ĈJ,t is a closed cell by Newman’s theorem (Corollary 3.13 in

[5]). Note that if J ⊂ K ⊂ {1, . . . , n+ k} then the closed cell CK,t \ ĈK,t is a face

of CJ,t \ ĈJ,t. It is clear that for any J the closed cell CJ,t is a cell complex of the
required type.

Now we construct the cell complex to satisfy (b). Recall that c(t) is a smooth
point of F. Let L(t) be the tangent space to F at c(t). For every non-empty subset

J := {j1, . . . , ji} ⊂ {1, . . . , n+ k},
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introduce the (n− i)-dimensional convex polyhedron

DJ,t := L(t) ∩ {xj1 = cj1(t), . . . , xji = cji(t), xℓ < cℓ(t) for all ℓ 6= j1, . . . , ji},

and let Dt be the union of sets DJ,t for all non-empty J . The same argument as in

the case of CJ,t, shows that the difference DJ,t \ D̂J,t, where D̂J,t :=
⋃

K⊃J DK,t, is

a closed cell. Then DJ,t is a cell complex with closed cells of the kind DK,t, for all

K ⊃ J , and the unique closed cell DJ,t \ D̂J,t. It follows that Dt is a cell complex

with closed cells of the kind DJ,t and DJ,t \ D̂J,t for all non-empty J .

Observe that Dt is a cone with the vertex c(t) and the base B obtained by
intersecting Dt with a hyperplane in R

n+k which separates c(t) from all other
vertices of Dt. The base B is the boundary of a convex polyhedron, and therefore
a PL sphere. It follows, using Lemma 1.10 in [5], that Dt is a regular cell.

To prove (c) we claim that for each J = {j1, . . . , ji}, if the cell CJ,t is non-
empty then the cell DJ,t is non-empty, the converse implication being obvious.
Assume the opposite, i.e., that CJ,t 6= ∅ while DJ,t = ∅. Then there exists ℓ ∈
{n+ 1, . . . , n+ k} \ J such that the tangent space to CJ,t at c(t) lies in {xℓ = cℓ}.
Since the map f is monotone, the component function fℓ of f is independent of each
variable xr , where r ∈ {j1, . . . , ji}∩{1, . . . n}. It follows that the graph Fℓ of fℓ lies
in {xℓ = cℓ}, therefore so does CJ,t. This is a contradiction since, by the definition,
CJ,t ⊂ {xℓ < cℓ}.

Thus, we have a bijective correspondence between the regular cells in Ct and

Dt. Relating, in addition, for each J , the cell CJ,t \ ĈJ,t to the cell DJ,t \ D̂J,t

we obtain a bijective correspondence between the closed cells in the cell complexes
Ct and Dt. Note that the adjacency relations in both complexes are determined
by the same simplicial subcomplex of the simplex with vertices {1, . . . , n+ k}, i.e.,
the complexes have the common nerve. It follows that the complexes Ct and Dt

are abstractly isomorphic (see [5]), and their boundaries are abstractly isomorphic.
Lemma 2.18 in [5] implies that the sets Ct and Dt are homeomorphic, and the
boundaries ∂Ct and ∂Dt are homeomorphic. Then, by Lemma 1.10 in [5], the pairs
(Ct, Ct) and (Dt, Dt) are PL homeomorphic. Therefore Ct is a regular cell, since
Dt is a regular cell. �

We now generalize Lemma 5.5, by removing the assumption that the curve c(t)
lies necessarily inside F.

Lemma 5.6. Let F be a graph in R
n+k
+ of a monotone map f on a semi-monotone

set X ⊂ span{x1, . . . , xn}, such that the origin is in F. Let c(t) = (c1(t), . . . , cn+k(t))

be a definable curve inside R
n+k
+ (not necessarily inside F) converging to the origin

as t→ 0. Then, for all small positive t,

Ft := F ∩ {x1 < c1(t), . . . , xn < cn+k(t)}

is a cone with the vertex at the origin and a regular cell Ct as the base, i.e., Ft is
a regular n-cell.

Proof. We use the notations from the proof of Lemma 5.5. As in the proof of
Lemma 5.5, it is sufficient to show that Ct is a regular cell.

Observe that for a small enough t, the set Ct is a link at the origin in F.
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Choose another definable curve, s(t), converging the origin as t → 0, so that s(t)
lies inside the smooth locus of F. For a non-empty J = {j1, . . . , ji}, let

SJ,t := F ∩ {xj1 = sj1(t), . . . , xji = sji(t), xℓ < sℓ(t) for all ℓ 6= j1, . . . , ji},

and St be the union of non-empty sets SJ,t for all non-empty J . According to

Lemma 5.5, St is a regular cell. For a small enough t, the closed cell St is also
a link at the origin in F. By the theorem on the PL invariance of a link ([5],
Lemma 2.19), the two links Ct and St are PL homeomorphic.

The same argument shows that the two links, ∂Ct and ∂St, at the origin in ∂F
are PL homeomorphic. Then, by Lemma 1.10 in [5], the pairs (Ct, Ct) and (St, St)
are PL homeomorphic. Therefore Ct is a regular cell, since St is a regular cell. �

Lemma 5.7. Let F be a graph in R
n+k
+ of a monotone map f on a semi-monotone

set X ⊂ span{x1, . . . , xn}, such that the origin is in F, and let c = (c1, . . . , cn+k) ∈
R

n+k
+ . Then Fc := F ∩ {x1 < c1, . . . , xn < cn+k} is a regular cell for a generic c

with a sufficiently small ‖c‖.

Proof. Consider a definable set Fy := F ∩ {x1 < y1, . . . , xn+k < yn+k} ⊂ R
2(n+k)
+

with coordinates x1, . . . , xn+k, y1, . . . , yn+k and y = (y1, . . . , yn+k). By Corol-

lary 6.10, there is a partition of R
n+k
+ (having coordinates y1, . . . , yn+k) into de-

finable sets T such that if any T is fixed, then for all y ∈ T the closures Fy are

definably homeomorphic to the same polyhedron, and the frontiers Fy \ Fy are
definably homeomorphic to the same polyhedron.

For every n-dimensional T , such that the origin is in T , there is, by the curve
selection lemma ([3], Th. 3.2) a definable curve c(t) converging to 0 as t → 0.
Hence, by Lemma 5.6, for each c ∈ T the set Fc is a closed n-ball, while Fc \Fc is
an (n− 1)-sphere. Therefore, Fc is a regular cell. �

Lemma 5.8. Using the notation from Lemma 5.7, for a generic c ∈ R
n+k
+ with a

sufficiently small ‖c‖, the intersection

Fc ∩
⋂

1≤ν≤ℓ

{xjνσνaν},

for any ℓ ≤ n+ k, jν ∈ {1, . . . , n+ k}, σν ∈ {<,>}, and for any generic sequence
a1 > · · · > aℓ, is either empty or a regular cell.

Proof. It is sufficient to assume that aν < cjν for all ν. Induction on ℓ. For ℓ = 1,
the set Fc ∩ {xj1 < a1} is itself a set of the kind Fc, and therefore is a regular cell,
by Lemma 5.7. Then the set Fc ∩ {xj1 > a1} is a regular cell due to Lemma 5.4.

By the inductive hypothesis, every non-empty set of the kind

F(ℓ−1)
c := Fc ∩

⋂

1≤ν≤ℓ−1

{xjνσνaν}

is a regular cell. Also by the inductive hypothesis, replacing cjℓ by aℓ if aℓ < cjℓ ,

every set F
(ℓ−1)
c ∩{xjℓ < aℓ} is a regular cell. Since both F

(ℓ−1)
c and F

(ℓ−1)
c ∩{xjℓ <

aℓ} are regular cells, so is F
(ℓ−1)
c ∩ {xjℓ > aℓ}, by Lemma 5.4, which completes the

induction. �
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Lemma 5.9. Let F be a graph in R
n+k of a monotone map, and let a point y =

(y1, . . . , yn+k) belong to F. Then for two generic points a = (a1, . . . , an+k), b =

(b1, . . . , bn+k) ∈ R
n+k
+ , with sufficiently small ‖a‖ and ‖b‖, the intersection

Fa,b := F ∩
⋂

1≤j≤n+k

{−aj < xj − yj < bj}

is a regular cell.

Proof. Induction on m := n+ k with the base m = 1 (n = 0, k = 1) being obvious.
Translate the point y to the origin. Let P be an octant of Rm. By Lemma 5.7,

for a generic point c = (c1, . . . , cm) ∈ P ∩ F, with a sufficiently small ‖c‖, the set

Fc := F ∩ {|x1| < |c1|, . . . , |xm| < |cm|}

is either empty or a regular cell. Choose such a point c in every octant P.
Choose (−ai) (respectively, bi) as the maximum (respectively, minimum) among

the negative (respectively, positive) ci over all octants P. We now prove that,
with so chosen a and b, the set Fa,b is a regular cell. Induction on a parameter
r = 0, . . . ,m− 1. For the base of the induction, with r = 0, if d = (d1, . . . , dm) is a
vertex of ⋂

1≤j≤m

{−aj < xj < bj}

belonging to one of the 2m = 2m−r octants P, then Fd is either empty or a regular
cell, by Lemma 5.8. Partition the family of all sets of the kind Fd into pairs
(Fd′ ,Fd′′) so that d′1 = a1, d′′1 = b1 and d′i = d′′i for all i = 2, . . . ,m. Whenever the
cells Fd′ , Fd′′ are both non-empty, they have the common (n− 1)-face

F ∩ {x1 = 0, |x2| < d′2, . . . , |xm| < d′m}

which, by the inductive hypothesis of the induction on m, is a regular cell. Then,
according to Corollary 5.3, the union of the common face and Fd′ ∪Fd′′ is a regular
cell. Gluing in this way all pairs (Fd′ ,Fd′′), we get a family of 2m−1 either empty
or regular cells. This family is partitioned into pairs of regular cells each of which
has the common regular cell face in the hyperplane {x2 = 0}. On the last step of
the induction, for r = m− 1, we are left with at most two regular cells having, in
the case of the exactly two cells, the common regular cell face in the hyperplane
{xm = 0}. Gluing these sets along the common face, we get, by Corollary 5.3, the
regular cell Fa,b. �

Lemma 5.10. Using the notations from Lemma 5.9, the intersection

(5.1) Va,b := Fa,b ∩
⋂

1≤ν≤ℓ

{xjνσνdν},

for any ℓ ≤ n+k, jν ∈ {1, . . . , n+k}, σν ∈ {<,>}, and for any generic d1 > · · · >
dℓ, is either empty or a regular cell.

Proof. Analogous to the proof of Lemmas 5.8. �

Proof of Theorem 5.1. For each point y ∈ F choose generic points a, b ∈ R
n+k as

in Lemma 5.9, so that the set Fa,b becomes a regular cell. We get an open covering

of the compact set F by the sets of the kind

Aa,b :=
⋂

1≤j≤n+k

{−aj < xj − yj < bj},
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choose any finite subcovering C. For every j = 1, . . . , n + k consider the finite set
Dj of j-coordinates aj , bj for all sets Aa,b in C. Let

⋃

1≤j≤n+k

Dj = {d1, . . . , dL}

with d1 > · · · > dL. Every set Va,b, corresponding to a subset of a cardinality at
most ℓ of {d1, . . . , dL} (see (5.1)), is a regular cell, by Lemma 5.10. The graph F is
the union of those Va,b and their common faces, for which Aa,b ∈ C.

The rest of the proof is similar to the final part of the proof of Lemma 5.9. Use
induction on r = 1, . . . , n + k, within the current induction step of the induction
on m = n + k. The base of the induction is for r = 1. Let D1 = {d1,1, . . . , d1,k1}
with d1,1 > · · · > d1,k1 . Partition the finite family of all regular cells Va,b, for all
Aa,b ∈ C, into (|D1| − 1)-tuples so that the projections of cells in a tuple on the
x1-coordinate are exactly the intervals

(5.2) (d1,k1 , d1,k1−1), (d1,k1−1, d1,k1−2), . . . , (d1,2, d1,1),

and any two cells in a tuple having as projections two consecutive intervals in (5.2)
have the common (n − 1)-dimensional face in a hyperplane {x1 = const}. This
face, by the external inductive hypothesis (of the induction on m), is a regular
cell. According to Corollary 5.3, the union of any two consecutive cells and their
common face is a regular cell. Gluing in this way all consecutive pairs in every
(|D1| − 1)-tuple, we get a smaller family of regular cells. This family, on the next
induction step r = 2, is partitioned into (|D2| − 1)-tuples of cells such that in
each of these tuples two consecutive cells have the common regular cell face in a
hyperplane {x2 = const}. On the last step, r = m, of the induction we are left with
one (|Dn|−1)-tuple of regular cells such that two consecutive cells have the common
regular cell face in a hyperplane {xn = const}. Gluing all pairs of consecutive cells
along their common faces, we get, by Corollary 5.3, the regular cell F. �

Graphs of monotone maps over real closed fields. Fix an arbitrary real
closed field R. In [1] semi-algebraic semi-monotone sets in Rn were considered, and
in particular it was proved that every such set X is a regular cell. The latter means
that there exists a semi-algebraic homeomorphism h : (X,X) → ([−1, 1]n, (−1, 1)n)
(cf. Definition 6.3).

One can expand these results to semi-algebraic functions and maps over R (the
graphs of such functions and maps are semialgebraic sets). In particular, the fol-
lowing statement is true.

Theorem 5.11. The graph F ⊂ Rn+k of a semi-algebraic monotone map f : X →
Rk on a semi-algebraic semi-monotone set X ⊂ Rn is a regular n-cell.

The proof of this theorem is based on applying the Tarski-Seidenberg transfer
principle (Proposition 5.2.3 in [2]) to a first-order formalization of the statement of
Theorem 5.1, and is completely analogous to the proof of Theorem 3.3 in [1].

6. Appendix

Here we formulate some propositions, mostly from PL topology, which are used
in the proofs above.

Proposition 6.1 ([3], Theorem 4.4). Let X ⊂ R
n be a compact definable set and

let Yi, i = 1, . . . , k be definable subsets of X. Then there exists a finite simplicial
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complex K and a definable homeomorphism (triangulation) ϕ : K → X such that
each Yi is a union of images by ϕ of open simplices of K.

Proposition 6.1 implies, in particular, every compact definable set in R
n is a

polyhedron [5].
Let ∼ (respectively, ∼PL) denote the relation of definable (respectively, PL)

homeomorphism.

Lemma 6.2. Let X,Y ⊂ R
n be two definable compact sets, and X̃, Ỹ two polyhedra,

such that X ∼ X̃, Y ∼ Ỹ , and X̃ ∼PL Ỹ . Then X ∼ Y .

Proof. Straightforward, since, by Theorems 2.11, 2.14 in [5], any PL homeomor-
phism of compact polyhedra is definable. �

Definition 6.3. A definable set X is called a (topologically) regular m-cell if the
pair (X,X) is definably homeomorphic to the pair ([−1, 1]m, (−1, 1)m).

Definition 6.4. Let Z be a closed (open) PL (n− 1)-ball, X , Y be closed (respec-
tively, open) PL n-balls, and

Z = X ∩ Y = ∂X ∩ ∂Y.

We say that X ∪ Y ∪ Z is obtained by gluing X and Y along Z.

Proposition 6.5 ([5], Lemma 1.10). Let X and Y be closed PL n-balls and h :
∂X → ∂Y a PL homeomorphism. Then h extends to a PL homeomorphism h1 :
X → Y .

Proposition 6.6 ([5], Corollary 3.13n). Let X be a closed PL n-ball, Y be a closed

(n+ 1)-ball, ∂Y be its boundary (the PL n-sphere), and let X ⊂ ∂Y . Then ∂Y \X
is a PL n-ball.

Proposition 6.7 ([5], Corollary 3.16). Let X, Y , Z be closed PL balls, as in
Definition 6.4, and X ∪ Y be obtained by gluing X and Y along Z. Then X ∪ Y is
a closed PL n-ball.

Proposition 6.8 ([6], Lemma I.3.8). Let X,Y ⊂ R
n be compact polyhedra such

that X and X ∪ Y are closed PL n-balls. Let X ∩ Y be a closed PL (n − 1)-ball
contained in ∂X, and let the interior of X∩Y be contained in the interior of X∪Y .
Then Y is a closed PL n-ball.

Proposition 6.9 ([7], Ch. 8, (2.14)). Let X ⊂ R
m+n be a definable set, and let

π : R
m+n → R

m be the projection map. Then there exist an integer N > 0 and
a definable (not necessarily continuous) map f : X → ∆, where ∆ is an (N − 1)-
simplex, such that for every x ∈ R

m the restriction fx : (X ∩ π−1(x)) → ∆ of f to
X ∩ π−1(x) is a definable homeomorphism onto a union of faces of ∆.

Corollary 6.10. Using the notations from Proposition 6.9, let all fibres X∩π−1(x)
be definable compact sets. Then there is a partition of π(X) into a finite number
of definable sets T ⊂ R

m such that all fibres X ∩ π−1(x) with x ∈ T are definably
homeomorphic, moreover each of these fibres is definably homeomorphic to the same
simplicial complex.

Proof. There is a finite number of different unions of faces in ∆. Since f is definable,
the pre-image of any such union under the map f ◦ π−1 is a definable set. �
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