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Classical VC-density



Definition of VC-density

Let Y be a set and X ⊂ 2Y a set of subsets of Y . For Y ′ ⊂ Y , we set

S(Y ′;X ) = {Y ′ ∩ X | X ∈ X}.

We use Y ′ ⊂n Y to denote Y ′ ⊂ Y and card(Y ′) = n.

We denote

νX (n) := max
Y ′⊂nY

card(S(Y ′;X )).

(Sauer-Shelah lemma) Either for all n > 0, νX (n) = 2n, or there exists

c , d > 0 such that νX (n) < c ·nd , for all n > 0 (here c , d are independent

of n).

The Vapnik-Chervonenkis density of X , denoted by vcdX , is defined by

vcdX = lim sup
n

log(νX (n))

log(n)
.
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NIP structures and bound on the VC-density

In model theory one only considers definable families X of subsets of some

definable set Y .

Suppose that X ,Y are definable subsets in some model M of some theory

T, and H ⊂ X × Y a definable subset.

We denote

X := {Hx | x ∈ X}, Y := {Hy | y ∈ Y }

where

Hx = πY (π
−1
X (x) ∩ H),Hy = πX (π

−1
Y (y) ∩ H),

and πX : X × Y → X , πY : X × Y → Y are the projection maps.

We call vcdX the VC-codensity of Y.
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Upper bounds on the VC-codensity

For a large class of NIP theories (ACF, ACVF, RCF, and o-minimal theories)

with a good notion of dimension:

vcdX ≤ dimX . (1.1)

4



Upper bounds on the VC-codensity
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with a good notion of dimension:

vcdX ≤ dimX . (1.1)

S. Basu, Combinatorial complexity in o-minimal geometry, Proceedings

of the London Mathematical Society, 2010.
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the independence property, I, Trans. Amer. Math. Soc., 2016.

S. Basu, D. Patel, VC density of definable families over valued fields, J.

Eur. Math. Soc. (JEMS), 2021.

A. Anderson, Combinatorial Bounds in Distal Structures, The Journal of
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0/1-patterns

In order to bound vcd(X ), it is often useful to consider the dual family Y
of subsets of X , and bound the number of realizable 0/1-patterns for any

n members of this family.

Given any set S , and F ⊂n 2S , a 0/1-pattern on F is an element of

{0, 1}F . We say that a 0/1-pattern σ ∈ {0, 1}F is realizable if and only

if ∃s ∈ S , χF (s) = σ(F ) for all F ∈ F , where we denote by χF the

characteristic function of F . We will denote by R(σ) ⊂ S the realization

of σ i.e. R(σ) = {s ∈ X | χF (s) = σ(F ),F ∈ F}.

Denote by ν̂Y(n) the maximum number of realizable 0/1-patterns where

the maximum is taken over all finite subsets Y ′ ⊂n Y.

Then, νX (n) = ν̂Y(n). In particular, the VC-codensity of Y (or equiva-

lently vcdX = lim supn
log ν̂Y (n)

log n .

Inequality (1.1) (and its dual version which gives bounds on realizable 0/1-

patterns) play a fundamental role in many applications in combinatorics,

discrete geometry as well as in theoretical computer science.
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Homological underpinnings

Often bounds on the number of realizable 0/1-patterns and consequently

on VC-codensity are best proved using (algebraic) topological methods.

For example, for o-minimal structures (following the notation of previous

page) – assuming H is closed and bounded (for convenience):

ν̂Y(n) ≤ max
Y′⊂nY

card({σ ∈ {0, 1}Y
′
| R(σ) ̸= ∅})

≤ max
Y′⊂nY

∑
σ∈{0,1}Y′

b0(R(σ))

≤ CH · ndimX .

It follows immediately that the VC-codensity of Y is bounded by dimX .

In fact more is true – for any p, 0 ≤ p ≤ dimX :

max
Y′⊂nY

∑
σ∈{0,1}Y′

bp(R(σ)) ≤ CH · ndimX−p.

Is there a VC-density implication for this result ? I don’t know ... but

clearly the higher degree homology groups have a role.
6
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From points to curves (or higher dimensional definable sets)

With an eye towards topology we want to assign meaning to the “non-

shattering function” νX in the case of finite sets of definable sets (from

some fixed definable family) instead of points. Will be more precise later

... but here is a picture to keep in mind.

In discrete geometry going from “arrangements” of finite sets of points to

higher dimensional sets or varieties is a very natural thing to do with many

precedents.

Generalizing Helly’s theorem for convex sets (which can be thought of as

as a theorem about point transversals) to higher dimensional transversals

(Hadwiger (1957), Goodman and Pollack (1988)) is a generalization of

this type.

Another example is Guth’s generalization (2015) of the Guth-Katz poly-

nomial partitioning theorem (2014) (which is about partitioning finite sets

of points) to partitioning of varieties (of possibly positive dimension).

Many other examples ...
7
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Cohomological VC-density



Preliminary

How to interpret card(S(Y ′;X )) in the setting where elements of Y ′ are

allowed to be definable subsets of Y ?

Suppose now that Y is a topological space and X is a set of subspaces of

Y .

Given any finite subset Y ′ ⊂ Y , the different intersections Y ′ ∩X,X ∈ X
are each characterized by the image of the linear map

H0(Y
′ ∩ X,Q) → H0(Y

′,Q).

Then, for any Y ′ ⊂n Y , and X ∈ X , Y ′ ∩X is determined by the kernel

of the homomorphism H0(Y ′,Q) → H0(Y ′ ∩ X,Q). With notation as

above, let

S0(Y ′;X ) = {ker(H0(Y ′,Q) → H0(Y ′ ∩ X,Q)) ⊂ H0(Y ′,Q) | X ∈ X}.

Observe:

card(S(Y ′;X )) = card(S0(Y ′;X )).
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are each characterized by the image of the linear map

H0(Y
′ ∩ X,Q) → H0(Y

′,Q).

Then, for any Y ′ ⊂n Y , and X ∈ X , Y ′ ∩X is determined by the kernel

of the homomorphism H0(Y ′,Q) → H0(Y ′ ∩ X,Q). With notation as

above, let

S0(Y ′;X ) = {ker(H0(Y ′,Q) → H0(Y ′ ∩ X,Q)) ⊂ H0(Y ′,Q) | X ∈ X}.

Observe:
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Higher degree VC-density

The last observation that is at the heart of our generalization of VC-density

to higher (cohomological) degrees.

Let Z ⊂ 2Y be another set of subspaces of Y , Z0 ⊂n Z, and let
⋃

Z0

denote
⋃

Z∈Z0
Z.

For each p ≥ 0, define

Sp(Z0;X ) = {ker(Hp(
⋃

Z0,Q) → Hp(
⋃

Z0 ∩ X,Q)) | X ∈ X}.

In all cases mentioned before (using appropriate topology and cohomology

theory – euclidean (for RCF, ACF0, o-minimal expansions of R, étale for

ACFp etc.)

card(Sp(Z0;X )) < ∞,

for all finite subsets Z0 ⊂ Z (for definable families X ,Z).
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Higher degree VC-density (cont.)

The finiteness of Sp(Z0;X ) motivates the following definition – that of

the degree-p VC-density of the pair (X ,Z):

vcdpX ,Z := lim sup
n

log(νpX ,Z(n))

log(n)
,

where

νpX ,Z(n) = sup
Z0⊂nZ

card(Sp(Z0;X )).
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Upper bound on degree p VC-density

Theorem 1

For every pair of definable families (X ,Z) of proper definable subsets of

some definable set Y , in an algebraically closed field or in an o-minimal

structure and p ≥ 0,

vcdpX ,Z ≤ (p + 1) · dimX .

Inequality (1.1) (in the theories mentioned above) is then recovered as a

special case with p = 0 and Z = {{y} | y ∈ Y }.

Note that our notion of vcd0X ,Z is in fact more general than the classical

VC-density vcdX , since we allow Z to be a more general definable family,

rather than just Y itself.
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Higher order cohomological

VC-density



Higher order dependence

Shelah (2014) generalized the notion of the independence-property of for-

mulas to higher orders.

More precisely, a formula ϕ(X ;Y (0), . . . ,Y (q−1)) is said to be q-independent

if for every n > 0, there exists Z (i) ⊂n∈ M|Y (i)|, 0 ≤ i ≤ q − 1, such that

for every subset S ⊂ Z (0)×· · ·×Z (q−1), there exists xS ∈ M|X |, such that

for every (y0, . . . , yq−1) ∈ Z (0) × · · · × Z (q−1) M |= ϕ(xS , y0, . . . , yq−1) if

and only (y0, . . . , yq−1) ∈ S .

A theory T has the property NIPq if every formula is not q-independent.

It is obvious that the property NIPq implies NIPq+1, and the property

NIP1 = NIP.

The NIPq property motivates a generalization of the notion of higher de-

gree VC-density to higher order dependence.
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Higher order VC-density

Let Y (0), . . . ,Y (q−1) be sets and for each i , 0 ≤ i ≤ q − 1, X (i) ⊂
2Y

(i)

, and let X̄ = (X (0), . . . ,X (q−1)). For any tuples of subsets Ȳ ′ =

(Y (0)′ , . . . ,Y (q−1)′) where Y (i)′ ⊂ Y (i), we set

S̄(Ȳ ′; X̄ ) := {Ȳ ′ ∩ X̄ | X̄ ∈ X̄},

where the intersection is defined component-wise.

Denote

νX̄ ,q(n) = max
Ȳ ′⊂nȲ

card(S̄(Ȳ ′; X̄ )),

where Ȳ ′ = (Y (0)′ , . . . ,Y (q−1)′) ⊂n Ȳ means for each i Y (i)′ ⊂n Y (i).

Finally define:

vcdX̄ ,q = lim sup
n

log(νX̄ ,q(n))

log(n)
.
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Finally define:

vcdX̄ ,q = lim sup
n

log(νX̄ ,q(n))

log(n)
.

13



Higher order VC-density

Let Y (0), . . . ,Y (q−1) be sets and for each i , 0 ≤ i ≤ q − 1, X (i) ⊂
2Y

(i)

, and let X̄ = (X (0), . . . ,X (q−1)). For any tuples of subsets Ȳ ′ =
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Higher degree, higher order VC-density

Our higher degree notion of VC-density generalizes to the setting of higher

order VC-density as well.

Fix q ≥ 1. Suppose now that Y (0), . . . ,Y (q−1) are topological spaces,

X a set of subspaces of Y (0) × · · · × Y (q−1), and for each i , 0 ≤ i ≤
q − 1, Z(i) ⊂ 2Y

(i)

be a set of subspaces of Y (i). We denote Z̄ =

(Z(0), . . . ,Z(q−1)). Let for each i , 0 ≤ i ≤ q − 1 Z(i)
0 ⊂n Z(i), and let⋃

Z̄0 denote
∏

0≤i≤q−1

⋃
Z(i)∈Z(i)

0
Z(i).

For each p ≥ 0, define

Sp(Z̄0;X ) = {ker(Hp(
⋃

Z̄0,Q) → Hp(
⋃

Z̄0 ∩ X,Q)) | X ∈ X}.

vcdp,qX ,Z̄ := lim sup
n

log(νp,qX ,Z̄(n))

log(n)
,

where

νp,qX ,Z̄(n) = sup
Z(i)

0 ⊂nZ(i),0≤i≤q−1

card(Sp(Z̄0;X )).
14
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Bound on higher order, higher degree VC-density

We have following generalization of Theorem 1.

Theorem 2

For every q ≥ 1, and every tuple of definable families

(X ,Z(0), . . . ,Z(q−1)) of proper definable subsets of some definable set

Y , in any algebraically closed field or o-minimal structure, and p ≥ 0,

vcdp,qX ,Z̄ ≤ (p + q) · dimX ,

where Z̄ = (Z(0), . . . ,Z(q−1)).
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Remarks

Notice that

vcdp,1X ,Z̄ = vcdpX ,Z(0) .

Also it is immediate by taking Y = Y (0) × · · · × Y (q−1), and Z = Z(0) ×
· · · × Z(q−1), and applying Theorem 1, that

vcdp,qX ,Z̄ ≤ q(p + 1) · dimX .

Thus, if p = 0 or q = 1, Theorem 2 follows immediately from Theorem 1.

In every other case, the bound in Theorem 2 is stronger than the one

obtained by applying Theorem 1.
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Remarks (cont)

Note that the generalized VC-density vcdp,qX ,Z̄(n) measures the ‘complexity’

of the definable family X against collections of nq subsets of Y (0) × · · · ×
Y (q−1) of the special (product) form Z(0)

0 × · · · × Z(q−1)
0 , where each

Z(i)
0 ⊂n Z(i) (rather than against arbitrary subsets of size nq of Z(0) ×

· · · × Z(q−1)).

Since p + q = q(p + 1) whenever p = 0 or q = 1, the difference between

these two classes of ‘test’ families of finite subsets, (i.e. finite sets of

cardinality nq of the special form Z(0)
0 × · · · × Z(q−1)

0 , as opposed to

general subsets of Z(0)×· · ·×Z(q−1) having cardinality nq) is reflected in

our bound (Theorem 2) only for p > 0 (for q > 1).

It follows that for p > 0 and q > 1, vcdp,qX ,Z̄ are sensitive to the product

structure of finite sets in a way that vcdqX , q > 1, are not.
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A few words about the proofs

• Uses theorems giving constructibility of certain sheaves (push

forwards of constant sheaves) in the various categories considered.

• Cohomological descent arguments and the Mayer-Vietoris spectral

sequence.

• Uses knowledge of inequality (1.1) (bound on the number of 0/1

patterns) in the various categories considered.
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Applications and ongoing/future

work



Applications

Higher degree analogs of well-known applications of VC-density.

Interpret X ∈p Y as Im(Hp(X ) → Hp(Y )) ̸= 0 (or alternatively Hp(X ) →
Hp(Y ) is injective).

Then, with certain restrictions on the families over real closed fields we

can prove ...

Higher degree versions of the classical existence theorem of ε-nets of size

depending only on the VC-density(Haussler and Welzl (1987), Komlos and

Pach (1991)).

Higher degree versions of the Fractional Helly Theorem due to Matoušek

(2004) for families with finite VC-density.
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Some ongoing/future work

Topological distality and upper bounds on higher degree distal density.

Topological version of stability and bounds on higher degree versions of

Morley rank that we define.

Topologically formulated (Szemeredi-Trotter style) incidence questions.

For example, where ‘incidence’ of a curve on a surface might mean that

the curve is not contractible inside the surface.
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Thank You!
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