Bi-Lipschitz classification of surface germs Andrei Gabrielov (Purdue University) (joint work with Lev Birbrair, Alexandre Fernandes)

Let X be a germ at the origin of $\mathbf{R}^{\mathbf{n}}$ of a two-dimensional surface definable in a polynomially bounded o-minimal structure over **R**. The outer metric on X, such that dist(x,y) = |y - x|, is induced from \mathbb{R}^n . Two such surface germs, X and Y, are bi-Lipschitz equivalent if there exists a homeomorphism $h: (X, 0) \to (Y, 0)$ such that the outer metric on X is equivalent to the metric on X induced from Y. The goal is to find a discrete (no moduli in definable families) invariant of bi-Lipschitz equivalence class of definable surface germs. We start with a simpler problem of bi-Lipschitz classification of germs at the origin of definable functions $f: \mathbf{R}^2 \to \mathbf{R}$ up to contact equivalence. Two such function germs f and g are bi-Lipschitz contact equivalent if there exists a bi-Lipschitz homeomorphism $h: (\mathbf{R}^3, \mathbf{0}) \to (\mathbf{R}^3, \mathbf{0})$ commuting with the projection $\mathbf{R}^3 \to \mathbf{R}^2$ and mapping the graph of f to the graph of g. The invariant consists of a partition of the neighborhood of the origin of \mathbf{R}^2 into Hölder triangles T_i (defined up to bi-Lipschitz equivalence and uniquely determined by the cyclically ordered sequence of the exponents β_i of T_i), and for each j the sign $s_j \in \{+, -, 0\}$ of $f|_{T_j}$, the interval Q_j of the exponents q of f on the arcs $\gamma \subset T_j$, and the affine width function $\mu_j(q) = a_j q + c_j$ on Q_j that measures how much an arc $\gamma \subset T_j$ may be deformed so that the exponent q of $f|_{\gamma}$ does not change. Such a partition is called a "pizza" with "slices" T_j and "toppings" β_j , s_j , Q_j , $\mu_j(q)$. These data (with some additional constraints due to continuity of f constitute a complete discrete invariant of the bi-Lipschitz contact equivalence class of function-germs in \mathbf{R}^2 . For a germ X of a definable two-dimensional surface, a similar (but more complicated combinatorially) canonical (up to bi-Lipschitz equivalence) partition into normally embedded Holder triangles T_j can be defined, so that any two triangles of the partition are either "transversal" (not tangent to each other) or "coherent" (bi-Lipschitz equivalent to a slice of a pizza and a graph of a definable function over that slice). The discrete invariant of the bi-Lipschitz equivalence class of X consists in the combinatorial structure of the partition, the tangency orders q_{ik} between the boundary arcs of any two triangles T_j and T_k of the partition, and the toppings β_{jk} , Q_{jk} , $\mu_{jk}(q)$ associated with each pair of coherent triangles T_j and T_k (work in progress).