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Abstract. We derive a formula expressing the average number En of real lines on a random

hypersurface of degree 2n− 3 in RPn in terms of the expected modulus of the determinant of
a special random matrix. In the case n = 3 we prove that the average number of real lines on

a random cubic surface in RP3 equals:

E3 = 6
√

2− 3.

Our technique can also be used to express the number Cn of complex lines on a generic

hypersurface of degree 2n − 3 in CPn in terms of the determinant of a random Hermitian
matrix. As a special case we obtain a new proof of the classical statement C3 = 27.

We determine, at the logarithmic scale, the asymptotic of the quantity En, by relating it
to Cn (whose asymptotic has been recently computed in [10]). Specifically we prove that:

lim
n→∞

logEn

logCn
=

1

2
.

Finally we show that this approach can be used to compute the number Rn = (2n−3)!! of
real lines, counted with their intrinsic signs (as defined in [16]), on a generic real hypersurface

of degree 2n− 3 in RPn.

1. Introduction

1.1. Lines on a random cubic. One of the most classical statements from enumerative geom-
etry asserts that there are 27 lines lying on a generic cubic surface in CP3: Cayley proved this
result in the nineteenth century [4]. Today many proofs exist, some more geometric (using the
isomorphism between the blowup of CP2 at six generic points and the generic cubic in CP3),
others more topological (exploiting properties of Chern classes), see for example [5, 6]. (A new
proof, based on a probabilistic argument, will be given in this paper, see Corollary 7 below.)

In this paper we will mostly be interested in similar problems over the reals, where the
situation is more complicated. Schläfli [18] showed that if the cubic surface is real and smooth
then the number of real lines lying on it is either 27, 15, 7, or 3. In the blow-up point of view,
these correspond respectively to the following four cases for the blow-up points: all of them are
real (27); 4 are real and the other two are complex conjugate (15); 2 are real and there are two
pairs of complex conjugate (7); there are 3 pairs of complex conjugate (3). Reading the number
of real lines from the coefficients of the polynomial f defining the cubic is a difficult problem. It
is interesting to ask for a probabilistic treatment:

(1) “How many real lines are expected to lie on a random real cubic surface in RP3?”.

To make this question rigorous we should clarify what we mean by “random”. Here we
will sample f from the so-called Kostlan ensemble. We endow the space R[x0, x1, x2, x3](3) of
real homogeneous polynomials of degree 3 with a probability distribution by defining a random
polynomial f as a linear combination:

f =
∑
|α|=3

ξαx
α0
0 xα1

1 xα2
2 xα3

3 , α = (α0, . . . , α3),

1
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where the coefficients ξα are real, independent, centered Gaussian variables with variances

σ2
α =

3!

α0!α1!α2!α3!
.

(A similar definition is considered for homogeneous polynomials of degree d in several variables,
see Section 2.1 below.) This probability distribution is O(4)-invariant, that is, it is invariant
under an orthogonal change of variables (so there are no preferred points or directions in RP3).
Moreover it is the only O(4)-invariant Gaussian probability distribution on R[x0, x1, x2, x3](3)

for which f can be defined as a linear combination of monomials with independent Gaussian
coefficients. This distribution is also natural from the point of view of algebraic geometry, as
it can be equivalently obtained by sampling a random polynomial uniformly from the (projec-
tivization of the) space of real polynomials with the metric induced by the inclusion in the space
of complex polynomials with the Fubini-Study metric, see Section 2.1 below for more details.

Let Gr(2, 4) denote the Grassmannian of two dimensional subspaces of R4 (or equivalently,
the Grassmannian of lines in RP3). Denoting by τ2,4 the tautological bundle of Gr(2, 4) we see
that the homogeneous cubic polynomial f defines, by restriction, a section σf of sym3(τ∗2,4). A
line ` lies on the cubic surface defined by {f = 0} if and only if σf (`) = 0. In this way, when
f is random, σf is a random section of sym3(τ∗2,4) and the section σf can be considered as a
generalization of a random field. In this case, the random field takes values in a vector bundle
but on a trivializing chart it reduces to the standard construction (see [1]). There is a powerful
technique that allows one to compute the average number of zeros of a random field, the so called
Kac-Rice formula [1]. The adaptation of this technique to random sections of vector bundles
is straightforward (we will discuss it in the proofs below) and yields the existence of a function
ρ : Gr(2, 4)→ R (the Kac-Rice density) such that the answer to question (1) can be written as:

E3 =

∫
Gr(2,4)

ρωGr(2,4)

(here ωGr(2,4) is the volume density of Gr(2, 4) with respect to the metric induced by the Plücker
embedding). In our case, by invariance of the problem under the action of the orthogonal group,
ρ is a constant function. However, the computation of this constant is still delicate and is one
of the main results of this paper. To be precise, we show in Theorem 4 that its value equals:

ρ =
6
√

2− 3

2π2
.

Since the volume of Gr(2, 4) is equal to 2π2, we are able to conclude that E3 = 6
√

2− 3.
Notice that over the complex numbers whatever reasonable (i.e. absolutely continuous with

respect to Lebesgue measure) probability distribution we consider on the space of the coeffi-
cients of the defining polynomial, a random complex cubic surface will be generic in the sense of
algebraic geometry with probability one (this is essentially due to the fact that complex discrim-
inants have real codimension two). For this reason our technique, which produces an expected
answer over the reals, gives the generic answer when adapted to the complex setting.

If we take the coefficients of f to be complex Gaussians (with the same variances as for the real
case) we get a complex Kostlan polynomial. Equivalently we can sample from the projectivization
of the space of complex polynomials with the natural Fubini-Study metric (see Section 2.1 below).
In this way σf is a random holomorphic section of sym3(τ∗2,4) where τ2,4 is now the tautological

bundle of GrC(2, 4) (the Grassmannian of complex two dimensional subspaces of C4). Here again
one can use the Kac-Rice approach, interpreting 4 complex variables as 8 real variables and C3

can be rewritten as an integral (with respect to the volume density induced by the complex
Plücker embedding) over GrC(2, 4) of a function ρC. The model is invariant under the action of
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U(4) so that ρC is constant. The evaluation of this constant is now much easier than its real
analogue (see Corollary 7), and it seems more combinatorial in nature. We compute the value
to be:

ρC ≡
324

π4
.

The volume of GrC(2, 4) is equal to π4

12 and this implies C3 = 27.
Going back to the real case, Segre [19] divided the real lines lying on a cubic surface into

hyperbolic lines and elliptic lines, and showed that the difference between the number, h, of
hyperbolic lines and the number, e, of elliptic lines always satisfy the relation h− e = 3. In this
direction we note that the technique below can also be used to compute this difference; this will
correspond to a signed Kac-Rice density and its computation amounts to removing the modulus
in the expectation of the determinant of the matrix in Theorem 1. Here we know that the signed
count is an invariant number R3 of the generic cubic [16] and consequently that the average

answer is the generic one; the explicit computation R3 = 3
2E det Ĵ3 = 3 recovers this number.

Remark 1. Allcock, Carlson, and Toledo [2] have studied the moduli space of real cubic surfaces
form the point of view of hyperbolic geometry. They compute the orbifold Euler characteristic
(which is proportional to the hyperbolic volume) of each component of the moduli space. One
could take the weighted average of the number of real lines, weighted by the volume of the
corresponding component, as an “average count”. This yields the number 239

37 , see [2, Table
1.2]. However this way of counting does not have a natural probabilistic interpretation and
generalization to n > 3.

1.2. Lines on hypersurfaces. The same scheme can be applied to the problem of enumeration
of lines on hypersurfaces of degree 2n−3 in RPn and CPn (if the degree is larger than 2n−3 then
a random hypersurface is too “curved” and will contain no lines while if the degree is smaller
than 2n − 3 then lines will appear in families). Theorem 1 and its complex analogue Theorem
6 give a general recipe for the computation of the average number En of real lines on a real
Kostlan hypersurface and the number Cn of lines on a generic complex hypersurface. Zagier [10]
showed that Cn can be computed as the coefficient of xn−1 in the polynomial

pn(x) = (1− x)

2n−3∏
j=0

(2n− 3− j + jx)

and found that the asymptotic behavior for Cn as n→∞ is given by:

(2) Cn ∼
√

27

π
(2n− 3)2n− 7

2 (1 +O(n−1)).

One could notice that the expression that we derive for Cn in Theorem 6 looks almost like the
square of the analogous expression for En from Theorem 1. In Theorem 11 we will make this
comparison more rigorous, by proving that the two quantities are related by:

(3) lim
n→∞

logEn
logCn

=
1

2
.

This is roughly saying that the average number of real lines on a random real hypersurface is
the “square root” of the number of complex lines (this is true up to an exponential factor; note
that the number En and Cn are super-exponential).

After this paper was written, it was brought to our attention in a private communication that
Peter Bürgisser conjectured the square root law (as stated in Theorem 11) in a talk given at a
conference in 2008, at Bernoulli Center in Lausanne, where he also gave numerical evidence with
regards to the value of E3.
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Remarkably, Okonek and Teleman [16] and Finashin and Kharlamov [7] have shown that
over the reals it is still possible to associate a numerical invariant Rn to a generic hypersurface,
counting the number of real lines with canonically assigned signs. Even though the bundles
sym2n−3(τ∗2,n+1) and TGr(2, n + 1) might not be orientable themselves, Okonek and Teleman
[16] introduce a notion of relative orientation between them that allows one to define an Euler
number up to a sign. In this case it turns out there is a canonical relative orientation, and each
zero of a generic section of sym2n−3(τ∗2,n+1) comes with an intrinsic sign (see Section 2.3 below).
The relative Euler number has the usual property that the sum of the zeroes of a generic section
counted with signs is invariant; for the problem of lines on hypersurfaces it equals:

Rn = (2n− 3)!!.

In particular note that En ≥ (2n − 3)!!. Using the random approach, in Proposition 2 we give
an alternative proof of Rn = (2n− 3)!!.

We summarize this discussion by stating the following inequalities, that offer a broad point
of view (here b > 1 is a universal constant whose existence is proved in Proposition 10):

Rn ≤ En ≤ bnC1/2
n .

Future work will include other applications of the probabilistic approach to complex enumer-
ative and random real enumerative geometry.

Acknowledgements. The question (1) motivating this paper was posed to the second author
by F. Sottile. This paper originated during the stay of the authors at SISSA (Trieste), supported
by Foundation Compositio Mathematica.

2. The real case

2.1. Real Kostlan polynomials. Let E = Rn+1. Then, symd(E∗) is identified with the space,
R[x0, x1, . . . , xn](d), of homogeneous polynomials of degree d in n + 1 variables. A Gaussian

ensemble can be specified by choosing a scalar product on symd(E∗) in which case f is sampled
according to the law:

Probability(f ∈ A) =
1

vn,d

∫
A

e−
‖f‖2

2 df,

where vn,d is a normalizing constant that makes the integrand into a probability density function,
and df is the volume form on symd(E∗) induced by the chosen scalar product. The ensemble
we will consider, known as the Kostlan ensemble, results from choosing as a scalar product the
Bombieri product1, defined as:

〈f, g〉B =
1

d!πn+1

∫
Cn+1

f(z)g(z)e−‖z‖
2

dz.

The following expression relates the Bombieri norm of f =
∑
|α|=d fαz

α0
1 · · · zαnn with its coeffi-

cients in the monomial basis (see [14, Equation (10)]):

‖f‖B =

 ∑
|α|=D

|fα|2
α0! · · ·αn!

d!

 1
2

.

The Bombieri product defined above can be described in a more algebro-geometric language as
follows. The standard Hermitian inner product on Cn+1 induces a Hermitian inner product,

1This inner product has also been referred to as the “Fischer product”, especially in the field of holomorphic
PDE after H.S. Shapiro made a detailed study [20] reviving methods from E. Fischer’s 1917 paper [8]. The names

of H. Weyl, V. Bargmann, and V. A. Fock have also been attached to this inner product.
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(·, ·)d on the line bundles OCPn(d), and this in turn induces a Hermitian inner product on the
finite-dimensional space of holomorphic sections, H0(OCPn(d)), by

〈f, g〉 =

∫
CPn

(f(z), g(z))d dz,

where the integration is with respect to the volume form on CPn induced by the standard Fubini-
Study metric on CPn. The restriction of this last Hermitian inner product to real sections of
OCPn(d) agrees up to normalization by a constant with the Bombieri product (after identifying
R[x0, x1, . . . , xn](d) with the space of real holomorphic sections of OCPn(d)). Thus, amongst all
possible O(n + 1)-invariant measures on R[x0, x1, . . . , xn](d), the Kostlan measure seems to be
the most natural one from the point of view of algebraic geometry.

An equivalent, and often more practical, approach to Gaussian ensembles is to build f as a
linear combination, using independent Gaussian coefficients, of the vectors in an orthonormal
basis for the associated scalar product. The Kostlan ensemble has the distinguished property of
being the unique Gaussian ensemble that is invariant under any orthogonal changes of variables
while simultaneously having the monomials as an orthogonal basis. We can sample f by placing
independent Gaussians ξα in front of the monomial basis (here α is a multi-index):

f(x) =
∑
|α|=d

ξαx
α, ξα ∼ N

(
0,

(
d

α

))
.

Note that there are other orthogonally-invariant models, but their description requires special
functions (spherical harmonics), see [12, 9].

2.2. A general construction. Consider a random vector v = (v1, . . . , v2n−3) in R2n−3 whose
entries are independent Gaussian variables distributed as:

vj ∼ N
(

0,

(
2n− 4

j − 1

))
j = 1, . . . , 2n− 3.

Let now v(1), . . . , v(n−1) be independent random vectors all distributed as v. We define the
random (2n− 2)× (2n− 2) matrix Ĵn as:

Ĵn =



v
(1)
1 0 . . . v

(n−1)
1 0

v
(1)
2 v

(1)
1 v

(n−1)
2 v

(n−1)
1

... v
(1)
2

... v
(n−1)
2

v
(1)
2n−3

... v
(n−1)
2n−3

...

0 v
(1)
2n−3 . . . 0 v

(n−1)
2n−3


.

Theorem 1. The average number En of real lines on a random Kostlan hypersurface of degree
2n− 3 in RPn is

En =

(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
E|det Ĵn|.

Proof. We will start with a general construction that works for the Grassmannian Gr(k,m) and
only at the end of the proof we will specialize to the case k = 2,m = n+ 1.

For i = 1, . . . , k and j = k + 1, . . . ,m consider the matrix Eij ∈ so(m) which consists of
all zeros except for having a 1 in position (i, j) and a −1 in position (j, i). Then etEij ∈
O(m) is the clockwise rotation matrix of an angle t in the plane, span{ei, ej}, spanned by
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the ith and jth standard basis vectors. Let now t = (tij) ∈ Rk(m−k) and consider the map

R : Rk(m−k) × span{e1, . . . , ek} → Rm defined by:

R(t, y) =
(
e
∑
ij tijEij

)
· y = Rt · y.

Let Gr+(k,m) denote the Grassmannian of oriented k-planes in Rm. As a Riemannian manifold
Gr+(k,m) is identified with its image under the spherical Plücker embedding. The image is equal
to the set of simple, norm-one vectors in Λk(Rm); moreover the Riemannian metric induced on
G+(k,m) from this embedding is the same as the metric induced by declaring the quotient map
SO(m)→ G+(k,m) to be a Riemannian submersion (see [13] for more details).

The map ψ : Rk(m−k) → Gr+(k,m) defined by:

ψ(t) = Rte1 ∧ · · · ∧Rtek
is a local parametrization of Gr+(k,m) near e1 ∧ · · · ∧ ek = ψ(0). In fact the map ψ is the
Riemannian exponential map centered at e1 ∧ · · · ∧ ek (see [13]). As a consequence, the map
ϕ : U → Rk(m−k) (the inverse of ψ) gives a coordinate chart on a neighborhood U of e1∧· · ·∧ek.

Let now τ∗k,m denote the dual of the tautological bundle (on Gr+(k,m)) and consider its

symmetric d-th power symd(τ∗k,m). Note that a homogeneous polynomial f ∈ R[x1, . . . , xm](d)

defines a real holomorphic section σf of the bundle symd(τ∗k,m), simply by considering the re-

striction σf (w) = f |w (here w denotes the variable in Gr+(k,m)). By construction, R(ϕ(w), ·)∗f
defines for every w ∈ Gr+(k,m) a polynomial in R[y1, . . . , yk](d). As a consequence, the map

q : symd(τ∗k,m)|U → U × R[y1, . . . , yk](d)

defined by:

f 7→ (w,R(ϕ(w), ·)∗f) , f ∈ symd(τ∗k,m)|w
gives a trivialization for symd(τ∗k,m) over U .

Since Gr+(k,m) is compact and connected, the map ψ (the Riemannian exponential map) is
surjective and we can choose U such that Gr+(k,m)\U has measure zero (in this way, integrating
a continuous function over U with respect the volume density of Gr+(k,m) gives the same result
as integrating the continuous function over all of Gr+(k,m)).

Let f ∈ R[x1, . . . , xm](d) be a random Kostlan polynomial. Using f we can define the random
map:

σ̃f : Rk(m−k) → R[y1, . . . , yk](d) ' R(k+d−1
d )

where σ̃f is nothing but σf in the trivialization given by q.

Assume now that k(m− k) =
(
k+d−1
d

)
, so that rank

(
symd(τ∗k,m)

)
= dimGr(k,m). Then we

can use the Kac-Rice formula [1, Theorem 12.1.1] to count the average number of zeros of σ̃f :

E#{σ̃f = 0} =

∫
U

E
{
|det J(w)|

∣∣σf (w) = 0
}
p(0;w)ψ∗ωGr+(k,m),

where p(0;w) is the joint density at zero of the random vector σf (w), ωGr+(k,m) is the volume
form induced by the spherical Plücker embedding and:

J(w) = (∇i(σ̃f )j(w))

is the matrix of the derivatives of the components of σ̃f with respect to an orthonormal frame
field at w. Since the polynomial f is O(m)-invariant, the quantity:

ρ(w) = E
{
|det J(w)|

∣∣σf (w) = 0
}
p(0;w)
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does not depend on w ∈ U thus ρ = ρ(w) is constant. As a consequence:

E#{σ̃f = 0} = |Gr+(k,m))|ρ.
Since Gr+(k,m) is a Riemannian double covering of Gr(k,m) and the number of zeros of σf as
a section of the bundle symd(τ∗k,m) on Gr+(k,m) is twice the number of zeros as a section of

symd(τ∗k,m) on Gr(k,m), then:

E#{w ∈ Gr(k,m) |σf (w) = 0} = |Gr(k,m)|ρ.
Let w0 = e1 ∧ · · · ∧ ek. It is easy to compute the density at zero of σ̃f (w0). In fact, in the
trivialization q we have:

σ̃f |w0 =
∑
|α|=d

ξα1,...,αk,0,...,0y
α1
1 · · · y

αk
k .

Hence the coefficients of σ̃f |w0
are independent random variables and are still Kostlan distributed

(in fact, the restriction of a Kostlan polynomial to a subspace is still a Kostlan polynomial). As
a consequence:

p(0;w0) =
∏

α1+···+αk=d

(
α1! · · ·αk!

d!2π

)1/2

.

For the computation of E
{
|det J(w)|

∣∣σf (w) = 0
}

we proceed as follows. For i = 1, . . . , k and
j = k + 1, . . . ,m, consider the curve γij : (−ε, ε)→ Gr+(k,m):

γij(s) = esEije1 ∧ · · · ∧ esEijek.
For the curve γij , note that:

γij(0) = w0 and γ̇ij(0) = ψ∗(∂tij ).

By construction,

{ψ∗(∂tij ) | i = 1, . . . , k, j = k + 1, . . . ,m}
is an orthonormal basis for Tw0

Gr+(k,m), hence we can differentiate along the curves γij for
computing the matrix J . By definition of the trivialization q we have:

σ̃f (γij(s))(y1, . . . , yk) = f
(
esEijy

)
, y = (y1, . . . , yk, 0, . . . , 0).

Note that:

esEijy = (y1, y2, . . . , yi−1, yi cos s︸ ︷︷ ︸
i-th entry

, yi+1, . . . , yk, 0, . . . , 0, yi sin s︸ ︷︷ ︸
j-th entry

, 0, . . . , 0).

In particular:

σ̃f (γij(s))(y) =
∑
|α|=d

ξαy
α1
1 · · · y

αi−1

i−1 (yi cos s)αi(yi sin s)αjy
αi+1

i+1 · · · y
αk
k

=
∑
|α|=d

ξα(cos s)αi(sin s)αjyα1
1 · · · y

αi−1

i−1 yαi+αjαi y
αi+1

i+1 · · · y
αk
k .

Taking the derivative of each coefficient with respect to s and evaluating at s = 0 we get:

d

ds
(σ̃f (γij(s))(y))

∣∣
s=0

=
∑

α1+···+αk+1=d

ξαy
α1
1 · · · y

αi−1

i−1 yαi+1
i y

αi+1

i+1 · · · y
αk
k .

=
∑
|β|=d

qβy
β1

1 · · · y
βk
k
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from which we deduce that the coefficient qβ is distributed as:

qβ = ξβ1,...,βi−1,βi+1,βi+1,...,βk,0,...,0,1,...,0 (there is a 1 in position j).

From this we immediately see that |det J(w0)| and σ̃f (w0) are independent random variables
(because of the “1 in position j” above) and:

E
{
|det J(w0)|

∣∣σf (w0) = 0
}

= E {|det J(w0)|} .

The matrix J(w0) is in general quite complicated, but when we specialize to the case k = 2 it
becomes simpler (this is due to the fact that there is a natural way to order the monomials of
a one-variable polynomial). In fact, working in the above basis {∂1,3, ∂2,3, . . . , ∂1,m, ∂2,m} for

Tw0
G+(2,m) and {yd1 , yd−1

1 y2, . . . , y1y
d−1
2 , yd2} for R[y1, y2](d), we see that:

∂1,j σ̃f =
∑

|α|=d,αj=1

ξαy
1+α1
1 yα2

2 and ∂2,j σ̃f =
∑

|α|=d,αj=1

ξαy
α1
1 y1+α2

2 .

For example, in the case m = 4 the matrix J(w0) is:

J(w0) =


ξ2010 0 ξ2001 0
ξ1110 ξ2010 ξ1101 ξ2001

ξ0210 ξ1110 ξ0210 ξ1101

0 ξ0210 0 ξ0201

 ,
In the case k = 2,m = n+ 1, for the Grassmannian Gr(2, n+ 1) of lines in RPn, the matrix

J(w0) has the same shape as Ĵn; moreover collecting
√

2n− 3 from each row of J(w0) we get a

matrix that is distributed as Ĵn:

E {|det J(w0)|} = (2n− 3)
2n−2

2 E|det Ĵn|.

Thus the average number, En, of real lines on a random Kostlan hypersurface of degree 2n− 3
in RPn is:

En = |Gr(2, n+ 1)| p(0;w0) (2n− 3)
2n−2

2 E|det Ĵn|

=
πn−

1
2

Γ
(
n
2

)
Γ
(
n+1

2

) 2n−3∏
k=0

(
k! · · · (2n− 3− k)!

(2n− 3)!2π

)1/2

(2n− 3)
2n−2

2 E|det Ĵn|

=
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2

E|det Ĵn|,

where for the volume of the Grassmannian we have used the formula (see Remark 2 below):

|Gr(2, n+ 1)| = πn−
1
2

Γ
(
n
2

)
Γ
(
n+1

2

) .
�

Remark 2 (Volume of Grassmannians). The formula |Gr(2, n + 1)| = πn−
1
2

Γ(n2 )Γ(n+1
2 )

follows from

|Gr(k,m)| = |O(m)|
|O(k)||O(m−k)| and the formula for the volume of the Orthogonal group (see [11,

Section 3.12]):

|O(k)| = 2kπ
k2+k

4

Γ(k/2)Γ((k − 1)/2) · · ·Γ(1/2)
.
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Note that an analogous formula holds for the complex Grassmannian:

|GrC(k,m)| = |U(m)|
|U(k)||U(m− k)|

and |U(k)| = 2kπ
k2+k

2∏k−1
i=1 i!

.

2.3. Intrinsic signs and lower bound. Generalizing Segre’s observation h − e = 3, Okonek
and Teleman [16] have shown that to each real line ` on a generic real hypersurface H of degree
2n − 3 in RPn it is possible to canonically associate a sign ε(`) which satisfies the property
that

∑
`⊂H ε(`) does not depend on H, and that this number equals (2n − 3)!!. The crucial

observation is that there exists a line bundle L→ Gr(2, n+ 1) such that [16, Proposition 12]:

K = det(sym2n−3(τ∗2,n+1))⊗ det(TGr(2, n+ 1)) = L⊗ L.

Hence K has a trivialization and sym2n−3(τ∗2,n+1) and TGr(2, n + 1) are said to be relatively

oriented (even if sym2n−3(τ∗2,n+1) and the Grassmannian themselves might not be orientable).
Relative orientation is all one needs to introduce an Euler number, which has the usual properties
and is well defined up to a sign [16, Lemma 5]. The fact that K = L⊗ L allows in this specific
case to canonically choose the relative orientation and the sign ε(`) for ` ⊂ H is defined in an
intrinsic way. Using this notation Okonek and Teleman [16] and Kharlamov and Finashin [7]
have independently proved that:

Rn
.
=

∣∣∣∣∣∑
`⊂H

ε(`)

∣∣∣∣∣ = (2n− 3)!!.

We now show that using the Kac-Rice formula, and the knowledge that the modulus of a
signed count is invariant, one can recover the value of Rn.

Proposition 2. Using the above notation, we have:

Rn = (2n− 3)!!.

Proof. Let us fix a trivialization of sym2n−3(τ∗2,n+1) on an open dense set U ⊂ Gr(2, n + 1) as
in the proof of Theorem 1. The lines on H = {f = 0} contained in U are the zeroes of:

σ̃f : R2n−2 → R2n−2.

By [16, Lemma 5] we know that:

(4)
∑

σ̃f (w)=0

sign det(Jσ̃f )(w) = ε ·
∑

`⊂H,`∈U

ε(`)

and that the choice of the sign ε = ±1 is determined once the trivialization is fixed. On the other
hand, for a random map F : R2n−2 → R2n−2 (sufficiently smooth, e.g. satisfying the hypothesis
of [1, Theorem 12.1.1]), we have:

E
∑

F (w)=0

sign det(JF )(w) =

∫
R2n−2

E{det(JF )(w) |F (w) = 0} · p(0;w)dw.

This follows from [15, Lemma 3.5], as the function sign(det(·)) : R(2n−2)×(2n−2) → R is admissible
(in the terminology of [15]). Applying this to the case F = σ̃f and arguing exactly as in the
proof of Theorem 1 we get:

(5) E
∑

σ̃f (w)=0

sign det(Jσ̃f )(w) =

(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
Edet Ĵn
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Let us first evaluate the factor Edet Ĵn. To simplify notations, let us denote by xi,j the random

variable v
(i)
j in the matrix Ĵn (we will also use this notation later in Remark 3). After taking

expectation, by independence, the only monomials in the expansion of det Ĵn that give a nonzero
contribution are those with all squared variables (for example x2

1,1x
2
2,3 · · ·x2

n−1,2n−3). These
monomials all have the form:

x2
i1,1x

2
i2,3 · · ·x

2
in−1,2n−3, {i1, . . . , in−1} = {1, . . . , n− 1}.

There are (n− 1)! many such monomials and because every second subscript is shifted by two,

in the expansion of det Ĵn they all appear with the same sign. Moreover the product of all the
variances of the variables in each of these monomials equal:∏

j odd

(
2n− 4

j − 1

)
=

n−1∏
k=1

(
2n− 4

2k − 2

)
.

From this we obtain:

Edet Ĵn = (n− 1)!

n−1∏
k=1

(
2n− 4

2k − 2

)
.

We look now at the term:
2n−3∏
k=0

(
2n− 3

k

)−1/2

=

2n−3∏
k=0

(
k!(2n− 3− k)!

(2n− 3)!

)1/2

=
1

(2n− 3)!n−1

(
2n−3∏
k=0

k!

)1/2(2n−3∏
k=0

(2n− 3− k)!

)1/2

=
1

(2n− 3)!n−1

2n−3∏
k=0

k!.

Collecting all this together, we obtain:(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
Edet Ĵn =

(∏2n−3
k=0 k!

)(∏n−1
k=1

(
2n−4
2k−2

))
(2n− 4)!n−1

=

(
2n−3∏
k=0

k!

)(
n−1∏
k=1

1

(2k − 2)!(2n− 2k − 2)!

)

=

n−1∏
j=1

(2j − 1)!

n−1∏
j=1

1

(2n− 2k − 2)!


=

n−1∏
j=1

(2j − 1)!

n−1∏
j=1

1

(2j − 2)!


=

n−1∏
j=1

(2j − 1)!

(2j − 2)!

=

n−1∏
j=1

(2j − 1) = (2n− 3)!!
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Combining the last equation with (5) and (4) concludes the proof. �

Let us now denote by ρn the number:

ρn =
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2

.

Then Proposition 2 shows that ρn · |Edet Jn| = (2n− 3)!!. As a corollary, since:

En = ρn · E|det Jn| ≥ ρn · |Edet Jn|,
we derive the following lower bound for En. Note however that the proof of ρn · |Edet Jn| ≥
(2n − 3)!! does not require [16, Corollary 17], hence this lower bound does not depend on the
knowledge that the signed count is invariant.

Corollary 3. The following inequality holds:

En ≥ (2n− 3)!!

3. The average number of real lines on a random cubic

Theorem 4. The average number of real lines on a random cubic surface in RP3 is 6
√

2− 3.

Proof. Applying Theorem 1 for the special case n = 3 we get:

(6) E3 =
3

2
E|det Ĵ3|.

where:

Ĵ3 =


a 0 d 0√
2b a

√
2e d

c
√

2b f
√

2e
0 c 0 f

 ,
with a, b, c, d, e, f independent standard normal random variables.

In order to compute E|det Ĵ3|, we first observe that:

det Ĵ3 = (af − cd)2 − 2(bf − ce)(ae− bd),

which will lead us to work in terms of the random variables:

x = (bf − ce),
y = (af − cd),

z = (ae− bd),

in order to compute the expectation of |det Ĵ3| = |2xz−y2|. We use the method of characteristic
functions (Fourier analysis) in order to compute the joint density ρ(x, y, z) of x, y, z.

By the Fourier inversion formula, we have:

ρ(x, y, z) =
1

(2π)3

∫
R

∫
R

∫
R
e−i(t1x+t2y+t3z) ρ̂(t1, t2, t3) dt1dt2dt3,

where

ρ̂(t1, t2, t3) = Eei(t1(bf−ce)+t2(ae−bd)+t3(af−cd)).

We notice that the expression:

t1(bf − ce) + t2(ae− bd) + t3(af − cd) = (a, b, c, d, e, f)TQ(a, b, c, d, e, f)
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is a symmetric quadratic form in the Gaussian vector:

(a, b, c, d, e, f),

where the matrix for the quadratic form is given by:

Q =
1

2


0 0 0 0 t1 t2
0 0 0 −t1 0 t3
0 0 0 −t2 −t3 0
0 −t1 −t2 0 0 0
t1 0 −t3 0 0 0
t2 t3 0 0 0 0

 .

Using [17, Thm. 2.1] while taking t = 1 (and treating t1, t2, t3 as parameters), we have:

Eei(t1(bf−ce)+t2(ae−bd)+t3(af−cd)) =
1√

det(1− 2iQ)

=
1

1 + t21 + t22 + t23
.

We can use this to compute:

ρ(x, y, z) =
1

(2π)3

∫
R

∫
R

∫
R

e−i(t1x+t2y+t3z)

1 + t21 + t22 + t23
dt1dt2dt3

=
1

(2π)3

∫ 2π

0

∫ π

0

∫ ∞
0

e−i|(x,y,z)|r cosφ

1 + r2
r2 sinφ drdφdθ

=
1

(2π)2

∫ π

0

∫ ∞
0

e−i|(x,y,z)|r cosφ

1 + r2
r2 sinφ drdφ

=
1

(2π)2

∫ ∞
0

r2

1 + r2

e−i|(x,y,z)|r cosφ

i|(x, y, z)|r

∣∣∣∣φ=π

φ=0

dr

=
1

2π2

1

|(x, y, z)|

∫ ∞
0

r

1 + r2
sin(|(x, y, z)|r) dr

=
1

4π

e−|(x,y,z)|

|(x, y, z)|
.

Thus, the expectation becomes:

E|det Ĵ3| =
1

4π

∫
R3

|2xz − y2|e
−|(x,y,z)|

|(x, y, z)|
dxdydz

=
1

8π

∫
R3

|a1a3 − a2
2|
e
−

√
a21
2 +a2+

a23
2√

a21
2 + a2 +

a23
2

da1da2da3

where we have made the change of variables a1 =
√

2x, a2 = y, a3 =
√

2z. Let us view a1, a2, a3

as the entries of a symmetric matrix:

A =

[
a1 a2

a2 a3

]
.
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Consider the coordinates given by the eigenvalues λ1, λ2 of A along with the angle α ∈ [0, π/2)
associated with the orthogonal transformation that diagonalizes A:

M =

[
cosα − sinα
sinα cosα

]
.

The Jacobian determinant for changing coordinates to (λ1, λ2, α) is |λ1 − λ2|. We recognize
a21
2 +a2 +

a23
2 =

λ2
1+λ2

2

2 as half the Frobenius norm of A, and a1a3−a2
2 = λ1λ2 as the determinant

of A. With respect to these coordinates, we have:

E|det Ĵ3| =
√

2

8π

∫ π/2

0

∫
R2

|λ1λ2|
e
−

√
λ21+λ22

2√
λ2

1 + λ2
2

|λ1 − λ2| dλ1dλ2 dα

=

√
2

16

∫
R2

|λ1λ2|
e
−

√
λ21+λ22

2√
λ2

1 + λ2
2

|λ1 − λ2| dλ1dλ2

=

√
2

16

∫ 2π

0

∫ ∞
0

r3| cos θ sin θ(cos θ − sin θ)|e−r/
√

2 dr dθ,

=
3
√

2

2

∫ 2π

0

| cos θ sin θ(cos θ − sin θ)| dθ,

=
3
√

2

2

(
8− 2

√
2

3

)
= 4
√

2− 2

where we have utilized polar coordinates λ1 = r cos θ, λ2 = r sin θ. Substituting the obtained
number into (6) gives the desired result E3 = 6

√
2− 3.

�

4. The complex case

4.1. Complex Kostlan polynomials. We consider now the space C[x0, x1, . . . , xn](d) of homo-
geneous polynomials of degree d in n+1 variables. A complex Kostlan polynomial is obtained by
replacing real Gaussian variables with complex Gaussian variables in the definition from section
2.1. Specifically we take:

f(x) =
∑
|α|=d

ξαx
α, ξα ∼ NC

(
0,

(
d

α

))
,

where as before the ξα are independent. The resulting probability distribution on the space
C[x0, x1, . . . , xn](d) is invariant by the action of U(n+ 1) by change of variables (see [12, 3]).

4.2. A general construction. We will need the following elementary Lemma.

Lemma 5. Consider the 2m× 2m real matrix Ã defined by:

Ã =


A11 · · · A1m

...
...

Am1 · · · Amm

 where Aij =

[
aij bij
−bij aij

]
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and the m×m complex matrix AC defined by:

AC =


a11 + ib11 · · · a1m + ib1m

...
...

am1 + ibm1 · · · amm + ibmm

 .
Then:

det(Ã) = det(AC) det(AC) and det(Ã) ≥ 0.

Proof. Let P ∈ GL(2m,R) be the permutation matrix corresponding to the permutation:

σ =

(
1 2 · · · m− 1 m m+ 1 m+ 2 · · · 2m− 1 2m
1 3 · · · 2m− 3 2m− 1 2 4 · · · 2m− 2 2m

)
.

Then the matrix P−1ÃP is of the form:[
M N
−N M

]
where N = (ajl) and M = (bjl).

Note that AC = M + iN and that:[
1 0
−i1 1

]
·
[

M N
−N M

]
·
[
1 0
i1 1

]
=

[
M + iN N

0 M − iN

]
,

which implies det(P−1ÃP ) = det(M + iN) det(M − iN). Consequently:

det(Ã) = det(P−1ÃP )

= det(M + iN) det(M − iN)

= det(AC) det(AC).

�

Consider now a random vector w = (w1, . . . , w2n−3) in C2n−3 whose entries are independent
Gaussian variables distributed as:

wj ∼ NC

(
0,

(
2n− 4

j − 1

))
j = 1, . . . , 2n− 3.

In other words:

wj ∼

√
1

2

(
2n− 4

j − 1

)
(ξ1 + iξ2)

where ξ1, ξ2 are two standard independent Gaussians.
Let w(1), . . . , w(n−1) be independent random vectors all distributed as w. We define the

random (2n− 2)× (2n− 2) matrix ĴC
n as:

ĴC
n =



w
(1)
1 0 . . . w

(n−1)
1 0

w
(1)
2 w

(1)
1 w

(n−1)
2 w

(n−1)
1

... w
(1)
2

... w
(n−1)
2

w
(1)
2n−3

... w
(n−1)
2n−3

...

0 w
(1)
2n−3 . . . 0 w

(n−1)
2n−3
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Theorem 6. The number Cn of lines on a generic hypersurface of degree 2n− 3 in CPn is:

Cn =

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)
E|det ĴC|2

Proof. (sketch) The proof proceeds similarly to the proof of Theorem 1; again we use a general
approach and then specialize to the case of the Grassmannian of lines in CPn.

We view the complex Grassmannian GrC(k,m) as a real manifold of dimension 2k(m − k)
and the space C[z1, . . . , zm](d) of homogeneous polynomials of degree d as a real vector space of

dimension 2
(
m+d−1

d

)
:

f(z1, . . . , zm) =
∑
|α|=d

(aα + ibα)zα1
1 · · · zαmm , aα, bα ∈ R.

We put a Riemannian structure on GrC(k,m) by declaring the quotient map U(m)→ GrC(k,m)
to be a Riemannian submersion.

Consider the bundle symd(τ∗k,m) on GrC(k,m); a polynomial f ∈ C[z1, . . . , zm](d) defines a

section σf of this bundle and, in the case k(m−k) =
(
k+d−1
d

)
, the number of zeros of σf coincides

with the number of k-planes on {f = 0}. We build a random section of symd(τ∗k,m) by taking f
to be a complex Kostlan polynomial:

f(z) =
∑
|α|=d

ξαz
α1
1 · · · zαmm

where the ξα are independent and distributed as:

(7) ξα =

√
d!

α1! · · ·αm!

√
1

2
(ξ1 + iξ2)

and ξ1, ξ2 are standard, independent Gaussians. In this way the resulting probability distribution
on the space of polynomials is invariant by the action of the unitary group U(m).

Note that in the case k = 2,m = n+ 1, with probability one the number of zeros of σf equals
the number of k-planes on a generic hypersurface of degree d in CPn.

To trivialize the bundle we proceed as in the proof of Theorem 1, using now complex variables.
The invariance of f under the action of the unitary group allows to reduce the computation for
the Kac-Rice density at a point (which we again assume is w0 = span{e1, . . . , ek}). We obtain:

E#{w ∈ GrC(k,m) |σf (w) = 0} = |GrC(k,m)|ρC
where now:

ρC = E
{
|det J̃(w0)|

∣∣σf (w0) = 0
}
pC(0;w0),

with pC(0;w0) the density at zero of the vector of the real coefficients of σ̃f |w0
∈ C[z1, . . . , zk](d),

and the matrix

J̃(w0) = (∇i(σ̃f )j(w0))

the 2k(m− k)× 2k(m− k) matrix of the derivatives of the coordinates of σf with respect to an
orthonormal frame field at w0.

Note that σ̃f (w0) = f |w0
is the random polynomial:

σf (w0)(z1, . . . , zk) =
∑
|α|=d

ξαz
α1
1 · · · z

αk
k
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from which we immediately see that in the case k = 2,m = n + 1, for the Grassmannian
GrC(2, n+ 1) of lines in CPn we have:

pC(0, w0) =

2n−3∏
k=0

1

π

(
2n− 3

k

)−1

.

For the computation of J̃(w0) we use the orthonormal basis of Tw0
GrC(k,m) given by derivatives

at zero of the curves:

γ1
lj , γ

2
lj : (−ε, ε)→ GrC(2,m)

defined for l = 1, . . . , k and j = k + 1, . . . ,m by:

γ1
lj(s) = esElje1 ∧ · · · ∧ esEljek and γ2

lj(s) = eisElje1 ∧ · · · ∧ eisEljek.

It is immediate to verify that:

d

ds

(
σ̃f (γ1

kj(s))(z)
)

=
∑

α1+···+αk+1=d

ξαz
α1
1 · · · z

αi+1
i · · · zαkk

=
∑
|β|=d

q
(1)
β zβ1

1 · · · z
βk
k

and that:

d

ds

(
σ̃f (γ2

kj(s))(z)
)

=
∑

α1+···+αk+1=d

iξαz
α1
1 · · · z

αi+1
i · · · zαkk

=
∑
|β|=d

q
(2)
β zβ1

1 · · · z
βk
k

From this we see that the coefficients q
(1)
β and q

(2)
β are distributed as:

(8) q
(1)
β = ξβ1,...,βi−1,βi+1,βi+1,...,βk,0,...,0,1,...,0 (there is a 1 in position j)

and:

(9) q
(2)
β = i · ξβ1,...,βi−1,βi+1,βi+1,...,βk,0,...,0,1,...,0 (there is a 1 in position j).

In particular, we deduce from (8) and (9) that det J̃(w0) and σf (w0) are independent, and
consequently:

E
{
|det J̃(w0)|

∣∣σf (w0) = 0
}

= E|det J̃(w0)|.

Recalling the definition (7), and specializing to the case k = 2,m = n+ 1 of the Grassmannian

of lines, we see again from (8) and (9) that the matrix J̃(w0) has the same shape as the matrix

Ã from Lemma 5. Collecting a factor of
√
d =
√

2n− 3 from each row and using Lemma 5 we
obtain:

E|det J̃(w0)| = (2n− 3)2n−2E
(

det ĴC
n det ĴC

n

)
.
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Putting all the pieces together, and using the formula |GrC(2, n+ 1)| = π2n−2

Γ(n)Γ(n+1) (see Remark

2), we get:

Cn = |GrC(2, n+ 1)| pC(0, w0) E|det J̃(w0)|

=
π2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

1

π

(
2n− 3

k

)−1

(2n− 3)2n−2E
(

det ĴC
n det ĴC

n

)
=

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)
E|det ĴC

n |2.

�

Remark 3 (Real versus complex Gaussians). Consider the matrix:

An(x) =



x1,1 0 · · · xn−1,1 0
... x1,1

... xn−1,1(
2n−4
j−1

)1/2
x1,j

...
(

2n−4
j−1

)1/2
xn−1,j

...
...

(
2n−4
j−1

)1/2
x1,j

...
(

2n−4
j−1

)1/2
xn−1,j

x1,2n−3

... xn−1,2n−3

...
0 x1,2n−3 · · · 0 xn−1,2n−3


.

The determinant Pn(x) of An(x) is a homogeneous polynomial of degree D = 2n − 2 in N =
(n− 1)(2n− 3) many variables and by construction we have:

E|det Ĵn| =
1

(2π)N/2

∫
RN
|Pn(x)| e− 1

2‖x‖
2

dx

and:

E|det ĴC
n |2 =

1

πN

∫
CN

Pn(z)Pn(z) e−‖z‖
2

dz.(10)

Recall that, given a homogeneous polynomial P (z) =
∑
|α|=D Pαz

α1
1 · · · z

αN
N of degree D in N

variables, we have denoted by ‖P‖B its Bombieri norm:

(11) ‖P‖B =

 ∑
|α|=D

|Pα|2
α1! · · ·αN !

D!

 1
2

.

Then, it is possible to rewrite (10) as:

(12) E|det ĴC
n |2 = (2n− 2)! ‖Pn‖2B .

4.3. The 27 lines on a complex cubic.

Corollary 7. There are 27 lines on a generic cubic in CP3.

Proof. This is the case n = 3 in the previous theorem. We have:

C3 = |GrC(2, 4)| · pC(0;w0) · 34 · E|det ĴC
3 |2

=
π4

12
· 1

9π4
· 81 · E|det ĴC

3 |2

=
3

4
E|det ĴC

3 |2
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For the computation of E|det ĴC
3 |2 we use (12). We have the following expression for P3(x) =

detA3(x):

x2
13x

2
21− 2x12x13x21x22 + 2x11x13x

2
22− 2x2

12x21x23− 2x11x13x21x23− 2x11x12x22x23 +x2
11x

2
23.

Recalling (11) we can immediately compute the Bombieri norm of P3:

‖P3‖2B =
36

4!
.

From this we get E|det ĴC
3 |2 = 4!‖P3‖2B = 36, and consequently C3 = 27. �

5. Asymptotics

The main purpose of this section is to prove Theorem 11, which gives the asymptotic (3) of
En in the logarithmic scale, as discussed above in Section 1.2 (the “square root law”). This will
follow from a combination of the lower bound given in Corollary 3 and the upper bound that we
will prove in Proposition 10.

5.1. The upper bound. The strategy of our proof can be described as follows. In order
to simplify notations, let us absorb the variances in the variables of the matrix An(x) and
consider it as the matrix Bn(u) with entries the random variables ui,j =

(
2n−4
j−1

)
xi,j , so that

detAn(x) = detBn(u).

(13) Bn(u) =



u1,1 0 · · · un−1,1 0
... u1,1

... un−1,1

u1,j

... un−1,j

...
... u1,j

... un−1,j

u1,2n−3

... un−1,2n−3

...
0 u1,2n−3 · · · 0 un−1,2n−3


.

We will use both the double-index notation ui,j as well as single-index notation uk, k = 1, 2, .., N
for the N = (n− 1)(2n− 3) many variables appearing in Bn(u).

Given a permutation σ ∈ S2n−2 we consider the product:

2n−2∏
i=1

Bn(u)σ(i),i = uα1
1 · · ·u

αN
N .

We will call uα1
1 · · ·u

αN
N the monomial generated by the permutation σ. We will denote by I1

the set of all the multi-indices of all possible monomials generated by permutations in S2n−2. In
this way we can write:

Qn(u) = detBn(u) =
∑
α∈I1

Qαu
α1
1 · · ·u

αN
N .

We first prove that for each each permutation π ∈ S2n−2, the monomial απ generated by π
occurs with a non-zero integral coefficient in the polynomial Qn(u). In other words there are no
cancellations occuring in the Laplace expansion of the determinant of Bn(u): such cancellations
are a priori possible since the same monomial can be generated by several permutations, which
is evident (13) from the structure of the matrix. The proof of the above statement follows
immediately from Lemma 8 proved below. We then prove (Lemma 9) that in the expansion of
the polynomial Qn(u)2, each “cross-term” QαQβu

αuβ that appears with a non-zero coefficient
can be “charged” to some square term Q2

γu
2γ . Of course, many cross-terms might be charged to
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the same square-term, but the number of different pairs (α, β) such that α+β = 2γ, is bounded
by some number at most exponential in n. Together, these two lemmas reduce the problem of
bounding E(Qn(u))2 (up to a loss of an exponential factor) to the problem of bounding

E
∑
γ

Q2
γu

2
γ ,

and the latter can be bounded using linearity of expectation in terms of the Bombieri norm of
the polynomial Pn(x) = detAn(x) (Proposition 10).

We now prove the necessary preliminary results required to carry through the argument
sketched above.

Lemma 8. For each α ∈ I1, Qα 6= 0 and |Qα| > 1.

Proof of Lemma. For a given multi-index α suppose that σ = σ(1)σ(2) · · ·σ(2n − 2) and τ =
τ(1)τ(2) · · · τ(2n− 2) are two permutations (each given in one-line notation) that are associated
with the monomial uα in the Laplace expansion of the determinant of Bn(u). In other words,
the corresponding terms in the Laplace expansion are sgn(σ)uα and sgn(τ)uα, respectively. It
suffices to show, for arbitrary such σ and τ , that we have sgn(σ) = sgn(τ), or equivalently that
θ = τ−1σ is even.

Note that in the matrix Bn(u) each variable appears exactly twice and in positions that are
separated by exactly one increment in the row and the column values. The assumption that σ
and τ generate the same monomial uα then implies the following claim.

Claim 1. Suppose σ(j) 6= τ(j). Then if j is odd, σ(j + 1) = τ(j) + 1 and τ(j + 1) = σ(j) + 1,
and if j is even, σ(j − 1) = τ(j)− 1 and τ(j − 1) = σ(j)− 1.

We will also need the next claim.

Claim 2. Suppose τ(j) = σ(k) for j 6= k. Then the parities of k and j are the same; moreover
if j is odd σ(j + 1) = τ(j) + 1 and τ(k + 1) = σ(k) + 1, if j is even σ(j − 1) = τ(j) − 1 and
τ(k − 1) = σ(k)− 1.

We prove Claim 2 in the case that j is odd; the case j is even is similar and is omitted. The
variable in the matrix Bn(u) in position (τ(j), j) must be selected by σ as well. Since σ(j) 6= τ(j)
and j is odd, the only option is that σ(j+1) = τ(j)+1.We will see that the case k is even leads to a
contradiction. Since τ(k) 6= σ(k) and k is even, in order for the variable in position (σ(k), k) to be
selected by τ we must have τ(k−1) = σ(k)−1 (by Claim 1). This implies that σ(k−1) 6= τ(k−1),
so that there is some ` 6= k − 1 such that σ(`) = τ(k − 1). In order for the variable in position
(σ(`), `) to be selected by τ we must have τ(` − 1) = σ(`) − 1 = τ(k − 1) − 1 (note that the
alternative option τ(`+ 1) = σ(`) + 1 is prevented since σ(`) + 1 = τ(k− 1) + 1 = σ(k) = τ(j)).
Iterating this argument τ(k − 1)− 2 more steps, and recalling equation (13), we reach the first
row of the matrix Bn(u) where we are forced to select an unpaired variable contradicting the
assumption that σ and τ generate the same monomial. This shows that k must be odd as well
and, by the same reasoning as above, τ(k + 1) = σ(k) + 1 as stated in the claim.

Let us now go back to the permutation θ = τ−1σ. Claim 2 implies that θ preserves parity, so
it can be written as the product of two permutations θ = θeven · θodd, where θeven (respectively,
θodd) is in the symmetric group Sn−1,even (respectively, Sn−1,odd) on the set of even (respectively,
odd) numbers belonging to {1, . . . , 2n − 2}. We identify Sn−1,even (respectively, Sn−1,odd) with
the subgroup of S2n−2 of permutations which fixes each odd (respectively, even) number in
{1, . . . , 2n− 2}. Claim 2 can now be rewritten as:

(14) θodd(2k − 1) = 2j − 1 ⇐⇒ θeven(2j) = 2k.
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Note that the bijection:

{2, 4, . . . , 2n− 2} → {1, 3, . . . , 2n− 3}, 2k 7→ 2k − 1,

induces an isomorphism ψ : Sn−1,odd → Sn−1,even. Equation (14) shows that ψ(θodd) = θ−1
even.

In particular, since the sign of θeven and θ−1
even are the same it follows that θ is even. �

We will also need the following lemma.

Lemma 9. Let I2 be the set of all multi-indices γ = (γ1, . . . , γN ) such that there exist α, β ∈ I1
with αi + βi = 2γi for all i = 1, . . . , N. Then I2 ⊆ I1.

Proof. Let σ and τ be two permutations that are associated with the monomials uα and uβ ,
respectively, in the Laplace expansion of detBn(u). It suffices to construct a third permutation
ω that is associated to the monomial uγ . In order for uα+β to be the square of a monomial, we
must have that αi + βi is either 0, 2, or 4. If αi + βi = 0 then αi = βi = 0. If αi + βi = 4 then
αi = 2 and βi = 2. If αi + βi = 2 then there are three possibilities: we can have αi = 2 and
βi = 0 or αi = 1 and βi = 1 or αi = 0 and βi = 2. In terms of σ and τ , for each pair of columns
of Bn(u) with column numbers 2k − 1 and 2k, only the following three cases can occur.

Case 1. We have σ(2k − 1) = τ(2k − 1), which implies σ(2k) = τ(2k).
Case 2. We have σ(2k−1) 6= τ(2k−1) (which implies σ(2k) 6= τ(2k)) and τ(2k) = σ(2k−1)+1

(which implies σ(2k) = τ(2k − 1) + 1).
Case 3. We have σ(2k − 1) 6= τ(2k − 1) (which implies σ(2k + 2) 6= τ(2k + 2)), and τ(2k) =

τ(2k − 1) + 1 and σ(2k) = σ(2k − 1) + 1.

Now we construct ω while, for each pair of column numbers, basing our choice for ω(2k−1) and
ω(2k) in terms of the three cases. In each of Cases 1 and 2, we simply take ω(2k−1) = σ(2k−1)
and ω(2k) = σ(2k). In the remaining Case 3, we take ω(2k− 1) = σ(2k− 1) and ω(2k) = τ(2k).

In order to see that ω is indeed a permutation, it suffices to see that it is one-to-one. Since σ
is a permutation, the only case that requires checking is when we select ω(2k) = τ(2k) in Case
3. We will need the following claim.

Claim 3. Assume a pair of columns with column numbers 2k − 1 and 2k falls into Case 2 (re-
spectively Case 3 ). Then there exists another pair of columns that falls into Case 2 (respectively
Case 3 ) with column numbers 2j − 1 and 2j with j 6= k such that: σ(2k − 1) = τ(2j − 1) and
σ(2j) = τ(2k).

We note that this claim can be verified pictorially from the equation (13) of the matrix Bn(u)
by “chasing” the row-column structure. However, we will proceed formally. We prove the claim
simultaneously for Case 2 and Case 3 by induction on q = σ(2k−1). For the base of the induction,
let σ(2k− 1) = 1. Consider j such that τ(j) = 1. Observe that j must be odd, and the variable
in position (j, 2) must also be selected. If the pair of columns p = (c2k−1, c2k) falls into Case 2
(respectively Case 3 ), this forces the pairs of columns (cj , cj+1) to fall into Case 2 (respectively
Case 3 ).

Assume now that the Claim holds for σ(2k−1) ≤ q. Pick j such that τ(j) = σ(2k−1) = q+1.
If (c2k−1, c2k) falls into Case 2, then j must be odd. In fact if it was even the pair p′ = (cj , cj−1)
would give (by inductive hypothesis) another pair p′′ which is in the same Case as p′; this
contradicts the injectivity of σ. Now, if j is odd, then σ(j + 1) = τ(j) + 1, otherwise we would
fall into Case 3 contradicting again the injectivity of τ .

If now (c2k−1, c2k) falls into Case 3, a similar argument shows that p′ = (cj , cj−1) must also
fall into Case 3. This proves the claim.

Let us now finish verifying the injectivity of ω. Consider the pair of columns (c2k−1, c2k),
which falls into Case 3. Claim 3 produces now a new pair (c`, c`+1) that also falls into Case 3,
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such that ` = 2j−1, σ(2k−1) = τ(2j−1) and σ(2j) = τ(2k). By definition ω(2j−1) = σ(2j−1)
and ω(2j) = τ(2j) 6= σ(2j). Hence ω is injective.

Considering the variables that are selected by ω it is simple to check that it is associated with
γ as desired. �

We will now prove the claimed upper bound for En.

Proposition 10. Using the notation of Theorem 1 and Theorem 6, there exists b > 1 such that:

En ≤
√
nbnC1/2

n .

Proof. As a first step, we claim that there exists b > 1 such that:

(15) E|det ĴR
n | ≤ bn

(
E|det ĴC

n |2
)1/2

.

We want to apply the Cauchy-Schwarz inequality, and estimate the quantity:

E|det ĴR
n | = E|detBn(u)| ≤

(
E (detBn(u))

2
)1/2

=
(
EQn(u)2

)1/2
.

We write now:

(16) Qn(u)2 =
∑
γ∈I1

Q2
γu

2γ1
1 · · ·u2γN

N +
∑
α6=β

QαQβu
α1+β1

1 · · ·uαN+βN
N ,

where I1 is the index set defined in Lemma 8. Observe that, after taking expectation and using
independence, in the second sum in (16) only terms such that αi +βi is even for all i = 1, . . . , N
give a nonzero contribution:

(17) EQn(u)2 =
∑
γ∈I1

Q2
γEu

2γ1
1 · · ·u2γN

N +
∑

α6=β and α+ β “even”

QαQβEuα1+β1

1 · · ·uαN+βN
N .

We now rewrite the double sum on the right as:

∑
α6=β and α+ β even

QαQβEuα1+β1

1 · · ·uαN+βN
N =

∑
γ∈I1

 ∑
α+β=2γ

QαQβ

u2γ1
1 · · ·u2γn

N

where I2 is the index set defined in Lemma 9.
Note that there exists b1 > 1 such that |Qγ | ≤ bn1 for every γ ∈ I1. In fact there are only

O(1)n many possible ways a given monomial can appear as one of the summands in the Laplace
expansion of detBn(u). Moreover there exists b2 > 1 such that, for every fixed γ, the cardinality
of the set of pairs (α, β) such that α + β = 2γ is bounded by bn2 . In fact, given γi there are at
most six possible pairs for (αi, βi) such that αi + βi = 2γi (namely (0, 0), (0, 2), (1, 1), (1, 2),

(2, 0) and (2, 2)). In our case each monomial u2γ1
1 · · ·u2γn

N can have at most 2n−2 many variables
with nonzero exponents, hence combinatorially we have at most 62n−2 ≤ bn2 many pairs (α, β)
with α+ β = 2γ, as claimed. As a consequence we can bound:

(18)
∑
γ∈I2

 ∑
α+β=2γ

QαQβ

u2γ1
1 · · ·u2γn

N ≤ (b1b2)n
∑
γ∈I2

u2γ1
1 · · ·u2γn

N .

We now use the fact that in the expansion of detBn(u) no coefficient Qγ is zero for γ ∈ I1 (by
Lemma 8; moreover |Qγ | ≥ 1 and as a consequence we can write:∑

γ∈I2

u2γ1
1 · · ·u2γn

N ≤
∑
γ∈I1

u2γ1
1 · · ·u2γn

N ≤
∑
γ∈I1

Q2
γu

2γ1
1 · · ·u2γn

N .
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In the first inequality we have used the fact that I2 ⊆ I1 (Lemma 9). Combining this with (17)
and (18) we get:

(19) EQn(u)2 ≤ bn3
∑
γ∈I1

Q2
γEu

2γ1
1 · · ·u2γN

N .

We now switch back to the variables x1, . . . , xN (which are standard independent Gaussians).
Recalling the definition of Pn(x) = detAn(x) = detBn(u) = Qn(u), we have:∑

γ∈I1

Q2
γEu

2γ1
1 · · ·u2γN

N =
∑
γ∈I1

P 2
γEx

2γ1
1 · · ·x2γN

N .

We now look at Ex2γ1
1 · · ·x2γN

N for γ ∈ I1. Using independence:

Ex2γ1
1 · · ·x2γN

N =

N∏
i=1

Ex2γi
i =

∏
{i | γi 6=0}

Ex2γi
i ≤ bn4

∏
{i | γi 6=0}

γi! = bn4

N∏
i=1

γi!.

For the inequality in the line above we have used the fact that only 2n−1 many variables appear
with a nonzero power, and for those variables we have γi ≤ 2 which implies that the moment
Ex2γi

i = (2γi − 1)!! ≤ 2γi! (so we can take say b4 = 4). In particular, continuing from (19) we
get:

EPn(x)2 = EQn(u)2 ≤ bn3
∑
γ∈I1

P 2
γEx

2γ1
1 · · ·x2γN

N

≤ bn5
∑
γ∈I1

P 2
γ γ1! · · · γN !

= bn5 (2n− 2)!
∑
γ

P 2
γ

γ1! · · · γN !

(2n− 2)!

= bn5 (2n− 2)!‖Pn‖2B .

Recalling (12), we have (2n− 2)! ‖Pn‖2B = E|det ĴC
n |2, which finally implies (15):

E|det ĴR
n | ≤ bn

(
E|det ĴC

n |2
)1/2

.

We can finally use Theorem 1, and estimate the quantity En as:

En =

(
(2n− 3)n−1

Γ(n)

2n−3∏
k=0

(
2n− 3

k

)−1/2
)
E|det ĴR

n |

=
√
n

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)1/2

E|det ĴR
n |

≤
√
n

(
(2n− 3)2n−2

Γ(n)Γ(n+ 1)

2n−3∏
k=0

(
2n− 3

k

)−1
)1/2

bn
(
E|det ĴC

n |2
)1/2

≤
√
nbnC1/2

n .

This proves the statement in the proposition.
�
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5.2. The square root law.

Theorem 11. Using the notation of Theorem 1 and Theorem 6, we have:

lim
n→∞

logEn
logCn

=
1

2
.

Proof. Applying Corollary 3 and Proposition 10 we get:

(2n− 3)!! ≤ En ≤ bn
√
nC1/2

n .

We note that log(2n− 3)!! = n log(n) +O(n) and that, by (2), logCn = 2n log(n) +O(n). As a
consequence:

n log(n) +O(n) = log(2n− 3)!! ≤ logEn ≤
1

2
logCn + n log b+O(log n)

and, dividing by logCn:

n log(n) +O(n)

2n log(n) +O(n)
≤ logEn

logCn
≤ 1

2
+
n log b+O(log n)

2n log(n) +O(n)
.

Taking the limit n→∞ yields the result. �
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