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Abstract

For every fixed ℓ > 0, we describe a singly exponential algorithm for computing
the first ℓ Betti number of a given semi-algebraic set. More precisely, we describe
an algorithm that given a semi-algebraic set S ⊂ Rk a semi-algebraic set defined
by a Boolean formula with atoms of the form P > 0, P < 0, P = 0 for P ∈
P ⊂ R[X1, . . . ,Xk], computes b0(S), . . . , bℓ(S). The complexity of the algorithm

is (sd)k
O(ℓ)

, where where s = #(P) and d = maxP∈P deg(P ). Previously, singly
exponential time algorithms were known only for computing the Euler-Poincaré
characteristic, the zero-th and the first Betti numbers.
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1 Introduction

Let R be a real closed field and S ⊂ Rk a semi-algebraic set defined by a
Boolean formula with atoms of the form P > 0, P < 0, P = 0 for P ∈ P ⊂
R[X1, . . . ,Xk] (we call such a set a P-semi-algebraic set). It is well known
(18; 19; 17; 22; 1) that the topological complexity of S (measured by the
various Betti numbers of S) is bounded by O(sd)k, where s = #(P) and
d = maxP∈P deg(P ). Note that these bounds are singly exponential in k.
More precise bounds on the individual Betti numbers of S appear in (2). Even
though the Betti numbers of S are bounded singly exponentially in k, there
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is no known algorithm for producing a singly exponential sized triangulation
of S (which would immediately imply a singly exponential algorithm for com-
puting the Betti numbers of S). In fact, designing a singly exponential time
algorithm for computing the Betti numbers of semi-algebraic sets is one of
the outstanding open problems in algorithmic semi-algebraic geometry. More
recently, determining the exact complexity of computing the Betti numbers of
semi-algebraic sets has attracted the attention of computational complexity
theorists (8), who are interested in developing a theory of counting complexity
classes for the Blum-Shub-Smale model of real Turing machines.

Doubly exponential algorithms (with complexity (sd)2O(k)
) for computing all

the Betti numbers are known, since it is possible to obtain a triangulation of S
in doubly exponential time using cylindrical algebraic decomposition (10; 5).
In the absence of singly exponential time algorithms for computing triangu-
lations of semi-algebraic sets, algorithms with single exponential complexity
are known only for the problems of testing emptiness (20; 3), computing the
zero-th Betti number (i.e. the number of semi-algebraically connected compo-
nents of S) (13; 9; 12; 4), as well as the Euler-Poincaré characteristic of S (1).
Very recently a singly exponential time algorithm has been developed for the
problem of computing the first Betti number of a given semi-algebraic set (6).

In this paper we describe, for each fixed number ℓ > 0, a singly exponential
algorithm for computing the first ℓ Betti numbers of a given semi-algebraic set
S ⊂ Rk. We remark that using Alexander duality, we immediately get a singly
exponential algorithm for computing the top ℓ Betti numbers too. However,
the complexity of our algorithm becomes doubly exponential if we want to
compute the middle Betti numbers of a semi-algebraic set using it.

There are two main ingredients in our algorithm for computing the first ℓ Betti
numbers of a given closed semi-algebraic set. The first ingredient is a result
proved in (6), which enables us to compute a singly exponential sized covering
of the given semi-algebraic set consisting of closed, acyclic semi-algebraic sets,
in single exponential time. (A closed bounded semi-algebraic set X is acyclic
if its cohomology groups, H i(X,Q) is 0 for all i > 0 and H0(X,Q) = Q.)
The number and the degrees of the polynomials used to define the sets in this
covering are also bounded singly exponentially.

The second ingredient, which is the main contribution of this paper, is an
algorithm which uses the covering algorithm recursively and computes in singly
exponential time a complex whose homology groups are isomorphic to the first
ℓ homology groups of the input set. This complex is of singly exponential size.

The main result of the paper is the following.
Main Result: For any given ℓ, there is an algorithm that takes as input a
description of a P-semi-algebraic set S ⊂ Rk, and outputs b0(S), . . . , bℓ(S).
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The complexity of the algorithm is (sd)kO(ℓ)
, where s = #(P) and d =

maxP∈P deg(P ). Note that the complexity is singly exponential in k for every
fixed ℓ.

The paper is organized as follows. In Section 2, we recall some basic defi-
nitions from algebraic topology and fix notations. In Section 3 we describe
the construction of the complexes which allows us to compute the the first
ℓ Betti numbers of a given semi-algebraic set. In Section 4 we recall the in-
puts, outputs and complexities of a few algorithms described in detail in (6),
which we use in our algorithm. Finally, in Section 5 we describe our algorithm
for computing the first ℓ Betti numbers, prove its correctness as well as the
complexity bounds.

2 Mathematical Preliminaries

In this section, we recall some basic facts about semi-algebraic sets as well as
the definitions of complexes and double complexes of vector spaces, and fix
some notations.

2.1 Semi-algebraic sets and their homology groups

Let R be a real closed field. If P is a finite subset of R[X1, . . . ,Xk], we write
the set of zeros of P in Rk as

Z(P,Rk) = {x ∈ Rk |
∧

P∈P

P(x) = 0}.

We denote by B(0, r) the open ball with center 0 and radius r.

Let Q and P be finite subsets of R[X1, . . . ,Xk], Z = Z(Q,Rk), and Zr =
Z∩B(0, r). A sign condition on P is an element of {0, 1,−1}P . The realization
of the sign condition σ over Z, R(σ, Z), is the basic semi-algebraic set

{x ∈ Rk |
∧

Q∈Q

Q(x) = 0 ∧
∧

P∈P

sign(P(x)) = σ(P)}.

The realization of the sign condition σ over Zr, R(σ, Zr), is the basic semi-
algebraic set R(σ, Z) ∩B(0, r). For the rest of the paper, we fix an open ball
B(0, r) with center 0 and radius r big enough so that, for every sign condition
σ, R(σ, Z) and R(σ, Zr) are homeomorphic. This is always possible by the
local conical structure at infinity of semi-algebraic sets ((7), page 225).
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A closed and bounded semi-algebraic set S ⊂ Rk is semi-algebraically tri-
angulable (see (5)), and we denote by Hi(S) the i-th simplicial homology
group of S with rational coefficients. The groups Hi(S) are invariant under
semi-algebraic homeomorphisms and coincide with the corresponding singular
homology groups when R = R. We denote by bi(S) the i-th Betti number of S
(that is, the dimension of Hi(S) as a vector space), and b(S) the sum

∑

i bi(S).
For a closed but not necessarily bounded semi-algebraic set S ⊂ Rk, we will
denote by Hi(S) the i-th simplicial homology group of S ∩ B(0, r), where r
is sufficiently large. The sets S ∩B(0, r) are semi-algebraically homeomorphic
for all sufficiently large r > 0, by the local conical structure at infinity of
semi-algebraic sets, and hence this definition makes sense.

The definition of homology groups of arbitrary semi-algebraic sets in Rk re-
quires some care and several possibilities exist. In this paper, we define the
homology groups of realizations of sign conditions as follows.

Let R denote a real closed field and R′ a real closed field containing R. Given
a semi-algebraic set S in Rk, the extension of S to R′, denoted Ext(S,R′), is
the semi-algebraic subset of R′k defined by the same quantifier free formula
that defines S. The set Ext(S,R′) is well defined (i.e. it only depends on the
set S and not on the quantifier free formula chosen to describe it). This is an
easy consequence of the transfer principle (5).

Now, let S ⊂ Rk be a P-semialgebraic set, where P = {P1, . . . , Ps} is a
finite subset of R[X1, . . . ,Xk]. Let φ(X) be a quantifier-free formula defining
S. Let Pi =

∑

α ai,αX
α where the ai,α ∈ R. Let A = (. . . , Ai,α, . . .) denote

the vector of variables corresponding to the coefficients of the polynomials
in the family P, and let a = (. . . , ai,α, . . .) ∈ RN denote the vector of the
actual coefficients of the polynomials in P. Let ψ(A,X) denote the formula
obtained from φ(X) by replacing each coefficient of each polynomial in P by
the corresponding variable, so that φ(X) = ψ(a,X). It follows from Hardt’s
triviality theorem for semi-algebraic mappings (14), that there exists, a′ ∈ RN

alg

such that denoting by S ′ ⊂ Rk
alg the semi-algebraic set defined by ψ(a′, X),

the semi-algebraic set Ext(S ′,R), has the same homeomorphism type as S.
We define the homology groups of S to be the singular homology groups
of Ext(S ′,R). It follows from the Tarski-Seidenberg transfer principle, and
the corresponding property of singular homology groups, that the homology
groups defined this way are invariant under semi-algebraic homotopies. It is
also clear that this definition is compatible with the simplicial homology for
closed, bounded semi-algebraic sets, and the singular homology groups when
the ground field is R. Finally it is also clear that, the Betti numbers are not
changed after extension: bi(S) = bi(Ext(S,R′)).
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2.2 Complex of Vector Spaces

A sequence {Cp}, p ∈ Z, of Q-vector spaces together with a sequence {δp} of
homomorphisms δp : Cp → Cp+1 for which δp−1 ◦ δp = 0 for all p is called a
complex.

Ths homology groups, Hp(C•) are defined by,

Hp(C•) = Zp(C)/Bp(C),

where Bp(C•) = Im(δp−1), and Zp(C•) = Ker(δp).

The homology groups, H∗(C•), are all Q-vector spaces (finite dimensional if
the vector spaces Cp’s are themselves finite dimensional). We will henceforth
omit reference to the field of coefficients Q which is fixed throughout the rest
of the paper.

Given two complexes, C• = (Cp, δp) and D• = (Dp, δp), a homomorphism of
complexes, φ : C• → D•, is a sequence of homomorphisms φp : Cp → Dp for
which δp ◦ φp = φp+1 ◦ δp for all p.

In other words, the following diagram is commutative.

· · · −→ Cp δp

−→ Cp+1 −→ · · ·






y

φp







y

φp−1

· · · −→ Dp δp

−→ Dp+1 −→ · · ·

A homomorphism of complexes, φ : C• → D•, induces homorphisms, φ∗ :
H∗(C•) → H∗(D•). The homomorphism φ is called a quasi-isomorphism if
the homomorphism φ∗ is an isomorphism.

2.3 Double Complexes

In this section, we recall the basic notions of a double complex of vector
spaces and associated spectral sequences. A double complex is a bi-graded
vector space,

C•,• =
⊕

p,q∈Z

Cp,q,

with co-boundary operators d : Cp,q → Cp,q+1 and δ : Cp,q → Cp+1,q and such
that dδ + δd = 0. We say that C•,• is a first quadrant double complex, if it
satisfies the condition that Cp,q = 0 if either p < 0 or q < 0. Double complexes
lying in other quadrants are defined in an analogous manner.
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...
...

...

C0,2

d

6

δ - C1,2

d

6

δ - C2,2

d

6

δ - · · ·

C0,1

d

6

δ - C1,1

d

6

δ - C2,1

d

6

δ - · · ·

C0,0

d

6

δ - C1,0

d

6

δ - C2,0

d

6

δ - · · ·

The complex defined by

Totn(C•,•) =
⊕

p+q=n

Cp,q,

with differential

Dn = d± δ : Totn(C•,•) → Totn+1(C•,•),
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is denoted by Tot•(C•,•) and called the associated total complex of C•,•.

...
...

...
.............

.............

.............

.............
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d

6
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d

6
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.............

.............
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6
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6
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6

δ - · · ·
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.............

.............
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d

6

δ- Cp,q−1

d

6

δ- Cp+1,q−1

d

6

δ - · · ·
.............

.............

.............

.............
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d

6

...

d

6

...

d

6

2.4 Spectral Sequences

A spectral sequence is a sequence of bigraded complexes (Er, dr : Ep,q
r →

Ep+r,q−r+1
r ) such that the complex Er+1 is obtained from Er by taking its

homology with respect to dr (that is Er+1 = Hdr
(Er)).

There are two spectral sequences, ′Ep,q
∗ , ′′Ep,q

∗ , (corresponding to taking row-
wise or column-wise filtrations respectively) associated with a first quadrant
double complex C•,•, which will be important for us. Both of these converge to
H∗(Tot•(C•,•)). This means that the homomorphisms, dr are eventually zero,
and hence the spectral sequences stabilize, and

⊕

p+q=i

′E
p,q
∞

∼=
⊕

p+q=i

′′E
p,q
∞

∼= H i(Tot•(C•,•)),

for each i ≥ 0.

The first terms of these are ′E1 = Hd(C
•,•), ′E2 = HdHδ(C

•,•), and ′′E1 =
Hδ(C

•,•), ′′E2 = HdHδ(C
•,•).

Given two (first quadrant) double complexes, C•,• and C̄•,•, a homomorphism
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p + q = ℓ + 1p + q = ℓ
p

q

d1

d2

d3

d4

Fig. 1. dr : E
p,q
r → E

p+r,q−r+1
r

of double complexes,
φ : C•,• −→ C̄•,•,

is a collection of homomorphisms, φp,q : Cp,q −→ C̄p,q, such that the following
diagrams commute.

Cp,q δ
−→ Cp+1,q







y

φp,q







y

φp+1,q

C̄p,q δ
−→ C̄p+1,q

Cp,q d
−→ Cp,q+1







y

φp,q







y

φp,q+1

C̄p,q d
−→ C̄p,q+1

A homomorphism of double complexes,

φ : C•,• −→ C̄•,•,

induces homomorphisms, ′φs : ′Es −→ ′Ēs (respectively, ′′φs : ′′Es −→ ′′Ēs)
between the associated spectral sequences (corresponding either to the row-
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wise or column-wise filtrations). For the precise definition of homomorphisms
of spectral sequences, see (16). We will need the following useful fact (see (16),
page 66, Theorem 3.4 for a proof).

Proposition 2.1 If ′φs (respectively, ′′φs) is an isomorphism for some s ≥ 1,
then ′Ep,q

r and ′Ē
p,q

r (repectively, ′′Ep,q
r and ′′Ē

p,q

r ) are isomorphic for all r ≥ s.
In particular, the induced homomorphism,

φ : Tot•(C•,•) → Tot•(C̄•,•)

is a quasi-isomorphism.

2.5 The Mayer-Vietoris Double Complex

Let A1, . . . , An be sub-complexes of a finite simplicial complex A such that
A = A1 ∪ · · · ∪ An. Note that the intersections of any number of the sub-
complexes, Ai, is again a sub-complex of A. We will denote by Ai0,...,ip the
sub-complex Ai0 ∩ · · · ∩ Aip.

Let Ci(A) denote the Q-vector space of i co-chains of A, and C•(A), the
complex

· · · → Cq−1(A)
d

−→ Cq(A)
d

−→ Cq+1(A) → · · ·

where d : Cq(A) → Cq+1(A) are the usual co-boundary homomorphisms. More
precisely, given ω ∈ Cq(A), and a q + 1 simplex [a0, . . . , aq+1] ∈ A,

dω([a0, . . . , aq+1]) =
∑

0≤i≤q+1

(−1)iω([a0, . . . , âi, . . . , aq+1]) (1)

(here and everywhere else in the paperˆdenotes omission). Now extend dω to
a linear form on all of Cq+1(A) by linearity, to obtain an element of Cq+1(A).

The connecting homomorphisms are “generalized” restrictions and will be
defined below.

The generalized Mayer-Vietoris sequence is the following exact sequence of
vector spaces. (Here and everywhere else in the paper ⊕ denotes the direct
sum of vector spaces).

0 −→ C•(A)
r

−→ ⊕i0C
•(Ai0)

δ1

−→ ⊕i0<i1C
•(Ai0,i1)

δ2

−→ · · ·

δp

−→ ⊕i0<···<ip+1C
•(Ai0,...,ip+1)

δp+1

−→ · · ·

where r is induced by restriction and the connecting homomorphisms δ are
described below.

Given an ω ∈ ⊕i0<···<ipC
q(Ai0,...,ip) we define δ(ω) as follows:
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First note that δω ∈ ⊕i0<···<ip+1C
q(Ai0,...,ip+1), and it suffices to define (δω)i0,...,ip+1

for each (p+2)-tuple 0 ≤ i0 < · · · < ip+1 ≤ n. Note that, (δω)i0,...,ip+1 is a linear
form on the vector space, Cq(Ai0,...,ip+1), and hence is determined by its val-
ues on the q-simplices in the complex Ai0,...,ip+1. Furthermore, each q-simplex,
s ∈ Ai0,...,ip+1 is automatically a simplex of the complexes Ai0,...,îi,...ip+1

, 0 ≤
i ≤ p+ 1.

We define,
(δω)i0,...,ip+1(s) =

∑

0≤j≤p+1

(−1)iωi0,...,îj ,...,ip+1
(s)

(here and everywhere else in the paperˆdenotes omission).

The fact that the generalized Mayer-Vietoris sequence is exact is classical (see
(2) for example).

We now define the Mayer-Vietoris double complex of A, which we will denote
by N •,•(A). N •,•(A) is the double complex defined by,

N p,q(A) =
⊕

α0<···<αp

Cq(Aα0,...,αp
).

The horizontal differentials are as defined above. The vertical differentials are
those induced by the ones in the different complexes, C•(Aα0,...,αp

).

N •,•(A) is depicted in the following figure.

⊕α0C
2(Aα0)

6

- ⊕α0<α1C
2(Aα0,α1)

6

- . . .

⊕α0C
1(Aα0)

6

- ⊕α0<α1C
1(Aα0,α1)

6

- . . .

⊕α0C
0(Aα0)

6

- ⊕α0<α1C
0(Aα0,α1)

6

- . . .

The following proposition is classical (see (2) for a proof) and follows from the
exactness of the generalized Mayer-Vietoris sequence.

Proposition 2.2 The spectral sequences, ′Er,
′′Er, associated to N •,•(A) con-

verge to H∗(A,Q) and thus,

H∗(Tot•(N •,•(A))) ∼= H∗(A,Q).
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Moreover, the homomorphism ψ : C•(A) → Tot•(N •,•(A)) induced by the
homomorphism r (in the generalized Mayer-Vietoris sequence) is a quasi-
isomorphism.

3 Double complexes associated to certain coverings

Let P be a finite subset of R[X1, . . . ,Xk]. A P-closed formula is a formula
constructed as follows:

For each P ∈ P,
P = 0, P ≥ 0, P ≤ 0,

are P-closed formulas.
If Φ1 and Φ2 are P-closed formulas, Φ1∧Φ2 and Φ1∨Φ2 are P-closed formulas.

Clearly, R(Φ) = {x ⊂ Rk | Φ(x)}, the realization of a P-closed formula Φ, is a
closed semi-algebraic set and we call such a set a P-closed semi-algebraic set.

In this section, we consider a fixed family of polynomials, P ⊂ R[X1, . . . ,Xk],
as well as a fixed P-closed and bounded semi-algebraic set, S ⊂ Rk. We also
fix a number, ℓ, 0 ≤ ℓ ≤ k.

We identify certain closed and bounded semi-algebraic subsets of S (which
we call the admissible subsets of S). We associate to each admissible subset
X ⊂ S, its level denoted level(X), with level(S) = 0. For each such admissible
subset, X ⊂ S, we define a double complex, M•,•(X), such that

H i(Tot•(M•,•(X))) ∼= H i(X,Q), 0 ≤ i ≤ ℓ− level(X).

The main idea behind the construction of the double complex M•,•(X) is as
follows. Given any covering of X by closed semi-algebraic set there is associ-
ated to it a double complex (the Mayer-Vietoris double complex) arising from
the generalized Mayer-Vietoris exact sequence (see (2)). If the sets occuring in
the covering of X are all acyclic, then the first column of the Mayer-Vietoris
double complex is zero except at the first row. The homology groups of the
associated total complex of the Mayer-Vietoris double complex are isomorphic
to those of X and thus in order to compute b0(X), . . . , bℓ−level(X)(X), it suffices
to compute a suitable truncation of the Mayer-Vietoris double complex. How-
ever, computing (even the truncated) Mayer-Vietoris double complex directly
within a singly exponential time complexity is not possible by any known
method, since we are unable to compute triangulations of semi-algebraic sets
in singly exponential time. However, making use of the covering construction
recursively, we are able to compute another double complex, M•,•(X), which
has much smaller size but whose associated total complex is quasi-isomorphic
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to the truncated Mayer-Vietoris double complex and hence has isomorphic
homology groups (see Proposition 3.2 below). The construction of M•,•(X)
is possible in singly exponential time since the coverings can be computed in
singly exponential time.

3.1 Admissible sets and Coverings

Given any closed and bounded semi-algebraic set X ⊂ Rk, we will denote by
C′(X), a fixed covering of X by a finite family of closed, bounded and acyclic
semi-algebraic sets (we will use the construction in (6) to compute such a
covering).

We have that, V ⊂ X for each V ∈ C′(X) and X = ∪V ∈C′(X)V. We will index
the sets in C′(X) as V1, . . . , VnX

where nX = #C′(X), and for 1 ≤ α0 < · · · <
αp ≤ nX , we will denote Vα0,...,αp

=
⋂

0≤i≤p

Vαi
. For I ⊂ J ⊂ {1, . . . , nX} we will

call VI an ancestor of VJ and X an ancestor of all the VI ’s. We will henceforth
transitively close the ancestor relation, so that ancestor of an ancestor is also
an ancestor. Moreover, if {Ui}i∈I , {Vj}j∈J are two families of admissible sets
such that, U = ∩i∈IUi and V = ∩j∈JVj are both admissible, and such that for
every j ∈ J there exists i ∈ I such that Ui is an ancestor of Vj, then U is an
ancestor of V .

We now associate to certain closed semi-algebraic subsets X of S (which we
call the admissible subsets of S), a covering, C(X), of X by closed, bounded,
acyclic semi-algebraic sets, obtained by enlarging the covering C′(X). We also
associate an integer to each admissible X, which we will call the level of
X (denoted level(X)). We emphasize that the admissible subsets are to be
considered as indexed sets and we will consider two equal sets with distinct
indices to be distinct.

The set S itself is admissible of level 0 and C(S) = C′(S). All intersections of
the sets in C(S) taken upto ℓ+ 2 at a time are admissible and have level 1.

The admissible subsets of S are the smallest family of subsets of S containing
the above sets and satisfying the following. For any admissible subset X ⊂ S
at level i, we define C(X) as follows. Let {Y1, . . . , YN} be the set of admissible
sets which are ancestors of X. Then,

C(X) =
⋃

Ui∈C(Yi),1≤i≤N

C′(U1 ∩ · · · ∩ UN ∩X).

All intersections of the sets in C(X) taken at most ℓ−i+2 at a time are admis-
sible, have level i + 1, and have X as an ancestor. For I ⊂ J ⊂ {1, . . . , nX},
VI is an ancestor of VJ and X is an ancestor of all the VI ’s. Moreover, for
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V ∈ C′(U1 ∩ · · · ∩ UN ∩X), each Ui is an ancestor of V . This clearly implies
that each V ∈ C(X) has a unique ancestor in each C(Yi) (namely, Ui).

Now, suppose that we have a procedure for computing C′(X), for any given P ′-
closed and bounded semi-algebraic set, X, where #P ′ = m and deg(P ) ≤ D,
for P ∈ P ′. Moreover, suppose that the number and the degrees of the poly-
nomials appearing in the output of this procedure is bounded by (mD)kO(1)

.
Using the above procedure for computing C′(X), and the definition of admis-
sible sets we have the following quantitative bounds on admissible sets which
is crucial in proving the complexity bound of our algorithm.

Proposition 3.1 Let S ⊂ Rk be a P-closed semi-algebraic set, where P ⊂
R[X1, . . . ,Xk] is a family of s polynomials of degree at most d. Then the number
of admissible sets, the number of polynomials used to define them, the degrees
of these polynomials, are all bounded by (sd)kO(ℓ)

.

Proof: The claim is clear for admissible sets at level 0. The proposition follows
easily by induction on the level and the quantitative bounds on C′(X) stated
above. 2

3.2 Double Complex Associated to a Covering

Given the different coverings described above, we now associate to each ad-
missible set X ⊂ S a double complex, M•,•(X), satisfying the following:

(1)

H i(Tot•(M•,•(X)),Q) ∼= H i(X,Q), for 0 ≤ i ≤ ℓ− level(X). (2)

(2) For every admissible set Y , such thatX is an ancestor of Y , and level(X) =
level(Y ), a restriction homomorphism: rX,Y : M•,•(X) → M•,•(Y ),
which induces the restriction homomorphisms between the cohomology
groups:

r : H i(X,Q) → H i(Y,Q)

for 0 ≤ i ≤ ℓ− level(X) via the isomorphisms in (2).

We now describe the construction of the double complex M•,•(X) and prove
that it has the properties stated above. The double complex M•,•(X) is con-
structed inductively using induction on level(X):
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The base case is when level(X) = ℓ. In this case the double complex, M•,•(X)
is defined by:

M0,0(X) =
⊕

Uα0 ∈ C(X) C
0(Uα0),

M1,0(X) =
⊕

Uα0 ,Uα1 ∈ C(X),α0<α1
C0(Uα0,α1),

Mp,q(X) = 0, if q > 0 or p > 1.

Here C0(Y ) is the Q-vector space of Q valued locally constant functions on
Y .

This is shown diagramatically below.

0 - 0 - 0

0

6

- 0

6

- 0

6

⊕Uα0∈C(X)C
0(Uα0)

6

δ- ⊕Uα0 ,Uα1∈C(X),α0<α1C
0(Uα0,α1)

6

- 0

6

The only non-trivial homomorphism in the above complex,

δ :
⊕

Uα0∈C(X)

C0(Uα0) −→
⊕

Uα0 ,Uα1∈C(X),α0<α1

C0(Uα0,α1)

is defined by δ(x)α0,α1 = (xα1 − xα0)|Uα0,α1
for each x ∈

⊕

Uα0∈C(X) C
0(Uα0).

For every admissible set Y , such that X is an ancestor of Y , and level(X) =
level(Y ) = ℓ, we define rX,Y : M0,0(X) → M0,0(Y ), as follows.

Recall that, M0,0(X) =
⊕

U ∈ C(X)

C0(U), and M0,0(Y ) =
⊕

V ∈ C(Y )

C0(V ). Also,

by definition of C(Y ), we have that for each V ∈ C(Y ) there is a unique
U ∈ C(X) (which we will denote by a(V )) such that U is an ancestor of V .

For x ∈ M0,0(X) and V ∈ C(Y ) we define,

rX,Y (x)V = xa(V )|V .
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We define rX,Y : M1,0(X) → M1,0(Y ), in a similar manner. More precisely,
for x ∈ M0,0(X) and V, V ′ ∈ C(Y ), we define

rX,Y (x)V,V ′ = xa(V ),a(V ′)|V ∩V ′ .

(The inductive step) In general the Mp,q(X) are defined as follows using in-
duction on level(X) and with n = ℓ− level(X) + 1.

M0,0(X) =
⊕

Uα0 ∈ C(X) C
0(Uα0),

M0,q(X) = 0, 0 < q,

Mp,q(X) =
⊕

α0<···<αp, Uαi
∈C(X) Totq(M•,•(Uα0,...,αp

)), 0 < p, 0 < p+ q ≤ n,

Mp,q(X) = 0, else.

The double complex M•,•(X) is shown in the following diagram:

0 - 0 - 0 · · · 0

0

6

- ⊕α0<α1
Tot

n−1
(M

•,•
(Uα0,α1

))

6

δ - 0

6

· · · 0

6

0

d

6

- ⊕α0<α1
Tot

n−2
(M

•,•
(Uα0,α1

))

d

6

δ- ⊕α0<α1<α2
Tot

n−2
(M

•,•
(Uα0,α1,α2

))

d

6

· · · 0

d

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 - ⊕α0<α1
Tot

2
(M

•,•
(Uα0,α1

))
δ- ⊕α0<α1<α2

Tot
2
(M

•,•
(Uα0,α1,α2

)) · · · 0

0

d

6

- ⊕α0<α1
Tot

1
(M

•,•
(Uα0,α1

))

d

6

δ- ⊕α0<α1<α2
Tot

1
(M

•,•
(Uα0,α1,α2

))

d

6

· · · 0

d

6

⊕Uα0
∈CX

C
0
(Uα0

)

d

6

δ- ⊕α0<α1
Tot

0
(M

•,•
(Uα0,α1

))

d

6

δ- ⊕α0<α1<α2
Tot

0
(M

•,•
(Uα0,α1,α2

))

d

6

· · ·⊕α0<···<αnTot
0
(M

•,•
(Uα0,...,αn ))

d

6

The vertical homomorphisms, d, in M•,•(X) are those induced by the differ-
entials in the various

Tot•(M•,•(Uα0,...,αp
)), Uαi

∈ C(X).

The horizontal ones are defined by generalized restriction as follows (using the
fact that the restriction homomorphisms, rU,V , are defined for all admissible
sets U, V with level(U) = level(V ) > level(X), by induction). We define

δ :
⊕

α0<···<αp

Totq(M•,•(Uα0,...,αp
)) −→

⊕

α0<···<αp+1

Totq(M•,•(Uα0,...,αp+1))
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by

δ(x)α0,...,αp+1 =
∑

0≤i≤p+1

(−1)irUα0,...,α̂i,...,αp+1
,Uα0,...,αp+1

(xα0,...,α̂i,...,αp+1)

for x ∈
⊕

α0<···<αp

Totq(M•,•(Uα0,...,αp
)), noting that for each i, 0 ≤ i ≤ p + 1,

Uα0,...,α̂i,...,αp+1 is an ancestor of Uα0,...,αp+1 , and Uα0,...,α̂i,...,αp+1, Uα0,...,αp+1 have
the same levels.

Now let, Y ⊂ X be admissible sets with X an ancestor of Y and level(X) =
level(Y ). We define the restriction homomorphism,

rX,Y : M•,•(X) → M•,•(Y )

as follows.

As before, for x ∈ M0,0(X) and V ∈ C(Y ) we define,

r0,0
X,Y (x)V = xa(V )|V .

For 0 < p, 0 < p+ q ≤ ℓ− level(X)+ 1, we define rp,q
X,Y : Mp,q(X) → Mp,q(Y ),

component-wise as follows.

Let x ∈ Mp,q(X) =
⊕

α0<···<αp, Uαi
∈C(X)

Totq(M•,•(Uα0,...,αp
)). We define,

rp,q
X,Y (x)β0,...,βp

= ⊕i+j=qr
i,j
a(Vβ0,...,βp),Vβ0,...,βp

xa(Vβ0
),...,a(Vβp),

where a(Vβ0,...,βp
) = ∩0≤i≤pa(Vβi

). Note that,

level(a(Vβ0,...,βp
)) = level(Vβ0,...,βp

) = level(X) + 1.

It is easy to verify by induction on level(X) that, M•,•(X) defined as above,
is indeed a double complex, that is the homomorphisms d and δ satisfy the
equations,

d2 = δ2 = 0, d ◦ δ + δ ◦ d = 0.

We now prove properties 1 and 2 of the various M•,•(X).

Proposition 3.2 For each admissible subset X ⊂ S the double complex M•,•(X)
satisfies the following properties:

(1) H i(Tot•(M•,•(X)),Q) ∼= H i(X,Q) for 0 ≤ i ≤ ℓ− level(X).
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(2) For every admissible set Y , such that X is an ancestor of Y , and level(X) =
level(Y ), the homomorphism, rX,Y : M•,•(X) → M•,•(Y ), induces the
restriction homomorphisms between the cohomology groups:

r : H i(X,Q) → H i(Y,Q)

for 0 ≤ i ≤ ℓ− level(X) via the isomorphisms in (1).

The main idea behind the proof of Proposition 3.2 is as follows. For any admis-
sible subset X of S, we consider a suitably fine semi-algebraic triangulation,
∆X , of X. The triangulation ∆X is fine enough such that, for each admissible
subset U of X, ∆X restricts to a semi-algebraic triangulation, ∆U , of U .

We denote by Nt(∆X) the following truncated complex (denoting by nX =
ℓ− level(X) + 1),

N p,q
t (∆X) = N p,q(∆X) 0 ≤ p+ q ≤ nX ,

N p,q
t (∆X) = 0, otherwise,

where N •,•(∆X) is the Mayer-Vietoris double complex defined in Section 2.5.

Since by Proposition 2.2 the spectral sequences associated to the double com-
plex N •,•(∆X) converges to H∗(X,Q), we have that

H i(Tot•(N •,•
t (∆X)),Q) ∼= H i(X,Q), 0 ≤ i ≤ ℓ− level(X).

We then prove by induction on level(X) that for each admissible X there
exists a double complex D•,•(X) and homomorphisms,

φX : M•,•(X) → D•,•(X)

ψX : C•(∆X) → Tot•(D•,•(X))

such that the induced homomorphism,

φX : Tot•(M•,•(X)) → Tot•(D•,•(X)),

as well as ψX are quasi-isomorphisms.

Tot•(D•,•(X))

�
�

�
�

�
φX

� I@
@

@
@

@

ψX

Tot•(M•,•(X)) C•(∆X)
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These quasi-isomorphisms will together imply that,

H i(Tot•(M•,•(X))) ∼= H i(Tot•(D•,•(X))) ∼= H i(Tot•(N •,•
t (∆X))) ∼= H i(X,Q),

for 0 ≤ i ≤ ℓ− level(X).

Proof of Proposition 3.2: The proof of the proposition is by induction on
level(X). When level(X) = ℓ, we let D•,•(X) = N •,•

t (∆X), and define the
homomorphisms φX , ψX in the obvious manner.

Otherwise, by induction hypothesis for each Uα0 , . . . , Uαp
, Uαp+1 ∈ C(X), 0 ≤

p ≤ ℓ − level(X) + 2, with α0 < . . . < αp+1, there exists a double complex
D•,•(Uα0,...,αp

) and quasi-isomorphisms

φUα0,...,αp
: Tot•(M•,•(Uα0,...,αp

)) → Tot•(D•,•(Uα0,...,αp
))

ψUα0,...,αp
: C•(∆X) → Tot•(D•,•(Uα0,...,αp

)).

We define D•,•(X) by,

Dp,q(X) =
⊕

α0<···<αp, Uαi
∈C(X) Totq(D•,•(Uα0,...,αp

)), 0 ≤ p+ q ≤ nX .

The homomorphism φX is the one induced by the different φUα0,...,αp
defined

already by induction. In order to define the homomorphism ψX , we first define
a homomorphism, ψ′

X : N •,•
t (X) → D•,•(X) induced by the different ψUα0,...,αp

,
and compose the induced homomorphism, ψ′

X : Tot•(N •,•
t ) → Tot•(D•,•(X)),

with the naturally defined quasi-isomorphism, ψ′′
X : C•(∆X) → Tot•(N •,•

t (X))
(see Proposition 2.2). 2

4 General Position and Coverings by Contractible Sets

In this section, we recall some results proved in (6) on constructing singly ex-
ponential sized covering of a given closed semi-algebraic set, by closed, acyclic
semi-algebraic set. We recall the input, output and the complexity of the al-
gorithms, referring the reader to (6) for all details including the proofs of
correctness.

4.1 General Position

Let Q ∈ R[X1, . . . ,Xk] such that Z(Q,Rk) = {x ∈ Rk | Q(x) = 0} is bounded.
We say that a finite set of polynomials P ⊂ D[X1, . . . , Xk] is in strong ℓ-
general position with respect to Q if any ℓ + 1 polynomials belonging to P
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have no zeros in common with Q in Rk, and any ℓ polynomials belonging to
P have at most a finite number of zeros in common with Q in Rk.

4.2 Infinitesimals

In our algorithms we will use infinitesimal perturbations. In order to do so, we
will extend the ground field R to, R〈ε〉, the real closed field of algebraic Puiseux
series in ε with coefficients in R (5). The sign of a Puiseux series in R〈ε〉 agrees
with the sign of the coefficient of the lowest degree term in ε. This induces
a unique order on R〈ε〉 which makes ε infinitesimal: ε is positive and smaller
than any positive element of R. When a ∈ R〈ε〉 is bounded by an element of
R, limε(a) is the constant term of a, obtained by substituting 0 for ε in a. We
will also denote the field R〈ε1〉 · · · 〈εs〉 by R〈ε̄〉, where ε1 ≫ ε2 · · · ≫ εs > 0
are all infinitesimals.

4.3 Replacement by closed sets without changing homology

The following algorithm allows us to replace a given semi-algebraic set by
a new one which is closed and defined by polynomials in general position
without changing the homology groups. This construction is essentially due
to Gabrielov and Vorobjov (11), with some modifications described in (6).

Algorithm 4.1 (Homology Preserving Modification to Closed)
Input : a polynomial Q ∈ D[X1, . . . , Xk] such that Z(Q,Rk) ⊂ B(0, 1/c),

a finite set of s polynomials

P = {P1, . . . , Ps} ⊂ D[X1, . . . , Xk],

a semi-algebraic set X defined by

X = ∪σ∈ΣR(σ)

with Σ ⊂ Sign(Q,P).
Output : A description of a P ′-closed and cbounded semi-algebraic subset,

X ′ ⊂ Z(Q,R〈ε, ε1, . . . , ε2s〉
k),

with P ′ =
⋃

1≤i≤s,1≤j≤2s{Pi ± εj}, such that,
H∗(X

′) ∼= H∗(X), and
the family of polynomials P ′ is in k′-strong general position with respect to
Z(Q,R〈ε, ε1, . . . , ε2s〉k), where k′ is the real dimension of Z(Q,R〈ε, ε1, . . . , ε2s〉k).

Procedure :
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Step 1 Let ε be an infinitesimal. Define T̃ as the intersection of Ext(T, 〈ε〉)
with the ball of center 0 and radius 1/ε. Define P as Q ∪ {ε2(X2

1 + . . . +
X2

k +X2
k+1)− 4, Xk+1} Replace T̃ by the P- semi-algebraic set S defined as

the intersection of the cylinder T̃ ×R〈ε〉 with the upper hemisphere defined
by ε2(X2

1 + . . .+X2
k +X2

k+1) = 4, Xk+1 ≥ 0.
Step 2 Using the Gabrielov-Vorobjov construction described in (6), replace S

by a P ′-closed set, S ′. Note that P ′ is in general position with respect to the
sphere of center 0 and radius 2/ε.

Complexity: Let d be the maximum degree among the polynomials in P.
The total complexity is bounded by sk+1dO(k) (see (6)). 2

4.4 Algorithm for Computing Coverings by Contractible Sets

The following algorithm described in detail in (6) is used to a covering of a
given closed and bounded semi-algebraic sets defined by polynomials in general
position by closed, bounded and contractible semi-algebraic sets.

Algorithm 4.2 (Covering by Contractible Sets)
Input : a polynomial Q ∈ D[X1, . . . , Xk] such that Z(Q,Rk) ⊂ B(0, 1/c),

a finite set of s polynomials P ⊂ D[X1, . . . , Xk] in strong ℓ-general position
on Z(Q,Rk).

Output : a finite family of polynomials C = {Q1, . . . , QN} ⊂ D[X1, . . . , Xk],
the finite family C ⊂ D[ε̄][X1, . . . , Xk] (where ε̄ denotes the infinitesimals
ε1 ≫ ε2 ≫ · · · ≫ ε2N > 0) defined by

C = {Q± εi | Q ∈ C, 1 ≤ i ≤ 2N}.

a set of C-closed formulas {φ1, . . . , φM} such that
each R(φi,R〈ε̄〉k) is acyclic,
their union ∪1≤i≤MR(φi,R〈ε̄〉k) = Z(Q,R〈ε̄〉k), and
each basic P-closed subset of Z(Q,R〈ε̄〉k) is a union of some subset of
the R(φi,R〈ε̄〉k)’s.

Complexity: The total complexity is bounded by s(k+1)2dO(k5) (see (6)). 2

5 Algorithm for computing the first ℓ Betti numbers of a semi-
algebraic set

We are finally in a position to describe the main algorithm of this paper.

Algorithm 5.1 (First ℓ Betti Numbers of a P Semi-algebraic Set)
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Input : a polynomial Q ∈ D[X1, . . . , Xk] such that Z(Q,Rk) ⊂ B(0, 1/c),
a finite set of polynomials P ⊂ D[X1, . . . , Xk],
a formula defining a P semi-algebraic set, S, contained in Z(Q,Rk).

Output : b0(S), . . . , bℓ(S).
Procedure :

Step 1 Using Algorithm 4.1 (Homology Preserving Modification to Closed),
replace S by a P ′-closed set, S ′. Note that P ′ is in k′-general position with
respect to Z(Q,Rk).

Step 2 Compute using Algorithm 4.2 (Covering by Contractible Sets) repeat-
edly descriptions of the admissible subsets of S, their levels, and for each
admissible subset X, the covering C(X). We also keep track of the ancestor
relationships amongst the different admissible set.

Step 3 Starting from the admissible subsets at level ℓ, compute for each ad-
missible X, the double complex M•,•(X).

Step 4 For each i, 0 ≤ i ≤ ℓ, output,

bi(S) = rankH i(Tot•(M•,•(X))).

Proof of correctness : The correctness of the algorithm is a consequence
of the correctness of Algorithms 4.1 (Homology Preserving Modification to
Closed), Algorithm 4.2 (Covering by Contractible Sets), and Proposition 3.2.
2

Complexity analysis: Each step is clearly singly exponential from the com-
plexity analysis of Algorithms 4.1 (Homology Preserving Modification to Closed),
4.2 (Covering by Contractible Sets), and Proposition 3.1 2
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