
CATEGORICAL COMPLEXITY

SAUGATA BASU AND M. UMUT ISIK

Abstract. We introduce a notion of complexity of diagrams (and in particular of ob-
jects and morphisms) in an arbitrary category, as well as a notion of complexity of
functors between categories equipped with complexity functions. We discuss several
examples of this new definition in categories of wide common interest, such as finite
sets, Boolean functions, topological spaces, vector spaces, graded algebras, schemes and
modules. We show that on one hand categorical complexity recovers in several settings
classical notions of non-uniform computational complexity (such as circuit complexity),
while on the other hand it has features which makes it mathematically more natural.
We also postulate that studying functor complexity is the categorical analog of classical
questions in complexity theory about separating different complexity classes.

1. Introduction

It is usual to associate some measure of complexity to mathematical objects. For exam-
ple, the complexity of a polynomial is often measured by its degree, or alternatively by the
volume of its Newton polytope, or the number the monomials appearing in it with non-zero
coefficients, or the least number of operations needed for an algorithm to evaluate the poly-
nomial at a given point. Once a notion of complexity is fixed, one can make quantitative
statements about properties of the objects in terms of its complexity. In the case of polyno-
mials for example, there are many results on upper bounds on the topological invariants of
the variety that the polynomial defines, the number of steps needed to desingularize the va-
riety, and many other functions defined on the space of polynomials, in terms of the chosen
complexity measure.

The notion of complexity also arose in theoretical computer science as a means of study-
ing efficiency of algorithms and also to measure the intrinsic hardness of certain algorithmic
problems. The latter led to the development of structural complexity theory and in par-
ticular to the famous P versus NP questions for discrete complexity classes that remains
unresolved until today. Even though these arose first in the context of decision problems
and Boolean functions, there have been subsequent attempts to generalize the scope of com-
putational complexity to other classes of mathematical objects – for example, the Blum-
Shub-Smale theory for computations over reals as well as complex numbers [BCSS98], over
more general structures [Poi95], for polynomials [Val79a, Val79b, vzG87], for constructible
sheaves and functions [Bas15]. Some of these generalizations are motivated by costs of com-
putations in certain models of computations, while others by the desire to have a sound
internal notion of complexity for mathematical objects. Remarkably, there exists analogues
of the P versus NP question in all the generalizations mentioned above. Thus, it seems that
there should be a more fundamental way of looking at questions arising in computational
complexity questions which unifies these various viewpoints.

1991 Mathematics Subject Classification. Primary 14P10, 14P25; Secondary 68W30.
The first author was supported in part by NSF grants CCF-0915954, CCF-1319080 and DMS-1161629

while working on this paper.
1

2 SAUGATA BASU AND M. UMUT ISIK

The goal of the current paper is to develop this general theory of complexity via a categor-
ical approach that reconciles the intuitive notion of complexity of mathematical objects with
the different notions of computational and circuit complexities used in theoretical computer
science.

We start by defining a categorical notion called a diagram computation. In an arbitrary
category C with a chosen set of morphisms called basic morphisms, diagram computations
can be used to construct diagrams, and in particular objects and morphisms in C as follows.
At the first level, one starts with a diagram consisting entirely of basic morphisms, and
then successively adds limits and colimits of arbitrary full sub-diagrams, along with the
accompanying morphisms from/to those subdiagrams, to construct more and more complex
diagrams. Any diagram isomorphic to a subdiagram of the final resulting diagram is said
to be computed by the diagram computation. This allows us to associate, to each object,
arrow, or diagram in C, a complexity by counting the number of limits, colimits and basic
morphisms used its most efficient computation. Diagram computations come in three kinds,
the full version described above, called a mixed computation, and two more restricted ones
where one is either allowed to use only the so-called constructive limits, or only constructive
colimits; leading to the notions of mixed complexity, limit complexity, and colimit complexity
of objects, arrows or any diagrams in C.

We remark here that connections between computability and logic on one hand and
category theory and topos theory on the other hand has a long history (see for example,
[LS88, MLM94]). However, our goal is different, and it is to develop a completely general
notion of complexity, based on category theory, that is useful in studying basic objects in
algebra and geometry from a quantitative point of view. To the best of our knowledge this
task has not been undertaken before.

While our notion of complexity bears some similarity with a more classical view of com-
plexity coming from logic, namely descriptive complexity [Imm95], there is one important
respect in which our notion of complexity differs significantly from all classical notions. In
our categorical world, isomorphic objects should have identical complexity – which is indeed
the case with our definition. Thus, we are able to define a good notion of complexity in the
category, say, of affine or projective schemes which is independent of embeddings. This is
very natural from the mathematical point of view – making our theory completely geometric
in those settings – but is sometimes at odd with ordinary complexity theory which deals
with embedded objects (like subsets of the Boolean hypercube or subvarieties of Cn). Nev-
ertheless, we will show that, with the appropriate choice of category and basic morphisms,
even non-categorical notions of complexity can be meaningfully embedded in categorical
ones.

A fundamentally new point of view emerges when one thinks about the categorical ana-
logues of classical complexity questions. For every functor between two categories for which
complexity is defined, one can define a natural notion of complexity of the functor. Unlike,
the complexity of diagrams, which are numbers, the complexity of a functor is a function
f : N → N, and one can ask whether such a functor is polynomially bounded. In this
way classical questions about separation of complexity classes become, in the categorical
world, questions about polynomiality of certain natural functors. With this shift of view-
point, one can pose many questions about complexities of functors which have no direct
analogues in the world of computational complexity. Well-studied properties of functors,
such as preservation of limits and colimits, adjointness, etc. are important from this point
of view.

CATEGORICAL COMPLEXITY 3

The importance of functor complexity was already suggested in [Bas15], where the com-
plexities of adjoint pairs of functors between the categories of semi-algebraically constructible
sheaves on finite dimensional real affine spaces were posited as categorical analogues of the
classical P versus NP question.

We now give a brief summary of our results. After the basic definitions in Section 2,
we look at several basic examples. For sets, the colimit complexity of a set S is |S| + 1.
Infinite sets are "non-computable" in this theory. For topological spaces, colimit computa-
tions starting from simplices and face maps define a simplicial complexity for topological
spaces. Similarly, mixed computations starting from points and intervals give rise to cubi-
cal complexity. These measure how hard it is to make a space from simplices and cubes
respectively. Another important basic example one is where we recover monotone Boolean
complexity from the categorical complexity in the lattice of subsets of a finite set.

In order to relate the new notion of categorical complexity, with pre-existing notions of
(non-uniform) complexity, such as circuit complexity, or lengths of straight-line programs
(we refer the reader to the books [BCS97, Bür00] for these notions), we prove certain com-
parison theorems. The first set of such theorems are about affine varieties, affine schemes,
and algebras over a field. We show that the affine zero-set of a polynomial with low circuit
complexity has low limit complexity (Theorem 3.2); on the other hand, if X is a variety
with low limit complexity, then it is isomorphic to the zero-set of a polynomial map with
low arithmetic complexity (Theorem 3.4). The same results hold for affine schemes and al-
gebras. For projective schemes in Pn: by building affine pieces with limits and then glueing
them using colimits, we show that the mixed complexity of a projective scheme is bounded
above by a constant multiple of n2N , where N is the arithmetic complexity of its defining
equations.

The categorical complexites of isomorphic varieties are equal by definition, while circuit
complexity, being a non-geometric attribute, does not share this property. In Section 4, we
consider two additional categories where circuit complexity of polynomials is, in a sense,
embedded into categorical complexity. The first of these is the category of pairs of graded
algebras, constructed specifically to make this embedding possible. Still, it remains to be
seen how complexity in this category compares to arithmetic complexity of polynomials, or to
the complexity of projective varieties discussed in [Isi16]. The second category considered
here is the category of modules over polynomial rings, where we prove that the colimit
complexity of the morphism diagram k [x1, . . . , xn] 17→f−−−→k [x1, . . . , xn] and the arithmetic
complexity of f are the same up to a quasi-polynomial function.

Finally, in Section 5, we discuss the behaviour of complexity under functors. Limit and
colimit computations are preserved under right and left adjoints respectively. We define
the complexity of a functor F : C → D as a function c(F)(n) of n, where c(F)(n) is the
supremum of the complexity of F (D), where D runs over all diagrams in C whose complexity
is less than or equal to n. The question of whether the complexity of the image functor on
the morphism category C•→• is polynomially bounded is the categorical analogue of the P
vs NP problem for the category C. Our final result is an analysis of the complexity of the
image functor for the category of modules over polynomial rings.

2. Definitions and First Examples

By a directed graph, we mean a pair (V,E) with two maps s : E → V and t : E → V . Let
C be a category and let U(C) be the underlying directed graph. Let I be any directed graph.
By a diagram in C, we mean a directed graph homomorphism D : I → U(C). The graph I is
called the shape of D. Note that I is just a directed graph and does not have a composition

4 SAUGATA BASU AND M. UMUT ISIK

operation on it. As such, there is no a priori assumption of functoriality/commutativity for
diagrams.

For I = (V,E), and two diagrams, D1 : I → U(C), D2 : I → U(C), a morphism between
D1 and D2 is a collection of morphisms ϕ = (ϕv : D1(v) → D2(v))v∈V , such that, for all
e ∈ E, D2(e) ◦ ϕD1(s(e)) = ϕD1(t(e)) ◦D1(e). This defines the category of diagrams CI with
shape I.

By a subdiagram of a diagram D : I → U(C), with I = (V,E), we mean the re-
striction DJ : J → U(C), with J = (V ′, E′) a full sub-graph of I, i.e. V ′ ⊂ V , and
E′ = {e ∈ E | s(e) ∈ V ′, t(e) ∈ V ′}. The restrictions to not necessarily full subgraphs will
be specified as not necessarily full subdiagrams.

Let A be a set of morphisms in C. These will be called the basic morphisms in C. We
define a notion of computation in C, called a limit computation by starting with these basic
morphisms and adding a finite limit at each step; similarly, in a colimit computation, we
build objects by adding colimits of subdiagrams.

Definition 2.1. Let, C be a category, A ⊂ Mor(C). A limit computation (respectively, a
colimit computation) in C is a finite sequence of diagrams (D0, . . . , Ds), with Di : Ii → U(C),
where:

(i) D0 consists only of morphisms in A, the basic morphisms.
(ii) For each i = 1, . . . , s, Di is obtained from Di−1 by adding a limit or colimit cone of

a subdiagram. More precisely, there is a sub-diagram Di−1|Ji of Di−1 and an object
Li which is a limit (resp Ci which is a colimit) of Di−1|Ji such that the difference
between Di and Di−1 are Li and the limit cone morphisms out of Li (resp. Ci and
the colimit cocone morphisms into Ci).

(iii) (Constructivity) If a limit Li = limDi−1|Ji (resp., colimit Ci) produced in the ith
step of the computation is used again in the subdiagram Dj−1|Jj used at the jth
step of the computation, then Ji ⊂ Jj , i.e. the subdiagram that produced Li (resp.,
Ci) must be a sub-diagram of Di−1|Jj .

The computation (D0, . . . , Ds) is said to compute a diagram D, if D is isomorphic to
(a not necessarily full) subdiagram of Ds. In particular, an object in C is computed by
(D0, . . . , Ds) if an object isomorphic to it appears in Ds.

Remark 2.2. One could take Parts (i) and (ii) as the definition of limit (respectively, colimit)
computation. However, in order that our notion of categorical complexity is closer to the
classical notions – such as circuit complexity in certain relevant categories (see Section 3), we
also consider the constructivity condition; which roughly means that the limit (or colimit)
computation does not forget how an object was constructed. It also prevents objects of
exponential rank/size from being constructed; c.f. Example 2.14.

Of course, one may not be able to obtain every object/morphism/diagram from a given set
of basic morphisms A in a category C. We will think of such objects/morphisms/diagrams
as non-computable in C with respect to A.

We now describe a basic syntax for writing down the limit or colimit computations. The
computation is described by a set expressions, each expression in a line. The first kind of
expression is of the form

i. source,f,target
and describes objects and/or morphisms that are added to D0. Here, i is an identifier that
can be any string. In subsequent lines, the identifier ’i’ is used to refer to the source, and
’i’’ is used to refer to the target of the basic morphism f ∈ A that is added to D0 by this

CATEGORICAL COMPLEXITY 5

expression. source and target are the identifiers of the vertices which are the intended
source and target of the new morphism being attached to D0. If the source is a new vertex
that didn’t exist in the diagram before, then we write i. i,f,target, or i. _,f,target
for it. If only the target is new, we write i. source,f,i’ or i. source,f,_; and we write
i. i,f,i’ or i. _,f,_ if both are new, distinct vertices.

There is no need to list all the morhisms in D0 at the beginning, so we will have these
steps as intermediate steps as well; as long as the morphisms attach only to other vertices
in D0, they be can be considered as part of D0.

The second kind of expression are those of the form:

i. lim(a,b,...)

which describe steps where a limit is added to the subdiagram. The identifiers a,b,...
describe the vertices in the full sub-diagram whose limit is being taken. In subsequent steps,
i is used to refer to the limit added. Similarly, we write colim(a,b,...) for describing
colimit computations. We may use the notation i->a to refer to morphisms created during
the computation.

We start with two basic examples about constructions in the category of sets.

Example 2.3. Let C be the category of sets and let A consist of a single morphism id :
{1} → {1}. Consider the colimit computation described by

1. _,{1} id−→ {1},1
2. _,{1} id−→ {1},2
. . .
n. _,{1} id−→ {1},n
n+1. colim(1,2,...,n)

For each k ≤ n, the step k. _,{1} id−→ {1},k is adding a new copy of {1} to the diagram.
In the end, n+1 is the set with n elements.

Example 2.4. Continuing with the previous example, we now make a colimit computation
that produces the morphism {0, 1, 2} f−→ {0, 1, 2} in the category of sets, where f(0) = 0,
f(1) = 0, f(2) = 1.

{1} {1} {1}

{1}

{1}

{0, 1, 2}{0, 1, 2}

4,5

1 2 3

6

7

8

1. _,{1} id−→ {1},1
2. _,{1} id−→ {1},2
3. _,{1} id−→ {1},3
4. _,{1} id−→ {1},1
5. 4,{1} id−→ {1},2
6. colim(1,2,3)

7. _,{1} id−→ {1},7
8. colim(1,2,3,4,6,7)

The morphism 6->8 is f , in the sense that the full-subdiagram containing 6 and 8 is
isomorphic to {0, 1, 2} f−→ {0, 1, 2}.

We will come back to sets later. We now discuss a more detailed example where we
annotated each step in the computation.

6 SAUGATA BASU AND M. UMUT ISIK

Example 2.5. Consider the category k -Vect of vector spaces over a field k. Let A consist
of the scalar multiplication morphisms k c−→k for each c ∈ k, the addition morphism k2 +−→k,
the two projections π1, π2 : k2 → k, and morphisms 0 → k, k → 0. Say, the characteristic
of k is 0 and we wish to compute the morphism f : k3 → k, f(x, y, z) = 2x+ 2y + 3z.

We describe the computation as follows.

k k

k2

k

k

k

π1

π2

+

2

k2

k

3

k2

k k

k2k3

...

+

(2x+2y+3z,y+z)

π1 π2

π1

π2

+

1,4’ 2,5’,12’ 3,8,13’

4,5,6

6’,7

7’,10’

8’,9’

9,10,11

12,13,14

11’ 14’

1516

1. _,k 1−→ k,1
2. _,k 1−→ k,2
3. _,k 1−→ k,3
4. _,k × k π1−→ k,1
5. 4,k × k π2−→ k,2
6. 4,k × k +−→ k,6’
7. 6’,k 2−→ k,7’
8. 3,k 3−→ k,8’
9. _,k × k π2−→ k,8’
10. 9,k × k π1−→ k,7’
11. 9,k × k +−→ k,11’
12. _,k × k π1−→ k,2
13. 12,k × k π2−→ k,3
14. 12,k × k +−→ k,14’
15. lim(11’,14’)
16. lim(1,1’,2,2’,...

...,14,14’,15)

Remark 2.6. Two facts about limits and colimits are useful in thinking about the above
example and other computations. The first is that if f : X → Y and g : Y → Z are
morphisms, then the limit of the diagram X f−→Y g−→Z is (isomorphic to) X, with the induced
morphism is (isomorphic, as a diagram, to) X → Z being the composition. So, compositions
are obtained using limits. The second is that if we take the limit L of a diagram D : I → C,
and X is a cone over D, then, the limit of these two diagrams joined together produces an
object isomorphic to X. The map X → L is then the map that would normally come from
the universal property of the limit L. So, to get a morphism that would come from the
universal property of limits, we just need to take one additional limit.

2.1. Mixed Limit-Colimit Computations. We now discuss computations where we can
use limits and colimits together, we call these mixed computations.

Definition 2.7. A mixed computation is a finite sequence (D0, . . . , Ds) of diagrams with
Di : Ii → U(C), where D0 consists only of morphisms in A, and for each i = 1, . . . , s, Di

is obtained from Di−1 by adding either the limit of a subdiagram, with the corresponding
cone morphisms or colimit of a subdiagram with the corresponding cocone morphisms.

Note that there is no constructivity assumption for mixed computations. To include it
would have been too restrictive and would have prevented natural applications like glueing
geometric objects already constructed.

Example 2.8 (Monotone Boolean Circuits). Let Bn be the lattice of subsets of {0, 1}n,
that is a category whose objects are the subsets of {0, 1}n, and with HomBn(A,B) = {ι}

CATEGORICAL COMPLEXITY 7

if A ⊂ B where ι : A → B is the inclusion, and HomBn(A,B) = ∅ otherwise. Let
Zi = {(x1, . . . , xn) ∈ {0, 1}n | xi = 1}. Let An be the set of basic morphisms {idZi | i =
1, . . . , n}. Let B =

∐∞
n=1 Bn be the disjoint union of these categories and A =

∐∞
n=1An.

We show that there is a correspondence between multi-output monotone Boolean circuits
with n inputs and mixed computations in Bn. Given a monotone Boolean circuit, consider
the corresponding straight line program of with Boolean operations. Start a mixed compu-
tation in Bn with a copy each of the subsets Zi. These correspond to the input variables
z1, . . . , zn of the straight line program. Subsequent entries zn+1, zn+2 . . . will correspond to
newly constructed objects in the mixed computation. For each operation in the straight line
program of the form zi = zj ∧ zk, take the limit of the objects corresponding to zj and zk;
similarly, take the colimit for zi = zj ∨ zk. To make a straight-line program from a mixed
computation, start with the input variables z1, . . . , zn and add k − 1 new ∧ operations for
each limit of k objects and a k − 1 new ∨ operations for each colimit of k objects (ignoring
the arrows does not change the limit/colimit).

Thus, mixed computations in Bn are in direct correspondence with monotone straight-line
programs or, equivalently, monotone Boolean circuits.

Example 2.9. Consider the category Top of topological spaces. Let I = [0, 1] be the
unit interval, and let the basic morphisms consist of, I id−→ I,I → pt, pt 0−→ I, and pt 1−→ I. We
can build all cubes using limits, and then can glue these using colimits to construct many
topological spaces.

We will reconsider mixed computations when we look at the complexity of projective
schemes.

2.2. Cost and Complexity. Let c0 : A → Z≥0 be any function, considered as the cost of
the basic morphisms.

Definition 2.10. The cost of the computation (D0, . . . , Ds) is the the number of steps plus
the cost of the initial diagram D0 consisting of basic morphisms, that is

c(D0, . . . , Ds) = s+
∑

f∈edges(I0)

c0(D0(f)).

If c0 is not specified, then we consider it to be the constant function 1, so every basic
morphism will have unit cost. This will be the case in almost every example we consider.

Definition 2.11. The limit (resp. colimit, resp. mixed) complexity C(D) = CC,A(D),
short for C lim

C,A,c(D) (resp., Ccolim
C,A,c(D), resp., Cmixed

C,A,c (D)), of a diagram D in a category C is
the cost of the limit (resp., colimit, resp. mixed) computation using basic morphisms A,
that has the smallest cost among all such computations that compute D. For a morphism
f : X → Y in C, the complexity C(f) of f is the complexity of the corresponding diagram
mapping two objects and a single morphism X f−→Y . For an object X in C, the complexity
C(X) of X is the complexity of the diagram with one object, X.

Example 2.12 (Glueing Simplices). Let C = Top be the category of topological spaces and
let A be the set of of all face embeddings ∆n → ∆m, including the identity maps, where
∆n is the topological n-simplex. Colimit computations correspond to glueing operations
between simplices. The colimit complexity then measures how many simplices are needed
to construct a given topological space by glueing.

We now go back to considering C = Set with the basic morphisms A consisting of a single
morphism id : {1} → {1}.

8 SAUGATA BASU AND M. UMUT ISIK

Proposition 2.13 (Colimit complexity of sets). In the category of sets, let A = {id : {1} → {1}},
c(id) = 1. Then the colimit complexity of a finite set S is |S|+ 1.

Proof. Since finite sets of equal size are isomorphic, a computation will compute S if and
only if it computes any set of size |S|. As in Example 2.3, starting with |S| copies of {1}
and taking their colimit, we get a set of size |S|. So, the complexity is bounded above by
|S| + 1. To see that this is the most efficient way of producing a set with |S| elements, we
use Lemma 2.16 below, which states that if we only care about building a single object,
then a colimit computation can be replaced by a single colimit on D0 consisting of basic
morphisms. Since the identity on {1} is the only basic morphism in this case, taking the
colimit of |S| copies of {1} is the most efficient way to obtain an object isomorphic to S. �

Example 2.14 (Non-constructive colimit complexity). The following example shows the
difference between colimit computations and non-constructive computations. Consider the
computation

1. _,{1} id−→ {1},1
2. _,{1} id−→ {1},2
3. colim(1,2)
4. colim(1,2)
. . .
a+2. colim(1,2)
a+3. colim(3,4,...,a+2)

Which produces a set of size 2a. Observe that only the step a+3 is not constructive. To
make it constructive, one would need to include 1 and 2 in the colimit in step a+3, which
would make this colimit be a set with just two elements.

Remark 2.15. We can an example similar to the above for mixed computations by alternating
limits and colimits to get double exponential set size starting with no basic morphisms, so
the mixed complexity of a finite set |S| is O(log log |S|).
2.3. Useful facts about limit and colimit computations. We now collect a few facts
that will be useful for proving statements about objects and morphisms computed by limit
and colimit computations.

The following lemma, which was already used in the proof of Proposition 2.13 above
shows that, if the aim is to produce a specific object, intermediate steps in a limit or colimit
computation are unnecessary. The key here is the constructivity assumption.

Lemma 2.16. Assume C has finite products (resp., coproducts). An object produced in
a limit computation (resp., colimit computation) is a limit (resp., colimit) of a diagram
consisting only of basic morphisms.

Proof. Let (D0, . . . , Ds) be a limit computation and let X be an object appearing in Ds.
The point of the statement is that constructivity ensures that the information that would
be added in intermediate limits is also included in the final limit that would produce X.

More precisely, let Li = limDi−1|Ji be the limit added to the diagram at the ith step.
Let J ′i = I0∩Ji. So we have that Di−1|J′i is the portion of the sub-diagram of Di−1|Ji which
is also in D0. We claim that Li ∼= limDi−1|J′i . Indeed, the universal property of limits and
constructivity imply that cones from any object Z to Di−1|J′i can be uniquely extended to
cones from Z to Di−1|Ji , and therefore limDi−1|J′i satisfies the same universal property as
Li.

CATEGORICAL COMPLEXITY 9

The analogous proof holds for colimits. �

The following remarks are very useful for working with objects and morphisms produced
in limit computations.

Remark 2.17. If the category C has finite products and equalizers, then we can write any
limit L as an equalizer, see e.g. [Awo10, 5.4]. Let J = (V,E). If L ∼= limD, for a diagram
D : J → U(C) of basic morphisms. We have that L is isomorphic to the limit of the diagram,
(i.e. the equalizer) ∏

v∈V D(v)
φ

//

ψ
// ∏

e∈E D(t(e)). .

where φD(t(e)) = πD(t(e)) and ψD(t(e)) = D(e) ◦ πD(s(e)).

Remark 2.18. If X f−→Y is a morphism computed by a limit computation, and neither of X
and Y is in D0, then X must have been computed as a limit of a diagram that contains Y .
By constructivity, the diagram whose limit is X must contain the diagram that produced
Y as a subdiagram. Therefore, if X = limD where D : (V,E)→ U(C) is a diagram of basic
morphisms, then Y = limD′, where D′ is the subdiagram corresponding to a full subgraph
(V ′, E′) ⊂ (V,E). We then have a commuting diagram

X //

f

��

∏
v∈V D(v)

φ
//

ψ
//

π

��

∏
e∈E D(t(e))

π′

��

Y //
∏
v∈V ′ D(v)

φ′
//

ψ′
// ∏

e∈E′ D(t(e))

.

In particular, f is induced by the projection π.

3. Limit Computations, Circuits and Algebraic Varieties

We now make a comparison between the arithmetic complexity of polynomials and the
limit-complexity of the varieties which are their zero-sets. For simplicity, we will start with
the category of affine algebraic varieties, but what we describe will make sense in other
settings like affine schemes and algebras.

Let C be the category AffVark of affine algebraic varieties over a field k. Let A consist
of the following basic morphisms.

A1 c−→ A1, for each c ∈ k
A1 × A1 +−→ A1

A1 × A1 ×−→ A1(3.1)

A1 × A1 π1,π2−−−→ A1

A1 → ∗, and ∗ c−→ A1, for each c ∈ k
Each of these morphisms is considered to have unit cost.

Example 3.1. As an example, let us make a limit computation of the morphism A3 x2+yz−−−−→A1

using these basic morphisms.

10 SAUGATA BASU AND M. UMUT ISIK

A1

A2

A1

A1

A2

A1

A1

A2

A1 A3

...

×

π2π1 π1 π2

×

+

π1 π2

x2+yz

10

1’,2’ 4’ 5’

4,5,61,2,3

3’,7 6’,8

7,8,9

9’

1. _,A2 π1−→ A1,1’
2. 1,A2 π2−→ A1,1’
3. 1,A2 ×−→ A1,_
4. _,A2 π1−→ A1,4’
5. 4,A2 π2−→ A1,_
6. 4,A2 ×−→ A1,_
7. _,A2 π1−→ A1,3’
8. 7,A2 π2−→ A1,6’
9. 7,A2 +−→ A1,_
10. lim(1,2,3,4,5,6,7,8,9)

The following shows that a similar computation can be done to compute any polynomial
map.

Theorem 3.2. Let f ∈ k [x1, . . . , xn] be a polynomial of degree d. Assume that f is computed
by a straight line program Γ of length N . Then, the limit-complexity (and therefore the
categorical complexity) of the zero-set X ⊂ An of f is in O(N).

Proof. Using the operations in the straight-line program Γ, we will construct a morphism
An f−→A1. X is then the limit An f−→A1 0←− ∗.

Associated to each straight-line program of length s, there is a morphism (f1, . . . , fs) :
An → As where f1, . . . , fs are the polynomials computed in each line of the diagram. Let
Γ = (Γ1, . . . ,ΓN), where Γi is the ith instruction in the straight line program Γ. For the
first n instructions of Γ, which introduce the variables x1, . . . , xn as polynomials, we have
the map An id−→An. The space An is constructed in a limit computation by taking the limit
of n disjoint copies of the diagram consisting of A1 mapping to itself by 1. To get the map
An id−→An, we take the limit of the whole diagram obtained so far. Costing n+ 2. Note that
our diagram also contains all the projections from the source and target of idAn to the n
components. This is the base case of the following inductive construction.

Assume that, for n ≤ k ≤ N − 1, we have produced, in a limit computation, a mor-
phism (f1, . . . , fk) : An → Ak corresponding to the polynomials computed by each line of
(Γ1, . . . ,Γk), together with the projections p1, . . . , pk from Ak to k copies of A1, all of which
are in D0.

Assume that Γk+1 is the multiplication of the ith and jth lines of the program, i.e.
fk+1 = fifj . We can then perform the following steps of the computation. For convenience,
we have added, as if they were basic morphisms, the portion of the diagram used for the
next steps as the first k + 1 steps in this description:

CATEGORICAL COMPLEXITY 11

An

A1 A1 A1 A1

Ak

An
An

Ak+1

A2

A1

...
...

... ...

k+7

k+4

1

1’,2,...,k+1

2’ i+1’ j+1’
...

k+1’

k+2,k+3,k+5

k+5’

π1 π2

+

(f1,...,fk,fk+1)

(f1,...,fk)

pk+1

1. _,An (f1,...,fk)−−−−−−→ Ak ,1’
2. 1’,Ak p1−→ A1,2’
3. 1’,Ak p2−→ A1,3’

. . .
k+1. 1’,Ak pk−→ A1,(k+1)’
k+2. _,A2 π1−→ A1,(i+1)’
k+3. k+2,A2 π2−→ A1,(j+1)’
k+4. lim((k+2),(i+1)’,(j+1)’, 1’,1)
k+5. k+2,A2 ×−→ A1,_
k+6. lim(2’,3’,...,(k+1)’,(k+4)’)
k+7. lim((k+4), 1,1’,2’,3’,..., (k+1)’, k+2, (k+5)’,k+6)

In the end, the map (k+7)->(k+6) is the map An (f1,...,fk+1)−−−−−−−−→Ak+1, and the projection maps
for the next step are the maps (k+6)->2’,(k+6)->3’,. . . ,(k+6)->(k+1)’, (k+6)->(k+5)’.
The process for addition steps is similar, with the step k+5 modified. For scalar multiplica-
tion, it is similar with two steps less. For constants appearing in the computation, we add a
new variable and take fiber product with ∗ c−→A1 to fix the variable to the value c. Repeating
this process until, k=N, we see that (f1, . . . , fN) is produced in O(N) steps. We can then
compose with the projection to the last coordinate, by taking a limit, to produce An f−→A1.
To obtain the zero-set of f , we add ∗ 0−→A1 to this last A1 and take the limit.

It should also be noted that the way we made a limit computation for An f−→A1 was not
the most efficient, but this way gives the cleanest inductive argument. For efficiency, the
intermediate limit steps can be removed; c.f. Lemma 2.16. �

Remark 3.3. The proof above shows that we can, by starting from a number of A1 added as
basic objects, construct any polynomial functions f1 : An → A1. We will use this fact later.

We now consider a converse for Theorem 3.2 and show that, given a limit computation
with low cost, an object X computed by it is isomorphic to the zero-set of a polynomial
whose arithmetic complexity is low. Since diagram computations produce objects up to

12 SAUGATA BASU AND M. UMUT ISIK

isomorphism, categorical complexity does not reflect the complexity of every polynomial
that might be used to cut out X in a larger space. For example, X could be the graph of
a polynomial map f : An → A1 with very high arithmetic complexity, but since X would
be isomorphic to An, its limit complexity would be very small, which does not say anything
about the arithmetic complexity of f . This is discussed in more detail in Section 4.1.

Theorem 3.4. Let (D0, . . . , Ds) be a limit computation in in AffVark, of cost C =
c(D0, . . . , Ds). Then:

(i) If X is on object computed by (D0, . . . , Ds), then X is isomorphic to the zero-set of
a polynomial morphism Am1 → Am2 whose components are polynomials of degree at
most 2. The total arithmetic complexity of the map is bounded above by 4C.

(ii) Every morphism f : X → Y in Ds is a the restriction of a projection Am1 → Am′1
where Am1 and Am2 are the spaces from part (i) where X and Y are embedded
respectively.

Proof. If s = 0, then the statement is true since the basic morphisms are A1 c−→A1, A1 ×
A1 +,×−−−→A1, A1 × A1 π1,π2−−−→A1, A1 → ∗, and ∗ c−→A1.

For the general case, constructivity implies that, as far as the isomorphism class of an
object X in Ds is concerned, the intermediate limits in a constructive limit computation
can be removed (Lemma 2.16). Using the notation of the proof of Lemma 2.16, if X = Li
is produced as a limit in the diagram computation, then X ∼= limDi−1|J′i where Di−1|J′ is
a subdiagram of D0.

As discussed in Remark 2.17, we can write X = Li as an equalizer. Let J ′i = (V,E),
Li ∼= limDi−1|J′i ; writing D = Di−1|J′i , Li is isomorphic to the limit of

∏
v∈V D(v)

φ
//

ψ
// ∏

e∈E D(t(e)).

where φD(t(e)) = πD(t(e)) and ψD(t(e)) = D(e) ◦ πD(s(e)).
Since J ′i ⊂ I0, we have that each D(v) or D(t(e)) is either A1, A2, or a point; and D(e)

are addition, multiplication, constant, projection, or multiplication by a constant. So the
above equalizer is of the form

Am1

φ
//

ψ
// Am2 ,

and Li is isomorphic to the zero locus of Am1 φ−ψ−−−→Am2 . For the complexity of φ−ψ, observe
that m1,m2 ≤ 2C, and that each component of φ − ψ is a very simple polynomial which
can be produced in two steps.

We now consider the second assertion. This follows directly from the discussion in Re-
mark 2.18. We observe that any morphism f : X → Y appearing in Ds but not in D0 must
be a cone map from a limit X = Li = limDi−1|Ji to an object Y appearing in Di−1|Ji . By
the above construction, we know that X and Y are zero-loci of morphisms whose sources
are products of objects in sub-diagrams of D0. Moreover constructivity implies that the
subdiagram for Y is contained in the sub-diagram for X. The morphism f is then the
restriction of the projection from the sub-diagram for X to the sub-diagram for Y .

�

3.1. Affine Schemes and k-Algebras. The above arguments can also be considered for
the category of affine schemes instead of varieties. Let k be a field and let AffSchk be

CATEGORICAL COMPLEXITY 13

the category of affine schemes. Consider the same set A of morphisms as in the affine-
variety case: A1 c−→A1, for each c ∈ k, A1×A1 +−→A1, A1×A1 ×−→A1, A1×A1 π1,π2−−−→A1, A1 →
∗, and ∗ c−→A1.

One can also consider the category Algk of k-algebras with basic morphisms

k [x]
c−→ k [x] , for each c ∈ k

k [x]
x⊗1+1⊗x−−−−−−→ k [x]⊗ k [x]

k [x]
x⊗x−−−→ k [x]⊗ k [x]

k [x]
id⊗1, 1⊗id−−−−−−−→ k [x]⊗ k [x]

k
1−→ k [x] , and

k [x] x 7→c−−−→k, for each c ∈ k
These correspond to the basic morphisms considered for AffVark under the adjoint equiv-
alence

AffSchk

k[·]
//
Algop

k
Spec
oo .

Without any modification to the proofs, Theorems 3.2 and 3.4 hold when AffVark is
replaced by AffSchk or Algk.

3.2. Mixed computation and projective schemes. Let C be the category Schk of all
schemes over a field k. Letting A consist of the morphisms above as in the affine scheme
case, we get a definition of complexity in the category of schemes.

The morphisms in A are actually enough to produce all projective schemes using mixed
computations. For example, in order to make P1, we can produce the following diagram as
a subdiagram of a computation and take its colimit:

A1 A1

Z(xy − 1) ⊂ A2

π1

ff

π2

88

Note that Z(xy − 1) is isomorphic to A1 − {0}.
Proposition 3.5. Let X ⊂ Pnk be the zero-scheme of homogeneous polynomials f1, . . . , fm ∈
k [x0, . . . , xn]. Assume that, for each i, there is an arithmetic circuit of size ci computing
fi. Then, the categorical complexity of X is in O(n2(c1 + · · ·+ cs)).

Proof. We first show how to construct Pn by a mixed computation and then modify the
construction to make the zero-scheme X of f1, . . . , fm.

The last step in making Pn will be to take the colimit of the diagram

A0 = An A1 = An A2 = An . . . An = An

Z0,1

aa ==

Z0,2

hh 66

Z1,2

aa ==

. . . Zi,j . . . Zn−1,n

;;

There are n+ 1 copies of An in the first row, which correspond to the standard covering
U0, . . . , Un of Pn by affine opens. In the second row, there is an object Zi,j for each pair

14 SAUGATA BASU AND M. UMUT ISIK

(i, j) with i < j; with each Zi,j corresponding to the intersections Ui∩Uj of the affine opens
in the chart, each therefore isomorphic to the complement of a hyperplane in An.

We will construct each Zij as a subscheme of An × An = Ai × Aj , considered with
coordinates x1, . . . , xn, y1, . . . , yn, defined by the equation:

(3.2) yixj − 1 = 0,

and, for each l ∈ {1, . . . , i− 1, i+ 1, . . . , n}, the equations

(3.3) yixl − yl = 0.

These equations describe the graph of the transition maps

(x1, . . . , xn) 7→ (
x1

xj
,
x2

xj
, . . . ,

xi−1

xj
,

1

xj
,
xi+1

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn
xj

)

between the affine opens in the standard covering of Pn. Here, each affine open Ui, cor-
responding to points in homogeneous coordinates [a0ai : · · · : ai−1

ai
: 1 : ai+1

ai
: · · · : an

ai
] is

parameterized by simply omitting the ith variable. The maps Zi,j → Ai and Zi,j → Aj are
the restrictions of the projection maps from Ai ×Aj .

To make the computation, start with (n+ 1) sets of n copies of A1. Make Ai as the limit
of the ith set of n A1’s. Using the procedure described in the proof of Theorem 3.2 (c.f.
Remark 3.3), construct each Zi,j as the zero-set of the equations (3.2) and (3.3). Making
the projections to the Ai (c.f. second part of Remark 2.6), we get the diagram above. At
this point, the colimit of this diagram can be taken to produce Pn.

To make the zero-schemeX of f1, . . . , fm in Pn, we continue in order to make the following
diagram.

X0 X1 X2 . . . Xn

Z ′0,1

\\ AA

Z ′0,2

ff 88

Z ′1,2

]] BB

. . . Z ′i,j . . . Z ′n−1,n

??

where the Xi are isomorphic to X ∩ Ui and the Z ′i,j are isomorphic to X ∩ Ui ∩ Uj . To
make the Xi, de-homogenize f1, . . . , fm for each Ai so that we get the equations for the
subscheme of Ai that corresponds to X ∩ Ui. Using the procedure in Theorem 3.2, take
the zero-scheme of these de-homogenized equations in each Ai. To make the Z ′i,j , make the
map Xi ×Xj → Ai ×Aj and pull back Zi,j . Finally, take the colimit of the diagram above
to get a scheme isomorphic to X.

�

4. Categorical Complexity of Morphisms vs Circuit Complexity of
Polynomials

The aim of this section is to see how closely we can recover arithmetic circuit complexity
from categorical complexity in the appropriate choice of category.

We discuss three categories where we can compare the arithmetic circuit complexity of
a polynomial f ∈ k [x1, . . . , xn] with the categorical complexity of a morphism diagram.
In the first one, we look at the morphism diagram Df = (An f−→A1) in AffVark and see
that its complexity can be very different than the arithmetic complexity of f . The second
category, the category of graded pairs of algebras, is an attempt at removing this discrepancy.
The third category is the category of modules over k [x1, . . . , xn] where we prove concrete

CATEGORICAL COMPLEXITY 15

comparison results between the arithmetic complexity of f and the categorical complexity
of the morphism diagram k [x1, . . . , xn] 17→f−−−→k [x1, . . . , xn].

4.1. Complexity of polynomial morphisms in AffVark. We consider the category
AffVark with the basic morphisms discussed above (3.1). Given a polynomial f ∈ k [x1, . . . , xn],
what is the categorical complexity of the diagram Df = (An f−→A1) in AffVark?

Categorical computations produce diagrams up to isomorphism, and categorical complex-
ity is defined for isomorphism classes of diagrams. So, the complexity of f is equal to the
complexity of any other An g−→A1 where there is an automorphism φ : An → An such that

An

φ

��

f
// A1

1
��

An
g
// A1

commutes. Therefore, the complexity of Df in AffVark is invariant under polynomial
automorphisms of An, and should capture the ‘complexity’ of the geometric object which is
the zero-set of f rather than the complexity of the polynomial f .

For example, let p ∈ k [x1, . . . , xn] be any polynomial, and let g ∈ k [x1, . . . , xn, xn+1], g =
xn+1+p(x1, . . . , xn). Let f = πn+1 and φ(x1, . . . , xn+1) = (x1, . . . , xn, xn+1+p(x1, . . . , xn)).
Then, we have the following commuting diagram

An+1
πn+1

// A1

An+1

(x1,...,xn,xn+1+p(x1,...,xn))

OO

xn+1+p(x1,...,xn)

<<

So, the diagram Dxn+1+p(x1,...,xn) is isomorphic to An+1 xn+1−−−→A1. So, while the circuit
complexity of xn+1 + p(x1, . . . , xn) can be very high (for example, p could be the per-
manent, or worse, a generic polynomial), the complexity of Dxn+1+p(x1,...,xn) is trivial (i.e.
bounded by a constant independent of n). This is because, geometrically, the zero-set of
xn+1 +p(x1, . . . , xn) is very simple, it is the graph of −p, and is therefore isomorphic to An.

It should also be noted that reductions in circuit complexity do not immediately lead
to reductions in the complexity in AffVark. Even though p(x1, . . . , xn) reduces to xn+1 +
p(x1, . . . , xn) in Valiant complexity, this does not lead to an easy diagram computation of
Dp(x1,...,xn) from a computation of Dxn+1+p(x1,...,xn). Still, one can ask whether polynomials
which are believed to be hard to compute in Valiant’s model also have high categorical
complexity. For example:

Question 4.1. Is the limit/mixed complexity of An2 permn−−−−→A1 polynomially bounded in n?

4.2. Pairs of Graded Algebras. It is possible that the difference between complexity of
Df in AffVark and the Valiant complexity of f is caused by the large number of automor-
phisms of An. The aim in this section is to consider a category where Valiant complexity is
possibly close to categorical (colimit) complexity.

Since projective space has relatively few automorphisms, the complexity of a projective
hypersurface Z(f) should be closer to the Valiant complexity of its defining polynomial f .
However, since the basic objects are not projective, it is better to consider the corresponding
setup in the category of graded algebras.

16 SAUGATA BASU AND M. UMUT ISIK

To this end, we could consider the category GrAlgk of graded algebras considered with
the basic morphisms.

k[zn]
+−→ k[xn, yn], zn 7→ xn + yn,

k[z2n]
·−→ k[xn, yn], z2n 7→ xnyn,

k[zn]
i1−→ k[xn, yn], zn 7→ xn,

k[zn]
i2−→ k[xn, yn], zn 7→ yn,

k[zn]
c×−−→ k[zn], zn 7→ czn, c ∈ k,
k[zn] −→ k, zn 7→ 0,

and consider, for a homogeneous polynomial f ∈ k [x1, . . . , xn], the diagram

k[x]
z 7→f−−−→ k [x1, . . . , xn]

denoted also by Df . However, the complexity of Df would still be different than the
Valiant complexity of f . Indeed, we could have k [x1, . . . , xn] be the coordinate algebra of an
embedded Pn−1 ⊂ PN−1 = Proj k [z1, . . . , zn], whose defining equations are easy to compute
categorically. As a result, we would have the induced morphisms k [zj]

zj 7→gj−−−−→k [x1, . . . , xn]
easy to compute. But the polynomial gj are the result of elimination and could therefore
have high complexity.

To prevent this, we consider embedded spaces X ⊂ Pn. Or rather, we consider the
corresponding morphisms of the coordinate algebras. We denote by GrAlgPairsk the
category whose objects are surjective morphisms (A f−→B), where A is isomorphic to some
polynomial ring k[x0, . . . , xn] graded by degree. For example, suppose that A = k[x] and
B = k[x]/(x2) both graded by degree, and A f−→B the canonical surjection.

In order to define categorical complexity in GrAlgPairsk we define the basic morphisms
as follows. For each n ≥ 1, we include in the set of basic morphisms the following set of
morphisms (all polynomial rings appearing below are graded by degrees):

(k[zn]
∼−→ k[zn])

+−→ (k[xn, yn]
∼−→ k[xn, yn]), zn 7→ xn + yn,

(k[z2n]
∼−→ k[z2n])

·−→ (k[xn, yn]
∼−→ k[xn, yn]), z2n 7→ xnyn,

(k[zn]
∼−→ k[zn])

i1−→ (k[xn, yn]
∼−→ k[xn, yn]), zn 7→ xn,

(k[zn]
∼−→ k[zn])

i2−→ (k[xn, yn]
∼−→ k[xn, yn]), zn 7→ yn,

(k[zn]
∼−→ k[zn])

c×−−→ (k[zn]
∼−→ k[zn]), zn 7→ czn, c ∈ k,

(k[zn]
∼−→ k[zn]) −→ (k[xn]

(x 7→0)−−−−→ k), z 7→ 0.

Notice that we can obtain the morphism

(k[zn]
(zn 7→0)−−−−−→ k)

(zn 7→0)−−−−−→ (k[xn]
∼−→ k[xn])

as the colimit diagram:

CATEGORICAL COMPLEXITY 17

(k[tn]
∼−→ k[tn])

tn 7→zn,tn 7→0
��

tn 7→0,tn 7→0
// (k[yn]

∼−→ k[yn])

��

(k[zn]
(zn 7→0)−−−−−→ k)

(zn 7→0)
// (k[xn]

∼−→ k[xn])

Given a homogeneous polynomial f ∈ k[x1, . . . , xn], we consider the categorical complex-
ity of the diagram Mf defined as,

(k[z]
∼−→ k(z))

Mf−−→ (k[x0, . . . , xn]
∼−→ k[x0, . . . , xn]), z 7→ f.

Following the same proof as Theorem 3.2, we have:

Proposition 4.2. Given a homogeneous polynomial f ∈ k [x1, . . . , xn] of arithmetic com-
plexity N . The colimit complexity of Mf is in O(N).

We ask whether the converse is true.

Question 4.3. For a homogeneous polynomial f ∈ k [x0, . . . , xn] for which the colimit
complexity of the morphism diagram Mf in GrAlgPairsk is N , is the arithmetic circuit
complexity of f polynomially bounded in N .

4.3. Modules over Polynomial Rings. We now consider the relationship between arith-
metic complexity and categorical complexity in categories of modules.

Let R = k [x1, . . . , xn]. We consider the category R-Mod be the category of R-modules.
We consider colimit computations in R-Mod with these basic objects.

R
xi−→ R, for each i = 1, . . . , n

R
c−→ R, for each c ∈ k

R
i1,i2−−−→ R⊕R

R
∆−→ R⊕R

R⊕R +−→ R

R→ {0}
For a polynomial f ∈ k [x1, . . . , xn], we consider the corresponding morphism R f−→R that

sends 1 to f . Recall that a formula is an arithmetic circuit or straight line program where
past intermediate computations cannot be re-used.

Proposition 4.4. If a polynomial f ∈ k [x1, . . . , xn] is computed by a formula of size s,
then the diagram R f−→R is computed by a colimit computation in R-Mod of cost in O(s).

Proof. Without loss of generality, assume that all sum and product gates have fan-in at
most two. We will build, for each formula C, a diagram DC whose colimit will contain
R pc−→R where pC is the output polynomial of C. This will be done inductively on the size
of C.

Each DC will be a diagram of the form

R // // R .

whose colimit is R with the morphism from the R on the right to the colimit being idR and
the morphism from the R on the left to the colimit being defined by 1 7→ pC .

18 SAUGATA BASU AND M. UMUT ISIK

If the output pC of C is one of the variables xi let DC be the diagram R xi−→R. If it just
a constant, then DC is R c−→R.

If the top gate of C is a product gate with C ′ and C ′′ as the left and right sub-circuits,
then we set DC by chaining together DC′ and DC′′ :

R // // R // // R .

The map from the left-most R to the colimit is the composition R pC′−−→R pC′′−−−→R, which is
R pC′pC′′−−−−−→R.

If the top gate of C is a sum gate with C ′ and C ′′ as the left and right sub-circuits, then
we define DC as

R //

i1

yy

// R
i1

%%

R
∆ // R⊕R R⊕R +

// R

R //
i2

ee

// R

i2
99

.

where the top and bottom rows are DC′ and DC′′ . The colimit of this diagram is again R
with the map from the left-most R to the colimit being pC + pC′ . �

What about a converse? What does the existence of a colimit computation in R-Mod
that produces R 1 7→f−−−→R say about the complexity of f?

Theorem 4.5. Let R = k [x1, . . . , xn]. If R f−→R is computed in a colimit computation of
cost c in R-Mod, then there is an arithmetic circuit of size poly(c) with inputs x1, . . . , xn,
that computes f .

Proof. Consider a diagram D : I → R-Mod consisting only of the basic morphisms de-
scribed above. Assume that we have colimD = R.

For each vertex v ∈ I, we have that D(v) is R, R ⊕ R or {0}. For each v such that
D(v) = R, let fv be the image of 1 under the morphism R 17→fv−−−→R from D(v) to the colimit
R. If D(v) = {0}, then we set fv = 0. If D(v) = R ⊕ R, then we set two polynomials fv
and fv′ so that the map R⊕R→ R to the colimit is given by (1, 0) 7→ fv and (0, 1) 7→ fv′ .
We will prove that each fv is computed by a polynomially sized circuit.

We are considering the fv’s as unknowns in a system of equations. For each arrow in D,
we consider one or two R-linear equations. For an arrow D(v1)→ D(v2) of the form given
in the left column, we add the equations in the right column:

R
xi−→ R fv1 − xifv2

R
c−→ R, fv1 − cfv2

R
i1,i2−−−→ R⊕R fv1 − fv2 or fv1 − fv′2

R
∆−→ R⊕R fv1 − fv2 − fv′2

R⊕R +−→ R fv1 − fv2 and fv′1 − fv2
R→ {0} fv1 = 0 and fv2 = 0.

CATEGORICAL COMPLEXITY 19

In this way, we obtain a homogeneous system k [x1, . . . , xn]-linear equations; A~f = 0, A ∈
Matn2×s(R). Tuples ~f = (fv1 , fv2 , fv3 , . . . , fvs) ∈ k [x1, . . . , xn]

s that satisfy this system of
equations correspond to a cocones of the diagram D with target R.

Since the colimit of D is R, for any such cocone corresponding to (fv1 , . . . , fvs), there
will be a map (colimD = R) 1 7→g−−−→ R making the diagram containing the new cocone, the
colimit cocone and the map R 17→g−−−→R commute. This implies that g divides each fvj . Since
the colimit is the initial cocone, we can find the tuple of polynomials corresponding to the
colimit cocone by taking (

fv1
h ,

fv2
h , . . . ,

fvs
h) where h = gcd(fv1 , . . . , fvs). Thus, assuming

the colimit is R, to compute the map from every D(v) to the colimit, it suffices to: (i) find
a solution to the above system of equations for D, and (ii) divide by gcd(fv1 , . . . , fvs).

To solve the system A~f = 0, we use Gaussian elimination over the field k(x1, . . . , xn).
Let R and C be square matrices with entries in k(x1, . . . , xn) such that RAC is a diagonal
matrix, in the sense that it contains an r × r minor which is Ir, with r < s, and all other
entries are 0. Following the steps of Gaussian elimination, there exist circuits (or straight-
line programs) with division that produce each entry of R and C in time poly(s). Also,
observe that the entries of R and C have degree at most s. Without loss of generality,
assume RACe1 = 0. Then

Ce1 =

(
p1

q1
, . . . ,

ps
qs

)T
∈ k(x1, . . . , xn)s

is a solution to A~f = 0.
Before we proceed further and get this solution into k [x1, . . . , xn]

s, we make a small
digression into algorithms about straight-line programs. We consider the following, which
are both proven by the algorithms in Kaltofen’s [Kal88]:
(GCD) Greatest common divisor: Given polynomials f1, . . . , fq ∈ k [x1, . . . , xn] which are

the output of a circuit of size s′, there is a circuit of size poly(s′) that produces the
greatest common divisor of f1, . . . , fq.

(DE) Denominator Extraction: Given a reduced rational function p(x)
q(x) ∈ k (x1, . . . , xn),

produced by a circuit with division of size s′, there is a circuit of size poly(s′) that
produces q.

In loc. cit., randomized algorithms that produce the output circuits for both DE and GCD
are presented. But the circuits that output the gcd and the denominator are themselves not
randomized. This will be enough in our non-uniform setting; we only use the existence of
the of the polynomial size circuits that produce the gcd and the denominator and do not
use the algorithm that produces the circuits themselves.

Going back to the proof, we made a system of equations A~f = 0 from the diagram of
basic morphisms and got a solution of the form Ce1 = (p1/q1, . . . , ps/qs)

T ∈ k(x1, . . . , xn)s

and wanted to produce a solution in k [x1, . . . , xn]
s instead. To do this, first use Kaltofen’s

GCD to assume, without loss of generality that each pi
qi

is reduced. Then use Kaltofen’s
DE to extract the denominators qi from each fraction. The element q1q2 . . . qsCe1 is in
k [x1, . . . , xn]

s and is a solution to A~f = 0. Now divide q1q2 . . . qsCe1 by the gcd of all of
its entries to obtain (fv1 , . . . , fvs) ∈ k [x1, . . . , xn]

s. The polynomials f1, . . . , fs correspond
to the morphisms from D to the colimit R. Each fv is produced by a circuit with division,
but since the degrees of fv are polynomially bounded, each such circuit can be turned into a
circuit without division using Strassen’s method [Str73]. This concludes the proof that for
any diagram of basic morphisms with R as a colimit, every colimit cocone morphism from
an object in D sends 1 to an fv which is computed by a circuit of size polynomial in s.

20 SAUGATA BASU AND M. UMUT ISIK

We now prove the theorem. Let R 17→f−−−→R be a sub-diagram of a colimit computation
with initial step D0. Call the source R1 and the target R2. By Lemma 2.16, there is a
sub-diagram D′0 ⊂ D0 of basic morphisms whose colimit is R1; and (c.f. Remark 2.18) there
is a subdiagram D′′0 ⊂ D0, which contains D′0, and whose colimit is R2, with the induced
map R1 → R2 being a map that sends 1 7→ f . This implies, combined with the first part of
this proof applied to both D′0 and D′′0 , that f is the quotient of two polynomials computed
by polynomially sized circuits. Hence, by Strassen’s method, f is computed by a circuit of
cost polynomial in the size of D0. �

5. Functors

Here we discuss phenomena of categorical complexity related to functors between cate-
gories.

5.1. Preservation Under Functors. Let F : C → D be a functor. If D is a diagram in
C, the image diagram F (D) is defined in the obvious way. If F preserves finite limits, then,
for every every limit computation (D0, . . . , Ds) in C, starting with a set of basic morphisms
A will correspond to a limit computation (F (D0), . . . , F (Ds)) in D which starts with basic
morphisms in F (A). Therefore, in this case, we have

climD,F (A)(F (D)) ≤ climC,A(D).

We have the analogous statement for colimit computations if F preserves colimits.
Since equivalences preserve limits and colimits, categorical complexity, limit complexity,

colimit complexity and mixed complexity are all invariant under equivalences of categories.
A more general case is that of adjoint functors. Let R : C → D be a functor right-adjoint
to a functor L : D → C. Then, since right-adjoints preserve limits and left adjoints preserve
colimits. We then have the following.

Lemma 5.1. Let R : C → D and L : D → C be a pair of adjoint functors. Let A be a set
of basic morhisms in C, and A′ be a set of basic morphisms in D, such that R(A) ⊂ A′ and
L(A′) ⊂ A. Then we have inequalities of complexities

climD,A′(R(D)) ≤ climC,A(D),

ccolim
C,A (L(D′)) ≤ ccolim

D,A (D′),

for every diagram D in C and D′ in D; similarly for constructive limit and colimit complexity.

Example 5.2. Let Vectk be the category of vector spaces over a field k. As the free vector
space functor Fr : Set → Vectk is left adjoint to the forgetful functor Fo : Vectk → Set,
we have that Fr preserves colimits. In particular, the constructive colimit complexity of a
vector space is bounded above by its dimension.

5.2. Complexity of Functors. We discussed in Section 5.1 above, how adjoint functors
preserve limits or colimits. Here, we take a different point of view and consider complexity
directly as a function on a category. We can then define the complexity of a functor as a
function of n.

Definition 5.3 (Complexity of functors). Let C,D be two categories with complexity func-
tions, CC , CD, and let F : C → D be a functor. We define the complexity, c(F) : N → N
by

c(F)(n) = sup
{
CD(D) | I a finite directed graph, D ∈ CI , CC(D) ≤ n

}
.

CATEGORICAL COMPLEXITY 21

The most interesting instance of this definition is the image functor. Consider (limit,
colimit or mixed) complexity CC,A as a function on the objects of the morphism category
C•→•.

In the diagram category C•→•, let MonC be the full subcategory of monomorphisms. Let
iC : MonC → C•→• be the inclusion functor. We say that the category C has images if there
is a left-adjoint imC to iC ,

MonC
iC
// C•→•

imC
xx

.

It is a natural question to ask: how does complexity behave under the image functor? We
consider the following as the analogue of the P vs NP problem for a category C.
Question 5.4 (Complexity of Images in C). Given a sequence (Xn

fn−→Yn) of diagrams in C
whose complexities are polynomially bounded in n, is the complexity of iC ◦ imC(Xn

fn−→Yn)
polynomially bounded in n?

Natural places where this question makes sense are the category of projective varieties
and the category of projective schemes. These categories are considered as subcategories of
the categories of all varieties and schemes respectively and inherit the (mixed) complexity
functions from them. Another important possibility is the discussion of the complexity of
semi-algebraic spaces over R or constructible spaces over C. In these cases, we must also
consider mixed complexity.

5.3. The Image Functor in k [x1, . . . , xn] -Mod. We now consider Question 5.4 for the
union of the the categories of modules over polynomial rings discussed above in Section 4.3;
and look for an upper bound on the complexity of the image functor. Let R = k [x1, . . . xn]
with the basic morphisms defined in that section.

We describe a method for writing a colimit computation to compute the image of mor-
phism of modules. A careful analysis of the Gröbner basis portion of the proof below would
give an upper bound for the complexity of the image functor in R-Mod. With a naive anal-
ysis, we can only obtain an unnecessarily high bound, so we leave the complexity analysis
out of the following statement.

Proposition 5.5. Let M ϕ−→N be a morphism diagram in R-Mod, computed by a colimit
computation of size s. Then, there is a colimit computation that computes im(ϕ)→ N .

Proof. By Lemma 2.16 and Remark 2.18, the colimit computation that produces M ϕ−→N
can be simplified to produce (only) M ϕ−→N in two colimit steps. The first one is taking
the colimit of diagram DM of basic morphisms which produces M . The second one is the
colimit of a larger diagram DN ⊃ DM together with M and all the cocone morphisms from
the objects in DM to M . Replacing colimits with co-equalizers and coproducts, we have
that M is isomorphic to the quotient⊕

ρ∈s(DM)

Rjρ
AM //

⊕
γ∈v(DM)

Rjγ // M,

where γ runs over all the vertices in DM and ρ runs over all sources of arrows in DM ; and
jρ and jγ are 0, 1 or 2, based on whether the corresponding basic object is {0}, R, or R2.
Similarly N we can write N as a quotient,

(5.1)
⊕

ρ∈s(DN)

Rjρ ⊕
⊕

v∈v(DM)

Rjv //
⊕

γ∈v(DN)

Rjγ ⊕M // N .

22 SAUGATA BASU AND M. UMUT ISIK

SinceM is the colimit of DM , we can remove the extra sum on the left and theM summand
in middle. So N is the quotient:⊕

ρ∈s(DN)

Rjρ
A //

⊕
γ∈v(DN)

Rjγ // N

Combining the direct sums, we get a commuting diagram:

Rm2
AM //

i2
��

Rm1 //

i1
��

M

ϕ

��

Rn2
A // Rn1 // N

Where the maps i1 and i2 are the inclusion of the first m1 and m2 coordinate spaces
respectively. Written this way, the map ϕ from M to N is induced by the inclusion of the
generators of M into the generators of N .

To construct the image im(ϕ), we need to find the relations among the images of the
generators of M , i.e. the first m1 generators of N . To do this, let A′ be an (n1 −m1)× n2

matrix consisting of the the lower n1−m1 rows of A. We will use use Gröbner basis methods
to find generators for the kernel of A′, i.e. syzygies for the columns of A′, and apply these
syzygies to the full columns of A to get the relations among the generators of M mapped
to N .

More precisely, consider the map Rn2 A′−→Rn1−m1 . Using the position over lexicographical
ordering (or another ordering) on monomial times basis elements in Rn, extend the columns
{f1, . . . , fn2

} of A′ into a Gröbner basis {f1, . . . , fs}, fi ∈ Rn1−m1 , for the image of A′. Let
Rs B−→Rn2 be the map sending the standard basis element ei to the vector (ai1, . . . , ain2

) of
coefficients so that fi =

∑n2

j=1 aijfj . Since the fi form a Gröbner basis, we have, say s′,
relations of the form

mjifi −mijfj −
s∑

u=1

g(ij)
u fu = 0

where themij andmji are the smallest monomials set so that the top order terms of the first
two terms cancel each other, and where the g(ij)

u are computed using the division algorithm.
If we store the coefficients of the f ′s for each relation in a vector in Rs, then, the image of the
corresponding map Rs

′ Z−→Rs is the kernel of the map Rs A′B−−−→Rn1−m1 , c.f. [Sch80, Sch91].
Moreover, the image of the map Rs

′ BZ−−→Rn2 is the kernel of the map, c.f. [Wal89, Buc85].
Now take Rs

′ ABZ−−−→Rn1 . Since the image of BZ was the kernel of A′ which was the lower
portion of the matrix A, we have that the image of ABZ is the intersection of the image of
A with Rm1 sitting in the first m1 coordinates. Hence we have a map Rs

′ ABZ−−−→Rm1 whose
image is the submodule of relations among images of the generators of M mapped in N by
ϕ.

Finally, construct im(ϕ) ι−→N in a colimit computation as follows. Construct

0← Rs
′
ABZ−−−→Rm1

and take the colimit to get im(ϕ); then, construct N again by taking the basic object R’s
in the computation of im(ϕ) corresponding to the generators of M and constructing any
remaining generators and relations for N from 5.1 above. �

CATEGORICAL COMPLEXITY 23

References

[Awo10] Steve Awodey, Category theory, Oxford University Press, 2010. 9
[Bas15] Saugata Basu, A complexity theory of constructible functions and sheaves, Foundations of Com-

putational Mathematics 15 (2015), no. 1, 199–279. 1, 3
[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory,

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences], vol. 315, Springer-Verlag, Berlin, 1997, With the collaboration of Thomas Lickteig.
MR 1440179 3

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer-Verlag,
New York, 1998, With a foreword by Richard M. Karp. MR 1479636 (99a:68070) 1

[Buc85] Bruno Buchberger, Grobner bases: An algorithmic method in polynomial ideal theory, Multidi-
mensional systems theory (1985), 184–232. 22

[Bür00] Peter Bürgisser, Completeness and reduction in algebraic complexity theory, Algorithms and
Computation in Mathematics, vol. 7, Springer-Verlag, Berlin, 2000. MR 1771845 3

[Imm95] N. Immerman, Descriptive complexity: a logician’s approach to computation, Notices Amer.
Math. Soc. 42 (1995), no. 10, 1127–1133. MR 1350010 2

[Isi16] M Umut Isik, Complexity classes and completeness in algebraic geometry, arXiv preprint
arXiv:1609.02562 (2016). 3

[Kal88] Erich Kaltofen, Greatest common divisors of polynomials given by straight-line programs, Journal
of the ACM (JACM) 35 (1988), no. 1, 231–264. 19

[LS88] J. Lambek and P. J. Scott, Introduction to higher order categorical logic, Cambridge Studies in
Advanced Mathematics, vol. 7, Cambridge University Press, Cambridge, 1988, Reprint of the
1986 original. MR 939612 2

[MLM94] Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Universitext, Springer-
Verlag, New York, 1994, A first introduction to topos theory, Corrected reprint of the 1992 edition.
MR 1300636 2

[Poi95] Bruno Poizat, Les petits cailloux, Nur al-Mantiq wal-Ma↩rifah [Light of Logic and Knowledge], 3,
Aléas, Lyon, 1995, Une approche modèle-théorique de l’algorithmie. [A model-theoretic approach
to algorithms]. MR 1333892 1

[Sch80] Frank-Olaf Schreyer, Die berechnung von syzygien mit dem verallgemeinerten weierstraßschen di-
visionssatz und eine anwendung auf analytische cohen-macaulay stellenalgebren minimaler mul-
tiplizität, Ph.D. thesis, 1980. 22

[Sch91] , A standard basis approach to syzygies of canonical curves, J. reine angew. Math 421
(1991), 83–123. 22

[Str73] Volker Strassen, Vermeidung von divisionen., Journal für die reine und angewandte Mathematik
264 (1973), 184–202. 19

[Val79a] Leslie G Valiant, Completeness classes in algebra, Proceedings of the eleventh annual ACM
symposium on Theory of computing, ACM, 1979, pp. 249–261. 1

[Val79b] , The complexity of computing the permanent, Theoretical computer science 8 (1979),
no. 2, 189–201. 1

[vzG87] Joachim von zur Gathen, Feasible arithmetic computations: Valiant’s hypothesis, Journal of
Symbolic Computation 4 (1987), no. 2, 137–172. 1

[Wal89] Bernhard Wall, On the computation of syzygies, ACM SIGSAM Bulletin 23 (1989), no. 4, 5–14.
22

Department of Mathematics, Purdue University, West Lafayette, IN 47906, U.S.A.
E-mail address: sbasu@math.purdue.edu

Department of Mathematics, University of California, Irvine, Irvine, CA 92697

	1. Introduction
	2. Definitions and First Examples
	2.1. Mixed Limit-Colimit Computations
	2.2. Cost and Complexity
	2.3. Useful facts about limit and colimit computations

	3. Limit Computations, Circuits and Algebraic Varieties
	3.1. Affine Schemes and k-Algebras
	3.2. Mixed computation and projective schemes

	4. Categorical Complexity of Morphisms vs Circuit Complexity of Polynomials
	4.1. Complexity of polynomial morphisms in AffVark
	4.2. Pairs of Graded Algebras
	4.3. Modules over Polynomial Rings

	5. Functors
	5.1. Preservation Under Functors
	5.2. Complexity of Functors
	5.3. The Image Functor in k[x1,…,xn]-Mod

	References

