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Abstract. A classic result in real algebraic geometry due to Oleinik–Petrovskii, Thom
and Milnor, bounds the topological complexity (the sum of the Betti numbers) of basic
semi-algebraic sets. This bound is tight as one can construct examples having that many
connected components. However, till now no significantly better bounds were known on
the individual higher Betti numbers.

We prove better bounds on the individual Betti numbers of basic semi-algebraic sets,
as well as arrangements of algebraic hypersurfaces. As a corollary we obtain a polyno-
mial bound on the highest Betti numbers of basic semi-algebraic sets defined by quadratic
inequalities.

1. Introduction

The combinatorial, algebraic and topological analysis of arrangements of real algebraic
hypersurfaces in higher dimensions are active areas of research in computational geom-
etry (see [1], [11] and [18]). Arrangements of lines and hyperplanes have been studied
quite extensively earlier. It was later realized that arrangements of curved surfaces are
a significant generalization and have a wider range of applications. Many geometric
problems reduce to problems involving such arrangements, such as motion planning
for a robot with several degrees of freedom, generalized Voronoi diagrams where the
Voronoi cells need not be polyhedral, geometric problems involving transversals, and
many problems in geometric optimization. All such problems can be rephrased in terms
of certain substructures (e.g., single cell, lower/upper envelopes, etc.) of an arrange-
ment of surfaces in higher dimensions. There has been much progress in analyzing the
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combinatorial complexity—that is, the number of cells (appropriately defined) of various
dimensions occurring in the boundary—of substructures in arrangements [18].

However, there is another source of geometric complexity in arrangements of hyper-
surfaces—namely, topological complexity. Arrangements of hypersurfaces are distin-
guished from arrangements of hyperplanes by the fact that arrangements of hypersur-
faces are topologically more complicated than arrangements of hyperplanes. For in-
stance, a single hypersurface or intersections of two or more hypersurfaces, can have
non-vanishing higher homology groups and thus sets defined in terms of such hypersur-
faces can be topologically more complicated in various non-intuitive ways. It is often
necessary to estimate the topological complexity of arrangements [9] and sometimes
these estimates even play a role in bounding the combinatorial complexity, see [4].

An important measure of the topological complexity of a set S is the Betti numbers
bi (S). Here and elsewhere in the paper the set S will always be semi-algebraic (that is,
defined in terms of a finite number of real polynomial equalities and inequalities) and
closed and bi (S) will denote the rank of the Hi (S) (the i th singular cohomology group
with real coefficients). Intuitively, bi (S) measures the number of i-dimensional holes in
S. The zeroth Betti number b0(S) is the number of connected components.

For example, if T is topologically a hollow torus, then b0(T ) = 1, b1(T ) = 2, b2(T )
= 1, bi (T ) = 0, i > 2, confirming our intuition that the torus has two one-dimensional
holes and one two-dimensional hole. Analogously, for the two-dimensional sphere, S,
b0(S) = 1, b1(S) = 0, b2(S) = 1, bi (S) = 0, i > 2.

The basic result in bounding the Betti numbers of semi-algebraic sets defined by
polynomial inequalities was proved independently by Oleinik and Petrovskii [15], Thom
[19] and Milnor [14].

They proved:

Theorem 1 [15], [19], [14]. Let S ⊂ Rk be the set defined by the conjunction of n
inequalities,

P1 ≥ 0, . . . , Pn ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi ) ≤ d, 1 ≤ i ≤ n.

Then ∑
i

bi (S) = O(nd)k .

The above bound is actually quite tight. One can see this by considering the following
example: Let

Pi = L2
i,1 · · · L2

i,�d/2	 − ε,
where the Li j ’s are generic linear polynomials and ε > 0 and sufficiently small. The
set S defined by P1 ≥ 0, . . . , Pn ≥ 0 has �(nd)k connected components and hence
b0(S) = �(nd)k .

However, one fails to construct examples such that bi (S) = �(nd)k for i > 0. Thus,
one is led to believe that tighter bounds can be proved for the higher Betti numbers.
The proof technique used for proving the above result (see [14]) first replaces the semi-
algebraic set S by another set bounded by a smooth algebraic hypersurface of degree nd
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having the same homotopy type as S. It then proceeds to bound the Betti numbers of
this hypersurface using Morse theory and Bezout’s bound on the number of solutions of
a system of polynomial equations. This technique does not allow one to prove separate
bounds on the individual Betti numbers smaller than the general bound.

The first attempt in trying to prove better bounds for higher Betti numbers was made
in [4]. It was motivated by the long-standing problem in computational geometry of
bounding the combinatorial complexity of a single cell in an arrangement of surface
patches. The following result was proved in [4] which bounds the higher Betti numbers
of a single connected component of a basic semi-algebraic set.

Theorem 2 [4]. Let C ⊂ Rk be a connected component of the set S defined by the
conjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi ) ≤ d, 1 ≤ i ≤ n.

Then ∑
i

bi (C) =
(

n

k − 1

)
O(d)k .

The proof of the above result involved Morse theory of stratified spaces in an essential
way. The technique used to prove this result was also crucial in extending the method
developed by Halperin and Sharir [12] for bounding the combinatorial complexity of a
single cell in an arrangement of surface patches to higher dimensions (see [4] for more
details).

2. Results

The main contribution of this paper is a generalization of Theorem 2. We show that it is
possible to obtain a “graded” bound on the Betti numbers of a basic semi-algebraic set.
We denote the set of real zeros of a polynomial P ∈ R[X1, . . . , Xk] by Z(P). We prove
the following theorem.

Theorem 3. Let R be a real closed field and let S ⊂ Rk be the set defined by the
conjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0,

Pi ∈ R[X1, . . . , Xk], deg(Pi ) ≤ d, 1 ≤ i ≤ n, contained in a variety Z(Q) of real
dimension k ′ with deg(Q) ≤ d . Then

bi (S) ≤
k ′−i∑
j=0

(
n

j

)
2 j+1d(2d − 1)k−1 ≤

(
n

k ′ − i

)
O(d)k .
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One should compare the above theorem to the main results in [6] and [3] where
similar bounds are proved on the number of connected components and the sum of
the Betti numbers of more general (not just basic) semi-algebraic sets contained in a
variety.

The combinatorial part (the part depending on n) in the above bound is tight, as one
can easily construct examples such that the bound on bi is actually realized (see [4]). To
our knowledge this is also the first bound on the Betti numbers of semi-algebraic sets
that bounds the individual Betti numbers rather than their sum.

In many applications in computational geometry one is often interested in under-
standing the topological complexity of the whole arrangement. For instance, unions of
balls in R3 has been studied by Edelsbrunner [9] from both combinatorial and topologi-
cal viewpoints motivated by applications in molecular biology, and efficient algorithms
for computing the various Betti numbers of such unions are currently being studied
[10]. There is also a whole body of mathematical literature studying the topology of
arrangements of hyperplanes in complex as well as real spaces (see [16]).

In some simple situations the Betti numbers of a union of n sets are easy to estimate.
For instance, when the sets are compact and convex, a classical result of topology, the
nerve lemma [17], gives us a bound on the individual Betti numbers of the union. The
nerve lemma states that the homology groups of such a union is isomorphic to the
homology groups of a combinatorially defined simplicial complex, the nerve complex
(Fig. 1). The nerve complex has n vertices and thus the i th Betti number is bounded by( n

i+1

)
. (Actually, the nerve lemma requires only that all finite intersections of the sets be

topologically trivial and convex sets clearly satisfy this condition.) However, when the
given sets are not necessarily convex, which would be the case in many applications, the
nerve lemma does not apply, and there is no a priori bound on the Betti numbers of the

Fig. 1. The nerve complex of a union of disks.
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union. We prove the following bound dual to Theorem 3:

Theorem 4. Let R be a real closed field and let S ⊂ Rk be the set defined by the
disjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0,

Pi ∈ R[X1, . . . , Xk], deg(Pi ) ≤ d, 1 ≤ i ≤ n. Then

bi (S) ≤
i+1∑
j=0

(
n

j

)
3 j d(2d − 1)k−1 ≤

(
n

i + 1

)
O(d)k .

An interesting consequence of our techniques is a polynomial bound on the highest
Betti numbers of basic semi-algebraic sets defined by quadratic inequalities. Such sets
often arise in practice, for instance, as configuration spaces of sets of points with pair-
wise distance constraints. They are also interesting because quadratic constraints are the
simplest non-linear constraints that are topologically non-trivial.

Barvinok [2] proved the following bound on the sum of the Betti numbers of semi-
algebraic sets defined by a conjunction of quadratic inequalities.

Theorem 5 [2]. Let S ⊂ Rk be defined by

P1 ≥ 0, . . . , P	 ≥ 0,

deg(Pi ) ≤ 2, 1 ≤ i ≤ 	. Then the sum of the Betti numbers of S is bounded above
by kO(	).

Notice that unlike the bounds described previously, this bound is exponential in the
number of constraints. However, if the number of constraints, 	, is fixed the bound is
polynomial in the dimension k. Thus, it gives a polynomial bound on the sum of the Betti
numbers of a basic semi-algebraic set defined by few quadratic inequalities. We prove a
polynomial bound on the highest Betti numbers of a basic semi-algebraic set defined by
quadratic inequalities. More precisely,

Theorem 6. Let 	 be any fixed number and let R be a real closed field. Let S ⊂ Rk be
defined by

P1 ≥ 0, . . . , Pn ≥ 0,

with deg(Pi ) ≤ 2. Then

bk−	(S) ≤
(

n

	

)
kO(	).

Notice that for fixed 	 this gives a polynomial bound on the highest 	Betti numbers of
S. Also, notice that the lowest Betti numbers of S cannot be polynomially bounded. For
instance, let S be defined by X1(X1−1) ≥ 0, . . . , Xk(Xk−1) ≥ 0. Clearly, b0(S) = 2k .
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Finally, observe that similar bounds do not hold for sets defined by polynomials of
degree greater than two. For instance, the set defined by the single quartic equation,

k∑
i=1

X2
i (Xi − 1)2 − ε = 0,

will have bk−1 = 2k , for small enough ε > 0.
Our technique for proving these bounds involves using certain spectral sequences

related to the generalized Mayer–Vietoris exact sequence ([13] is a good reference).
The spectral sequence method also has algorithmic consequences for designing efficient
algorithms for computing the Betti numbers of a set defined by polynomial inequalities.
Results in this direction are reported in a forthcoming paper [5].

The rest of the paper is organized as follows. In Section 3 we briefly discuss some
well-known constructions in algebraic topology, namely, double complexes and their
associated spectral sequences. In Section 4 we prove the theorems stated above.

3. Mathematical Preliminaries

Our method of proving Theorems 3 and 4 goes via the theory of spectral sequences
related to a generalized Mayer–Vietoris sequence. We give a brief review of the relevant
notions below (see [13] for more details). Note that closed and bounded semi-algebraic
sets are finitely triangulable (see page 216 of [8] or [7]), and hence we can restrict
ourselves to the category of simplicial complexes.

3.1. Double Complexes

In this section we introduce the basic notions of a double complex of vector spaces and
associated spectral sequences.

...
...

...

C0,2

d

✻

δ ✲ C1,2

d

✻

δ ✲ C2,2

d

✻

δ ✲ · · ·

C0,1

d

✻

δ ✲ C1,1

d

✻

δ ✲ C2,1

d

✻

δ ✲ · · ·

C0,0

d

✻

δ ✲ C1,0

d

✻

δ ✲ C2,0

d

✻

δ ✲ · · ·



Different Bounds on the Different Betti Numbers of Semi-Algebraic Sets 71

A double complex is a bi-graded vector space,

C = ⊕C p,q ,

with co-boundary operators d: C p,q → C p,q+1 and δ: C p,q → C p+1,q and such that
dδ+δd = 0. In our case the double complex would be a single quadrant double complex,
which means that we can assume that C p,q = 0 if either p < 0 or q < 0.

Out of a double complex we can form an ordinary complex of vector spaces, namely,
the associated total complex, which is a graded vector space, defined by Cn =⊕p+q=n

C p,q , with co-boundary operator D = d + δ: Cn → Cn+1.

...
...

...

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

δ✲ C p−1,q+1

d

✻

δ✲ C p,q+1

d

✻

δ✲ C p+1,q+1

d

✻

δ ✲ · · ·
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

δ✲ C p−1,q

d

✻

δ✲ C p,q

d

✻

δ✲ C p+1,q

d

✻

δ ✲ · · ·
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

δ✲ C p−1,q−1

d

✻

δ✲ C p,q−1

d

✻

δ✲ C p+1,q−1

d

✻

δ ✲ · · ·
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

...

d

✻

...

d

✻

...

d

✻

There is a natural decreasing filtration that we can define on the associated total
complex, by restricting p to be greater than or equal to k. We call this the vertical
filtration. Similarly, by restricting q to be greater than or equal to some k, we obtain a
horizontal filtration. These two filtrations play an important role in the next section.

Now consider the vertical filtration.
We denote by Cn

k the nth graded piece of this complex. In other words,

Cn
k =

⊕
p+q=n,p≥k

C p,q .

We denote

Zn
k = {z ∈ Cn

k | Dz = 0},
Bn = DCn−1

and

H n
k = Zn

k /Zn
k ∩ Bn.
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We thus have a decreasing filtration, · · · ⊃ H n
k−1 ⊃ H n

k ⊃ H n
k+1 · · · , of the cohomol-

ogy group H n
D(C). We denote the successive quotients H n

k /H n
k+1 by H k,n−k .

...
...

...

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

Ck,q+1

d

✻

δ✲ Ck+1,q+1

d

✻

δ✲ Ck+2,q+1

d

✻

δ ✲ · · ·
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

Ck,q

d

✻

δ✲ Ck+1,q

d

✻

δ✲ Ck+2,q

d

✻

δ ✲ · · ·
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

Ck,q−1

d

✻

δ✲ Ck+1,q−1

d

✻

δ✲ Ck+2,q−1

d

✻

δ ✲ · · ·
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

...

d

✻

...

d

✻

...

d

✻

The Leray spectral sequence is a sequence of complexes (Er , dr ) such that Er+1 =
Hdr (Er ).

Any element in Cn = ⊕
i+ j=n Ci, j will have a leading term at a position (p, q),

where p denotes the smallest i such that the component at position (i, n − i) does not
vanish.

Let Z p,q denote the set of the (p, q) components of co-cycles whose leading term is
at position (p′, q ′), with p′ ≥ p and p′ + q ′ = p + q. In other words, Z p,q denotes the
set of all a ∈ C p,q such that the following system of equations has a solution:

da = 0,

δa = −da(1),

δa(1) = −da(2), (1)

δa(2) = −da(3)

...

Here, a(i) ∈ C p+i,q−i . Hence, the element a ⊕ a(1) ⊕ a(2) · · · lies in Z p+q
p with

a ∈ Z p,q .
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Similarly, let B p,q ⊂ C p,q consist of all b with the property that the following system
of equations admits a solution:

db(0) + δb(−1) = b,

db(−1) + δb(−2) = 0,

db(−2) + δb(−3) = 0
...

(2)

Here, b(−i) ∈ C p−i,q+i−1.
It is easy to see that, H p,q ∼= Z p,q/B p,q .

Now, let

Z p,q
r = {a ∈ C p,q | ∃(a(1), . . . , a(r−1) | (a, a(1), . . . , a(r−1)) satisfies (1)}.

Also, let

B p,q
r = {b ∈ C p,q | ∃(b(0), b(−1), . . .) | (b, b(0), b(−1), . . .)

satisfies (2) with b−r = b−r+1 = · · · = 0}.
We thus have a sequence of vector subpaces of C p,q satisfying

B p,q
1 ⊂ B p,q

2 ⊂ · · · ⊂ B p,q ⊂ Z p,q ⊂ Z p,q
1 ⊂ · · · ⊂ C p,q .

The (p, q)th graded piece, E p,q
r , of the r th element, Er , of the spectral sequence

is defined by E p,q
r = Z p,q

r /B p,q
r . It should be seen as an approximation to H p,q =

Z p,q/B p,q .
We will now define the differentials dr . Let [a] ∈ E p,q

r for some a ∈ Z p,q
r . Then

there exists a(1), . . . , a(r−1) satisfying (1). It is a fact (see [13]) that the homomorphism,
dr : E p,q

r → E p+r,q−r+1
r (Fig. 2), defined by

dr [a] = [δa(r−1)] ∈ E p+r,q−r+1
r , (3)

is well defined (that is, independent of the choice of the representative a).
The sequence of graded complexes, (Er , dr ), where the complex Er+1 is obtained

from Er by taking its homology with respect to dr (that is, Er+1 = Hdr (Er )) is called
the spectral sequence associated to the double complex C p,q .

3.2. The Mayer–Vietoris Double Complex

In this section we describe the double complex of interest to us—namely, the one arising
from the Mayer–Vietoris exact sequence.

Let A1, . . . , An be sub-complexes of a finite simplicial complex A such that A =
A1 ∪ · · · ∪ An . Note that the intersections of any number of the sub-complexes, Ai , is
again a sub-complex of A. We denote by Aα0,...,αp the sub-complex Aα0 ∩ · · · ∩ Aαp .
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p+ q = `+ 1p+ q = `
p

q

d1

d2

d3

d4

Fig. 2. dr : E p,q
r → E p+r,q−r+1

r .

Let Ci (A) denote the R-vector space of i co-chains of A, and C∗(A) = ⊕i Ci (A).
We will denote by d: Cq(A)→ Cq+1(A) the usual co-boundary homomorphism. More
precisely, given ω ∈ Cq(A), and a q + 1 simplex [a0, . . . , aq+1] ∈ A,

dω([a0, . . . , aq+1]) =
∑

0≤i≤q+1

(−1)iω([a0, . . . , âi , . . . , aq+1]) (4)

(here and everywhere else in the paper ˆ denotes omission). Now extend dω to a linear
form on all of Cq+1(A) by linearity, to obtain an element of Cq+1(A).

Recall that a sequence of vector space homomorphisms

· · · di−1 ✲ Vi
di ✲ Vi+1

di+1✲ · · ·

is said to be exact if ker(di ) = Im(di−1) for each i .
The Mayer–Vietoris exact sequence is an exact sequence of vector spaces, each of

the form �α0<···<αp C∗(Aα0,...,αp ). (Here and everywhere else in the paper � denotes
the direct product of vector spaces.) The connecting homomorphisms are “generalized”
restrictions and will be defined below.
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The Mayer–Vietoris exact sequence is the following:

0 −→ C∗(A)
r−→ �α0 C∗(Aα0)

δ−→ �α0<α1 C∗(Aα0,α1) · · ·

δ−→ �α0<···<αp C∗(Aα0,...,αp ) · · · δ−→ �α0<···<αp+1 C∗(Aα0,...,αp+1) · · · δ−→ · · · ,
where r is induced by restriction and the connecting homomorphisms δ are described
below.

Given an ω ∈ �α0<···<αp Cq(Aα0,...,αp ) we define δ(ω) as follows: First note that
δ(ω) ∈ �α0<···<αp+1 Cq(Aα0,...,αp+1), and it suffices to define δ(ω)α0,...,αp+1 for each (p+2)-
tuple 0 ≤ α0 < · · · < αp+1 ≤ n. Note that δ(ω)α0,...,αp+1 is a linear form on the vector
space, Cq(Aα0,...,αp+1), and hence is determined by its values on the q-simplices in the
complex Aα0,...,αp+1 . Furthermore, each q-simplex, s ∈ Aα0,...,αp+1 , is automatically a
simplex of the complexes Aα0,...,α̂i ,...,αp+1 , 0 ≤ i ≤ p + 1.

We define

(δω)α0,...,αp+1(s) =
∑

0≤i≤p+1

(−1)iωα0,...,α̂i ,...,αp+1(s).

Lemma 1. The sequence defined above is exact.

Proof. We first prove that δ2 = 0. For ω ∈ �α0<···<αp C∗(Aα0,...,αp ),

δ2(ω)α0,...,αp+2 =
∑

0≤i≤p+2

(−1)i (δω)α0,...,α̂i ···αp+2

=
∑
i, j<i

(−1)i (−1) jωα0,...,α̂j ,...,α̂i ,...,αp+2

+
∑
i, j>i

(−1)i (−1) jωα0,...,α̂i ,...,α̂j ···αp+2 = 0.

Now let ω ∈ �α0<···<αp C∗(Aα0,...,αp ) such that δω = 0. For a simplex s ∈ A let n(s) =
#{Aα | s ∈ Aα}.

Define τ ∈ �α0<···<αp−1 C∗(Aα0,...,αp−1) by

τα0,...,αp−1(s) =
1

n(s)

∑
α|s∈Aα

ωα,α0,...,αp−1(s).

Now,

(δτ )α0,...,αp (s) =
∑

0≤i≤p

(−1)iτα0,...,α̂i ,...,αp (s)

=
∑

0≤i≤p

(−1)i
(

1

n(s)

∑
α|s∈Aα

ωα,α0,...,α̂i ,...,αp (s)

)
.
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Now δω = 0. Hence,

(δω)α,α0,...,αp (s) = ωα0,...,αp (s)−
∑

0≤i≤p

(−1)i+1ωα,α0,...,α̂i ,...,αp (s) = 0.

Hence,

ωα0,...,αp (s) =
∑

0≤i≤p

(−1)iωα,α0,...,α̂i ,...,αp (s).

Substituting the above in the expression for δτ above, we have

(δτ )α0,...,αp (s) =
1

n(s)

∑
α|s∈Aα

( ∑
0≤i≤p

(−1)iωα,α0,...,α̂i ,...,αp (s)

)

= 1

n(s)

∑
α|s∈Aα

ωα0,...,αp (s) = ωα0,...,αp (s).

This proves that the sequence is exact.

We now consider the following bi-graded double complexMp,q , with a total differ-
ential D = δ + (−1)pd , where

Mp,q = �α0,...,αp Cq(Aα0,...,αp ):

...
...

...
d

d


d

0 −→ �α0 C3(Aα0)
δ−→ �α0<α1 C3(Aα0,α1)

δ−→ �α0<α1<α2 C3(Aα0,α1,α2) −→
d

d


d

0 −→ �α0 C2(Aα0)
δ−→ �α0<α1 C2(Aα0,α1)

δ−→ �α0<α1<α2 C2(Aα0,α1,α2) −→
d

d


d

0 −→ �α0 C1(Aα0)
δ−→ �α0<α1 C1(Aα0,α1)

δ−→ �α0<α1<α2 C1(Aα0,α1,α2) −→
d

d


d

0 −→ �α0 C0(Aα0)
δ−→ �α0<α1 C0(Aα0,α1)

δ−→ �α0<α1<α2 C0(Aα0,α1,α2) −→
d

d


d

0 0 0

There are two spectral sequences (corresponding to taking horizontal or vertical fil-
trations, respectively) associated withMp,q both converging to H∗D(M). The first terms
of these are E1 = HδM, E2 = Hd HδM and E ′1 = HdM, E ′2 = HδHdM. Because of
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the exactness of the generalized Mayer–Vietoris sequence, we have that

E1 =

...
...

...
...

...
d

0


0

0


0

C3(A) 0 0 0 0 · · ·
d

0


0

0


0

C2(A) 0 0 0 0 · · ·
d

0


0

0


0

C1(A) 0 0 0 0 · · ·
d

0


0

0


0

C0(A) 0 0 0 0 · · ·

and

E2 =

...
...

...
...

...
...

H 3(A) 0 0 0 0 0 · · ·

H 2(A) 0 0 0 0 0 · · ·

H 1(A) 0 0 0 0 0 · · ·

H 0(A) 0 0 0 0 0 · · ·

The degeneration of this sequence at E2 shows that H∗D(M) ∼= H∗(A).
The initial term E ′1 of the second spectral sequence is given by

E ′1 =

...
...

...

�α0 H 3(Aα0)
δ−→ �α0<α1 H 3(Aα0,α1)

δ−→ �α0<α1<α2 H 3(Aα0,α1,α2) −→

�α0 H 2(Aα0)
δ−→ �α0<α1 H 2(Aα0,α1)

δ−→ �α0<α1<α2 H 2(Aα0,α1,α2) −→

�α0 H 1(Aα0)
δ−→ �α0<α1 H 1(Aα0,α1)

δ−→ �α0<α1<α2 H 1(Aα0,α1,α2) −→

�α0 H 0(Aα0)
δ−→ �α0<α1 H 0(Aα0,α1)

δ−→ �α0<α1<α2 H 0(Aα0,α1,α2) −→
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Since this spectral sequence also converges to H∗(A), we have that

rank Hi (A) ≤
∑

p+q=i

rank E ′ p,q1 .

The following lemma is an easy consequence.

Lemma 2. Let A be a finite simplicial complex and let A1, . . . , An be sub-complexes
of A such that A = A1 ∪ · · · ∪ An . Then for every i ≥ 0,

bi (A) ≤
i+1∑
j=1

∑
J⊂{1,...,n},#(J )= j

bi− j+1(AJ ).

Proof. From the discussion above,

rank E ′	,i−	1 ≤
∑

J⊂{1,...,n},#(J )=	+1

bi−	(AJ ).

The inequality follows.

Now let A1, . . . , An be sub-complexes of a finite simplicial complex of dimension k ′,
and let A = A1 ∩ · · · ∩ An . Let Aα0,...,αp denote the union, Aα0 ∪ · · · ∪ Aαp . Let Ci (A)
denote the R-vector space of i chains of A, and C∗(A) =

⊕
i Ci (A).

Consider the following sequence of homomorphisms:

0 −→ C∗(A)
i−→ �α0 C∗(Aα0)

δ−→ �α0<α1 C∗(Aα0,α1) · · ·

δ−→ �α0<···<αp C∗(Aα0,...,αp ) · · · δ−→ �α0<···<αp+1 C∗(Aα0,...,αp+1) · · · δ−→ · · · ,

where i is induced by inclusion and the connecting homomorphisms δ are defined as
follows:

for c ∈ �α0<···<αp C∗(Aα0,...,αp ), we let

(δc)α0,...,αp+1 =
∑

0≤i≤p+1

(−1)i cα0,...,α̂i ,...,αp+1 .

Lemma 3. The sequence defined above is exact.

Proof. The proof is similar to that of Lemma 1.
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We have a corresponding bi-graded double complexNp,q with total differential D =
δ + (−1)p∂, with

Np,q = �α0,...,αp Ck ′−q(A
α0,...,αp ):

0 0 0�∂ �∂ �∂
0 −→ �α0 Ck′(Aα0)

δ−→ �α0<α1 Ck′(Aα0,α1)
δ−→ �α0<α1<α2 Ck′(Aα0,α1,α2)�∂ �∂ �∂

0 −→ �α0 Ck′−1(Aα0)
δ−→ �α0<α1 Ck′−1(Aα0,α1)

δ−→ �α0<α1<α2 Ck′−1(Aα0,α1,α2)�∂ �∂ �∂
0 −→ �α0 Ck′−2(Aα0)

δ−→ �α0<α1 Ck′−2(Aα0,α1)
δ−→ �α0<α1<α2 Ck′−2(Aα0,α1,α2)�∂ �∂ �∂

0 −→ �α0 Ck′−3(Aα0)
δ−→ �α0<α1 Ck′−3(Aα0,α1)

δ−→ �α0<α1<α2 Ck′−3(Aα0,α1,α2)�∂ �∂ �∂
...

...
...

As in the proof of Lemma 2 we obtain two spectral sequences, E, E ′.
Here

E1 =

Ck′(A) 0 0 0 0 · · ·�∂ �0
�0

�0
�0

Ck′−1(A) 0 0 0 0 · · ·�∂ �0
�0

�0
�0

Ck′−2(A) 0 0 0 0 · · ·�∂ �0
�0

�0
�0

Ck′−3(A) 0 0 0 0 · · ·�∂ �0
�0

�0
�0

...
...

...
...

...

and

E2 =

Hk′(A) 0 0 0 0 · · ·

Hk′−1(A) 0 0 0 0 · · ·

Hk′−2(A) 0 0 0 0 · · ·

Hk′−3(A) 0 0 0 0 · · ·

...
...

...
...

...
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Similarly,

E ′1 =

�α0 Hk′(Aα0)
δ−→ �α0<α1 Hk′(Aα0,α1)

δ−→ �α0<α1<α2 Hk′(Aα0,α1,α2)

�α0 Hk′−1(Aα0)
δ−→ �α0<α1 Hk′−1(Aα0,α1)

δ−→ �α0<α1<α2 Hk′−1(Aα0,α1,α2)

�α0 Hk′−2(Aα0)
δ−→ �α0<α1 Hk′−2(Aα0,α1)

δ−→ �α0<α1<α2 Hk′−2(Aα0,α1,α2)

�α0 Hk′−3(Aα0)
δ−→ �α0<α1 Hk′−3(Aα0,α1)

δ−→ �α0<α1<α2 Hk′−3(Aα0,α1,α2)

...
...

...

Lemma 4. Let A1, . . . , An be sub-complexes of a finite simplicial complex T of di-
mension k ′, and let A = A1 ∩ · · · ∩ An . Then, for every 0 ≤ i ≤ k ′,

bi (A) ≤
k ′−i−1∑

j=1

∑
J⊂{1,...,n},#(J )= j

bi+ j−1(A
J )

+
∑

J⊂{1,...,n},#(J )=k ′−i

(bk ′−1(A
J )+ bk ′(T )).

Proof. The proof is similar to that of the proof of Lemma 2 using instead the two
spectral sequences associated to N whose initial terms are given above. Unlike in the
proof of Lemma 2, in the case when k ′ < k, we need to refine our estimate by looking
at certain terms of E ′2.

From the spectral sequence E ′ we obtain that

bi (A) ≤
k ′−i∑
j=0

rank(E ′ j,i+ j
1 ) ≤

k ′−i−1∑
j=0

rank(E ′ j,i+ j
1 )+ rank(E ′k

′−i,k ′
2 ).

From E ′1 we get that rank(E ′ j,i+ j
1 ) ≤∑J⊂{1,...,n},#(J )= j+1 bi+ j (AJ ).

In order to finish the proof we have to bound rank(E ′k
′−i+1,k ′

2 ). Notice that the top row,

E ′p,k
′

2 , is obtained by taking the homology of the top row of E ′1 with respect to δ. Now
in the highest dimension, k ′, the inclusion homomorphisms i∗: Hk ′(AJ )→ Hk ′(T ) are
all injective. Hence, each Hk ′(AJ ) can be identified with a certain subspace of Hk ′(T ).

Let VJ = i∗(Hk ′(AJ )) and V = Hk ′(T ) and consider the homomorphism,

δp: �α0<···<αp Vα0,...,αp → �α0<···<αp+1 Vα0,...,αp+1

given by

(δpv)α0,...,αp+1 =
∑

0≤ j≤p+1

(−1) jvα0,...,α̂j ,...,αp+1 ,
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for v ∈ �α0<···<αp Vα0,...,αp . It follows that for v ∈ ker(δp), v1,α1,...,αp , 1 < α1 < · · · <
αp ≤ n, determines v. Hence, rank(E ′ p,k

′
2 ) ≤ (n

p

)
rank(Hk ′(T )).

Hence, rank(E ′k
′−i,k ′

2 ) ≤ ( n
k ′−i

)
bk ′(T ). The lemma now follows from the inequalities

proved above.

4. Proofs of the Main Results

In order to apply Lemmas 2 and 4 in our situation, we will need a bound on the sum of
the Betti numbers of sets defined by the disjunction (respectively conjunction) of a small
number of inequalities. We proceed to prove these bounds.

We first recall the classical Mayer–Vietoris sequence for cohomologies. Let A, B ⊂
Rk be closed and bounded semi-algebraic sets. Then the Mayer–Vietoris sequence is the
following exact sequence of cohomology groups [17]:

0 ← H k−1(A ∩ B)← H k−1(A)⊕ H k−1(B)← H k−1(A ∪ B)

← H k−2(A ∩ B)← · · · ← Hi+1(A ∪ B)← Hi (A ∩ B)

← Hi (A)⊕ H(B)← Hi (A ∪ B)← · · · .

The following lemma is an easy consequence.

Lemma 5. Let S1, S2 be two closed and bounded semi-algebraic sets. Then

bi (S1)+ bi (S2) ≤ bi (S1 ∪ S2)+ bi (S1 ∩ S2), (5)

bi (S1 ∪ S2) ≤ bi (S1)+ bi (S2)+ bi−1(S1 ∩ S2), (6)

bi (S1 ∩ S2) ≤ bi (S1)+ bi (S2)+ bi+1(S1 ∪ S2). (7)

We also recall the Oleinik/Petrovskii/Thom/Milnor bound on the sum of the Betti
numbers of algebraic sets. Let b(k, d) be the maximum of the sum of the Betti numbers
of any algebraic set defined by polynomials of degree d in Rk .

The Oleinik/Petrovskii/Thom/Milnor [15], [19], [14] bound is the following:

b(k, d) ≤ d(2d − 1)k−1. (8)

For the rest of the paper, we fix a closed ball B(0, r) with center 0 and radius r big
enough so that, for every semi-algebraic set S that we consider (defined by Boolean
formulas involving sign conditions on a fixed family of {Q, P1, . . . , Pn}), H∗(S) and
H∗(S ∩ B(0, r)) are isomorphic. This is always possible by the local conical structure
at infinity of semi-algebraic sets [8, page 225]. Finally, we define the sets Z and Zr by

Z = Z(Q), Zr = Z ∩ B(0, r).

We have the following lemma bounding the Betti numbers of sets defined by the
disjunction of few inequalities.
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Lemma 6. Let R be a real closed field and let V1 ⊂ Rk be the set defined by the
disjunction of 	 inequalities,

P1 ≥ 0, . . . , P	 ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi ) ≤ d, 1 ≤ i ≤ 	,
contained in a variety Z(Q) of real dimension k ′ with deg(Q) ≤ d. Then, for all
i, 0 ≤ i ≤ k ′,

bi (V1) ≤ 2	d(2d − 1)k−1.

Proof. Let

W0 =
⋃

1≤i≤	
Z(Pi ) ∩ Zr ,

W1 =
{

x ∈ Rk

∣∣∣∣∣
∨

1≤i≤	
Pi (x) ≥ 0

}
∩ Zr ,

F =
{

x ∈ Rk

∣∣∣∣∣
( ∧

1≤i≤	
Pi (x) ≤ 0

)
∨
( ∨

1≤i≤	
Pi (x) = 0

)}
∩ Zr .

Lemma 7. For all i, 0 ≤ i ≤ k ′,

bi (W0) ≤ (2	 − 1)d(2d − 1)k−1.

Proof. Using Lemma 2 observe that bi (W0) can be bounded by the sum of the Betti
numbers of all sets that can be obtained by taking j-ary intersections, for 1 ≤ j ≤ 	, of
the sets Z(Pi ) ∩ Zr .

The number of possible j-ary intersections is
(
	

j

)
.

The sum of the Betti numbers of each of these sets is bounded by d(2d − 1)k−1 by
the Oleinik–Petrovskii/Thom/Milnor bound (8). Thus,

bi (W0) ≤
	∑

j=1

(
	

j

)
d(2d − 1)k−1 = (2	 − 1)d(2d − 1)k−1.

Lemma 8. For all i, 0 ≤ i ≤ k ′,

bi (W1) ≤ 2	d(2d − 1)k−1.

Proof. Note that

W1 ∪ F = Zr

and

W1 ∩ F = W0.
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Now apply inequality (5) to get

bi (W1) ≤ bi (W1 ∩ F)+ bi (W1 ∪ F) = bi (W0)+ bi (Zr ).

We conclude using Lemma 7.

Finally, Lemma 6 follows from Lemma 8 since H∗(V1) ∼= H∗(W1) by our choice
of r .

Lemma 9. Let R be a real closed field and let V2 ⊂ Rk be the set defined by the
conjunction of 	 inequalities,

P1 ≥ 0, . . . , P	 ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi ) ≤ d, 1 ≤ i ≤ 	,
contained in a variety Z(Q) of real dimension k ′ with deg(Q) ≤ d. Then, for all
i, 0 ≤ i ≤ k ′,

bi (V2) ≤ (3	 − 1)d(2d − 1)k−1.

Proof. Using Lemma 4 we have that bi (V2) is bounded by the sum of the (i + j − 1)th
Betti numbers of all possible j-ary unions 1 ≤ j ≤ 	, of the sets {x ∈ Rk | Pi ≥ 0}∩ Zr .

Using Lemma 6 we get that

bi (V2) ≤
∑

1≤ j≤	

(
	

j

)
2 j d(2d − 1)k−1 ≤ (3	 − 1)d(2d − 1)k−1.

We now prove the main theorems using the tools developed above.

Proof of Theorem 3. Let the set Sj be defined by (Pj ≥ 0)∩ Zr . Each Sj is closed and
bounded and H∗(

⋂
1≤ j≤n Sj ) ∼= H∗(S). Consider a triangulation of

⋃
1≤ j≤n Sj which re-

spects the sets Sj and all possible intersections. Let Ai be the sub-complex corresponding
to the set Si in this triangulation.

Now apply Lemma 4 with the complexes Ai defined above, and apply the bounds
obtained in Lemma 6 on the summands on the right-hand side.

Proof of Theorem 4. Let the set Sj be defined by Pj ≥ 0 ∩ B(0, r). Each Sj is closed
and bounded and H∗(

⋃
1≤ j≤n Sj ) ∼= H∗(S).

Again, choose a triangulation of the union of the sets which respects all non-empty
intersections. Let Ai denote the sub-complex corresponding to the set Si . Now apply
Lemma 2 with the complexes Aj defined above, and apply the bounds obtained in
Lemma 9 on the summands on the right-hand side.

Proof of Theorem 6. Using the same technique used in the proof of Lemma 9, we can
convert the bound in Theorem 5 into a bound on the sum of the Betti numbers of a set
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defined by a disjunction of quadratic inequalities. Namely,

Theorem 7. Let S ⊂ Rk be defined by the disjunction of the inequalities P1 ≥
0, . . . , P	 ≥ 0, and let deg(Pi ) ≤ 2, 1 ≤ i ≤ 	. Then the sum of the Betti numbers
of S is bounded above by kO(	).

Now use Lemma 4 and the bound in Theorem 7 on the sum of the Betti numbers of
the at most 	-ary unions.
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