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COMPUTING THE DIMENSION
OF A SEMI-ALGEBRAIC SET

ABSTRACT. In this paper, we consider the problem of computingthe real
dimension of a given semi-algebraic subset of R*, where R is a real closed
field. We prove that the dimension, k', of a semi-algebraic set described
by s polynomials of degree d in k variables can be computed in time

s(E—E")E JO(K' (k—K')) if & > k/2
s(E—K' +1)(K' +1) JO(K'(k=K"))  if R/ < k/2.

This result improves slightly the result proved in [22], where an algorithm

with complexity bound (sd) O(k'(k=k")) is described for the same problem.

The complexity bound of the algorithm described in this paper has a
better dependence on the number, s, of polynomials in the input.

1. INTRODUCTION

Let R be a real closed field. Given a finite set P of s polynomials in
R[X1,..., X3], asubset S of R¥ is P-semi-algebraic if S is the realization
of a quantifier free formula with atoms P = 0, P > 0 or P < 0 with
P € P. We call such a formula a P-formula.

Computing topological invariants of a P-semi-algebraic set S, such
as deciding emptiness, computing the number of connected components,
computing the Euler—Poincaré characteristic of S etc., has attracted a
lot of attention in recent times. Using the method of cylindrical alge-
braic decomposition [12], all of these problems can be solved in time
(sd)QO(k), which is doubly exponential in k. However, singly exponential
time algorithms are known for all these problems using the critical point
method [15, 6, 7, 14, 17, 21, 16, 9, 13, 8, 18, 19, 2, 4, 1].

Amongst the problems that can be solved in single exponential time,
there are certain ones for which there exist algorithms with singly expo-
nential complexity bounds, where the exponent appearing in the bound
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is O(k). Examples of such problems are, deciding the emptiness of a giv-
en semi-algebraic set, and computing the Euler—Poincaré characteristic
of such a set. In contrast, there are certain other problems for which,
even though singly exponential algorithms are known, the exponent in
the bounds on the complexities of the most efficient algorithms is O(k?).
The main examples of such problems, are computing the number of con-
nected components of a given semi-algebraic set, as well as the problem of
computing the dimension of such a set. It is currently not known whether
the exponent, O(k?), in the complexity bounds of algorithms for either
of these two problems can be improved to O(k).

Note that, in several algorithms for computing properties of a given
semi-algebraic set S, the bound on the complexity has a dependence on
the dimension of S (for instance [3], see [5] for other examples). It is often
assumed in such cases, that the dimension of the set is part of the input
and is not computed by the algorithm. Thus, being able to compute the
real dimension of a semi-algebraic set efficiently is an important problem
in algorithmic semi-algebraic geometry. Computing the real dimension of
a semi-algebraic set has also being considered from a complexity theoretic
point of view and in [20] it is shown to be NPg-complete in the Blum-
Shub—Smale model of computation.

It is easy to see that the dimension of a semi-algebraic set S can be
computed using cylindrical algebraic decomposition, since the dimension
of S is the dimension of a maximal dimensional cell in such a decompo-
sition of S. However, it is well known that the real dimension of S can
in fact be computed in time (sd)°**) (see [20]). On the other hand the
complexity of computing the dimension of constructible sets over alge-

braically closed fields is (sd)°*) [10].

Improving the exponent from O(k?) to O(k) in the real closed case
seems to be a difficult problem. The paper [22] obtained a partial result
in this direction and gave an algorithm computing the dimension k' of a
semi-algebraic set described by s polynomials of degree d in k variables, in
time (sd)o(kl(k_kl). Note that this complexity is output sensitive. Thus,
for fixed £ > 0, it is possible to decide in time (sd)?*) whether the
dimension of a given P-semi-algebraic set, S, is < £. This generalizes to
£ > 0, the algorithm for checking whether the dimension of S is zero,
described in [2].

In this paper, we improve slightly the results of [22] by giving more
precise complexity bounds with respect to the number s of polynomials.
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More precisely, we show that the dimension k' can be computed in time

S(k—k" k! JO(' (k—k")) if k' >k/2
s(E=F DR+ GORK' (k=k) i k! < /2.

The rest of the paper is organized as follows. In Sec. 2, we give some
geometric properties of the dimension in terms of well chosen projections.
In Sec. 3, we describe several algorithmic prerequisites which will be
necessary for our algorithm. The main technique used, similarly to [22],
is that of block elimination, which makes possible the projection of one
block of variables efficiently in a single step. Block elimination technique,
introduced for the first time by Dima Grigoriev in [14], is a powerful tool
in several recent algorithms for real algebraic geometry (see [5]). Finally,
in Sec. 4, we describe our algorithm for computing the dimension.

2. GEOMETRIC PROPERTIES OF DIMENSION

Let S be a P-semi-algebraic set where P is a finite set of s polynomials
in R[Xy,...,Xz]. A subset T of R¥ is P-invariant if every polynomial
P € P has constant sign (> 0, < 0, or = 0) on 7. We denote by Sign(P) C
{0,1,—1}% the set of all realizable sign conditions for P over R*, i.e.,
those o € {0,1,—1}” such that

Rio) = {a €R* | )\ sign(P(x)) = o(P)} £ 0.

PeP

We denote by SSign(P) the set of realizable strict sign conditions of P,
i.e., the realizable sign conditions ¢ € {0,1,—1}” such that for every
PeP,P#0,0(P)#0.

Proposition 1. The dimension of S is k if and only if there exists o €

SSign(P) such that R(o) C S.

Proof. The dimension of S is k if and only if there exists a point z € S
and r» > 0 such that B(z,r) C S. The sign condition satisfied by P at
such an z is necessarily strict. In the other direction, if the sign condition
o satisfied by P at such an z is strict, R(c) is open, and contained in S
since S is defined by a quantifier free P-formula. O

It is reasonable to expect that the dimension of S is > j if and only if
there exists a linear surjection 7 of R* to R/ such that the dimension of
7(S) is j. We are going to prove that a stronger statement is true, namely
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that it suffices to consider j(k—j)+1 well chosen linear surjections, rather

than all linear surjections. O
Notation 1. We denote by v;(z) the Vandermonde vector (1, z,. .., z*¥~1).
For ¢ € N, we denote by V; the vector subspace of R* generated by

vk(f),vk(f—}- 1), ,Uk(f—‘r k—k" — 1)

It is clear that V; is of dimension k — k&’ since the matrix of coordinates
of the vectors

’Uk_k/(f),vk_k/(f + 1), . ,Uk_k/(f—{— k—k — 1)

is an invertible (k — k') x (k — k') Vandermonde matrix. We now describe
equations for V;. Let, for k — k' +1 < 7 < k,
Xi=(X1,..., Xp—p, Xj),
vp () = (1,... £k =1 pit
foj = det(vg ;(0), ... vi (€ +k— k' —1),X;),
Ly (X1, .., Xe) = (X, o, X, fob—nig1, oo for)

Note that the zero set of the linear forms f; ;, for k — k' +1 < j < k is
the vector space V and that Ly ¢ is a linear bijection such that Ly (V)
consists of vectors of R* having their last &’ coordinates equal to 0. We
also denote by My, = (dk_klyg)le;,%l, where

dk_klyg = det(vk_k/(f), c ,Uk_k/(f +k—k - 1))

Note that My ¢ plays the same role as the inverse of Ly, but is with
integer coordinates, since, for k— k' + 1 < j < k, dp—ps ¢ 1s the coefficient
of X]' n fz,]ﬂ

For a family of polynomials P = {P;,..., Ps} C R[X1,...,Xk], and
a k x k matrix M, we denote by P(M) = {Pi(M - X),...,P;(M - X)}

The following proposition is proved in [11].

Proposition 2. Any linear subspace T' of R¥ of dimension j > k' is such
that there exists 0 < £ < k'(k — k') such that V; and T span RF.

We denote by ; the canonical projection of R* to R/ forgetting the
last k£ — j coordinates.
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Proposition 3. Let 0 < j < k. The dimension of S is > j if and only if
there exists 0 < 1 < j(k — j) such that the dimension of 7;(L; ;(S)) Is j.

Proof. It is clear that if the dimension of m;(L; ;(S)) is j,the dimension
of S is > j. In the other direction, if the dimension of S is k' > j,
there exists a smooth point z of S of dimension k¥’ with tangent space
denoted by T (see [5, Proposition 5.54]). By Proposition 2, there exists
0 < i< j(k—j), such that V; and T span RF. Since L;;(V;) consists of
vectors of R¥ having their last j coordinates equal to 0, and L; ;(V;) and
L; ;(T) span R®, m;(L; (1)) is R/. Then the dimension of 7;(L;:(S))
18 j. O

3. ALGORITHMIC PREREQUISITES

All the computations take place in an ordered domain D contained in a
real closed field R such that D contains the coefficients of the elements of
P. We denote by K the quotient field of D and by C = R[7] the algebraic
closure of R.

The following notations and algorithms are used in the rest of the
paper. We state only the inputs, outputs and the complexities of these
algorithms, and refer to [5] for a precise description.

For Q C R[X;,...,X:] we denote the set of zeros of Q in RF by
Z(Q RN ={zecR" | Qx)=0,Qc 0}

A k-univariate representation is a k + 2-tuple of polynomials of K[T7,

(f(T)’QO(T)’gl(T)’ s ,gk(T)),

such that f and gg are coprime. Note that go(t) # 0 if ¢ € C is a root of
F(T). The points associated to a univariate representation are the points

(gl(t) M) e Ct,

go(t)” " 7 go(?)

where t € Cis aroot of f(T). A real k-univariate representation is a pair
u, o where u 1s a k-univariate representation and o is the Thom encoding
of a root of f, t, € R. The Thom encoding of a root ¢, € R 1is the
list of signs of the derivatives of f at ¢, and it characterizes the root #,
(see [5, Proposition 10.62]). The point associated to the real univariate
representation u, o is the point

(glao)’m ’gkaa)) Rt

go(ts) go(ts)
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Notation 2. Let u = (f, go,...,gr) C K[T]**? be a k-univariate repre-
sentation and P € K[X1,..., Xj]. Set

e 9k 9k
Pu:g0P<_a"'a_)a (1)

g0 4o

where e is the least even number not less than the degree of P.

The following algorithm enables us to compute a set of real univari-
ate representations whose associated points meet the realizations of each
realizable sign condition of a family of polynomials in R[ X1, ..., Xi].
Algorithm 1 (Sampling ([5], Algorithm 13.11))

Input: a set of s polynomaals,

P={P,..., P} CD[Xy,..., Xz,

each of degree at most d.

Output: a setU of real univariate representations in D[T)*+2 such that
the associated points form a set of sample points for P in R*,
meeting every semi-algebraically connected component of R(o)
for every o € Sign(P), and the signs of the elements of P al
these points.

Complexity: The number of arithmetic operations in D is bounded by

sy 4 (Z) dO) = 5+1gO0),

i<k

However, the number of points actually constructed is only
S 4 (5) O(d)*.

i<k M

If D = Z and the bitsize of the coefficients of the input polynomials
1s T, the size of the integer coefficients of the univariate represen-
tations in U are bounded by Td°").

We denote by R{e) the real closed field of algebraic Puiseux series
where £ is a variable and by R{e, 8) the field R{()(§). A parametrized

univariate representation with parameters Y is a k + 2-tuple

U(Y) = (f(Y’ T)’go(ya T)J s ’gk(Y’ T)) € D[Y][T]k+2
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The following algorithm for efficiently eliminating a block of variables
plays a key role in our algorithm.

Algorithm 2 (Block Elimination ([5], Algorithm 14.6))

Input: a set of s polynomials P C D[Y, X], withY = Yi,...,Ys and
X =X4,..., Xy each of degree at most d.
Output: « set BElimx(P) C D[Y1,...,Ys] such that Sign(P(y, X1, ...,
X)) is fizred as y varies over a semi-algebraically connected
component of a realizable sign condition of BElimx (P).

a set Ux(P) of parametrized univariate representations of the
form

U(Y’E:’é) = (f7g01'-' 1gk)7

where f,g9; € D[Y,e,8][T]. The set Ux(P) has the property
that for any point y € Rf, denoting by Ux(P)(y) the sub-
set of Ux(P) such that f(y,T) and go(y,T) are coprime, the
points associated to the univariate representations u(y,e,8) in
Ux(P)(y) intersect every semi-algebraically connected com-
ponent of every realizable sign condition of the set P(z) in
R{e, 8)F.

Complexity: The number of arithmetic operations in D is

i S\ 0(k) _ i+1 70(k)
s Z 4 <2) d =s7d .
igJ
If D = 7Z, and the bitsizes of the coefficients of the polynomuals
are bounded by T, then the bitsizes of the integers appearing in

the intermediate computations and the output are bounded by
7d9%),

The following notations are adapted from that used in [5]. Here,
we need them for the special case, when there are only two blocks of
variables. Let P be a set of s polynomials in k variables Xy,..., X},
and let II denote a partition of the list of variables X;,..., X into two
blocks, X717, X[1. Let Rl = R*, Rl = R/, and let 7[1] be the projection
from Rl = R* = to R = R/ forgetting the last k — j coordinates. We
define the tree of realizable sign conditions of P with respect to II. For
z € R, let sign(P)(z), be the sign condition on P mapping P € P to
sign(P)(z) € {0,1,—1}. Let

Signm,1(P)(y) = {sign(P)(z)|z € R, mp1)(2) =y},
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and

Signn(P) = {Signm,1(P)(y)|ly € RIM}.

Note that Signm(P) is naturally equipped with a tree structure. We call
Signr(P) the tree of realizable sign conditions of P with respect to II.
A T-set A = Ay, A is a list of two finite sets such that A; ¢ RI,
A; ¢ RE! and m1)(Az) = Az Given a [l-set A = Ay, Ag, let for y € A;

Signm, 1 (P, A)(y) = {sign(P)(2)[z € Az, mp1)(2) = y},

and

SignH(P,A) = {Slgnnyl(P)(zﬂz S ./41}
A T-set A = Ay, As is a set of II-sample points for P if
SignH(P,A) = Signn(’P).

Notation 3. Let By 1(P) = BElimx,, (P) and

UH,l(’P) = UX[z] (P)’
Un,o(P) = Uxy,y (Brr,1(P)).
The elements of U 1(P) are parametrized univariate representa-
tions in the variable T contained in D[X[1], €2, 82][T5]* =2 The elements

of Ur,o(P) are univariate representations in the variable 77 contained in
D[El, 61][T1]J+2. Let

u = (ug,u1) €U = Uno(P) x U 1(P),
with
w = (2,657, 68,gfh),
uo = (1, g%, 61, . gl

For a polynomial P(X[1}, X[g)), let P,(71,73) denote the polynomial ob-
tained by replacing the block of variables X[;7, with the rational fractions
associated with the tuple u; then the block of variables X|s), with the
rational fractions associated with the tuple us (as in Notation 2). Define

T. = (FH(T), fP,(T1, Tv)).

o = (f[g]u’g([)z]uag[f]ua e ,QE] ) € D[Ty, €1, 61, €9, 85][To]F 73 +2.

—Ju
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For u € U and t, € Z(7y,R(e1,61,¢2,82)), with Thom encoding o, let
Zu,00 € R{e1, 61, €2, 62)[j] be the point obtained by substituting the first
coordinate of ¢, in the rational functions associated to ui, and similarly
let 2y 51 € R{e1, 61, €2, 62>[k] be the point obtained by substituting ¢, in
the rational functions associated to u; and . Let A7 be the set of points
Ty o0 Obtained by considering all u € U and t, € Z(7,, R{e1, 61,¢€2, 62)).
Similarly let A5 be the set of points z, ,1 obtained by considering all
u € U and t, € Z(Ty,R{e1,61,69,62)%). Then A = A1, A5 is a Tl-set,
specified by V where the elements of V are pairs of an element u € U and
a Thom encoding ¢ of an element of Z(7,, R{e1, 61,2, 62)).

The following algorithm is a special case of Algorithm 14.13 in [5],
when the number of blocks of variables is equal to 2.

Algorithm 3 (Block Structured Signs)

Input: a set of s polynomials P C R[X1,...,Xs], and a partition,
II, of the variables X1,..., Xy wnto two blocks, Xq,...,X; and
Xit1,- -, Xp.

Output: the tree Signm(P) of realizable sign conditions of P with respect
to 11 and the specification V of a -set A of sample points
forP.

Complexity: The number of arithmetic operations in D is
sUHL(k=i+1) JOG (k—3j)

If D = 7, and the bitsizes of the coefficients of the polynomuals
are bounded by T, then the bilsizes of the integers appearing in

the intermediate computations and the output are bounded by
rdCU)IOk=7),

4. COMPUTING DIMENSION

The main idea behind computing the dimension of S is quite simple
and i1s based on the geometric characterization of dimension described
in Sec. 2. We first check whether the dimension of S is & making use of
Proposition 1 or —1 (i.e., is empty). If it is not the case, try k£ — 1 or 0,
then k& — 2 or 1, etc. making use of Proposition 3.

Algorithm 4 (Dimension)

Input: a finite subset P C D[Xy,...,Xk] and a semi-algebraic set S
described by a quantifier free P-formula ®(X).
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Output: the dimension of S.
Procedure: [Initialize j := 0.
(%) Consider the block structure Il;_; with two blocks of variables:
Xj+17"' ,Xk and Xl,... ,Xj‘
For every i = 0,...,j(k — j) let Py_j; = P(My—;;) (using
Notation 1)) and let

Sk—ji={zr €RF | ®(My_;;-2)}.

Compute Signy,_; (Pr—j i) using Algorithm 3 (Block Structured
Signs).
Defining X¢; = X1 ..., X;, compute

SSign(BElimxgj ('Pk_jyi))

using Algorithm 1 (Sampling). Note that every sample point out-
put by Algorithm 3 (Block Structured Signs) is above a sample
point for BElimx_;(Px—; ) output by Algorithm 1 (Sampling).

Check whether one of the strict sign conditions in
SSign(BElimxgj (Pr—ji))

is satisfied at some point of my_;(Sk—j.:).

If one of the strict sign conditions in
SSign(BElimxgj (Pr—ji))

is satisfied at some point of my_;(Sk_;;), output k — j.

Consider the block structure Il; with two blocks of variables:
Xk—j-}-l’ . ,Xk and Xl, N ,Xk_]x

For every i = 0,...,j(k — j) let P;; = P(M;;) (again using
Notation 1)) and let

S;ji={x¢€ R* | O(M;; - x)}.

Compute Signr,(P;;) using Algorithm 3 (Block Structured
Signs).

Defining X¢pj = X1 ..., Xz—j, compute
SSign(BElimxgk_j ('Pjyi))
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using Algorithm 1 (Sampling). Note that every sample point out-
put by Algorithm 3 (Block Structured Signs) is above a sample
point for BElimx_,_.(P;:) output by Algorithm 1 (Sampling).

Check whether one of the strict sign conditions in
SSign(BElimxgk_j ('P]'yi))

is satisfied at some point of w;(S; ;).

If for every i = 0...5(k — j) none of the strict sign conditions in
SSign(BElimxgk_j ('Pjyi))

is satisfied at some point of w;(S;;), output j — 1.
Otherwise define j := j+ 1 and go to (%)

Proof of correctness. Follows clearly from Proposition 1, Proposi-
tion 3, the correctness of of Algorithm 2 (Block Elimination), Algorithm 1
(Sampling) and Algorithm 3 (Block Structured Signs). O

Complexity analysis. Let s be a bound on the number of elements of
P and d abound on their degrees. There are at most (k4 1)/2 values of j
considered in the algorithm. For a given 7, the complexity of the call to Al-
gorithm 3 (Block Structured Signs) performed is sU+1)(k=i+1)gOoG(k=j)),
using the complexity analysis of Algorithm 3 (Block Structured Signs)
The call to Algorithm 3 (Block Structured Signs) for BElimx,,(Q),
Q € L; has complexity sUFDE=7+1)gO0G(k=i))  uging the complexity
analysis of Algorithm 3 (Block elimination) and Algorithm 3 (Block
Structured Signs), since the number of polynomials is sk=i+1gO(k=j)
their degrees are d°(*~7) and their number of variables is j. Finally the
total cost of the algorithm is

S(k—k')k'do(kl(k—k')) if k/ > k/2
S(k—k'+1)(k'+1)d0(k’(k—k')) it & < k’/?
If D = 7Z, and the bitsizes of the coefficients of the polynomials are bound-

ed by 7, then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by rdOF (k=k") |
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