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Abstract. Computing various topological invariants of semi-algebraic
sets in single exponential time is an active area of research. Several
algorithms are known for deciding emptiness, computing the number of
connected components of semi-algebraic sets in single exponential time
etc. However, an algorithm for computing all the Betti numbers of a
given semi-algebraic set in single exponential time is still lacking. In
this paper we describe a new, improved algorithm for computing the
Euler-Poincaré characteristic (which is the alternating sum of the Betti
numbers) of the realization of each realizable sign condition of a family of
polynomials restricted to a real variety. The complexity of the algorithm
is sk′+1O(d)k +sk′

((k′ log2(s)+k log2(d))d)O(k) where s is the number of
polynomials, k the number of variables, d a bound on the degrees, and
k′ the real dimension of the variety. A consequence of our result is that
the Euler-Poincaré characteristic of any locally closed semi-algebraic set
can be computed with the same complexity. The best complexity of any
previously known single exponential time algorithm for computing the
Euler-Poincaré characteristic of semi-algebraic sets worked only for a
more restricted class of closed semi-algebraic sets and had a complexity
of (ksd)O(k).
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1. Introduction

Let R be a real closed field. For Q ∈ R[X1, . . . , Xk] we denote the set of zeros
of Q in Rk by Z(Q, Rk) = {x ∈ Rk | Q(x) = 0}. Now let Q ∈ R[X1, . . . , Xk],
deg(Q) ≤ d, and k′ the dimension of Z = Z(Q, Rk). Given a family P =
{P1, . . . , Ps} ⊂ R[X1, . . . , Xk], with degrees also bounded by d, there are several
algorithms known for computing the number of realizable sign conditions of the
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family P restricted to the real variety Z, as well as computing the number of
connected components of the realization of each such sign condition [10, 13, 12,
16, 18, 3, 4]. The complexity of the best known algorithm is sk′+1dO(k) for the
first problem [3], and sk′+1dO(k2) for the second [4]. In this paper, we consider
the problem of computing the Euler-Poincaré characteristic of the realization
of each realizable sign condition of P restricted to the real variety Z. (Here and
elsewhere in the paper by the complexity of any algorithm we mean the number
of arithmetic operations and sign comparisons performed on the elements of the
ring generated by the coefficients of the input polynomials.)

Efficient algorithms for sign determination of univariate polynomials de-
scribed in [7, 19] are amongst the most basic algorithms in algorithmic real
algebraic geometry. Given P ⊂ R[X], Q ∈ R[X] with #P = s, and deg(P ) ≤ d
for P ∈ P ∪ {Q}, these algorithms count for each realizable sign condition of
the family P, the cardinality of the set of real zeros of Q, lying in the realization
of that sign condition. (Here and everywhere else in the paper #(S) denotes
the cardinality of a set S.) The complexity of the algorithm in [19] is sdO(1).
The main contribution of this paper may be viewed as a generalization of this
algorithm to the multidimensional situation.

In the multidimensional case, it is no longer meaningful to talk about the
cardinalities of the zero set of Q lying in the realizations of different sign condi-
tions of P. However, there exists another discrete valuation on semi-algebraic
sets that properly generalizes the notion of cardinality. This valuation is the
Euler-Poincaré characteristic.

The Euler-Poincaré characteristic, χ(S), of a closed and bounded semi-
algebraic set S ⊂ Rk is defined as

χ(S) =
∑

i

(−1)ibi(S),

where bi(S) is the rank of the i-th simplicial homology group of S. Note
that with this definition, χ(∅) = 0, and χ(S) = #(S), whenever #(S) < ∞.
Moreover, χ is additive.

There is a natural generalization of the Euler-Poincaré characteristic to
semi-algebraic sets which are locally closed (i.e. the intersection of a closed
semi-algebraic set with an open one) which retains the additive property. This
generalization is based on the theory of Borel-Moore homology groups [9] of
locally closed semi-algebraic sets and is described in the next section.

Given P ∈ R[X1, . . . , Xk], and S ⊂ Rk, a locally closed semi-algebraic set,
we denote

R(P = 0, S) = {x ∈ S | P (x) = 0},
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R(P > 0, S) = {x ∈ S | P (x) > 0},

R(P < 0, S) = {x ∈ S | P (x) < 0}.

Notice that these sets are all locally closed. We let χ(P = 0, S) (respectively
χ(P > 0, S), χ(P < 0, S)) denote the Euler-Poincaré characteristic of R(P =
0, S) (respectively R(P > 0, S), R(P < 0, S)).

More generally, given a family of polynomials P ⊂ R[X1, . . . , Xk] and a sign
condition σ ∈ {0,−1, 1}P , we denote by

R(σ, S) = {x ∈ S | ∧P∈Psign(P (x)) = σ(P )}

and
χ(σ, S) = χ(R(σ, S))

(where sign(x) = 0 (respectively, = 1, = −1) iff x = 0 (respectively, > 0, < 0)).
The Euler-Poincaré-query of P with respect to S is

EQ(P, S) = χ(P > 0, S) − χ(P < 0, S).

As a particular case, given a finite subset Z ⊂ Rk, and P ∈ R[X1, . . . , Xk], the
Sturm-query of P with respect to Z is the number

SQ(P, Z) = #({x ∈ Z | P (x) > 0}) − #({x ∈ Z | P (x) < 0}).

Given P ⊂ R[X], Q ∈ R[X] with #P = s, and deg(P ) ≤ d for P ∈ P∪{Q},
the sign determination algorithm in [7] (see also [19]) uses as a basic building
block, Sturm-query computations SQ(P, Z) for various polynomials P , where
each such P is a product of certain polynomials in P or their squares, and
Z = Z(Q, R). The main idea underlying these algorithms is to construct a
matrix, M , with entries in {0, 1,−1}, such that the equation M · C = SQ
holds. Here, C is the vector of cardinalities of sets of zeros of Q lying in the
realizations of different sign conditions of P, and SQ is a vector of Sturm-
queries. Clearly, provided M is invertible, we can compute the vector C from
M and SQ. The matrix M is built inductively by taking Kronecker products.
If done naively this would lead to tripling its size at each step, leading to a
matrix of size 3s at the end. An obvious but crucial fact used to control the
complexity of the algorithms in [7, 19] is that the number of realizable sign
conditions of the family P on Z(Q, R) is bounded by d. This fact is used to
prune the matrix M at each step of the algorithm so that its size never exceeds
d. The main algorithm presented in this paper (Algorithm 4.8 in Section 4) is
based on similar ideas. Instead of Sturm-queries, it uses the Euler-Poincaré-
queries defined above. The role of the matrix equation M · C = SQ is played
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by Equation (4.2) in Proposition 4.1 below, and it uses a tight bound on the
number of realizable sign conditions on a variety (see Proposition 2.12 below)
to ensure that the size of the matrix does not grow exponentially in s.

Let Q ∈ R[X1, . . . , Xk], Z = Z(Q, Rk). We denote by Sign(P, Z) the list of
σ ∈ {0, 1,−1}P such that R(σ, Z) is non-empty. We denote by χ(P, Z) the list
of Euler-Poincaré characteristics χ(σ, Z) = χ(R(σ, Z)) indexed by elements, σ,
of Sign(P, Z).

The problem of determining the Euler-Poincaré characteristic of closed
semi-algebraic sets was considered in [1] where an algorithm was presented for
computing the Euler-Poincaré characteristic of a given closed semi-algebraic
set defined by a quantifier-free Boolean formula without negation, with atoms
of the form, Pi ≥ 0, Pi ≤ 0, for 1 ≤ i ≤ s, deg(Pi) ≤ d. The complexity of the
algorithm is (ksd)O(k). Moreover, in the special case when the coefficients of
the polynomials in P are integers of bit lengths bounded by τ , the algorithm
performs at most (ksd)O(k)τO(1) bit operations.

The rest of this paper is devoted to the proof of the following.
Main Result: We present an algorithm (Algorithm 4.8 in Section 4) which
given an algebraic set Z = Z(Q, Rk) ⊂ Rk and a finite set of polynomials P =
{P1, . . . , Ps} ⊂ R[X1, . . . , Xk], computes the list χ(P, Z) indexed by elements,
σ, of Sign(P, Z). If the degrees of the polynomials in P ∪ {Q} are bounded by
d, and the real dimension of Z = Z(Q, Rk) is k′, then the complexity of the
algorithm is

sk′+1O(d)k + sk′

((k′ log2(s) + k log2(d))d)O(k).

If the coefficients of the polynomials in P∪{Q} are integers of bitsizes bounded
by τ , then the bitsizes of the integers appearing in the intermediate computa-
tions and the output are bounded by τ((k′ log2(s) + k log2(d))d)O(k).

In many applications, the combinatorial complexity of algorithms (the part
depending on s) is considered more important than the algebraic complexity
(the part depending on d). This is especially relevant in computational geom-
etry, where it is customary to treat the degrees of polynomials as well as the
dimension as fixed, with the number of polynomials allowed to be large (see
[14]). As a result, there has been a lot of research aimed towards designing
algorithms for computing various properties of semi-algebraic sets with tight
combinatorial complexities. For instance, algorithms with tight combinatorial
complexity has been designed for computing the set of all realizable sign condi-
tions of a family of polynomials [3], testing connectivity of semi-algebraic sets
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[4, 10] etc. From this point of view, the complexity of the algorithm presented
in this paper is significantly better than that of the algorithm in [1] mentioned
above, and nearly matches the complexity of the best known algorithm for com-
puting the set of all realizable sign conditions on a variety [3]. Moreover, by the
additive property of the Euler-Poincaré characteristic, it is clear that once we
have computed the Euler-Poincaré characteristic of every realizable sign con-
dition, it is possible to compute the same for any locally closed semi-algebraic
set defined by a quantifier-free formula involving the input polynomials with-
out any additional computational overhead. The algorithm in [1] deals only
with closed semi-algebraic sets defined by formulas of a special type. Another
interesting aspect of Algorithm 4.8 is that it is really a multidimensional gener-
alization of the sign determination algorithms in [7, 19] for the univariate case
and their multivariate generalization [17] for zero-dimensional systems.

The rest of the paper is organized as follows. In Section 2 we state some of
the topological results which we will use. If the results have appeared before
or are classical we omit the proofs and provide pointers to the appropriate
papers. In Section 3 we use an algorithm for computing the Euler-Poincaré
characteristic of algebraic sets described in [1] to design the building block
for the main algorithm. Finally, in Section 4 we describe the algorithm for
computing the Euler-Poincaré characteristics for all sign conditions.

2. Basic Results from Topology

2.1. Definition of the Euler-Poincaré Characteristic. In order to define
the Euler-Poincaré characteristic of semi-algebraic sets we first recall the defini-
tions of the simplicial homology groups of a closed and bounded semi-algebraic
set S ⊂ Rk, with R a real closed field.

A closed, bounded semi-algebraic set S can be triangulated by a simplicial
complex K [8, 6]. Choose a semi-algebraic triangulation f : |K| → S. The
homology group Hp(S) (with coefficients in Q) are defined to be the simplicial
homology group (with coefficients in Q), Hp(K), of the simplicial complex K,
for p = 0, 1, . . . .

The homology groups of S are all finite dimensional vector spaces over Q.
The dimension of Hp(S) as a vector space over Q is called the p-th Betti number
S and denoted bp(S). The Euler-Poincaré characteristic of S is

χ(S) =
∑

i

(−1)ibi(S).

We are now in a position to define the Euler-Poincaré characteristic for
locally closed semi-algebraic sets. This definition agrees with the previously
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defined Euler-Poincaré characteristic for closed and bounded semi-algebraic sets
and turns out to be additive as before. Since the Euler-Poincaré characteristic
is a discrete topological invariant of semi-algebraic sets which generalizes the
cardinality of a finite set, its additivity is a very natural property to require.

We first recall the definition of simplicial homology groups of pairs of closed
and bounded semi-algebraic sets. Let K be a simplicial complex and A a
subcomplex of K. Then, there is a natural inclusion homomorphism,

ι : Cp(A) → Cp(K)

between the corresponding chain groups (with coefficients in Q). Defining, the
group Cp(K, A) = Cp(K)/ι(Cp(A)), it is easy to see that the the boundary
maps ∂p : Cp(K) → Cp−1(K) descend to maps ∂p : Cp(K, A) → Cp−1(K, A), so
that we have a short exact sequence of complexes,

0 → C∗(A) → C∗(K) → C∗(K, A) → 0.

Given a pair (K, A), where A is a subcomplex of K, the group

Hp(K, A) = Hp(C(K, A))

is the p-th simplicial homology group of the pair (K, A).
It is clear from the definition that Hp(K, A) is a finite dimensional Q-vector

space. The dimension of Hp(K, A) as a Q-vector space is called the p-th Betti
number of the pair (K, A) and denoted bp(K, A). The Euler-Poincaré charac-
teristic of the pair (K, A) is

χ(K, A) =
∑

i

(−1)ibi(K, A).

The simplicial homology groups of a pair of closed and bounded semi-
algebraic sets T ⊂ S ⊂ Rk are defined as follows. Such a pair of closed,
bounded semi-algebraic sets can be triangulated [6] using a pair of simplicial
complexes (K, A), where A is a sub-complex of K. The p-th simplicial homol-
ogy group of the pair (S, T ), Hp(S, T ), is Hp(K, A). The dimension of Hp(S, T )
as a Q-vector space is called the p-th Betti number of the pair (S, T ) and
denoted bp(S, T ). The Euler-Poincaré characteristic of the pair (S, T ) is

χ(S, T ) =
∑

i

(−1)ibi(S, T ).
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The p-th Borel-Moore homology group of S ⊂ Rk, denoted HBM
p (S), is

defined in terms of the homology groups of a pair of closed and bounded semi-
algebraic sets as follows. For r > 0, let Bk(0, r) denote the open ball of radius r
centered at the origin, and let Sr = S ∩Bk(0, r) and Sr the closure of Sr. Note
that, for a locally closed semi-algebraic set S, both Sr and Sr\Sr are closed and
bounded and hence Hp(Sr, Sr\Sr) is well defined. Moreover, it is a consequence
of Hardt’s triviality theorem [15] that the homology group Hp(Sr, Sr \ Sr) is
invariant for all sufficiently large r > 0. We define, HBM

p (S) = Hp(Sr, Sr \ Sr),
for r > 0 sufficiently large, and it follows from the remark above that it is
well defined. The Borel-Moore homology groups are invariant under semi-
algebraic homeomorphisms [8]. It also follows clearly from the definition that
for a closed and bounded semi-algebraic set, the Borel-Moore homology groups
coincide with the simplicial homology groups.

2.2. Additivity of the Euler-Poincaré Characteristic. The following
proposition is well-known (see for example [6]).

Proposition 2.1. Let S ⊂ Rk be a closed and bounded semi-algebraic set,
K be a simplicial complex in Rk and h : |K| → S be a semi-algebraic homeo-
morphism. Let ni(K) be the number of simplices of dimension i of K. Then

χ(S) =
∑

i

(−1)ini(K).

The following proposition is an immediate consequence of Proposition 2.1.

Proposition 2.2. Let X1, X2 be two closed and bounded semi-algebraic sets.
Then,

(2.3) χ(X1 ∪ X2) = χ(X1) + χ(X2) − χ(X1 ∩ X2).

The Euler-Poincaré characteristic of a locally closed semi-algebraic set S,
is related to the Euler-Poincaré characteristic of the closed and bounded semi-
algebraic sets Sr and Sr \Sr for all large enough r > 0, by the following lemma.

Lemma 2.4.

χ(S) = χ(Sr) − χ(Sr \ Sr),

where Sr = S ∩ Bk(0, r) and r > 0 and sufficiently large.
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Proof. Choose a pair of simplicial complexes (K, A) corresponding to a
triangulation of the pair (Sr, Sr \ Sr). From the short exact sequence of chain
complexes,

0 → C∗(A) → C∗(K) → C∗(K, A) → 0,

we obtain the following long exact sequence of homology groups:

· · ·Hp(A) → Hp(K) → Hp(K, A) → Hp−1(A) → Hp−1(K) → · · · .

It follows that,

χ(S) = χ(K, A) = χ(K) − χ(A) = χ(Sr) − χ(Sr \ Sr).

�

Proposition 2.5. Let T ⊂ S ⊂ Rk be a pair of closed and bounded semi-
algebraic sets, (K, A) be a pair of simplicial complexes in Rk, with A being a
subcomplex of K and let h : |K| → S be a semi-algebraic homeomorphism such
that the image of |K| is T . Let ni(K) be the number of simplices of dimension
i of K, and let mi(A) be the number of simplices of dimension i of A. Then

χ(S, T ) = χ(K, A) =
∑

i

(−1)ini(K) −
∑

i

(−1)imi(A).

Proof. First note that χ(K, A) = χ(K) − χ(A) (see proof of Lemma 2.4).
The proposition is now an immediate consequence of Proposition 2.1. �

Proposition 2.6 (Additivity of Euler-Poincaré characteristic). Let X, X1 and
X2 be locally closed semi-algebraic sets such that

X1 ∪ X2 = X, X1 ∩ X2 = ∅.

Then
χ(X) = χ(X1) + χ(X2).

Proof. This is an easy consequence of the invariance of the Borel-Moore
homology groups under semi-algebraic homeomorphisms using Proposition 2.5.

�

Let S ⊂ Rk be a closed semi-algebraic set. Using the notation of the
introduction, we have:
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Proposition 2.7. The following equality holds:

(2.8)





1 1 1
0 1 −1
0 1 1



 ·





χ(P = 0, S)
χ(P > 0, S)
χ(P < 0, S)



 =





EQ(1, S)
EQ(P, S)
EQ(P 2, Z)





Proof. We need to prove

(2.9) χ(P = 0, S) + χ(P > 0, S) + χ(P < 0, S) = EQ(1, S),

(2.10) χ(P > 0, S) − χ(P < 0, S) = EQ(P, S),

(2.11) χ(P > 0, S) + χ(P < 0, S) = EQ(P 2, S).

The claim is an immediate consequence of Proposition 2.6. �

2.3. Number of Connected Components of Realizable Sign Condi-

tions. We will need a bound on the number of connected components of the
realizations of all realizable sign conditions of a family of polynomials on a real
variety, which we state below. Let P ⊂ R[X1, . . . , Xk] and Q ∈ R[X1, . . . , Xk]
and Z = Z(Q, Rk).

For σ ∈ Sign(P, Z), let bi(σ) denote the i-th Betti number of

R(σ, Z) = {x ∈ Rk | Q(x) = 0
∧

P∈P

sign(P (x)) = σ(P )}.

Let
bi(P, Z) =

∑

σ

bi(σ).

Note that b0(P, Z) is the number of semi-algebraically connected compo-
nents of basic semi-algebraic sets defined by P over Z(Q, Rk).

We write bi(d, k, k′, s) for the maximum of bi(P, Z) over all P and Q, with
deg(P ) ≤ d for all P ∈ P ∪ {Q}, #(P) = s and such that the algebraic set
Z = Z(Q, Rk) has dimension k′.

The following proposition is proved in [5].

Proposition 2.12.

b0(d, k, k′, s) ≤
∑

1≤j≤k′

(

s

j

)

4jd(2d − 1)k−1.
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3. Computing the Euler-Poincaré query

An algorithm for computing the Euler-Poincaré characteristic of an algebraic
set is described in [1]. We recall below the input, output and the complexity
of this algorithm.

Algorithm 3.1. Euler-Poincaré Characteristic of an Algebraic Set.

Input: a polynomial Q ∈ D[X1, . . . , Xk], where D is an ordered domain.
Output: the Euler-Poincaré characteristic χ(Z(Q, Rk)).

Complexity. The complexity of the algorithm is dO(k) . When D = Z and the
bitsizes of the coefficients of Q are bounded by τ , the bitsizes of the intermediate
computations and the output are bounded by τdO(k) [1].

We now outline an algorithm for computing Euler-Poincaré-queries which
uses Algorithm 3.1 described above for computing the Euler-Poincaré charac-
teristic of certain algebraic sets.

Algorithm 3.2. Euler-Poincaré-query.

Input: a polynomial Q ∈ D[X1, . . . , Xk], with Z = Z(Q, Rk), a polynomial
P ∈ D[X1, . . . , Xk].

Output: the Euler-Poincaré-query

EQ(P, Z) = χ(P > 0, Z) − χ(P < 0, Z).

1. Introduce a new variable Xk+1, and let

Q+ = Q2 + (P − X2
k+1)

2,

Q− = Q2 + (P + X2
k+1)

2.

Using Algorithm 3.1 (Euler-Poincaré Characteristic of an Algebraic Set),
compute χ(Z(Q+, Rk+1)) and χ(Z(Q−, Rk+1)).

2. Output
1

2
(χ(Z(Q+, Rk+1)) − χ(Z(Q−, Rk+1))).

Proof of correctness: The algebraic set Z(Q+, Rk+1) is semi-algebraically
homeomorphic to the disjoint union of two copies of the semi-algebraic set
defined by (P > 0)∧(Q = 0), and the algebraic set defined by (P = 0)∧(Q = 0).
Hence, using Proposition 2.6, we have that

2χ(P > 0, Z) = χ(Z(Q+, Rk+1)) − χ(Z(Q2 + P 2, Rk)).
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Similarly, we have that

2χ(P < 0, Z) = χ(Z(Q−, Rk+1)) − χ(Z(Q2 + P 2, Rk)).

Complexity Analysis: The complexity of the algorithm is dO(k) using the
complexity analysis of Algorithm 3.1.

When D = Z and the bitsizes of the coefficients of P are bounded by τ ,
the bitsizes of the intermediate computations and the output are bounded by
τdO(k).

4. Computing the Euler-Poincaré Characteristic of Sign

Conditions

Our next aim is to give a method for determining the Euler-Poincaré char-
acteristic of the realization of sign conditions realized by a finite set P ⊂
R[X1, . . . , Xk] on an algebraic set Z = Z(Q, Rk), with Q ∈ R[X1, . . . , Xk].

We compute the Euler-Poincaré characteristic of the non-empty realizations
of sign conditions on P on the real variety Z using Euler-Poincaré-queries
(defined in Section 1) as the basic building block. This should be compared with
the sign determination algorithms in [7, 19], which compute the cardinalities
of the non-empty realizations of sign conditions on a finite set and use Sturm-
queries as the basic building block.

Let S ⊂ Rk be a locally closed semi-algebraic set.
We order lexicographically {0, 1,−1}P and {0, 1, 2}P with 0 ≺ 1 ≺ −1 in

the first case and 0 ≺ 1 ≺ 2 in the second.
For A = (α1, . . . , αm), a list of elements from {0, 1, 2}P , with

α1 <lex . . . <lex αm,

we write PA for the list (Pα1 , . . . ,Pαm), and EQ(PA, S) for the vector

(EQ(Pα1 , S), . . . , EQ(Pαm , S))t

(Here, for α ∈ {0, 1, 2}P , Pα denotes the polynomial
∏

P∈P
P α(P ) and t denotes

the transpose.)
For Σ = (σ1, . . . , σn), a list of elements from {0, 1,−1}P , with

σ1 <lex . . . <lex σn,

we write R(Σ, S) for the list

(R(σ1, S), . . . ,R(σn, S))
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and χ(Σ, S) for the vector

(χ(σ1, S), . . . , χ(σn, S))t.

The matrix of signs of PA on Σ, is the m × n matrix M(PA, Σ), whose
i, j-th entry is sign(Pαi , σj).

We prove the following generalization of the main ingredient of the sign
determination algorithms in [7, 19].

Proposition 4.1. If ∪σ∈ΣR(σ, S) = S, (i.e. {σ | R(σ, S) 6= ∅} ⊂ Σ) then

(4.2) M(PA, Σ) · χ(Σ, S) = EQ(PA, S).

Proof. The proof is by induction on the number s of polynomials in P. The
statement when s = 1 follows from Proposition 2.7, since the Euler-Poincaré
characteristic of an empty sign condition is zero.

Suppose the statement holds for P ′ = P1, . . . , Ps−1 and consider P =
P1, . . . , Ps. Define

Σ0 = {σ ∈ Σ | σ(Ps) = 0},

Σ1 = {σ ∈ Σ | σ(Ps) = 1},

Σ−1 = {σ ∈ Σ | σ(Ps) = −1},

and

S0 =
⋃

σ∈Σ0

R(σ, S),

S1 =
⋃

σ∈Σ1

R(σ, S),

S−1 =
⋃

σ∈Σ−1

R(σ, S).

Note that S0, S−1, and S1 are all locally closed whenever S is locally closed.
Let α ∈ {0, 1, 2}P and α′ ∈ {0, 1, 2}P

′

defined by α′(Pj) = α(Pj), 1 ≤ j ≤ s−1.
Using the additive property of Euler-Poincaré characteristic (Proposition 2.6),

χ(Pα = 0, S) = χ(Pα = 0, S0) + χ(Pα = 0, S1) + χ(Pα = 0, S−1),

χ(Pα > 0, S) = χ(Pα > 0, S0) + χ(Pα > 0, S1) + χ(Pα > 0, S−1),

χ(Pα < 0, S) = χ(Pα < 0, S0) + χ(Pα < 0, S1) + χ(Pα < 0, S−1).
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If α(Ps) = 0,

EQ(Pα, S) = EQ(P ′α
′

, S0) + EQ(P ′α
′

, S1) + EQ(P ′α
′

, S−1).

If α(Ps) = 1,

EQ(Pα, S) = EQ(P ′α
′

, S1) − EQ(P ′α
′

, S−1).

If α(Ps) = 2,

EQ(Pα, S) = EQ(P ′α
′

, S1) + EQ(P ′α
′

, S−1).

The claim follows from the induction hypothesis applied to S0, S1 and S−1,
the definition of M(PA, Σ) and the additive property of Euler-Poincaré char-
acteristic (Proposition 2.6), which implies, for every σ ∈ Σ,

χ(σ, S) = χ(σ, S0) + χ(σ, S1) + χ(σ, S−1).

�

Let Q ∈ R[X1, . . . , Xk], Z = Z(Q, Rk). We consider a list A(Z) of elements
in {0, 1, 2}P adapted to sign determination for P on Z, i.e. such that the
matrix of signs of PA over Sign(P, Z) is invertible. If P = P1, . . . , Ps, let
Pi = P1, . . . , Pi, for 0 ≤ i ≤ s.

We will now describe a method for determining inductively a list Ai(Z)
of elements in {0, 1, 2}Pi adapted to sign determination for Pi on Z from
Sign(Pi−1, Z).

Choose i, 1 ≤ i ≤ s, and consider Pi. Let Sign(Pi−1, Z)2, (respectively
Sign(Pi−1, Z)3) be the subset of Sign(Pi−1, Z) of sign conditions which are par-
titioned into at least two (respectively three) distinct subsets by sign conditions
on Pi.

Let

(4.3) Z2 =
⋃

σ∈Sign(Pi−1 ,Z)2

R(σ, Z),

(4.4) Z3 =
⋃

σ∈Sign(Pi−1 ,Z)3

R(σ, Z).

Note that,

Sign(Pi−1, Z2) = Sign(Pi−1, Z)2,
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Sign(Pi−1, Z3) = Sign(Pi−1, Z)3.

Let

ri−1 = #(Sign(Pi−1, Z)),

ri−1,1 = #(Sign(Pi−1, Z)2),

ri−1,2 = #(Sign(Pi−1, Z)3),

ri = #(Sign(Pi, Z)).

Then ri = ri−1 + ri−1,1 + ri−1,2.

Consider the matrix M(P
Ai−1(Z)
i−1 , Sign(Pi−1, Z2)) and extract from it the first

ri−1,1 linearly independent rows defining a list Ai−1(Z2) adapted to sign deter-

mination on Z2.. Note, that the matrix M(P
Ai−1(Z)
i−1 , Sign(Pi−1, Z2)) consists of

ri−1,1 columns of the matrix M(P
Ai−1(Z)
i−1 , Sign(Pi−1, Z)), which is of full rank

by the induction hypothesis. Thus, the rank of M(P
Ai−1(Z)
i−1 , Sign(Pi−1, Z2)) is

ri−1,1.

Similarly, consider the matrix M(P
Ai−1(Z)
i−1 , Sign(Pi−1, Z3)) and extract from

it the first ri−1,2 linearly independent rows defining a list Ai−1(Z3) adapted to
sign determination on Z3.

Define

Ai(Z) = (Ai−1(Z) × 0, Ai−1(Z2) × 1, Ai−1(Z3) × 2).

One says that τ ∈ Sign(Pi, Z) extends σ ∈ Sign(Pi−1, Z) if σ(P ) = τ(P ),P ∈
Pi.

Proposition 4.5. The list Ai(Z) is adapted to sign determination for Pi on
Z.

Proof. The proof is by induction on i. The claim is obviously true for i = 1.
If P 6= ∅, we want to prove that

M(P
A(Pi ,Z)
i , Sign(Pi, Z))

is invertible. Denoting by Cτ its column indexed by τ , consider a zero linear
combination of its columns:

∑

τ∈Sign(Pi,Z)

λτCτ = 0.
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We want to prove that all λτ are zero. If σ ∈ Sign(Pi−1, Z)3, we denote by
σ1 <lex σ2 <lex σ3 the sign conditions of Sign(Pi, Z) extending σ. Similarly, if
σ ∈ Sign(Pi−1, Z)2 \Sign(Pi−1, Z)3, we denote by σ1 <lex σ2 the sign conditions
of Sign(Pi, Z) extending σ. Finally if σ ∈ Sign(Pi−1, Z) \ Sign(Pi−1, Z)2, we
denote by σ1 the sign condition of Sign(Pi, Z) extending σ.

Since M(PAi−1(Z), Sign(Pi−1, Z)) is invertible by induction hypothesis, λσ1
=

0 for every σ ∈ Sign(Pi−1, Z) \ Sign(Pi−1, Z)2, λσ1
+ λσ2

= 0 for every σ ∈
Sign(Pi−1, Z)2\Sign(Pi−1, Z)3, and λσ1

+λσ2
+λσ3

= 0 for every σ ∈ Sign(Pi−1,
Z)3.

Now using the fact that M(PA(Pi−1 ,Z2), Sign(Pi−1, Z2)) is invertible,
σ1(P )λσ1

− σ2(P )λσ2
= 0 for every σ ∈ Sign(Pi−1, Z)2 \ Sign(Pi−1, Z)3, and

λσ2
− λσ3

= 0 for every Sign(Pi−1, Z)3. Thus, λσ1
= λσ2

= 0 for every σ ∈
Sign(P, Z)2 \ Sign(Pi−1, Z)3.

Finally, using the fact that M(PA(P ,Z3), Sign(Pi−1, Z3)) is invertible, λσ2
+

λσ3
= 0 for every σ ∈ Sign(Pi−1, Z)3. Thus λσ1

= λσ2
= λσ3

= 0 for every
σ ∈ Sign(Pi−1, Z)3. �

Remark 4.6. The list Ai(Z) ⊂ {0, 1, 2}Pi adapted to sign determination con-
structed above depends only on the list of non-empty sign conditions Sign(P, Z),
since the list Ai(Z) ⊂ {0, 1, 2}Pi is constructed inductively from Ai−1(Z) and
Sign(Pi, Z).

We are ready to describe an algorithm for computing the Euler-Poincaré
characteristic of the realizations of sign conditions. We use the following algo-
rithm (see [3, 6]) as a basic building block.

Algorithm 4.7. Sampling on an Algebraic Set.

Input: a polynomial Q ∈ D[X1, . . . , Xk] of degree at most d, with Z(Q, Rk) of
real dimension k′,

a set of s polynomials ,P = {P1, . . . , Ps} ⊂ D[X1, . . . , Xk], each of
degree at most d.

Output: the set Sign(P, Z) ⊂ {0, 1,−1}P of all realizable sign conditions for
P over Z = Z(Q, Rk).

Complexity. The complexity is sk′+1dO(k). If D = Z, and the bitsizes of the
coefficients of the polynomials are bounded by τ , then the bitsizes of the integers
appearing in the intermediate computations and the output are bounded by
τdO(k).
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Algorithm 4.8. Euler-Poincaré Characteristic of Sign Conditions.

Input: an algebraic set Z = Z(Q, Rk) ⊂ Rk and a finite list P = P1, . . . , Ps of
polynomials in R[X1, . . . , Xk].

Output: the list χ(P, Z).

1. Compute Sign(P, Z) using Algorithm 4.7 (Sampling on an Algebraic Set).
2. Determine for every 1 ≤ i ≤ s, a list Ai(Z) adapted to sign determination

for Pi on Z from Sign(Pi, Z) using Proposition 4.5.
3. Define A = As(Z), M = M(PA, Sign(P, Z)).
4. Compute EQ(PA, Z) using repeatedly Algorithm 3.2 (Euler-Poincaré-query).
5. Compute χ(P, Z) = M−1EQ(PA, Z) using the fact that M is invertible.

Proof of correctness: Immediate from Proposition 4.1.
In order to study the complexity of Algorithm 4.8 we need the following

proposition.

Proposition 4.9. Let Z = Z(Q, Rk) ⊂ Rk and r = #(Sign(P, Z)). Consider
As(Z) ⊂ {0, 1, 2}P computed by Algorithm 4.8. For every α ∈ As(Z), the
number #({P ∈ P | α(P ) 6= 0}) is at most log2(r).

We need the following definition. Let α and β be elements of {0, 1, 2}P. We
say that β precedes α if for every P ∈ P, β(P ) 6= 0 implies β(P ) = α(P ). Note
that if β precedes α, then β <lex α.

Proof. (Proposition 4.9) Let α be such that #({P ∈ P | α(P ) 6= 0}) = k.
Since the number of elements β of {0, 1, 2}P preceding α is 2k, and the total
number of polynomials in As is at most r, we have 2k ≤ r and k ≤ log2(r). So,
the proposition follows immediately from the next lemma. �

Lemma 4.10. If β precedes α and α ∈ As(Z) then β ∈ As(Z).

Proof. We prove by induction on i that if β /∈ Ai(Z) then α /∈ Ai(Z). The
claim is obvious for i = 1. If α ∈ {0, 1, 2}Pi we denote by α′ the element of
{0, 1, 2}Pi−1 such that α′(Pj) = α(Pj), j < i. Note that, by definition of Ai(Z),
if α′ /∈ Ai−1(Z), α /∈ Ai(Z).

Suppose that β precedes α and that β /∈ Ai(Z). There are several cases to
consider:

If α(Pi) = 0, then β(Pi) = 0 and β ′ /∈ Ai−1(Z) by definition of Ai. By
the induction hypothesis, α′ /∈ Ai−1(Z) and α = α′ × 0 /∈ Ai(Z) by the
definition of Ai(Z).
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If α(Pi) = 1 (respectively 2), and β(Pi) = 0, thus α′ /∈ Ai−1(Z) by induction
hypothesis, and α /∈ Ai(Z).

If α(Pi) = 1 (respectively 2), and β(Pi) = α(Pi), then β ′ /∈ Ai−1(Z
′) (re-

spectively Ai−1(Z
′′)). Thus, the row of signs of Pβ′

i−1 on Sign(Pi−1, Z)1

(respectively Sign(Pi−1, Z)2) is a linear combination of rows of signs of
Pλ

i−1 on Sign(Pi−1, Z)1 (respectively Sign(Pi−1, Z)2), with λ <lex β ′ in
the lexicographical order. Denoting by γ the element in {0, 1, 2}Pi−1

such that Pβ′

i−1P
γ
i−1 = Pα′

i−1, the row of signs of Pα′

i−1 on Sign(Pi−1, Z)1

(respectively Sign(Pi−1, Z)2) is a linear combination of rows of signs
of Pλ

i−1P
γ
i−1 on Sign(Pi−1, Z)1 (respectively Sign(Pi−1, Z)2). Defining

λ′ by λ′(Pj) = λ(Pj) + γ(Pj) modulo 2, the row of signs of Pλ
i−1P

γ
i−1

on Sign(Pi−1, Z)1 (respectively Sign(Pi−1, Z)2) coincides with the row of
signs of Pλ′

i−1 on Sign(Pi−1, Z)1 (respectively Sign(Pi−1, Z)2). Since it is
clear that λ′ <lex α′ in the lexicographical order, α′ /∈ Ai−1(Z

′) (respec-
tively Ai−1(Z

′′)). Thus α /∈ Ai(Z).
�

Complexity analysis: Let k′ be the dimension of Z, d a bound on the degree
of Q and the elements of P and s = #(P)). By Proposition 2.12,

#(Sign(P, Z)) ≤
∑

0≤j≤k′

(

s

j

)

4jd(2d − 1)k−1 = sk′

O(d)k.

The number of calls to Algorithm 3.2 (Euler-Poincaré-query) is equal to #(Sign
(P, Z)). The calls to Algorithm 3.2 (Euler-Poincaré-query) are done for poly-
nomials which are products of at most

log2(#(Sign(P, Z))) = k′ log2(s) + k(log2(d) + O(1)

polynomials of the form P or P 2, P ∈ P by Proposition 4.9, hence of degree
(k′ log2(s)+k(log2(d)+O(1))d. Using the complexity analysis of Algorithm 4.7
(Sampling on an Algebraic Set) and the complexity analysis of Algorithm 3.2
(Euler-Poincaré-query), the number of arithmetic operations is

sk′+1O(d)k + sk′

((k′ log2(s) + k log2(d))d)O(k).

The algorithm also involves the inversion of matrices size sk′

O(d)k whose entries
are 0, 1 or −1.

If D = Z, and the bitsizes of the coefficients of the polynomials are bounded
by τ , then the bitsizes of the integers appearing in the intermediate computa-
tions and the output are bounded by τ((k′ log2(s) + k log2(d))d)O(k).
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Components of a Semialgebraic Set in Single Exponential Time, Discrete
and Computational Geometry, 11, 121-140 (1994).

[17] P. Pedersen, M.-F. Roy, A. Szpirglas, Counting real zeroes in the

multivariate case, Computational algebraic geometry, Eyssette et Galligo
ed. Progress in Mathematics 109, 203-224, Birkhauser (1993).

[18] J. Renegar. On the computational complexity and geometry of the first

order theory of the reals, Journal of Symbolic Computation, 13: 255–352
(1992).

[19] M.-F. Roy, A. Szpirglas Complexity of computation on real algebraic

numbers, Journal of Symbolic Computation 10, No.1, 39-51 (1990).

Manuscript received April 5, 2004.

Saugata Basu

School of Mathematics,
Georgia Institute of Technology,
Atlanta, GA 30332, U.S.A.
saugata@math.gatech.edu

Richard Pollack

Courant Institute of Mathematical Sci-
ences,

New York University,
New York, NY 10012, U.S.A.,
pollack@cims.nyu.edu



20 Basu, Pollack & Roy

Marie-Françoise Roy
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