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Abstract. Let R be a real closed field. We prove that for each fixed `, d ≥ 0,

there exists an algorithm that takes as input a quantifier-free first order formula

Φ with atoms P = 0, P > 0, P < 0 with P ∈ P ⊂ D[X1, . . . , Xk]
Sk
≤d , where

D is an ordered domain contained in R, and computes the ranks of the first
(` + 1) cohomology groups, of the symmetric semi-algebraic set defined by

Φ. The complexity of this algorithm (measured by the number of arithmetic

operations in D) is bounded by a polynomial in k and card(P) (for fixed d
and `). This result contrasts with the PSPACE-hardness of the problem of

computing just the zero-th Betti number (i.e. the number of semi-algebraically

connected components) in the general case for d ≥ 2 (taking the ordered
domain D to be equal to Z).

The above algorithmic result is built on new representation theoretic re-

sults on the cohomology of symmetric semi-algebraic sets. We prove that the
Specht modules corresponding to partitions having long lengths cannot occur

with positive multiplicity in the isotypic decompositions of low dimensional
cohomology modules of closed semi-algebraic sets defined by symmetric poly-

nomials having small degrees. This result generalizes prior results obtained

by the authors giving restrictions on such partitions in terms of their ranks,
and is the key technical tool in the design of the algorithm mentioned in the

previous paragraph.
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1. Introduction and Main Results

Throughout the paper we fix a real closed field, which we will denote by R (there
is no harm in assuming R = R). We assume familiarity with the basic notions of
semi-algebraic geometry [17, 9] – especially, definitions of semi-algebraic sets, their
homology and cohomology groups and main properties.

We will use the following notation.

Notation 1 (Betti numbers). Let S ⊂ Rk be any semi-algebraic set. We denote
by bi(S) = dimQ Hi(S,Q) (here and everywhere else in this paper without further
mention we only consider cohomology with rational coefficients and we will denote
Hi(S) = Hi(S,Q)). It is worth noting that the precise definition of the cohomology
groups Hi(S) requires some care if the semi-algebraic set S is defined over an
arbitrary (possibly non-archimedean) real closed field. For details we refer to [9,
Chapter 7, Section 5].

The algorithmic problem of computing Betti numbers of arbitrary semi-algebraic
subsets of Rk is a central and extremely well-studied problem in algorithmic semi-
algebraic geometry. It has many ramifications, ranging from applications in the
theory of computational complexity where it plays the role of ‘generalized counting’
in real models of computation (see [19, 15]), to robot motion planning where the
problem of computing the zero-th Betti number (that is the number of connected
components) of the free space of a robot which can be modeled as a semi-algebraic
set, is a central problem [43, 26]).

It is well-known that the Betti numbers of semi-algebraic subsets of Rk satisfy
a singly exponential (in k) upper bound (see for example [9, Theorem 7.38]). The
singly exponential dependence on k of the bound is moreover unavoidable as shown
by the following (key) example.

Example 1 (Key example). Let

(1.1) Fk,d,ε =

k∑
i=1

d−1∏
j=0

(Xi − j)2

− ε.
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Then, for 0 < ε� 1, the set of real zeros, Vd,k,ε of Fk,d,ε in Rk consists of dk semi-
algebraically connected components – each of which is semi-algebraically homeo-
morphic to a small sphere. Thus,

b0(Vd,k,ε) = bk−1(Vd,k,ε) = dk,

and both grow exponentially in k (for fixed d).

A common belief in algorithmic semi-algebraic geometry is that topological in-
variants satisfying a certain bound should in fact be computable by algorithms with
complexity bounded by roughly the same estimate. From this point of view one
expects that there should exist algorithms for computing the Betti numbers of semi-
algebraic sets with complexity bounded singly exponentially. Indeed, algorithms
for computing the zero-th Betti number (i.e. the number of semi-algebraically con-
nected components) of semi-algebraic sets have been investigated in depth, and
nearly optimal algorithms are known for this problem [7, 14]. An algorithm with
singly exponential complexity is known for computing the first Betti number of
semi-algebraic sets is given in [10], and then extended to the first ` (for any fixed
`) Betti numbers in [3]. The Euler-Poincaré characteristic, which is the alternating
sum of the Betti numbers, is easier to compute, and a singly exponential algorithm
for computing it is known [2, 8].

While many advances have been made in recent years [3, 4, 10, 20] the best algo-
rithm for computing all the Betti numbers of any given semi-algebraic set S ⊂ Rk

still has doubly exponential (in k) complexity, even in the case where the degrees
of the defining polynomials are assumed to be bounded by a constant (≥ 2) [43].
The existence of algorithms with singly exponential complexity for computing all
the Betti numbers of a given semi-algebraic set is considered to be a major open
question in algorithmic semi-algebraic geometry (see the survey [5]).

One important reason why the problem of designing an algorithm for comput-
ing the Betti numbers of semi-algebraic sets with singly exponential complexity
is open, is that while the Betti numbers of semi-algebraic sets are bounded by a
singly exponential function, the best known algorithm for obtaining semi-algebraic
triangulation has doubly exponential complexity [43].

Remark 1 (Other models). We remark here that by the word ‘algorithm’ in the
previous paragraphs we are referring only to algorithms that work correctly for all
inputs and whose complexity is uniformly bounded i.e. bounded in terms of the
degrees and the number of input polynomials and independent of the actual coef-
ficients of the polynomials. In contrast to this, there has been very exciting recent
work where the authors have given algorithms with singly exponential complexity
for computing all the Betti numbers of semi-algebraic sets [22, 24, 23]. However, the
complexities of these algorithms depend in addition to the degrees and the number
of polynomials, also on the ‘condition number’ of the input. The condition number
can be infinite if the given input is ill-conditioned. Thus, such algorithms will fail
to produce any result on certain inputs. In this paper we will be concerned with
exact algorithms that work for all possible inputs.

From the point of view of lower bounds, the problem of computing even the num-
ber of connected components (i.e. the zero-th Betti number) of general (not nec-
essarily symmetric) semi-algebraic sets defined by polynomials of degrees bounded
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by any constant d ≥ 2 is a PSPACE-hard problem [41], and thus unlikely to have
algorithms with polynomially bounded complexity.

In what follows, we will consider the algorithmic problem of computing the Betti
numbers of semi-algebraic sets in the presence of an additional important property
– namely symmetry.

1.1. Role of symmetry. Symmetry plays a key role in mathematics and compu-
tations – the symmetry of the roots of a general polynomial giving rise to Galois
theory, symmetry of differential equations lead to the theory of Lie groups etc. The
presence of symmetry always suggests a possibility that exploiting it one can reduce
the complexity of problems at hand – perhaps even making previously intractable
problems tractable.

The role of symmetry in the theory of computational complexity is exemplified
by the fact that the determinant polynomial det((Xij)1≤i,j≤n) of an n × n square
matrix (Xij)1≤i,j≤n whose entries are the indeterminates Xij is relatively easy to
compute (i.e. belongs to the complexity class VP [21, page 12]), while the perma-
nent polynomial of the same matrix is conjecturally hard to compute. One way to
explain this dichotomy is by observing that the determinant polynomial is invariant
under the action by conjugation of a large group, namely GLn and hence is more
‘symmetric’, compared to the permanent polynomial which has a smaller symmetry
group. The dichotomy between the computational complexities of the determinant
and the permanent polynomial is at the heart of the famous VP 6= VNP conjecture
of Valiant [49] (see also [21, page 14]), and the active field of geometric complexity
theory (see for instance [25]) that it has spawned.

Since the algorithmic problem of computing the Betti numbers of semi-algebraic
sets is not only a benchmark problem in algorithmic semi-algebraic geometry, but
also significant from the point of view of complexity theory in the Blum-Shub-Smale
model [15], it is very natural to try to understand the role of symmetry for this
problem.

1.1.1. Brief History. The study of efficient algorithms for computing topological
invariants of symmetric semi-algebraic sets has a shorter history than of such al-
gorithms for arbitrary semi-algebraic set. Using the so called ‘degree principle’
proved by Timofte [47] and Riener [42], one can design an algorithm for deciding
emptiness of symmetric algebraic sets in Rk defined by symmetric polynomials of
degree d, having complexity kO(d) (i.e. polynomial in s, k for fixed d). The algorith-
mic questions of computing the equivariant Betti numbers (i.e. the dimensions of
H∗Sk(S) – see the end of the paragraph for definition), and also the Euler-Poincaré

characteristics of symmetric semi-algebraic sets S ⊂ Rk were considered by the
authors of the current paper. In [12], an algorithm with polynomially bounded
complexity (polynomial in k and the number of polynomials used in the definition
of S, for fixed d) was described for computing all the equivariant Betti numbers
of a closed symmetric semi-algebraic set S ⊂ Rk defined by a formula involving
at most s symmetric polynomials of degree bounded by d. Since we consider co-
homology with rational coefficients and because Sk is a finite group, there is an
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isomorphism H∗(S/Sk) ∼= H∗Sk(S), and hence this amounts to computing the Betti
numbers of the quotient. In [11], an algorithm with polynomially bounded complex-
ity (better than that of the algorithm mentioned above) was given for computing
the equivariant as well as the ordinary Euler-Poincaré characteristics of symmetric
semi-algebraic sets.

Before continuing further we introduce some useful notation.

1.1.2. Notation.

Notation 2 (Zeros). For P ∈ R[X1, . . . , Xk], we denote by Z(P,Rk) the set of
zeros of P in Rk. More generally, for any finite set P ⊂ R[X1, . . . , Xk], we denote
by Z(P,Rk) the set of common zeros of P in Rk.

Notation 3 (Realizations, P- and P-closed semi-algebraic sets). For any finite
family of polynomials P ⊂ R[X1, . . . , Xk], we call an element σ ∈ {0, 1,−1}P , a
sign condition on P. For any semi-algebraic set Z ⊂ Rk, and a sign condition
σ ∈ {0, 1,−1}P , we denote by R(σ, Z) the semi-algebraic set defined by

{x ∈ Z | sign(P (x)) = σ(P ), P ∈ P},

and call it the realization of σ on Z.
More generally, we call any Boolean formula Φ with atoms, P = 0, P < 0, P >

0, for P ∈ P, to be a P-formula. We call the realization of Φ, namely the semi-
algebraic set

R (Φ) :=
{
x ∈ Rk | Φ(x)

}
a P-semi-algebraic set.

Finally, we call a Boolean formula without negations, and with atoms P ≥ 0, P ≤
0, where P ∈ P, to be a P-closed formula, and we call the realization, R (Φ), a
P-closed semi-algebraic set.

Notation 4 (Symmetric polynomials of bounded degrees). For all d, k ≥ 0, we

will denote by R[X1, . . . , Xk]Sk≤d the subspace of the polynomial ring R[X1, . . . , Xk]
consisting of symmetric polynomials of degree at most d.

Definition 1 (Symmetric semi-algebraic sets). We say that a semi-algebraic S ⊂
Rk is symmetric if it is stable under the standard action of the symmetric group
Sk permuting coordinates.

Since we will discuss complexities of various algorithms we also make precise the
notion of complexity that we are going to use.

Definition 2 (Definition of complexity). In our algorithms we will usually take as
input polynomials with coefficients belonging to an ordered domain (say D). By
complexity of an algorithm we will mean the number of arithmetic operations and
comparisons in the domain D. Since Z is always a subring of D, this will include
operations involving integers. If D = R, then the complexity of our algorithm will
agree with the Blum-Shub-Smale notion of real number complexity [16]. In case,
D = Z, then we are able to deduce the bit-complexity of our algorithms in terms
of the bit-sizes of the coefficients of the input polynomials, and this will agree with
the classical (Turing) notion of complexity.
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1.1.3. Cohomology of the orbit space. It is clear that even in the presence of sym-
metry the Betti numbers of semi-algebraic sets can be exponentially large (cf. Ex-
ample 1). However, if in Example 1 we set ε = 0, and consider the orbits of the
action of the symmetric group Sk on the real algebraic set Vd,k = Vd,k,0 defined
in Example 1, then the number of orbits of this action equals the zero-th Betti
number of the quotient Vd,k/Sk. (Note that for any symmetric semi-algebraic set
S ⊂ Rk the corresponding orbit space S/Sk can be constructed as the image of a
polynomial map and thus is again semi-algebraic [18, 39]).

It is not too difficult to see that the orbit of a point x = (x1, . . . , xk) ∈ Vd,k is
determined by the tuple λ(x) = (λ1, . . . , λd), where λi = card({j | xj = i}).

Thus, the number of orbits of Vd,k, and thus the sum of the Betti numbers of

the quotient Vd,k/Sk equals
(
k+d−1
d−1

)
, which satisfies the inequalities

cd · kd−1 ≤
(
k + d− 1

d− 1

)
≤ Cd · kd−1,

where cd, Cd are constants that depend only on d.
Note that

Vd,k = Z(Fd,k,0,R
k),

and Fd,k,0 ∈ R[X1, . . . , Xk]Sk≤2d (cf. Eqn. (1.1)). Moreover, notice that unlike

the Betti numbers of Vd,k itself, the Betti numbers of the quotient, Vd,k/Sk, are
bounded by a polynomial in k (for fixed d), and moreover the degree of this poly-
nomial is d− 1.

In fact, the following general theorem is proved in [12, Theorem 6] of which the
phenomenon exhibited above is a particular case.

Theorem 1. [12] Let S ⊂ Rk be a P-closed semi-algebraic set, where

P ⊂ R[X1, . . . , Xk]Sk≤d ,

card(P) = s and d > 1. Then,

b(S/Sk) = dO(d)sdkbd/2c−1 if 1 < d� s, k.(1.2)

The following theorem which also appears in [12, Theorem 10] indicates that the
orbit-space case is markedly different from the general (non-symmetric) case from
the point of view of algorithmic complexity as well.

Theorem 2. [12] For every fixed d ≥ 0, there exists an algorithm that takes as in-

put a P-closed formula Φ, where P ⊂ R[X1, . . . , Xk]Sk≤d , and outputs bi(S/Sk), 0 ≤
i < d, where S = R(Φ,Rk). The complexity of this algorithm is bounded by

(card(P)kd)2O(d)

.

Notice that for fixed d the complexity of the algorithm in Theorem 2 is poly-
nomial in card(P) and k. Taken together, Theorems 1 and 2 show a dramatic
reduction of complexity – both topological and algorithmic – when passing from a
symmetric variety to its orbit space.

We now return to the study of the cohomology of a symmetric semi-algebraic
set S itself – rather than its quotient.
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1.1.4. Isotypic decomposition of cohomology modules. Despite the worst case expo-
nential behavior of the Betti numbers of symmetric varieties, there is one handle
we have on them that makes their behavior tame, at least when the degrees of
the defining polynomials are held fixed. The action of the symmetric group Sk

on symmetric semi-algebraic sets S ⊂ Rk induces an action on the cohomology
spaces H∗(S), giving H∗(S) the structure of a finite dimensional Sk-module (see
Definition 13 in Section 6.1). General facts from group representation theory (see
Section 6 (Appendix)) then tell us that the Sk-module H∗(S) admits a canonically
defined isotypic decomposition into a direct sum of sub-Sk-submodules, each of
which is a multiple of certain irreducible Sk-modules (see Theorem 9, Section 6.1).
The irreducible Sk-modules are well studied, and they are in bijection with the
finite set of partitions of the number k – the module corresponding to the partition
λ ` k will be denoted by Sλ in what follows, and is called the Specht module cor-
responding to λ (see Definition 22 in Section 6.2 for the precise definition of these
modules).

Thus the isotypic decomposition of H∗(S) gives a direct sum decomposition

Hi(S) ∼=Sk

⊕
λ`k

mi,λ(S)Sλ,

the non-negative integer mi,λ(S) is called the multiplicity of Sλ in Hi(S).
The dimension of the Specht module Sλ, has a simple expression

dimQ Sλ =
k!

product of the hook lengths of the boxes in the Young diagram of λ

which is sometimes called the hook length formula. These dimensions could be ex-
ponentially big even for relatively simple partitions (say the partition (k/2, k/2) for
even k).

Thus, knowing the multiplicities mi,λ(S), λ ` k, allows one to compute the

dimension of Hi(S), and thus the Betti numbers of S. However, note that the
number of partitions of k is exponentially large (due to a result of Erdős and
Lehner [30]). Thus, this method is at best of exponential complexity, unless we can
restrict a priori the number of partitions to consider (i.e. those that are allowed
to appear in the isotypic decomposition of the cohomology modules of symmetric
semi-algebraic sets that we are considering).

Remark 2. The partition (k) ` k having length one plays a special role. The
corresponding Specht-module S(k) is the one dimensional trivial representation of
Sk (we also denote it by 1Sk), and the isotypic component of Hi(S) corresponding

to the partition (k) is thus isomorphic to the fixed part Hi(S)Sk of Hi(S), which in
turn is isomorphic to Hi(S/Sk) (see [13] for details and subtleties regarding these
isomorphisms). We obtain that the multiplicity of S(k) in the cohomology module
Hi(S) gives the i-th Betti number, bi(S/Sk). Thus, the problem of computing the
cohomology of the quotient S/Sk is a special case of computing a multiplicity of a
particular Specht-module in H∗(S).

Before proceeding further it is useful to go back to our key example (Example 1)
and see how all this works in practice.
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Example 2 (Key example continued with d = 2). We set the degree d = 2 and ε =

0 in the polynomial Fk,d,ε in Example 1, and denote Fk = Fk,2,0 =
∑k
i=1X

2
i (Xi −

1)2, and Vk = Vk,2,0 = Z(Fk,R
k).

We now describe the isotypic decomposition of H∗(Vk). The details of this com-
putation appear in [13] and are omitted here.

In dimension 0 we get:

H0(Vk) ∼=Sk

⊕
µ`k
`(µ)≤2

mµSµ,(1.3)

where

mµ = 2µ1 − k + 1(1.4)

= µ1 − µ2 + 1(1.5)

≤ k + 1.

Notice that for µ = (µ1, µ2) ` k, by the hook-length formula we have,

dim Sµ =
k! (µ1 − µ2 + 1)

(µ1 + 1)!µ2!
.(1.6)

Note that since dim H0(Vk,F) = 2k, we obtain as a consequence (from (1.4) and
(1.6)) the slightly non-obvious identity

2k =
∑

µ1≥µ2≥0
µ1+µ2=k

(µ1 − µ2 + 1) ·
(
k!(µ1 − µ2 + 1)

(µ1 + 1)!µ2!

)
.(1.7)

Notice that Eqns. (1.3), (1.4), and (1.7) illustrate the phenomenon of how an
exponentially large dimensional cohomology group is built out of a relatively small
(i.e. polynomially bounded) number of pieces – each of which is a multiple (with
polynomially bounded multiplicity) of certain Specht modules.

The decomposition of the cohomology modules of a closed semi-algebraic set
S ⊂ Rk defined by symmetric polynomials having degrees at most d into isotypic
components was studied in [13], where several results were proved. The first im-
portant result was a severe restriction on the partitions that are allowed to appear
in the isotypic decomposition of the cohomology – which cuts down the possibili-
ties for the allowed partitions from exponential to polynomial (for fixed d). More
precisely, it is shown in [13] that with the same hypothesis as Theorem 1,

(1.8) mi,λ(S) 6= 0⇒ rank(λ) < 2d,

where rank(λ) is the size of the largest square (also referred to as the ‘Durfee square’
of the partition) that can fit inside the Young diagram (cf. Definition 20 in Sec-
tion 6.2) of the partition λ. For every fixed d, the number of partitions λ of k
satisfying the condition rank(λ) < 2d is polynomially bounded in k (unlike the total
number of partitions which grows exponentially).

The second key result obtained in [13] is a polynomial bound (again for fixed
d) on the multiplicities mi,λ(S) occurring in the isotypic decomposition of Hi(S).
Taken together – the polynomiality of the number of allowed partitions, and the
polynomiality of their multiplicities – gives rise to the hope (via the ‘common belief’
alluded to before), that the Betti numbers of symmetric semi-algebraic sets defined
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by symmetric polynomials of degrees bounded by a constant, could be computed
with polynomially bounded complexity.

In summary, while the cohomology of symmetric semi-algebraic sets could be
exponentially large, mirroring those in the non-symmetric case – the representa-
tion theoretic structure of these modules is encoded in the vector of multiplici-
ties (mi,λ(S))0≤i≤k

λ`k
. This reduces the topological problem of computing the Betti

numbers to the more representation-theoretic task of computing the multiplicities
mi,λ(S). Moreover, since these multiplicities are polynomially bounded there is
some hope that it is possible to compute them by an algorithm with polynomially
bounded complexity.

1.2. New results. The optimism expressed in the previous paragraph is not al-
together unfounded. In this paper we consider the problem of computing the first
(`+ 1) Betti numbers of a given P-semi-algebraic set S, where P is a finite subset

of R[X1, . . . , Xk]Sk≤d . As a first step, using a technique developed by Gabrielov and

Vorobjov (see Section 5.2), we replace S by another semi-algebraic set S′ which
is closed and bounded and whose first (` + 1) Betti numbers are equal to that of
S. This new semi-algebraic set is also defined by symmetric polynomials having
degrees at most d.

We then compute the multiplicities appearing in the cohomology groups Hi(S′)
for all i bounded by some fixed constant `, with complexity that is polynomial in s
and k (where s = card(P)) for fixed d and `. As a consequence, we get an algorithm
for computing the first (` + 1) Betti numbers of S′, and hence that of S as well,
with complexity which is polynomially bounded.

Note that as mentioned previously, the analogous algorithmic problem of com-
puting Betti numbers of general (not necessarily symmetric) semi-algebraic sets
defined by polynomials of degree bounded by any fixed constant d is a PSPACE-
hard problem for d ≥ 2 (with the coefficients of the input polynomials belonging
to Z), and thus unlikely to admit algorithms with polynomially bounded complexity.

The algorithmic results mentioned above depend on certain new representation
theoretic results that we prove in this paper. We prove that the Specht modules
corresponding to partitions having long lengths cannot occur with positive multi-
plicity in the isotypic decompositions of small dimensional cohomology modules of
semi-algebraic sets defined by symmetric polynomials of small degree. This result
generalizes prior results on restrictions of such partitions proved in [13] (cf. (1.8))
and is the key new tool in the design of the algorithms mentioned in the previous
paragraph.

We now state our results more precisely.

1.2.1. Algorithmic results.

Theorem 3. Let D be an ordered domain contained in a real closed field R,
and let `, d ≥ 0. There exists an algorithm with takes as input a finite set P ⊂
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D[X1, . . . , Xk]Sk≤d , and a P-formula Φ, and computes the tuple of integers

(b0(R(Φ)), . . . , b`(R(Φ))).

The complexity of the algorithm, measured by the number of arithmetic operations

in D, is bounded by (skd)2O(d+`)

.
If D = Z, and the bit-sizes of the coefficients of the input is bounded by τ , then

the bit-complexity of the algorithm is bounded by

(τskd)2O(d+`)

.

Remark 3 (Polynomiality). Note that the complexity of the algorithm in Theorem 3
is bounded by a polynomial in s and k for every fixed `, d.

1.2.2. New ideas. Several new ideas (compared to previous algorithms for comput-
ing Betti numbers of semi-algebraic sets) appear in the design of the algorithm cited
in Theorem 3.

The first idea is to replace the given set by a closed and bounded one defined
by symmetric polynomials satisfying the same degree bound as the input polyno-
mials, and whose cohomology groups are isomorphic to those of the given set up to
dimension `. The next idea is to utilize the Sk-module structure of the cohomol-
ogy groups of this new closed and bounded semi-algebraic set. This reduces the
problem of computing the dimensions of the cohomology groups of the original set,
to that of computing the multiplicities of the various Specht modules appearing in
the cohomology groups (up to dimension `) of the new set. The sought after Betti
numbers can then be recovered from these multiplicities.

In order to compute the multiplicities of the various Specht modules, we leverage
certain techniques originating in the study of cohomology groups of mirrored spaces
[29]. These techniques form the basis of the proofs of our representation theoretic
results (Theorems 4 and 5). On the algorithmic front they help us in two ways.
Firstly, (in small dimensions) it guarantees that only a polynomially bounded many
of the multiplicities to be computed can be non-zero, and this restricts the set of
partitions that enters into the computation. Secondly, it allows us to obtain a di-
mension reduction, reducing the problem of computing the multiplicities for any
given closed and bounded semi-algebraic set defined in terms of symmetric polyno-
mials of degrees bounded by d, to the problem of computing the Betti numbers of
pairs of semi-algebraic subsets, which are not symmetric any more but contained in
a much smaller (O(d+ `)) dimensional space. For the latter problem it suffices to
use the standard algorithms mentioned previously. We refer the reader to Section
5.1 for a more detailed outline.

1.2.3. Representation-theoretic results. We now describe the representation theo-
retic results that form the underpinnings of the algorithmic results stated above.

We obtain restrictions on the Specht modules, Sλ, λ ` k, that are allowed to
appear depending on d and k, as well as the dimension (or the degree) of the co-
homology group under consideration. These restrictions are of two kinds. Firstly,
we prove that when d is fixed, the Specht modules corresponding to partitions
having long lengths cannot occur with positive multiplicity in the isotypic decom-
positions of small dimensional cohomology modules of semi-algebraic sets defined
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by symmetric polynomials of degrees bounded by d. Secondly, we prove that the
Specht modules corresponding to partitions having short lengths cannot occur with
positive multiplicity in the isotypic decompositions of the high dimensional coho-
mology modules of semi-algebraic sets defined by symmetric polynomials of degrees
bounded by d.

Notation 5. Recall that for any symmetric semi-algebraic subset S ⊂ Rk and
i ≥ 0, we denote by mi,λ(S) the multiplicity of Sλ in the isotypic decomposition of

Hi(S), i.e., mi,λ(S) = multSλ(Hi(S)). We will denote

Pari(S) = {λ ` k | mi,λ(S) 6= 0}.

We prove the following theorem. The notation used in the theorems in this
section is mostly standard and/or self-explanatory; but readers unfamiliar with
them should consult Section 6.

Theorem 4. Let d, k ∈ Z>0 d ≥ 2, and S ⊂ Rk be a P-closed semi-algebraic set
with P ⊂ R[X1, . . . , Xk]Sk≤d . Then, for all λ ` k:

(a)
mi,λ(S) = 0 for i ≤ length(λ)− 2d+ 1,

or equivalently,
max

λ∈Pari(S)
length(λ) < i+ 2d− 1;

(b)
mi,λ(S) = 0 for i ≥ k − length(tλ) + d+ 1,

or equivalently,

max
λ∈Pari(S)

length(tλ) < k − i+ d+ 1.

Part (a) of Theorem 4 can be read as saying that for any fixed i ≥ 0, and S ⊂ Rk

a P-semi-algebraic set with P ⊂ R[X1, . . . , Xk]Sk≤d ,

max
λ∈Pari(S)

length(λ) < i+ 2d− 1 = O(d).

Similarly, Part (b) of Theorem 4 can be read as saying that

max
λ∈Park−i(S))

length(tλ) < i+ d+ 1 = O(d).

The following analysis of the cohomology modules of the key example (Exam-
ple 1) shows that up to a multiplicative constant the bounds stated in Theorem 4
on length(λ) and length(tλ) for λ ∈ Pari(S) are tight.

Example 3 (Key example continued). For d, k ∈ Z>0, and 0 < ε � 1, consider
the real algebraic set Vd,k,ε defined in Example 1. Recall that for 0 < ε� 1, Vd,k,ε
consists of dk disjoint topological spheres, each sphere infinitesimally close (as a
function of ε) to one of the dk points {0, . . . , d− 1}k ⊂ Rk.

Thus, for 0 < ε � 1, dimQ(H0(Vd,k,ε)) = dimQ(Hk−1(Vd,k,ε)) = dk, and and

Hi(Vd,k,ε) = 0, i 6= 0, k−1. We now describe the isotypic decomposition of Hi(Vk,d,ε)
for 0 < ε� 1, and i = 0, k − 1.

In what follows, for λ = (λ1, . . . , λm) ∈ Zm>0,
∑m
i=1 λi = k, we denote by λ̃ the

partition of k obtained by permuting the λi’s so that they are in non-increasing
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order.

It is shown in [13] that:

(1.9) H0(Vk,d,ε) ∼=Sk

⊕
λ=(λ1,...,λd)∈Zd≥0∑d

i=1 λi=k

Sλ̃ ⊕
⊕

µ . λ̃,µ 6=λ̃

K(µ, λ̃) Sµ
 .

(Here . denotes the partial order often referred to as the dominance order on the
set of partitions of k, and K(·, ·) are the Kostka numbers. We refer the readers to
[27] for definitions).

It is clear from (1.9) that there exists λ ` k with length(λ) = d, such that

m0,λ(Vk,d,ε) > 0

which shows that the restriction, length(λ) = O(d) (in the case i = 0) in Part (a)
of Theorem 4 is tight up to a multiplicative factor.

It follows from the Sk-equivariant Poincaré duality (see for example [13, Theo-
rem 3.23]), that

(1.10) Hk−1(Vk,d,ε) ∼=Sk

⊕
λ=(λ1,...,λd)∈Zd≥0∑d

i=1 λi=k

S
tλ̃ ⊕

⊕
µ . λ̃,µ 6=λ̃

K(µ, λ̃) S
tµ

 .

This shows that there exists λ ` k with length(tλ) = d, such that

mk−1,λ(Vk,d,ε) > 0

So the restriction, length(tλ) = O(d) (in the case i = 0) in the Part (b) of Theorem
4 is also tight up to a multiplicative factor.

1.2.4. Role played by Vandermonde varieties. The proof of Theorem 4 stated in
the previous section depends crucially on a similar restriction theorem for a class
of symmetric semi-algebraic sets which are particularly simple to define – namely,
Vandermonde varieties. The restrictions on the Sk-module structure for Vander-
monde varieties, produce via an application of an argument involving the (equivari-
ant) Leray spectral sequence, similar (slightly looser) restrictions on the cohomol-
ogy modules of arbitrary symmetric semi-algebraic sets defined by quantifier-free
formula involving qualities and inequalities of symmetric polynomials of degrees
bounded by d ≤ k (cf. Theorem 4).

The intersections of the level sets of the first d (weighted) Newton power sums in
Rk for some d ≤ k have been called Vandermonde varieties by Arnold [1] and Given-
thal [32], who studied their topological properties in detail. In fact, if one replaces
the Newton power sums with any other set of generators of the ring of Sk-invariant
polynomials (for example the elementary symmetric polynomials), the intersection
of the level sets of the generators of degree at most d give the same class of real
varieties. (Indeed, Vandermonde varieties can be defined as level sets of the first
d generators of the invariant ring of any finite reflection group, and many results
and techniques introduced in the current paper extend to more general reflection
groups. However, the case of the symmetric group is the most important from the
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point of view of applications, and we restrict ourselves to this special case in this pa-
per.) When the weights are all equal the Vandermonde varieties are also symmetric
with respect to the standard action (by permuting coordinates) of the symmetric
group Sk, and thus the cohomology groups of the Vandermonde varieties acquire
the structure of finite dimensional Sk-modules.

In their foundational work on the topic, Arnold [1], Giventhal [32] and Kostov
[34], proved that the intersection of a symmetric Vandermonde variety with the
Weyl chamber in Rk, defined by the inequalities X1 ≤ · · · ≤ Xk is contractible if
non-empty, which in turn implies that the quotient space of a symmetric Vander-
monde variety is contractible if non-empty.

As a first step towards proving Theorem 4 we study the Sk-module structure of
the cohomology groups of symmetric Vandermonde varieties themselves (not just
their quotient space). We prove the following theorem.

Theorem 5. Let d, k ∈ Z>0, d ≥ 2, y = (y1, . . . , yd) ∈ Rd, and let V
(k)
d,y denote the

Vandermonde variety defined by p
(k)
1 = y1, . . . , p

(k)
d = yd, where p

(k)
j =

∑k
i=1X

j
i .

Then, for all λ ` k:

(a)

mi,λ(V
(k)
d,y ) = 0, for i ≤ length(λ)− 2d+ 1,

or equivalently,

(1.11) max
λ∈Pari(V

(k)
d,y )

length(λ) < i+ 2d− 1;

(b)

mi,λ(V
(k)
d,y ) = 0 for i ≥ k − length(tλ) + 1,

or equivalently,

max
λ∈Pari(V

(k)
d,y )

length(tλ) < k − i+ 1.

Remark 4 (Cases d = 1, 2). The case d = 1 is omitted in Theorem 5. Indeed, Part

(a) is not true as stated in the case d = 1. In this case, V
(k)
d,y is the hyperplane

defined by the equation
k∑
i=1

Xi = y1,

and is Sk-equivariantly contractible to the point 1
k · (y1, . . . , y1). Hence,

Hi(V
(k)
d,y ) ∼=Sk S(k), if i = 0,

∼=Sk 0, otherwise

(recall that the Specht module Sλ for λ equal to the trivial partition (k) is isomor-
phic to the one-dimensional trivial representation). It follows that for i = 0,

mi,λ(V
(k)
d,y ) = 1 6= 0,

but

length((k)) = 1 6< i+ 2d− 1 = 0 + 2− 1 = 1,
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which violates (1.11).
On the other hand, the case d = 2 already indicates that the bounds in Theorem

5 is sharp.

If d = 2 and k ≥ 3, the Vandermonde variety V
(k)
d,y is the defined by the equation

k∑
i=1

Xi = y1,

k∑
i=1

X2
i = y2,

and can be empty, a point, or semi-algebraically homeomorphic to a sphere of
dimension k − 2 (depending on whether y2

1 − ky2 is > 0,= 0, or < 0, respectively).
In the last case (i.e. when y2

1 − ky2 < 0):

Hi(V
(k)
2,y ) ∼=Sk S(k), if i = 0,

Hi(V
(k)
2,y ) ∼=Sk S1k , if i = k − 2,(1.12)

∼=Sk 0, otherwise

(see Subsection 3.2.1 below for a proof).
It follows that for i = k − 2, k ≥ 3 and y2 > 0,

mi,λ(V
(k)
d,y ) = 1 6= 0⇒ 1k ∈ Park−2(V k2,y),

and

max
λ∈Park−2(V

(k)
2,y )

length(λ) = length(1k) = k < k − 2 + 2 · 2− 1 = k + 1.

1.2.5. Improvements over prior work. Theorems 4 and 5 are improvements over
prior results in [13] (Theorem 2.5, Part (1)) having similar flavor in several different
ways.

Firstly, the restrictions (cf. (1.8)) on partitions given in [13, Theorem 2.5] are in
terms of upper bounds on their ranks rather than their lengths. While the length
of a partition is an upper bound on its rank, a partition having small rank can
be arbitrarily long. For example, the partition 1k := (1, . . . , 1) has rank 1, but its
length is clearly the maximum possible, namely k.

Secondly, the restrictions in [13, Theorem 2.5] do not take into consideration
the dimension (or the degree) of the cohomology groups under consideration. In
contrast, the restrictions on the partitions λ given in Theorems 4 and 5 in the
current paper, do depend in a strong manner on the dimension (or the degree) of
the cohomology group. As a result in small dimensions, we obtain that only the
partitions with a small length can appear unlike the restrictions obtained in [13],
where there were no non-trivial restriction on the length. The restriction on the
length is a key ingredient in the algorithmic result obtained in this paper.

The results of the current paper depend on:

(a) results from the cohomological study of mirrored spaces due to Davis [28] and
Solomon [45],

(b) fundamental results on Vandermonde varieties due to Arnold [1], Giventhal [32]
and Kostov [34], and

(c) a careful topological analysis of certain regular cell complexes that arise in the
process of combining these results.
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In contrast, the proofs of the results in [13] are based essentially on equivariant
Morse theory which plays no role in the current paper. The reader who is curious
about the interplay of results coming from different areas and how they combine
together in the study of Vandermonde varieties, can skip forward to Examples 3.2.1
and 3.2.2 where the examples of Vandermonde varieties of degree 2 in Rk, k ≥ 3,
and that of degree 3 in R4 are worked out in full detail.

The rest of the paper is dedicated to the proofs of Theorems 3, 4, and 5.
In Section 2, we prove a few preliminary results on the Solomon decomposition

of the cohomology groups of mirrored spaces that play an important role in the
rest of the paper. We introduce all necessary background material referring the
reader to the Appendix (Section 6) for the more basic material on representation
theory of finite groups and of the symmetric groups in particular that we utilize. In
Section 3 we give outlines of the proofs of Theorems 4 and 5, and also describe two
important examples illustrating the main steps. In Section 4, we give the proofs of
Theorems 4 and 5. In Section 5 we give the proof of Theorem 3 after introducing
the necessary preliminary results.

2. Solomon modules and mirrored spaces

This section is divided into two subsections. In the first subsection (Subsec-
tion 2.1) we discuss the representation theory of the symmetric groups by viewing
them as examples of finite Coxeter groups drawing on the work of Solomon [45].
In particular, we show how to obtain the isotypic decomposition of the Solomon
modules (which are certain representations of symmetric groups that we define in
this section), and prove certain quantitative statements about them that are key to
the proofs of the main theorems of the paper. These results (namely, Propositions 2
and 3 and Corollary 1) are the only results from this section that are used later in
the paper.

Then, in Subsection 2.2 we introduce mirrored spaces and discuss a key theorem
(cf. Theorem 7) giving a formula for the cohomology of a mirrored space in terms
of certain Solomon modules. This theorem plays a central role in the proof of
Theorem 5.

2.1. Symmetric groups as Coxeter groups and properties of Solomon
modules. Recall that a Coxeter pair (W,S), consists of a group W and a set
of generators, S = {si | i ∈ I}, of W each having order 2, and numbers (mi,j)i,j∈I
such that (sisj)

mij = e.

Our main example of a Coxeter groups will be the symmetric group Sk con-
sidered as a Coxeter group with the set of Coxeter generators, Cox(k) = {si =
(i, i+ 1) | 1 ≤ i ≤ k−1} (here (i, i+ 1) denotes the permutation of (1, . . . , k) which
exchanges i and i+ 1 keeping all other elements fixed).

We will need the notion of length of an element of a Coxeter group.

Notation 6 (Length of an element of W). Given Coxeter pair (W,S), with S =
{si | i ∈ I}, and an element w = si1 · · · sim ∈W, we call m to be the length of w
(denoted `(w)), if m is minimal amongst all such expressions for w.
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Example 4. If (W,S) = (S3,Cox(3)), the lengths of the various elements of S3

viewed as permutations are displayed below.

`(123) = 0,

`(132) = `(213)) = 1,

`(231) = `(312) = 2,

`(321) = 3.

Following the same notation as in [29], for J ⊂ Cox(k), we denote by SJ
k the

subgroup of Sk generated by J , and let

AJ = Q[SJ
k ].

We will write NJ = card(SJ
k ). For J ⊂ Cox(k), let

ξJ = N−1
J

∑
w∈SJk

w,(2.1)

ηJ = N−1
J

∑
w∈SJk

(−1)`(w)w.(2.2)

For P,Q ⊂ Cox(k), P ∩Q = ∅, we denote (following [45])

(2.3) ΨP,Q = AP∪QξP ηQ.

2.1.1. Algebras, tensor products and representations. Let W be a group and A =
Q[W] be the group algebra of W. A left ideal I ⊂ A is then a (left) W-module.
Now let W′,W′′ be two Coxeter groups, and A′ = Q[W′], A′′ = Q[W′′] be their
group algebras. Then, the tensor product A′ ⊗Q A

′′ is again an algebra, where the
multiplication is defined by (a′⊗a′′) · (b′⊗ b′′) = a′a′′⊗ b′b′′. Moreover, A′⊗QA

′′ is
isomorphic as an Q-algebra to A = Q[W′ ×W′′], where the isomorphism is given
by

w′ ⊗ w′′ 7→ (w′, w′′), w′ ∈W′, w′′ ∈W′′.

If W′,W′′ are subgroups of W, such that W is the (internal) direct product of
W′,W′′, then the isomorphism,

(2.4) A′ ⊗Q A
′′ → A

is given by w′ ⊗ w′′ 7→ w′w′′.
Finally, if I ′ is a left ideal of A′, and I ′′ a left ideal of A′′, then I ′ ⊗Q I

′′ is a left
ideal of the algebra A′⊗QA

′′. If we denote by Ψ′ (resp. Ψ′′) the W′-representation
(resp. W′′-representation) corresponding to I ′ (resp. I ′′), then we will denote by
Ψ′ � Ψ′′ the (W ′ ×W ′′)-representation corresponding to I ′ ⊗Q I

′′. We will need
later the following proposition.

Proposition 1. Let k > 0, and 1 ≤ q ≤ k − 1. Let P ′, Q′ ⊂ {s1, . . . , sq−1},
P ′′, Q′′ ⊂ {sq+1, . . . , sk−1} such that P ′ ∩Q′ = P ′′ ∩Q′′ = ∅, and

P ′ ∪Q′ = {s1, . . . , sq−1},
P ′′ ∪Q′′ = {sq+1, . . . , sk−1}.

Then,

(2.5) ΨP ′∪P ′′,Q′∪Q′′ ∼=Sq×Sk−q ΨP ′,Q′ � ΨP ′′,Q′′ .
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Proof. Let J ′ = P ′ ∪ Q′ = {s1, . . . , sq−1}, J ′′ = P ′′ ∪ Q′′ = {sq+1, . . . , sk−1}, and

J = J ∪ J ′ = Cox(k) − {sq}. Observe first that the elements of SJ′
k commute

with the elements of SJ′′
k , SJ

k = SJ′
k SJ′′

k , and SJ′
k ∩SJ′′

k = {e}. Hence it follows

that SJ
k is isomorphic to the direct product of the subgroups SJ′

k and SJ′′
k . In

particular, every element w ∈ SJ
k can be written uniquely as

w = w′w′′

with w′ ∈ SJ′
k and w′′ ∈ SJ′′

k . Moreover,

`(w) = `(w′) + `(w′′).

It follows from (2.3) that ΨP ′,Q′ (resp. ΨP ′′,Q′′) is the SJ′
k -representation (resp.

SJ′′
k -representation) corresponding to the left ideal I ′ = AJ

′
ξP ′ηQ′ of AJ

′
(resp.

I ′′ = AJ
′′
ξP ′′ηQ′′ of AJ

′′
).

Moreover, there is an isomorphism of Q-algebras (see (2.4)) φJ′,J′ : AJ
′⊗QA

J′′ →
AJ , defined by w′ ⊗ w′′ 7→ w′w′′. It suffices to prove that φJ′,J′′ carries the left

ideal I ′ ⊗Q I
′′ of AJ

′ ⊗Q A
J′′ surjectively to the left ideal I = AJξP ′∪P ′′,Q′∪Q′′ of

AJ .
Since, I = AJξP ′∪P ′′ηQ′∪Q′′ is spanned by the elements wξP ′∪P ′′ηQ′∪Q′′ , w ∈ SJ

k

it suffices to prove that

wξP ′∪P ′′ηQ′∪Q′′ ∈ φJ′,J′′(AJ
′
ξP ′ηQ′ ⊗Q A

J′′ξP ′′ηQ′′)

for every w ∈ SJ
k .

Using the fact that every element w ∈ SJ′∪J′′
k can be written uniquely as w =

w′ · w′′ with w′ ∈ SJ′
k and w′′ ∈ SJ′′

k , with

`(w) = `(w′) + `(w′′),

and (2.1) and (2.2), we have

NP ′NP ′′

NP ′∪P ′′
ξP ′ξP ′′ = ξP ′∪P ′′ ,

NQ′NQ′′

NQ′∪Q′′
ξQ′ξQ′′ = ξQ′∪Q′′ .

Hence,

(2.6) ξP ′∪P ′′ηQ′∪Q′′ =
NP ′NP ′′NQ′NQ′′

NP ′∪P ′′NQ′∪Q′′
ξP ′ξP ′′ηQ′ηQ′′ .

Now w can be written (uniquely) as w = w′w′′ with w′ ∈ SJ′
k and w′′ ∈ SJ′′

k ,
and hence

wξP ′∪P ′′ηQ′∪Q′′ = w′w′′ξP ′∪P ′′ηQ′∪Q′′

=
NP ′NP ′′NQ′NQ′′

NP ′∪P ′′NQ′∪Q′′
w′w′′ξP ′ξP ′′ηQ′ηQ′′

(using (2.6))

=
NP ′NP ′′NQ′NQ′′

NP ′∪P ′′NQ′∪Q′′
w′w′′ξP ′ηQ′ξP ′′ηQ′′

(since elements of AJ
′

commute with elements of AJ
′′
)

= φJ′,J′′

(
NP ′NP ′′NQ′NQ′′

NP ′∪P ′′NQ′∪Q′′
w′ξP ′ηQ′ ⊗ w′′ξP ′′ηQ′′

)
.
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This finishes the proof. �

Notation 7 (Solomon modules). For ease of notation we will denote the repre-

sentation Ψ
(k)
Cox(k)−T,T by Ψ

(k)
T . We will call Ψ

(k)
T the Solomon module indexed by

T .

Remark 5. The Solomon modules Ψ
(k)
T may be understood as analogs of Specht

modules (cf. Definition 22), but defined in terms of MacMahon’s tableau [36, Vol 1,
Chapter 1, Sect IV, 129.] rather than Young’s tableau (cf. Definition 21) where the
role of partitions is replaced by that of compositions (cf. Notation 20). Unlike the

Specht modules, the representations Ψ
(k)
T need not be irreducible (see Example 6).

But we are able to obtain a necessary condition for a Specht module to appear

with positive multiplicity in Ψ
(k)
T using a recursive formula due to Solomon [45,

Corollary 3.2] (cf. Proposition 3 below).

Remark 6. As remarked above the representations Ψ
(k)
T need not be irreducible in

general. However, it is easy to see from (2.3), Notation 7 and Definition 22, that
in the following two special cases, they are indeed irreducible.

Ψ
(k)
∅

∼=Sk S(k) ∼=Sk 1Sk ,(2.7)

Ψ
(k)
Cox(k)

∼=Sk S(1k) ∼=Sk signk.(2.8)

Another easy consequence of (2.3) is

Ψ
(k)
Cox(k)−T

∼=Sk Ψ
(k)
T ⊗ signk.(2.9)

2.1.2. Relation between Solomon modules and Specht modules. We next prove a re-
cursive formula for computing the multiplicities of Specht modules in the Solomon
modules (Proposition 2 and Corollary 1). We also prove a condition (in terms
of k and the cardinality of T ) on partitions λ which needs to be satisfied for

multSλ(Ψ
(k)
T ) > 0 to hold.

(Proposition 3).

Proposition 2. Let k ≥ 1, T ⊂ Cox(k), and

q = max{i | si ∈ T}.
Then,

indSk
Sq×Sk−q

(
Ψ

(q)
T−{sq} � 1Sk−q

)
∼=Sk Ψ

(k)
T−{sq} ⊕Ψ

(k)
T .

Proof. Let

Q′ = T − {sq},
Q′′ = ∅,
P ′ = {s1, . . . , sq−1} − T,
P ′′ = {sq+1, . . . , sk−1}.

Notice that

SP ′∪Q′
k

∼= Sq,

SP ′′∪Q′′
k

∼= Sk−q,

SP ′∪Q′∪Q′′
k

∼= Sq ×Sk−q.
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Claim 1.

(2.10) ΨP ′∪P ′′,Q′ ∼=Sq×Sk−q Ψ
(q)
Q′ � 1Sk−q .

Proof of Claim 1. Observe that it follows from the definitions of P ′, P ′′, Q′, Q′′ that

ΨP ′∪P ′′,Q′ = ΨP ′∪P ′′,Q′∪Q′′ ,

and

ΨP ′,Q′ � ΨP ′′,Q′′ = ΨP ′,Q′ � Ψ{sq+1,...,sk−1},∅.

Now,

ΨP ′∪P ′′,Q′∪Q′′, ∼=Sq×Sk−q ΨP ′,Q′ � ΨP ′′,Q′′

using Proposition 1. Finally, from the fact that P ′ ∪ Q′ = {s1, . . . .sq−1}, Q′′ = ∅,
and P ′′ = {sq+1, . . . , sk−1}, we have

ΨP ′,Q′
∼=Sq Ψ

(q)
Q′ ,

and

Ψ{sq+1,...,sk−1},∅
∼=Sk−q 1Sk−q .

This finishes the proof of the claim. �

Claim 2.

(2.11) indSk
Sq×Sk−qΨP ′∪P ′′,Q′ ∼=Sk Ψ

(k)
Q′ ⊕Ψ

(k)
T .

Proof of Claim 2. Observe that

ΨP ′∪P ′′∪{sq},Q′ ⊕ΨP ′∪P ′′,T = Ψ
(k)
Q′ ⊕Ψ

(k)
T .

It follows directly from [45, Corollarly 3.2] that

indSk
Sq×Sk−qΨP ′∪P ′′,Q′ ∼=Sk ΨP ′∪P ′′∪{sq},Q′ ⊕ΨP ′∪P ′′,T

which completes the proof of the claim. �

The proposition now follows directly from Claims 1 and 2. �

The following corollary of Proposition 2 will be useful in designing an algorithm

for computing isotypic decomposition of the Solomon modules Ψ
(k)
T .

Corollary 1. Let k ≥ 1, T ⊂ Cox(k), and

q = max{i | si ∈ T}.

Then, for any λ ` k,

(2.12)

multSλ(Ψ
(k)
T ) = multSλ

(
indSk

Sq×Sk−q

(
Ψ

(q)
T−{sq} � 1Sk−q

))
−multSλ(Ψ

(k)
T−{sq}).

Proof. Follows directly from Proposition 2 and Schur’s Lemma (Lemma 5 in the
Appendix). �

Before proceeding further we recall a classical formula – namely Pieri’s rule.



20 SAUGATA BASU AND CORDIAN RIENER

Notation 8. For 0 ≤ q ≤ k, and µ = (µ1, . . . , µm) ` q, we denote by S(µ, k) the
set consisting of partitions λ = (λ1, . . .) ` k satisfying:

(2.13) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λm ≥ µm ≥ λm+1 ≥ λm+2 = 0,

and

(2.14)
∑
i≥1

(λi − µi) = k − q.

In other words λ ∈ S(µ, k), if and only if λ ` k and the Young diagram correspond-
ing to λ is obtained from that of µ by adding k − q boxes, such that no two boxes
are added in the same column.

Example 5. For example,

S((2, 1), 4) = {(3, 1), (2, 2), (2, 1, 1)}.

The significance of the set S(µ, k) is encapsulated in the following lemma. With
the same notation as in Notation 8:

Lemma 1 (Pieri’s rule). (a)

IndSk
Sp×Sk−p

(
Sµ � 1Sk−p

) ∼=Sk

⊕
λ∈S(µ,k)

Sλ.

(b) For each λ ∈ S(µ, k), length(µ) ≤ length(λ) ≤ length(µ) + 1.

Proof. Part (a) is just Pieri’s rule (see for instance [37, Page 109]). Part (b) is
obvious from definition of S(µ, k) (cf. Notation 8). �

The following lemma in conjunction with Lemma 1 will be used in the complexity
analysis of Algorithm 1.

Lemma 2. Let k ≥ 1, 0 ≤ q ≤ k, and µ ` q. Then,

card(S(µ, k)) ≤ (k−µ1 +1)(µ1−µ2 +1) · · · (µm−1−µm+1)(µm+1) ≤ klength(µ)+1.

Proof. Obvious from Eqns. (2.13) and (2.14). �

Remark 7. Corollary 1 gives us an inductive method (using double induction on
k and card(T )) for obtaining the isotypic decomposition of the Solomon modules

Ψ
(k)
T , since the Solomon modules that appear on the right hand side of (2.12) are

either of a strictly smaller symmetric group since q < k, or the Solomon module of
Sk but with respect to a smaller set of Coxeter elements (since card(T − {sq}) =
card(T ) − 1 < card(T )). Moreover, the isotypic decomposition of the representa-

tion indSk
Sq×Sk−q

(
Ψ

(q)
T−{sq} � 1Sk−q

)
can be computed from that of Ψ

(q)
T−{sq} using

Part (a) of Lemma 1 (Pieri’s rule).

For the base cases notice that Ψ
(k)
T is isomorphic to the trivial representation,

1Sk
∼=Sk S(k) if T = ∅, and for k = 1, the Ψ

(1)
T is again the trivial representation

(the only T that can appear is the empty set).

This algorithm for computing the isotypic decomposition of Ψ
(k)
T using the in-

ductive method sketched above is formally described in Algorithm 1 in Section 5,
where we analyze the complexity of this algorithm as well. We illustrate the method
here by giving an example.
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Example 6. Let k = 4 and T = {s2}. We will use Proposition 2 to obtain the

isotypic decomposition of Ψ
(4)
T . In this example q = 2. So applying Proposition 2

we obtain

(2.15) indS4

S2×S2

(
Ψ

(2)
∅ � 1S2

)
∼=S4

Ψ
(4)
∅ ⊕Ψ

(4)
T .

Now using (2.7)

Ψ
(2)
∅

∼=S2
S(2),

Ψ
(4)
∅

∼=S4
S(4).

Using Part (a) of Lemma 1 we get

indS4

S2×S2

(
Ψ

(2)
∅ � 1S2

)
∼=S4

indS4

S2×S2

(
S(2) � 1S2

)
∼=S4

S(4) ⊕ S(3,1) ⊕ S(2,2).(2.16)

In conjunction, (2.15) and (2.16) implies

S(4) ⊕ S(3,1) ⊕ S(2,2) ∼=S4 S(4) ⊕Ψ
(4)
T ,

whence

Ψ
(4)
T
∼=S4

S(3,1) ⊕ S(2,2).

Note that this example also illustrates the fact that the Solomon modules need not
be irreducible.

Another important consequence of Proposition 2 that will be important for us
is a bound (in terms of the cardinality of T alone) on the lengths of the partitions
corresponding to the Specht modules that can appear in the isotypic decomposition

of Ψ
(k)
T . We deduce such a bound in the following proposition.

Proposition 3. Let k ≥ 1, T ⊂ Cox(k). Then, for λ ` k,

multSλ(Ψ
(k)
T ) = 0 if length(λ) > card(T ) + 1 or if length(tλ) > k − card(T ).

Remark 8. Note that the bound in Proposition 3 below is the best possible (cf.
Example 6).

Proof of Proposition 3. We first prove that

(2.17) multSλ(Ψ
(k)
T ) 6= 0⇒ length(λ) ≤ card(T ) + 1.

The proof is by a double induction on k, and on t = card(T ). Clearly, (2.17) holds
for k = 1 and for all T . Also, if T = ∅ (i.e. t = 0)

Ψ
(k)
∅
∼= S(k),

and (2.17) holds for all k ≥ 1.
Now suppose that the proposition is true for all k′ < k, and for given k for all

t′ < t and suppose that t > 0.
Observe that for µ ` q, using the fact that q < k and the induction hypothesis

we get that
(2.18)

multSµ(Ψ
(q)
Q′ ) 6= 0⇒ length(µ) ≤ card(Q′) + 1 = (card(T )− 1) + 1 = card(T ).
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Using Part (a) of Lemma 1 for any µ ` q,

(2.19) indSk
Sq×Sk−q

(
Sµ � 1Sk−q

) ∼= ⊕
λ∈S(µ,k)

Sλ (cf. Notation 8).

Also by Part (b) of Lemma 1

(2.20) λ ∈ S(µ, k)⇒ length(λ) ≤ length(µ) + 1.

It follows from (2.18), (2.19) and (2.20), that for λ ` k,

(2.21) multSλ
(

indSk
Sq×Sk−q

(
Ψ

(q)
Q′ � 1Sk−q

))
6= 0⇒ length(λ) ≤ card(T ) + 1.

The claim in (2.17) now follows from (2.21), Proposition 2 and Schur’s Lemma
(Lemma 5 in the Appendix). This finishes the inductive proof of (2.17).

We now prove

(2.22) multSλ(Ψ
(k)
T ) 6= 0⇒ length(tλ) ≤ k − card(T ).

First observe that using (2.9)

S
tλ ∼= Sλ ⊗ S1k ,

Ψ
(k)
Cox(k)−T

∼= Ψ
(k)
T ⊗ S1k .

It follows that

multSλ(Ψ
(k)
T ) 6= 0 ⇔ multStλ(Ψ

(k)
Cox(k)−T ) 6= 0

⇒ length(tλ) ≤ card(Cox(k)− T ) + 1 using (2.17)

⇒ length(tλ) ≤ k − card(T ).

�

We now introduce a geometric construction (that of a mirrored space) which will
play an important role later.

2.2. Mirrored spaces and Weyl chambers. We first recall a definition from
[29].

Definition 3 (Mirrored space). Given a Coxeter pair (W,S) (i.e. W is a Coxeter
group and S a set of reflections generating W) a space Z with a family of closed
subspaces (Zs)s∈S is called a mirror structure on Z [29, Chapter 5.1], and Z along
with the collection (Zs)s∈S is called a mirrored space over S.

Given a mirrored space, Z, (Zs)s∈S over S, there is a classical construction (called
‘The Basic Construction’ in [29, Chapter 5]) of a space U(W, Z) with a W-action
which we define as follows.

Definition 4 (The Basic Construction [35, 48, 51, 28]). We define

(2.23) U(W, Z) = W × Z/ ∼
where the topology on W × Z is the product topology, with W given the discrete
topology, and the equivalence relation ∼ is defined by

(w1,x) ∼ (w2,y)⇔ x = y and w−1
1 w2 ∈WS(x),

with
S(x) = {s ∈ S | x ∈ Zs},
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and WS(x) the subgroup of W generated by S(x).
The group W acts on U(W, Z) by w1 · [(w2, z)] = [(w1w2, z)] (where [(w, z)]

denotes the equivalence class of (w, z) ∈W × Z under the relation ∼).

For a mirrored space Z over S, the cohomology groups, H∗(U(W, Z)), gets a
structure of a W-module from the W-action on U(W, Z), and H∗(U(W, Z)). The
cohomology groups of U(W, Z) are studied in [29] in the case where Z is a finite
CW-complex, however in this paper we are concerned with mirrored spaces which
are semi-algebraic.

2.2.1. Semi-algebraic mirrored spaces.

Definition 5. We will call a mirrored space Z, (Zs)s∈S over S, to be a semi-
algebraic mirrored space over S, if Z and each Zs, s ∈ S are semi-algebraic sets.

Remark 9. First observe that for a finite group W, and a semi-algebraic set Z,
W × Z is again a semi-algebraic set. Moreover, if Z is closed and bounded, so is
W × Z, and the quotient U(W, Z) is also semi-algebraic, since the quotient of a
semi-algebraic set by a proper semi-algebraic equivalence relation is semi-algebraic
([50, page 166]).

Note also that every closed and bounded semi-algebraic set is semi-algebraically
homeomorphic to the geometric realization over R of a finite simplicial complex
(see for example [9, Chapter 5]). More generally, if Z, (Zs)s∈S is a semi-algebraic
mirrored space, with Z,Zs, s ∈ S closed and bounded, then there exists a finite
simplicial complex K and subcomplexes Ks ⊂ K, s ∈ S, and a semi-algebraic
homeomorphism h : Z → |K|, which restricts to homeomorphisms Zs → |Ks|, s ∈
S.

Moreover, for any subset T ⊂ S, the cohomology groups of Z (resp. pairs
(Z,
⋃
s∈T Zs)) are isomorphic to the simplicial cohomology groups of the simplicial

complex K (resp. pairs (K,
⋃
s∈T Ks)) (see [9, Chapter 6],

In view of Remark 9 the following theorem stated in [29] for finite CW-complexes
remain true for semi-algebraic mirrored space (Z, (Zs)s∈S) with Z,Zs, s ∈ S closed
and bounded. We state the theorem in the special case where (W,S) = (Sk,Cox(k))
which is the only case of interest to us in this paper.

Theorem 6. [29, Theorem 15.4.3] Let (W,S) = (Sk,Cox(k)), and Z,Zs, s ∈ S a
semi-algebraic mirrored space over S, and Z,Zs, s ∈ S closed and bounded. Then,

H∗(U(W, Z)) ∼=Sk

⊕
T⊂S

H∗(Z,Z
T )⊗Ψ

(k)
T ,

where for each T ⊂ S,

ZT =
⋃
s∈T

Zs.

2.2.2. Weyl chambers. The semi-algebraic mirrored spaces that we will be inter-
ested in are of a special type. In order to introduce them we first need a few more
definitions.

Notation 9. We denote by W(k) ⊂ Rk the cone defined by X1 ≤ X2 ≤ · · · ≤ Xk,
and by W(k),o the interior of W(k) (i.e. the cone defined by X1 < X2 < · · · < Xk).
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Notation 10. For k ∈ Z≥0, we denote by Comp(k) the set of integer tuples

λ = (λ1, . . . , λ`), λi > 0, |λ| :=
∑̀
i=1

λi = k.

Definition 6. For k ∈ Z≥0, and λ = (λ1, . . . , λ`) ∈ Comp(k), we denote by Wλ

the subset of W(k) defined by,

X1 = · · · = Xλ1
≤ Xλ1+1 = · · · = Xλ1+λ2

≤ · · · ≤ Xλ1+···+λ`−1+1 = · · · = Xk,

and denote by Wo
λ the subset of W(k) defined by

X1 = · · · = Xλ1
< Xλ1+1 = · · · = Xλ1+λ2

< · · · < Xλ1+···+λ`−1+1 = · · · = Xk.

We denote by Lλ the subspace defined by

X1 = · · · = Xλ1 , Xλ1+1 = · · · = Xλ1+λ2 , · · · , Xλ1+···+λ`−1+1 = · · · = Xk,

which is the linear hull of Wλ.

Notation 11. For s = (i, i + 1) ∈ Cox(k), we denote by W(k)
s the face of W(k)

defined by Xi = Xi+1. More generally, for T ⊂ Cox(k), we denote:

W(k)
T =

⋂
s∈T
W(k)
s ,

W(k,T ) =
⋃
s∈T
W(k)
s .

We also define λ(T ) ∈ Comp(k) implicitly by the equation

(2.24) Wλ(T ) =W(k)
T .

Notation 12. Finally, for any semi-algebraic set Z ⊂ W(k), T ⊂ Cox(k), we set

ZT = Z ∩W(k,T ),

ZT = Z ∩W(k)
T .

For any semi-algebraic subset S ⊂ Rk, we will denote

Sk = S ∩W(k),

and we will for convenience of notation write Sk,T (respectively, STk ), in place of
(Sk)T (respectively, (Sk)T ).

Now suppose that S is a closed and bounded symmetric semi-algebraic subset
of Rk, then (using Notation 12) Sk ⊂ W(k). Then, Sk along with the tuple of

closed semi-algebraic subsets (Sk,s = Sk ∩ W(k)
s )s∈Cox(k) (cf. Notation 11) is a

semi-algebraic mirrored space over Cox(k).
It follows immediately from Definition 4 that:

Proposition 4. The semi-algebraic set U(Sk, Sk) is semi-algebraically homeomor-
phic to S.

Proof. It is a simple exercise to verify that the map

[(w,x)] 7→ w · x

is a semi-algebraic homeomorphism U(Sk, Sk)→ S. �
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Proposition 2.2.2 in conjunction with Theorem 6 yields the following result that
we will use later in the paper. This is the only result from this subsection that we
will need in the rest of the paper.

Theorem 7. Let S be a closed and bounded symmetric semi-algebraic subset of
Rk. Then,

H∗(S) ∼=Sk

⊕
T⊂Cox(k)

H∗(Sk, S
T
k )⊗Ψ

(k)
T .

3. Outline of our method and two important examples

3.1. Outline of the proofs of Theorems 4 and 5. We first observe that sym-
metric semi-algebraic subsets S ⊂ Rk, defined in terms of equalities and inequalities
of symmetric polynomials of degree at most d, admits a map to Rd (by the first
d Newton power sum polynomials restricted to S), whose fibers are Vandermonde
varieties. Moreover the action of Sk keeps the fibers stable, and thus the action of
Sk on S also induces an action on the Leray spectral sequence of this map. As a
result in order to prove the vanishing of certain irreducible Sk-modules, it suffices
to prove this vanishing for Vandermonde varieties. The Vandermonde varieties are
well studied and have nice topological and geometric properties. For us the most
important property implicit in the work of Arnold, Giventhal and Kostov is that
the intersection Z of a Vandermonde variety V with a Weyl chamber W(k) in Rk

is either a point or a regular cell of the dimension of the variety. Moreover, the
structure of the boundary of Z (in case Z is a regular cell) is well understood in
terms of the combinatorics of the faces of W(k) with which Z has a non-empty
intersection.

Applying Theorem 7 to our situation we obtain that the cohomology groups
of V are isomorphic to direct sums of tensor products of the Solomon modules

Ψ
(k)
T , indexed by subsets T ⊂ Cox(k), and the cohomology groups of the pairs

(Z,ZT ), T ⊂ Cox(k), where as before

ZT =
⋃
s∈T

Zs.

Recall now that by Proposition 3 only those Specht modules can appear in Ψ
(k)
T

whose number of rows is bounded by card(T )+1 (and a similar restriction in terms
of the number of columns).

One final ingredient is the observation that in the case when Z has the expected
dimension k−d, then the intersection of Z with the various faces ofW(k), induces a
structure of a regular cell complex, and the boundary of Z is then semi-algebraically
homeomorphic to the (k−d−1)-dimensional sphere, and the intersection of Z with

the variousW(k)
s , s ∈ Cox(k), gives an acyclic covering of the boundary of Z having

cardinality at most k−1. This implies via an argument using the nerve lemma and
Alexander duality that the cohomology groups Hi(Z,ZT ) must vanish if i is large
compared to the cardinality of T and also a dual statement (cf. Proposition 6).

Putting these together we obtain our theorem on the vanishing of certain mul-
tiplicities for Vandermonde varieties (cf. Theorem 5). Theorem 4 is then a con-
sequence of Theorem 5 and an argument involving (an equivariant version of) the
Leray spectral sequence.
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Finally, the restriction result that we prove also allows us, via the Solomon-
Davis formula alluded to above, and some additional ingredients (see the outline in
Section 5.1) including certain standard algorithms from semi-algebraic geometry,
to effectively compute the Betti numbers bi(S), 0 ≤ i ≤ `, for any fixed ` with
complexity which is polynomial in the number of variables and the number of
polynomials. Here we are assuming that the degrees of the input polynomials are
also bounded by a constant.

We will now proceed to describe two important examples, whose analysis already
exposes the central ideas behind the proofs of the main theorems.

We first introduce some more notation.

Notation 13. For every m ≥ 0, and w = (w1, . . . , wk) ∈ Rk
>0 we denote

p
(k)
w,m : Rk −→ R

x = (x1, . . . , xk) 7−→
∑k
j=1 wjx

m
j ,

and for every d ≥ 0, and w ∈ Rk
>0 we denote by Φ

(k)
w,d the continuous map defined

by

Φ
(k)
w,d : Rk −→ Rd′

x = (x1, . . . , xk) 7−→ (p
(k)
w,1(x), . . . , p

(k)
w,d′(x)),

where d′ = min(k, d).
Finally, we denote by

Ψ
(k)
w,d :W(k) −→ Rd′

the restriction of Φ
(k)
w,d to W(k).

If w = 1k := (1, . . . , 1), then we will denote by p
(k)
m the polynomial p

(k)
w,m (the

m-th Newton sum polynomial), and by Φ
(k)
d (respectively, Ψ

(k)
d ) the map Φ

(k)
w,d

(respectively, Ψ
(k)
w,d).

For every w ∈ Rk
≥0, d, k ≥ 0, d ≤ k, and y ∈ Rd, we will denote by

V
(k)
w,d,y := (Φ

(k)
w,d)

−1(y), and Z
(k)
w,d,y := (Ψ

(k)
w,d)

−1(y).

If w = 1k := (1, . . . , 1), then we just denote V
(k)
w,d,y by V

(k)
d,y , and Z

(k)
w,d,y by Z

(k)
d,y.

We are now ready to discuss the promised examples.

3.2. Examples.

3.2.1. Example with d = 2 and k ≥ 3. We first consider the case d = 2 for k ≥ 3,
which has already being alluded to in Remark 4. Recall that in this case, the

Vandermonde variety V
(k)
2,y is defined by the equation

k∑
i=1

Xi = y1,

k∑
i=1

X2
i = y2,

and is empty, a point, or a semi-algebraically homeomorphic to a sphere of dimen-
sion k − 2 (depending on whether y2

1 − ky2 is > 0,= 0, or < 0, respectively).

The first two cases are trivial. In the last case, Z
(k)
2,y = V

(k)
2,y ∩W(k) is a closed

disk of dimension k − 2, and has a non-empty intersection with all the faces of the

Weyl chamber W(k). (See Figure 1 for the case k = 4, where Z
(4)
2,y is one of the



COHOMOLOGY OF SYMMETRIC SEMI-ALGEBRAIC SETS 27

triangles on the two-dimensional sphere equal to V
4)
2,y. Notice that in this case Z

(4)
2,y

meets all the three faces of the Weyl chamber W(4).)
It follows that in this case

Hi(Z
(k)
2,y, Z

(k,T )
2,y ) ∼= Q if (i, T ) = (0, ∅) or (k − 2,Cox(k)),(3.1)

= 0 otherwise.

The Sk-module structure of V
(k)
2,y , y

2
1−ky2 < 0, k ≥ 3 stated in (1.12) in Remark 4

now follows from (3.1), (2.7), (2.8),and Theorem 7.

3.2.2. Example of V
(4)
3,y ⊂ R4. We now study the cohomology of the symmetric Van-

dermonde varieties (curves) V
(4)
3,y ⊂ R4, as S4-modules, for various y = (y1, y2, y3) ∈

R3.
In this case the Weyl chamber W(4) ⊂ R4 has three faces corresponding to

the compositions (2, 1, 1), (1, 2, 1) and (1, 1, 2). In terms of the Coxeter elements
s1 = (1, 2), s2 = (2, 3), and s3 = (3, 4), these faces correspond to s1, s2, and s3

respectively. In other words, using the notation introduced in (2.24),

λ({s1}) = (2, 1, 1),

λ({s2}) = (1, 2, 1),

λ({s3}) = (1, 1, 2).

Also, note that

λ({s1, s2}) = (3, 1),

λ({s1, s3}) = (2, 2),

λ({s2, s3}) = (1, 3).

We first need a preliminary calculation. Observe that

IndS4

S3
Ψ

(3)
∅

∼=S4
S(4) ⊕ S(3,1)

∼=S4
Ψ

(4)
∅ ⊕Ψ

(4)
{s1} (using Proposition 3).

From this we deduce that

Ψ
(4)
{s1}

∼=S4
S(3,1),(3.2)

and using (2.9) that,

Ψ
(4)
Cox(4)−{s1}

∼=S4
S(2,1,1).(3.3)

Returning to the study of topology of the curve V
(4)
3,y , there are five different

cases possible depending on the configuration of the curve V
(4)
3,y inside W(4). Recall

(cf. Notation 13) that we denote Z
(k)
3,y = V

(4)
3,y ∩W(4).

Case 1. The Vandermonde variety V
(4)
2,(y1,y2) is empty: in this case Z

(4)
3,y = ∅, and

H0(V
(4)
3,y ) = H0(V

(4)
3,y ) = 0.

Case 2. The Vandermonde variety V
(4)
2,(y1,y2) is singular and V

(4)
3,y is non-empty: in

this case, Z
(4)
3,y is a point which must necessarily belong to the face labeled

by (4) of W(4). Thus, Z
(4)
3,y belongs to all non-zero faces of W(4), and y2
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Figure 1. Example of the non-singular Vandermonde variety V
(4)
2,(y1,y2).

is a minimum value of p
(4)
2 on V

(4)
1,(y1). (This preceding fact follows from

Theorem 8 stated later.)
In this case (using Notation 12)

H0(Z
(4)
3,y, Z

(4,T )
3,y ) ∼= Q, if T = ∅,

H0(Z
(4)
3,y, Z

(4,T )
3,y ) = 0, otherwise.

This implies that

H0(V
(4)
3,y ) ∼=S4 Ψ

(4)
∅

∼=S4
1S4

(using (2.7)).

It follows that b0(V
(4)
3,y ) = 1 (using the Eqn. (6.2)). Clearly, H1(V

(4)
3,y ) =

0 in this case.
Case 3. The Vandermonde variety V

(4)
2,(y1,y2) is non-empty and non-singular. Lets

fix y1, y2 such that V
(4)
2,(y1,y2) is non-empty and non-singular. In this case,

V
(4)
2,(y1,y2) is a sphere which is depicted in Figure 1.

The hyperplanes (shown in grey) in Figure 1 cutting out the 4! = 24
triangles on the sphere are the walls of the various Weyl chambers. Notice
that there are 14 vertices in the arrangement of great circles on the sphere,
8 of them incident on 3 circles and the remaining 6 incident on 2 circles.
There are several sub-cases to consider. The (non-empty) sub-cases are

depicted in Figures 2,3,4 and 5 (V
(4)
3,y is shown in blue).

It follows from Theorem 8 that there exist,

a(y1, y2), b(y1, y2), c(y1, y2) ∈ R,
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Figure 2. Vandermonde variety V
(4)
3,y in Case 3b.

Figure 3. Vandermonde variety V
(4)
3,y in Case 3c.

with

a(y1, y2) = min
x∈V (4)

2,(y1,y2)

p
(4)
3 (x) < b(y1, y2) < c(y1, y2) = max

x∈V (4)

2,(y1,y2)

p
(4)
3 (x),
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Figure 4. Vandermonde variety V
(4)
3,y in Case 3d.

Figure 5. Vandermonde variety V
(4)
3,y in Case 3e.

giving a partition of R into points and open intervals (more precisely, three

points and four open intervals) such that the Vandermonde variety V
(4)
3,y

can be characterized topologically by which element of the partition y3

belongs to.
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Figure 6. Vandermonde variety V
(4)
3,y in Case 3f.

3a. y3 ∈ (−∞, a(y1, y2)): In this case, V
(4)
3,y = ∅;

3b. y3 = a(y1, y2): In this case, V
(4)
3,y is non-empty and singular, and co-

incides with 4 of the 8 vertices of degree 6, and Z
(4)
3,y is a point which

must necessarily belong to the face labeled by (3, 1) (cf. Theorem 8).
In this case

H0(Z
(4)
3,y,4, Z

(4,T )
3,y ) = 0

if

T = {s2}, {s3}, {s2, s3}, {s1, s2, s3}

(since in these cases Z
(4)
3,y = Z

(4,T )
3,y ), and

H0(Z
(4)
3,y, Z

(4,T )
3,y ) ∼= Q

in the case

T = ∅, {s1}.
This implies that

H0(V
(4)
3,y ) ∼=S4

Ψ
(4)
∅ ⊕Ψ

(4)
{s1}

∼=S4 1S4 ⊕ S(3,1) (using (2.7) and (3.2)).

It follows that

b0(V
(4)
3,y ) = 1 + 3 = 4

(using (6.2) to derive dimQ(S(3,1)) = 3). Clearly, H1(V
(4)
3,y ) = 0 in this

case.
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3c. y3 ∈ (a(y1, y2), b(y1, y2)): In this case V
(4)
3,y is a non-singular curve, and

Z
(4)
3,y intersects the faces labeled by (1, 1, 2) and (1, 2, 1) corresponding

to Coxeter elements s3 and s2 respectively.
In this case,

H0(Z
(4)
3,y, Z

(4,T )
3,y ) = 0

if
T = {s2}, {s3}, {s2, s3}, {s1, s2, s3}

and
H0(Z

(4)
3,y, Z

(4,T )
3,y ) ∼= Q

if
T = ∅, {s1}.

This implies that

H0(V
(4)
3,y ) ∼=S4

Ψ
(4)
∅ ⊕Ψ

(4)
{s1}

∼=S4
1S4
⊕ S(3,1) (using (2.7) and (3.2)).

In dimension one we have,

H1(Z
(4)
3,y, Z

(4,T )
3,y ) = 0

if
T = ∅, {s1}{s2}, {s3}, {s1, s3}, {s1, s2}

and
H1(Z

(4)
3,y, X

(4,T )
3,y ) ∼= Q

if
T = {s2, s3}, {s1, s2, s3}.

This implies that

H1(V
(4)
3,y ) ∼=S4

Ψ
(4)
{s2,s3} ⊕Ψ

(4)
{s1,s2,s3}

∼=S4
S2,1,1 ⊕ sign4 (using (3.3) and (2.8)).

It follows that

b0(V
(4)
3,y ) = 1 + 3 = 4,

and
b1(V

(4)
3,y ) = 3 + 1 = 4.

3d. y3 = b(y1, y2): In this case, the Vandermonde variety V
(4)
3,y is of dimen-

sion 1 but has singularities, and Z
(4)
3,y intersects the faces labeled by

(2, 2) and (1, 2, 1) (the intersection with the face labeled (1, 2, 1) are

the singular points of V
(4)
3,y ). Thus, Z

(4)
3,y intersects the faces labeled by

Coxeter elements s1, s2 and s3.
In this case,

H0(Z
(4)
3,y, Z

(4,T )
3,y ) = 0

if

T = {s1}, {s2}, {s3}, {s1, s3}, {s1, s2}, {s2, s3}, {s1, s2, s3},
and

H0(Z
(4)
3,y, Z

(4,T )
3,y ) ∼= Q
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if
T = ∅.

This implies that

H0(V
(4)
3,y ) ∼=S4 Ψ

(4)
∅

∼=S4 1S4 .

In dimension one we have,

H1(Z
(4)
3,y, Z

(4,T )
3,y ) = 0,

if
T = ∅, {s1}, {s2}, {s3}, {s1, s3},

and
H1(Z

(4)
3,y, Z

(4,T )
3,y ) ∼= Q,

if
T = {s1, s2}, {s2, s3}, {s1, s2, s3}.

This implies that

H1(V
(4)
3,y ) ∼=S4 Ψ

(4)
{s1,s2} ⊕Ψ

(4)
{s2,s3} ⊕Ψ

(4)
{s1,s2,s3}

∼=S4 2S2,1,1 ⊕ sign4 (using (3.3) and (2.8)).

It follows that
b0(V

(4)
3,y ) = 1,

and
b1(V

(4)
3,y ) = 2 · 3 + 1 = 7.

This last equation can be verified directly by hand noting that V
(4)
3,y

has the structure of a connected graph containing 6 vertices (the
(

4
2

)
singular points consisting of the orbit of the point Z

(4)
3,y ∩W(2,2)), and

the degree of each vertex is 4. Thus the graph has 12 edges, and hence

χ(V
(4)
3,y ) = −6

= b0(V
(4)
3,y )− b1(V

(4)
3,y )

= 1− b1(V
(4)
3,y ),

and thus,

b1(V
(4)
3,y ) = 7.

3e. y3 ∈ (b(y1, y2), c(y1, y2)): In this case, V
(4)
3,y is a non-singular curve, and

Z
(4)
3,y intersects the faces labeled by (2, 1, 1) and (1, 2, 1) corresponding

to Coxeter elements s1 and s2 respectively. The isotypic decomposition

of H∗(V
(4)
3,y ) in this case is identical to the Case (3c) and is omitted.

3f. y3 = c(y1, y2): In this case, V
(4)
3,y is non-empty and singular, and coin-

cides with other 4 (compared to Case (3b)) of the 8 vertices of degree

6. In this case, Z
(4)
3,y is a point which must necessarily belong to the

face labeled by (1, 3). The isotypic decomposition of H∗(V
(4)
3,y ) in this

case is identical to the Case (3b) and is omitted.

3g. y3 ∈ (c(y1, y2),∞): In this case, V
(4)
3,y is again empty.
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Notice, that the Specht module S(2,2) does not appear with positive multiplicity

in H∗(V
(4)
3,y ), y ∈ R3 in the above analysis. Using an equivariant Leray spectral se-

quence argument (cf. proof of Theorem 4) we can deduce from this fact the following
‘toy’ theorem (which is not directly deducible from the statement of Theorem 4):

Theorem. If S ⊂ R4 is a P-semi-algebraic set, for P ⊂ R[X1, . . . , X4]S4

≤3, then

mi,(2,2)(S) = 0.

Proof. See proof of Theorem 4 and the preceding remark. �

Remark 10. Note that it follows from the analysis in Example 3.2.2 that

max
y∈R3,λ∈Par0(V

(4)
3,y )

length(λ) = 2,

max
y∈R3,λ∈Par1(V

(4)
3,y )

length(λ) = 4,

while the Part (a) of Theorem 5 provides the upper bounds:

max
y∈R3,λ∈Par0(V

(4)
3,y )

length(λ) < 0 + 2 · 3− 1 = 5,

max
y∈R3,λ∈Par1(V

(4)
3,y )

length(λ) < 1 + 2 · 3− 1 = 6.

We now return to the proofs of the main theorems.

4. Proofs of Theorems 4 and 5

We first need a few preliminary results.

4.1. Preliminary Results. We start by recalling a standard definition.

Definition 7. We say that a semi-algebraic set S ⊂ Rk is a semi-algebraic reg-
ular cell of dimension p, if the pair (S, S) is semi-algebraically homeomorphic to

(Bp(0, 1), Bp(0, 1)) where Bp(0, 1) denotes the unit ball in Rp.

Remark 11 (Monotonicity and regularity of semi-algebraic sets). We will prove in
Proposition 5 that the intersections of weighted Vandermonde varieties with the
interior of W(k) is a semi-algebraic regular cell of dimension k− d, if the dimension
of the variety is equal to k−d, and this property will play an important role later in
the paper (see Lemma 3 and Proposition 6). To prove that a given semi-algebraic
set is a semi-algebraic regular cell is often not easy. In order to overcome this
difficulty, a stronger notion, that of a monotone cell, was introduced in [6]. The
property that a semi-algebraic set is a monotone cell is much easier to check. We
do not reproduce the definition of a monotone cell here but refer the reader to
[6, Theorem 9] for one of the several equivalent definitions which is the easiest to

check for the sets Z
(k)
w,d,y. Finally, the main result (Theorem 6) in [6] states that a

semi-algebraic set which is a monotone cell is a semi-algebraic regular cell, which
is what we will use in the proof of Proposition 5.

The following proposition which has been referred to before, and which describes
the topological structure of the intersection of a general Vandermonde variety with
a Weyl chamber, is a key topological ingredient in our proofs.
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Proposition 5. For every w ∈ Rk
>0, d, k ≥ 0, d ≤ k, and y ∈ Rd, Z

(k)
w,d,y is either

empty, a point, or semi-algebraically homeomorphic a semi-algebraic regular cell of
dimension k − d.

Proof. Suppose that Z
(k)
w,d,y is not empty. Let x ∈ Z(k)

w,d,y and suppose that x is a
regular point of the intersection of the Vandermonde variety Vw,d,y with the linear
subspace Lλ (i.e. the linear hull of the face Wλ) for some λ ∈ Comp(k). Then, x

is a regular point of Vw,d,y, and x ∈ Z(k)
w,d,y ∩W(k),o.

We next prove that if Z
(k)
w,d,y 6= Z

(k)
w,d,y ∩W(k),o, then Z

(k)
w,d,y must be a point.

Indeed, if x ∈ Z(k)
w,d,y, but x 6∈ Z(k)

w,d,y ∩W(k),o, then by the above observation and

[1, Theorem 5], x ∈ Wo
λ, with length(λ) < d, and moreover Z

(k)
w,d,y ∩ Wo

λ = {x}.
Moreover, in this case x must be an isolated point of Z

(k)
w,d,y, since any neighborhood

of x in Z
(k)
w,d,y, unless equal to just x itself, will contain some regular point x′

of the intersection of Z
(k)
w,d,y with Lλ′ with λ ≺ λ′, and this would imply that

x ∈ Z(k)
w,d,y ∩W(k),o. But on the other hand we know that Z

(k)
w,d,y is contractible

[34, Theorem 1.1]. This proves that in this case Z
(k)
w,d,y = {x}, and hence if Z

(k)
w,d,y 6=

Z
(k)
w,d,y ∩W(k),o, Z

(k)
w,d,y is a point.

So we might suppose that

(4.1) Z
(k)
w,d,y = Z

(k)
w,d,y ∩W(k),o.

In this case Z
(k)
w,d,y ∩ W(k),o 6= ∅, and using [1, Theorem 5] Z

(k)
w,d,y ∩ W(k),o is

non-singular of dimension k − d. Now using [34, Corollary 2.2], and [6, Theorem

9] we deduce that Z
(k)
w,d,y ∩ W(k),o is a monotone cell (see [6] for the definition of

a monotone cell). This implies using [6, Theorem 13] that Z
(k)
w,d,y ∩ W(k),o is a

regular cell. In conjunction with (4.1) this implies that Z
(k)
w,d,y is semi-algebraically

homeomorphic to the closure of a regular cell, and the boundary of Z
(k)
w,d,y is semi-

algebraically homeomorphic to the sphere Sk−d−1. �

Remark 12. Using Proposition 5 again on the intersection of Zw,d,k with the faces

ofW(k) we get that if Zw,d,k is not empty or a point, then its boundary is a regular

cell complex (homeomorphic to Sk−d−1).

Definition 8. Let X be a closed and bounded semi-algebraic set and C be a finite
set of closed semi-algebraic subsets of X. We say that C = (Ci)i∈I , where I is a
finite set, is a closed Leray cover of X if C satisfies:

(a) X =
⋃
i∈I Ci;

(b) for each subset J ⊂ I,
⋂
j∈J Cj is empty or semi-algebraically contractible.

We say that C is a regular closed Leray cover if in addition for each subset J ⊂ I,⋂
j∈J Cj is empty or the closure of a regular semi-algebraic cell.

Notation 14 (Nerve complex associated to a closed Leray cover). Given a closed
Leray cover C = (Ci)i∈I with I = [1, N ], we will denote by N (C) the simplicial
complex, whose set of p-dimensional simplices are given by

Np(C) = {(α0, . . . , αp) | 1 ≤ α0 < · · · < αp ≤ N,Cα0
∩ · · · ∩ Cαp 6= ∅}.
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S

SJ′,ε

Figure 7. Schematic depiction of the sets S and SJ′,ε

We need the following technical lemma in the proof of Proposition 6 which plays
an important role in the proof of Theorem 5.

Lemma 3. Let (Pi)i∈I , and (Qj)j∈J be finite tuples of polynomials in R[X1, . . . , Xk],
and S ⊂ Rk a basic closed semi-algebraic set defined by∧

i∈I
(Pi = 0) ∧

∧
j∈J

(Qj > 0),

such that the closure S of S is defined by∧
i∈I

(Pi = 0) ∧
∧
j∈J

(Qj ≥ 0).

Moreover, suppose that the pair (S, S) is semi-algebraically homeomorphic to

(Bp(0, 1), Bp(0, 1))

(recall that Bp(0, 1) denotes the unit ball in Rp).
Then for all J ′ ⊂ J , and all sufficiently small ε > 0, the semi-algebraic set SJ′,ε

(see Figure 7) defined by∧
i∈I

(Pi = 0) ∧
∧
j∈J′

(Qj ≥ ε)
∧

j∈J−J′
(Qj ≥ 0)

is semi-algebraically contractible.

Proof. Let S′, S′′ be the semi-algebraic subsets of S defined by∧
i∈I

(Pi = 0) ∧
∧
j∈J′

(Qj > 0)
∧

j∈J−J′
(Qj ≥ 0),

and ∧
i∈I

(Pi = 0) ∧
∧
j′∈J′

(Qj′ = 0) ∧
∧

j∈J−J′
(Qj ≥ 0),

respectively.
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Observe that

S′ = S − S′′,
and

S′′ ⊂ S − S.
Let φ : S × [0, 1] → S be the homeomorphic image of the standard retraction of

Bp(0, 1) to 0 (i.e. (x, t) 7→ (1− t)x).
Since S′′ is contained in the boundary of S, we can restrict the retraction φ to

S′ = S−S′′ and obtain that S′ is also semi-algebraically contractible. It now follows
from the the local conic structure theorem for semi-algebraic sets [17, Theorem
9.3.6] that for all small enough ε > 0 that S′ and SJ′,ε are semi-algebraically
homotopy equivalent, and hence SJ′,ε is also semi-algebraically contractible. �

Proposition 6. Let 2 ≤ d ≤ k, y ∈ Rd, V = V
(k)
d,y , dim(V ) = k − d, K =

V ∩
⋃
s∈Cox(k)W

(k)
s , I = {s ∈ Cox(k) | V ∩ W(k)

s 6= ∅}. Let J ⊂ I, and KJ =

V ∩
⋃
s∈JW

(k)
s . Then:

1. K is semi-algebraically homeomorphic to the Sk−d−1.

2. The tuple C = (Vs = V ∩W(k)
s )s∈I is a regular closed Leray cover of K.

3. Hi(KJ) = 0 for i ≥ card(J).
4. Hi(KJ) = 0 for 0 < i ≤ card(J)− d− 1.
5. H0(KJ) ∼= Q if card(J) ≥ d+ 1.

Proof. Parts (1) and (2) are immediate from Proposition 5, since each intersection

of the various Vs are semi-algebraically homeomorphic to some Z
(p)
w,,.y

for some p,

0 ≤ p < k, and w ∈ Zp>0 (using the notation from Proposition 5), and is thus
empty, a point, or semi-algebraically homeomorphic to a regular cell of dimension
p.

It follows from the nerve lemma that H∗(KJ) ∼= H∗(N (CJ)), where CJ = (Vs)s∈J .
Since N (CJ) is a simplicial complex with card(J) vertices, Hi(N (CJ)) = 0 for
i ≥ card(J). This proves Part (3).

We now prove Parts (4) and (5). We can assume that J 6= ∅ which implies that
KJ 6= ∅, since otherwise the claim is obviously true.

For s = (i, i+ 1) ∈ Cox(k), let Ps denote the polynomial Xi+1 −Xi.
Then, for each s ∈ I, Vs is the intersection with V of the semi-algebraic set

defined by

(Ps = 0) ∧
∧

s′∈Cox(k)−{s}

(Ps′ ≥ 0).

For ε > 0, denote by KJ
ε the union of Vs,ε, s ∈ J , where Vs,ε is the intersection

with K of the open semi-algebraic set defined by

(−ε < Ps < ε) ∧
∧

s′∈Cox(k)−{s}

(Ps′ > −ε).

Then, using the local conic structure theorem for semi-algebraic sets [17, Theo-
rem 9.3.6], for all small enough ε > 0, KJ

ε is semi-algebraically homotopy equivalent
to KJ and K−KJ

ε is closed and semi-algebraically homotopy equivalent to K−KJ .
We now claim that for all small enough ε > 0, (Vs −KJ

ε )s∈I−J is a closed Leray
cover of K−KJ

ε . Let J ′ ⊂ I −J , and consider
⋂
s∈J′(Vs−KJ

ε ). Then, there exists
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J ′′ ⊂ J such that
⋂
s∈J′(Vs −KJ

ε ) is the intersection with V of the semi-algebraic
set defined by∧

s∈J′
(Ps = 0) ∧

∧
s∈J′′

(Ps ≥ ε) ∧
∧

s∈Cox(k)−(J′∪J′′)

(Ps ≥ 0).

It follows from Lemma 3 and the above description that for all ε > 0 small enough,⋂
s∈J′(Vs−KJ

ε ) is either empty or semi-algebraically contractible, and hence (Vs−
KJ
ε )s∈I−J is a closed Leray cover of K −KJ

ε . Using the same argument involving
the nerve complex as in the previous paragraph we obtain that

Hi(K −KJ
ε ) = 0

for i ≥ card(I) − card(J). However, by Alexander duality (see for example [46,
page 296]) we have that

(4.2) H̃i(KJ) ∼= H̃i(KJ
ε ) ∼= H̃n−i−1(K −KJ

ε ).

Let n = k − d − 1. It follows from Part (3) and (4.2) that H̃i(KJ) = 0 for
n− i− 1 ≥ card(I)− card(J) or equivalently for i ≤ n− card(I) + card(J)− 1.

Since, card(I) ≤ n + d, it follows that H̃i(KJ) = 0 for 0 ≤ i ≤ card(J)− d− 1.
Parts (4) and (5) of the proposition follows. �

4.2. Proofs of Theorems 4 and 5.

Proof of Theorem 5. Let V = V
(k)
d,y . We first prove Part (a). From Proposition 5

we have that V is either empty, or a finite union of points, or of dimension k − d.
If V is empty there is nothing to prove. Suppose that V is not empty.

Using Theorem 7 we have that

(4.3) Hi(V ) ∼=
⊕

T⊂Cox(k)

Hi(Vk, V
T
k )⊗Q Ψ

(k)
T .

Since we have from Proposition 3 that

multSλ(Ψ
(k)
T ) = 0 if length(λ) > card(T ) + 1,

we might as well also assume that

length(λ) ≤ card(T ) + 1,

or that

card(T ) ≥ length(λ)− 1.

It thus suffices to prove that Hi(Vk, V
T
k ) = 0, for all pairs (i, T ) satisfying:

i ≤ length(λ)− 2d+ 1,

card(T ) ≥ length(λ)− 1,

for which it suffices to prove that Hi(Vk, V
T
k ) = 0 for all (i, T ) satisfying

(4.4) i ≤ card(T )− 2d+ 2⇔ card(T ) ≥ i+ 2d− 2.

We now fix the pair (i, T ) satisfying (4.4), and treat the cases i = 0, i = 1, and
i > 1 separately.
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Case i = 0: In this case, if Vk 6= ∅, H0(Vk, V
T
k ) 6= 0 if and only if V Tk = ∅. If Vk 6= ∅,

it must meet a d-dimensional face of the W(k), which is incident on k − d of the

k − 1 codimension one faces, W(k)
s , s ∈ Cox(k), of W(k). This implies that

V Tk = ∅ ⇒ card(T ) ≤ d− 1.

Since, for d > 1, 2d− 2 > d− 1, it follows that

card(T ) ≥ i+ 2d− 2 = 2d− 2⇒ card(T ) > d− 1⇒ V Tk 6= ∅ ⇒ H0(Vk, V
T
k ) = 0.

This completes the proof of Part (a) in the case i = 0.

Now suppose that i > 0. Let for s ∈ Cox(k), Vs = V ∩ W(k)
s . We denote

(following the notation in Proposition 6)

I = {s ∈ Cox(k) | Vs 6= ∅},
JT = T ∩ I,
K =

⋃
s∈I

Vs,

KJT =
⋃
s∈JT

Vs = V Tk .

Using Parts (1) and (2) of Proposition 6, K is semi-algebraically homeomorphic
to Sn, with n = k − d − 1, C = (Vs)s∈I , is a regular closed Leray cover of K (cf.
Definition 8).

It follows from [1, Theorem 7] that the maximum and minimum of p
(k)
d+1 is ob-

tained on Vk in two distinct d-dimensional faces of W(k). Moreover, each of these
two distinct d-dimensional faces are incident on exactly k−d codimension one faces,

W(k)
s , s ∈ Cox(k), of W(k). We thus have

(4.5) k − d+ 1 ≤ card(I) ≤ k − 1 = n+ d.

Clearly, card(JT ) = card(T ∩ I) ≤ card(T ).
On the other hand,

card(JT ) = card(T ∩ I)

= card(T ) + card(I)− card(T ∪ I)

≥ card(T ) + card(I)− card(Cox(k))

≥ card(T ) + card(I)− (k − 1)

≥ card(T ) + (k − d+ 1)− (k − 1) (using inequality (4.5))

= card(T )− d+ 2.(4.6)

Case i = 1: We only need to consider the case i = 1 ≤ card(T ) − 2d + 2. We
distinguish the following two cases:

• If T = ∅, then since d > 1, the inequality i = 1 ≤ card(T )− 2d+ 2 cannot
hold.
• If T 6= ∅, and i = 1 ≤ card(T )− 2d+ 2, then

card(JT ) ≥ card(T )− d+ 2 ≥ 2d− 1− d+ 2 = d+ 1,
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and it follows from Part (5) of Proposition 6 that H0(V Tk ) = H(KJT ) ∼=
Q. In this case the restriction homomorphism H0(Vk) → H0(V Tk ) is an

isomorphism which implies that H1(Vk, V
T
k ) = 0.

Case i > 1: In this case, we can assume that dim(V ) = k − d. Otherwise, V is
zero-dimensional and Hi(V ) = 0 for i > 0.

From the exactness of the long exact sequence,

· · · → Hi−1(V Tk )→ Hi(Vk, V
T
k )→ Hi(Vk)→ · · ·

of the pair (Vk, V
T
k ) and the fact that Hi(Vk) = 0 for i ≥ 1, it suffices to prove

that Hi−1(V Tk ) = 0 for 1 < i ≤ card(T ) − 2d + 2 or equivalently Hj(V Tk ) = 0 for
1 ≤ j ≤ card(T )− 2d+ 1.

Applying Parts (3) and (4) of Proposition 6, noting that KJT = V Tk , we obtain

Hj(KJT ) = Hj(V Tk ) = 0

for 0 < j ≤ card(T )− 2d+ 1. This completes the proof for the case i > 1.
This completes the proof of Part (a).

We now prove Part (b). First assume that dim(V ) = k − d.
Since we have from Proposition 3 that

multSλ(Ψ
(k)
T ) = 0 if length(tλ) > k − card(T ),

we might as well also assume that

length(tλ) ≤ k − card(T ),

or that

card(T ) ≤ k − length(tλ).

It thus suffices to prove that Hi(Vk, V
T
k ) = 0, for all pairs (i, T ) satisfying:

i ≥ k − length(tλ) + 1,

card(T ) ≤ k − length(tλ),

for which it suffices to prove that Hi(Vk, V
T
k ) = 0 for all (i, T ) satisfying

i ≥ card(T ) + 1.

From the exactness of the long exact sequence,

· · · → Hi−1(V Tk )→ Hi(Vk, V
T
k )→ Hi(Vk)→ · · ·

of the pair (Vk, V
T
k ) and the fact that Hi(Vk) = 0 for i ≥ 1, it suffices to prove that

Hi−1(V Tk ) = 0 for i ≥ card(T ) + 1 or equivalently Hj(V Tk ) = 0 for j ≥ card(T ).

It follows from Part (3) of Proposition 6, that Hj(V Tk ) = Hj(KJT ) = 0 for
j ≥ card(T ).

If dim(V ) = 0, we only need to consider the case i = 0. In this case, we need to
show that for λ ` k satisfying

length(tλ) ≥ k + 1,

m0,tλ(V ) = 0. But since length(tλ) ≤ k, this case does not occur. This completes
the proof of Part (b). �
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Proof of Theorem 4. First observe that by the local conic structure theorem for
semi-algebraic sets [17, Theorem 9.3.6], there exists R > 0, such that the inclusion

S ∩ Bk(0, R) ↪→ S is a semi-algebraic homeomorphism. Moreover, since S and

Bk(0, R) are both symmetric, the above inclusion is Sk-equivariant. Hence,

(4.7) H∗(S ∩Bk(0, R)) ∼=Sk H∗(S).

Note that Bk(0, R) is defined by the symmetric inequality

2∑
i=1

X2
i −R ≤ 0

of degree 2. This, in view of the isomorphism in (4.7), we can assume without loss

of generality (after replacing S by S ∩Bk(0, R) and P be P ∪{
∑2
i=1X

2
i −R}) that

the given semi-algebraic set S is closed and bounded.
Since S is a P-semi-algebraic set, and P ⊂ R[X1, . . . , Xk]Sk≤d , it follows from the

fundamental theorem of symmetric polynomials, that

S = (Φ
(k)
d )−1(Φ

(k)
d (S)).

Let f = Φ
(k)
d |S and observe that f is a proper map. We have a spectral sequence

(the Leray spectral sequence of the map f), converging to Hp+q(S), whose E2-term
is given by

Ep,q2 = Hp(T,Rqf∗(QS)),

where T = f(S), and QS denotes the constant sheaf on S.
Using the proper base change theorem (see for example [33, §3, Theorem 6.2])

we obtain that for y ∈ T ,

(4.8) Rqf∗(QS)y ∼= Hq(V
(k)
d,y ,Q),

and this gives Rqf∗(QS) the structure of a sheaf of Sk-modules. Moreover, since
the action of Sk on S leaves the fibers of the map f : S → T invariant, the action
of Sk on Ep,q2 is given by its action on the sheaf Rqf∗(QS).

Now, Hn(S) is isomorphic as an Sk-module to a (Sk-equivariant) subquotient
of ⊕

p+q=n

Ep,q2 .

Using Theorem 5, we have that

mi,λ(V
(k)
d,y ) = 0, for i ≤ length(λ)− 2d+ 1.

This implies using (4.8) that,

multSλ(Ep,n−p2 ) = 0, for n− p ≤ length(λ)− 2d+ 1,

or equivalently for n ≤ length(λ)− 2d+ p+ 1.(4.9)

From the fact that Hp+q(S) is a (Sk-equivariant) subquotient of
⊕

p+q E
p,q
2 , and

(4.9), we obtain that

mi,λ(S) = 0 for n ≤ length(λ)− 2d+ 1.

This proves Part (a).
In order to prove Part (b), recall first that Theorem 5 implies that

(4.10) mi,λ(V
(k)
d,y ) = 0, for i ≥ k − length(tλ) + 1.
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Using (4.8) and (4.10) we obtain that,

multSλ(Ep,n−p2 ) = 0, for n− p ≥ k − length(tλ) + 1

or equivalently for n ≥ p+ k − length(tλ) + 1.(4.11)

Now observe that since dim(T ) ≤ d, Ep,q2 = 0 for p ≥ d. Applying this to (4.11),
we get that

multSλ(Ep,n−p2 ) = 0, for n ≥ k + d− length(tλ) + 1.

This completes the proof of Part (b). �

5. Proof of Theorem 3

In this section we prove Theorem 3 by describing an algorithm for efficiently
computing the first ` + 1 Betti numbers of any given symmetric semi-algebraic
subset of Rk defined by symmetric polynomials of degrees bounded by d, having
complexity bounded by a polynomial in k (for fixed d and `).

We first outline our method.

5.1. Outline of the proof of Theorem 3. We first use a construction due to
Gabrielov and Vorobjov discussed in Section 5.2 below to reduce to the situation
where the given symmetric semi-algebraic set is closed and bounded. We then use
Theorem 7 to decompose the task of computing bi(S) = dimQ Hi(S) into two parts:

(A) computing the dimensions of Hi(Sk, S
T
k );

(B) computing the isotypic decompositions of the modules Ψ
(k)
T for various

subsets T ⊂ Cox(k). Notice that using Theorem 4, in order to compute

bi(S) for i ≤ `, we need to compute isotypic decompositions of Ψ
(k)
T with

card(T ) < `+ 2d− 1.

We first describe an algorithm (cf. Algorithm 1) for computing the isotypic

decomposition of Ψ
(k)
T , which has complexity polynomially bounded in k if card(T )

is bounded by ` + 2d − 1 (considering ` and d to be fixed). The key ingredient
for this algorithm is Corollary 1 which allows a recursive scheme to be used for
computing the decomposition. The fact that we need to consider only subsets T of
small cardinality (using Theorem 4) is key in keeping the complexity bounded by
a polynomial. This accomplishes task (B).

We next address task (A). We first prove that that the cohomology groups of

the pair (Sk, S
T
k ) are isomorphic to those of another semi-algebraic pair (S̃

(T )
k , S̃Tk )

(cf. Proposition 9). Proposition 9 is the key mathematical result behind our al-

gorithm. The advantage of the pair (S̃
(T )
k , S̃Tk ) over the original pair (Sk, S

T
k ) is

that S̃
(T )
k , S̃Tk are subsets of an O(d+`)-dimensional space (unlike Sk, S

T
k which are

subsets of W(k) ⊂ Rk). Moreover, a semi-algebraic description of (S̃
(T )
k , S̃Tk ) can

be computed efficiently (i.e. with polynomially bounded complexity) from that of
the pair (Sk, S

T
k ) using a slightly modified version of efficient quantifier elimination

algorithm over reals (cf. Algorithm 2). The number and the degrees of the polyno-

mials appearing in the description of (S̃
(T )
k , S̃Tk ) are bounded by a polynomial in k

(for fixed d and `). Finally, we compute the Betti numbers of the pair (S̃
(T )
k , S̃Tk )
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using effective algorithms for computing semi-algebraic triangulations (cf. Algo-
rithm 3). We exploit the fact that this is now a constant (i.e. O(d+`)) dimensional
problem, and we can use algorithms which have doubly exponential complexity in
the number of variables without affecting the overall polynomial complexity of our
algorithm.

5.2. Replacing an arbitrary semi-algebraic set by a closed and bounded
one. We recall a fundamental construction due to Gabrielov and Vorobjov [31]
which allows us to reduce to the case when the given symmetric semi-algebraic set
is closed and bounded.

We first need some preliminaries. We recall some basic facts about real closed
fields and real closed extensions.

5.2.1. Real closed extensions and Puiseux series. We will need some properties of
Puiseux series with coefficients in a real closed field. We refer the reader to [9] for
further details.

Notation 15. For R a real closed field we denote by R 〈ε〉 the real closed field of al-
gebraic Puiseux series in ε with coefficients in R. We use the notation R 〈ε1, . . . , εm〉
to denote the real closed field R 〈ε1〉 〈ε2〉 · · · 〈εm〉. Note that in the unique ordering
of the field R 〈ε1, . . . , εm〉, 0 < εm � εm−1 � · · · � ε1 � 1.

Let P ⊂ R[X1, . . . , Xk], S be a P-semi-algebraic set defined by a P-formula Φ.
Without loss of generality we can suppose that

Φ = Φ1 ∨ · · · ∨ ΦN ,

where for 1 ≤ i ≤ N ,

Φi =
∧

P∈Pi,0

(P = 0) ∧
∧

P∈Pi,1

(P > 0) ∧
∧

P∈Pi,−1

(P < 0),

where Pi,0,Pi,1,Pi,−1 is a partition of the set P.
For ε, δ > 0 we denote

Φi,ε,δ =
∧

P∈Pi,0

((P − ε ≤ 0)∧ (P + ε ≥ 0))∧
∧

P∈Pi,1

(P − δ ≥ 0)∧
∧

P∈Pi,−1

(P + δ ≤ 0),

and

Φε,δ =

N∧
i=1

Φi,ε,δ.

Gabrielov and Vorobjov [31] proved the following theorem. 1

Theorem. [31, Theorem 1.10] Let P ⊂ R[X1, . . . , Xk] and S = R(Φ), where Φ is
a P-formula. For 0 ≤ m ≤ k, let

(5.1) Φ̃m =

 ∨
0≤j≤m

Φεj ,δj

 ∧ (ε(X2
1 + · · ·+X2

k)− 1 ≤ 0)),

and let S′m = R(Φ̃m) ⊂ R〈ε, ε0, δ0, · · · , εm, δm〉k. Then,

Hi(S) ∼= Hi(S′m)

1The theorem in [31] is not stated using the language of non-archimedean extensions and
Puiseux series but it is easy to translate it into the form stated here.
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for 0 ≤ i < m.

Remark 13. Observe that S′m is a bounded P̃m-closed semi-algebraic set, where

P̃m =
⋃
P∈P

⋃
0≤i≤m

{P ± εi, P ± δi} ∪ {ε
∑
i

X2
i − 1}.

Moreover, if P ⊂ R[X1, . . . , Xk]Sk≤d , d ≥ 2, then

P̃m ⊂ R〈ε, ε0, δ0, . . . , εm, δm〉[X1, . . . , Xk]Sk≤d ,

and card(P̃m) = 4m · card(P) + 1.
In our algorithmic application (cf. Algorithm 3 below) we will replace the given

semi-algebraic set S ⊂ Rk by the closed and bounded semi-algebraic set S′`+1 ⊂
R〈ε, ε0, δ0, . . . , ε`+1, δ`+1〉k. By the preceding theorem the first `+ 1 Betti numbers
of S and S′`+1 are equal. Moreover, the number of infinitesimals appearing in the
definition of S′`+1 is bounded by O(`). The number of infinitesimals used to make
the deformation from S to S′`+1 is important for analyzing the complexity of our
algorithms. In our algorithms, we will extend the given ring of coefficients to a
polynomial ring in these infinitesimals. As a result each arithmetic operation in
this larger ring needs several operations to be performed in the original ring – and
this added cost enters as a multiplicative factor in the complexity upper bounds
(see proof of Proposition 11).

5.3. Computing the isotypic decomposition of Ψ
(k)
T . We now describe more

precisely our algorithm for computing the multiplicities of various Specht modules

in the representations Ψ
(k)
T .

Algorithm 1 (Computing isotypic decomposition of Ψ
(k)
T )

Input:
An integer k ∈ Z>0, and T ⊂ Cox(k).

Output:

(A) The set Par(k, T ) = {λ ` k | multSλ(Ψ
(k)
T ) 6= 0};

(B) multSλ(Ψ
(k)
T ) for each λ ∈ Par(k, T ).

Procedure:
1: if T = ∅ then
2: Output Par(k, T ) = {(k)}, and multS(k)(Ψ

(k)
T ) = 1 and terminate.

3: else
4: if k = 2 then
5: output Par(k, T ) = {(1, 1)}, and multS(1,1)(Ψ

(k)
T ) = 1 and terminate.

6: end if
7: end if
8: for λ ` k, length(λ) ≤ card(T ) + 1 do
9: mλ ← 0.

10: end for
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11: PT ← ∅.
12: q ← max{j | sj ∈ T}.
13: Q′ ← T − {sq}.
14: P ′ ← {s1, . . . , sq−1} − T .
15: P ′′ ← {sq+1, . . . , sk−1}.
16: Using a recursive call to Algorithm 1 with input q and Q′, compute Par(q,Q′)

and multSµ(Ψ
(q)
Q′ ) for each µ ∈ Par(q,Q′).

17: for µ ∈ Par(q,Q′) do
18: for λ ∈ S(µ, k) do (cf. Notation 8)
19: PT ← PT ∪ {λ}.
20: mλ ← mλ + multSµ(Ψ

(q)
Q′ ).

21: end for
22: end for
23: Using a recursive call to Algorithm 1 with input k and P ′, compute Par(k,Q′)

and multSλ(Ψ
(k)
P ′ ) for each λ ∈ Par(k,Q′).

24: for λ ∈ Par(k,Q′) do

25: mλ ← mλ −multSλ(Ψ
(k)
Q′ ).

26: if mλ = 0 then
27: PT ← PT \ {λ}.
28: end if
29: end for
30: Output Par(k, T ) = PT , and for each λ ∈ Par(k, T ), output multSλ(Ψ

(k)
T ) = mλ.

Proof of correctness of Algorithm 1. The correctness of the algorithm follows from
Corollary 1, and Lemma 1. �

Complexity Analysis of Algorithm 1. Let F (k, n) denote the maximum of the com-
plexity of the algorithm over all inputs (k, T ), where card(T ) = n. Then, F (k, n) is
also an upper bound on the cardinality of the set Par(k, T ) produced in the output
of the algorithm. First consider the recursive call to the algorithm in Line 16. The
complexity of computing Par(q,Q′) as well as the cardinality of the set Par(q,Q′)
is bounded by F (q, n−1) ≤ F (k−1, n−1). Also observe that for each µ belonging
to the output Par(q,Q′) of this recursive call length(µ) ≤ card(Q′) + 1 ≤ n, which
is a consequence of Proposition 3. The cardinality of the set S(µ, k) is bounded by
O(klength(µ)) = O(kn) (using Lemma 2). The complexity of computing S(µ, k) is
also bounded by kO(n). Thus the total cost of the ‘for’ loop in Line 17 is bounded
by kCnF (k− 1, n− 1) for a large enough constant C > 0. The cost of the recursive
call in Line 23 is bounded by F (k, n− 1), and the cost of the ‘for’ loop in Line 24
is bounded by CF (k, n− 1) for a large enough constant C > 0. Thus the function
F (k, n) satisfies the following inequalities for large enough constants C,C ′ > 0:

F (k, 0) ≤ C,

F (2, ·) ≤ C,

F (k, n) ≤ kCnF (k − 1, n− 1) + CF (k, n− 1)

≤ kC
′nF (k, n− 1).
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It follows from the above inequalities that there exists some constant C ′′ > 0
such that

F (k, n) ≤ kC
′′n2

.

Thus the complexity of Algorithm 1 is bounded by kO(card(T )2). �

We summarize the above in the following proposition.

Proposition 7. Algorithm 1 is correct and has complexity, measured by the number

of arithmetic operations in Z, bounded by kO(card(T )2). Moreover, the cardinality of

the set Par(k, T ) output is also bounded by kO(card(T )2).

Proof. Follows from the proof of correctness and the complexity analysis of Algo-
rithm 1 given previously. �

5.4. The pair (S̃
(T )
k , S̃Tk ) and its properties. In this section we define the pair

(S̃
(T )
k , S̃Tk ), and prove its key property.

Notation 16. For any finite set T and s ∈ T , we denote by ∆T ⊂ RT , the standard
simplex in RT . In other words, ∆T is the convex hull of the points (es)s∈T , where
es is defined by πt(es) = δs,t where for each t ∈ T , πt : RT → R is the projection
map on to the t-th coordinate. For T ′ ⊂ T , we denote by ∆T ′ , the convex hull of
the points (es)s∈T ′ , and call ∆T ′ the face of ∆T corresponding to the subset T ′.

Definition 9. Let k ∈ Z≥0, and λ, µ ∈ Comp(k). We denote, λ ≺ µ, if Wλ ⊂ Wµ.
It is clear that ≺ is a partial order on Comp(k) making Comp(k) into a poset.

In the following paragraph we introduce notation two denote certain special
subsets of Comp(k). Their significance will be clear from the proposition that
follows immediately.

Notation 17. For λ = (λ1, . . . , λ`) ∈ Comp(k), we denote length(λ) = `, and for
k, d ∈ Z≥0, we denote

CompMax(k, d) = {λ = (λ1, . . . , λd) ∈ Comp(k) | λ2i+1 = 1, 0 ≤ i < d/2},
CompMin(k, d) = {λ = (λ1, . . . , λd) ∈ Comp(k) | λ2i = 1, 0 < i ≤ d/2}.

We denote by

W(k)
d =

⋃
λ∈Comp(k,d)

Wλ.

We state the following important theorem due to Arnold [1] which has been
referred to in Example 3.2.2. It plays a key role in the proof of Proposition 8
below. Since we refer the reader to [12] for the proof of Proposition 8, we do not
use Theorem 8 subsequently in this paper.

Theorem 8. [1, Theorems 5, 6 and 7]

For every w ∈ Rk
≥0, d, k ≥ 0, d′ = min(k, d), and y ∈ Rd′ the function p

(k)
w,d+1

has exactly one local maximum on (Ψ
(k)
w,d)

−1(y), which furthermore depends contin-
uously on y.

Moreover, a point x ∈ Vw,y∩W(k) is a local maximum if and only if x ∈ W(k)
λ for

some λ ∈ CompMax(k, d′). Similarly, a point x ∈ Vw,y ∩W(k) is a local minimum

if and only if x ∈ W(k)
λ for some λ ∈ CompMin(k, d′).
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(Note that as already noted in [12] there is a slight inaccuracy in [1, Theorem 7]
in that the word minimum should be replaced by the word maximum and vice versa.
A correct statement and a more detailed proof can be found in [38] (Proposition
8).)

We need some more notation.

Notation 18. For λ = (λ1, . . . , λ`) ∈ Comp(k), we denote by ιλ :W(`) →W(k) the
embedding that takes (y1, . . . , y`) ∈ W(`) to the point (y1, . . . , y1︸ ︷︷ ︸

λ1

, . . . , y`, . . . , y`︸ ︷︷ ︸
λ`

).

Notation 19. For T ⊂ Cox(k) and d ≥ 0, we denote:

W(k)
T,d = ιλ(T )(W

(length(λ(T )))
d ).

Definition 10. For any semi-algebraic set S ⊂ Rk, T ⊂ Cox(k), and d ≥ 0, we set

Sk = S ∩W(k),

Sk,d = S ∩W(k)
d ,

STk = W(k,T ) ∩ S,
Sk,T = W(k)

T ∩ S,

Sk,T,d = S ∩W(k)
T,d.

Proposition 8. Let 1 < d, and P ⊂ R[X1, . . . , Xk]Sk≤d , S ⊂ Rk, a P-closed and

bounded semi-algebraic set, and w ∈ Rk
>0. Then the following holds.

1. The map Ψ
(k)
w,d restricted to Sk,d is a semi-algebraic homeomorphism on to its

image, and

2. Ψ
(k)
w,d(Sk,d) = Ψ

(k)
w,d(Sk).

Proof. Both parts follow from the weighted version of Part (1) of Proposition 9 in
[12]. �

We have the following corollary of Proposition 8 that we will need. With the
same hypothesis as in Proposition 8:

Corollary 2. For each subset T ⊂ Cox(k), Ψ
(k)
d restricted to Sk,T,d is a semi-

algebraic homeomorphism on to its image, and

Ψ
(k)
d (Sk,T ) = Ψ

(k)
d (Sk,T,d).

Proof. Let ` = length(λ(T )), and S′` = ι−1
λ(T )(Sk,T ) (cf. Notation 18). Then,

Sk,T,d = ιλ(T )(S
′
`,d),

and
Ψ

(k)
d |Sk,T = Ψ

(`)
λ(T ),d ◦ ι

−1
λ(T ).

The corollary now follows from Proposition 8, and the fact that ιλ(T ) is a semi-
algebraic homeomorphism on to its image. �

Now, let 1 < d, and P ⊂ R[X1, . . . , Xk]Sk≤d , S ⊂ Rk, a P-closed and bounded

semi-algebraic set, and T ⊂ Cox(k).
We define:
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Definition 11.

S̃
(T )
k = Ψ

(k)
d (Sk)×∆T ⊂ Rd × RT ,

and

S̃Tk =
⋃
T ′⊂T

Ψ
(k)
d (Sk,T ′)×∆T ′ ⊂ S̃(T )

k .

The key property of the pair (S̃
(T )
k , S̃Tk ) defined above that will be used later is

the following.
Using the definitions given above we have:

Proposition 9.

H∗(S̃
(T )
k , S̃Tk ) ∼= H∗(Sk, S

T
k ).

Before proving Proposition 9 we recall the notion of the blow-up complex of a
collection of closed and bounded semi-algebraic subsets of RN .

Definition 12 (Blow-up complex). Given a finite family A = (Aα)α∈I of closed
and bounded semi-algebraic subsets of RN , we denote

Bl(A) =
∐
J⊂I

AJ ×∆J/ ∼,

where for J ⊂ I, AJ =
⋂
α∈J Aα, and ∆J is the face of the standard simplex

∆I ⊂ RI (i.e. ∆J = {(xα)α∈I ∈ ∆I | ∀(α 6∈ J)xα = 0}, and ∼ is the obvious
identification.

It is an easy consequence of the Vietoris-Begle theorem (see for example [46,
page 344]) that (using the same notation as in Definition 12) the map

π : Bl(A)→ A =
⋃
α

Aα, π(x; t) = x,

is a homotopy equivalence.
Moreover, if B = (Bα)α∈I is another family of closed and bounded semi-algebraic

sets, such that for each α ∈ I, Aα ⊂ Bα, then there is an obvious inclusion Bl(A) ↪→
Bl(A), and we have a commutative diagram,

Bl(A) Bl(B)

A =
⋃
αAα B =

⋃
αBα

π π ,

where the horizontal arrows are inclusions. This gives a map between the pairs
(Bl(B),Bl(A)) → (B,A). (In particular, note that if Bα = B for all α ∈ I,
Bl(B) = B ×∆I .)

Lemma 4. The induced homomorphism

H∗(B,A)→ H∗(Bl(B),Bl(A))

is an isomorphism.

Proof. The lemma is a consequence of the ‘five-lemma’, and the fact that the in-
duced homomorphisms, π∗ : H∗(A)→ H∗(Bl(A)),H∗(B)→ H∗(Bl(B)) are isomor-
phisms. �
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Proof of Proposition 9. Let A = (Sk,{s})s∈T , and B = (Sk)s∈T . Then, using

Lemma 4 and noting that STk =
⋃
s∈T Sk,{s}, we have that

H∗(Sk, S
T
k ) ∼= H∗(Bl(B),Bl(A)).

Moreover, observe that for T ′′ ⊂ T ′ ⊂ T , we have a commutative diagram

Sk,T ′ Sk,T ′′

Ψ
(k)
d (Sk,T ′) Ψ

(k)
d (Sk,T ′′)

Ψ
(k)
d Ψ

(k)
d

where the horizontal arrows are inclusions.

This allows us to define a map, Bl(B)→ S̃
(T )
k , by

[(x; t)] 7→ (Ψ
(k)
d (x); t),

where [(x; t)] denotes the equivalence class of (x; t) ∈ Sk×∆T under the equivalence
relation ∼ in the definition of Bl(B) (cf. Definition 12). It is easy to verify that

this map is well-defined and also that it restricts to a map Bl(A)→ S̃Tk .
Hence, we have a induced map of pairs

(5.2) (Bl(B),Bl(A))→ (S̃
(T )
k , S̃Tk ).

The fibers of the maps Bl(B) → S̃
(T )
k , Bl(A) → S̃Tk , defined above are weighted

Vandermonde varieties inside Weyl chambers and are thus contractible using Propo-

sition 5. Hence, the induced homomorphisms, H∗(S̃
(T )
k ) → H∗(Bl(B)), H∗(S̃Tk ) →

H∗(Bl(A) are isomorphisms.
Using the ‘five lemma’ we obtain that the homomorphism,

H∗(S̃
(T )
k , S̃Tk )→ H∗(Bl(B),Bl(A))

induced by the map in (5.2) is an isomorphism. This proves the proposition. �

5.5. Algorithm for computing a semi-algebraic description of the pair

(S̃
(T )
k , S̃Tk ). We now describe an efficient algorithm which takes as input the semi-

algebraic description of a symmetric semi-algebraic subset S ⊂ Rk, which uses
symmetric polynomials of degree at most d, and produces semi-algebraic descrip-

tions of S̃
(T )
k and S̃Tk .
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Algorithm 2 (Computing semi-algebraic descriptions of (S̃
(T )
k , S̃Tk ))

Input:
(A) Integers k, d ≥ 0, d ≤ k;

(B) a finite set P ⊂ D[X1, . . . , Xk]Sk≤d ;

(C) a P-closed formula, Φ such that R(Φ) = S;
(D) T ⊂ Cox(k).

Output:
(A) An ordered domain D contained in a real closed field R;

(B) A finite family of polynomials Q̃ ⊂ D[(Ys)s∈T , Z1, . . . , Zd];

(C) Q̃ formulas, Φ̃
(T )
k and Φ̃Tk , such that R(Φ̃

(T )
k ) = S̃

(T )
k and R(Φ̃Tk ) = S̃Tk .

Procedure:
1: for λ ∈ CompMax(k, d) do
2: Using the algorithm from [12, Corollary 6] applied to the family P, the

formula Φ ∧
∧

1≤i≤k−1(Xi ≤ Xi+1), and the linear equations defining

the subspace Lλ containing the face Wλ, and the polynomial map Φ
(k)
d ,

obtain a family of polynomials formula Qλ ⊂ R[Z1, . . . , Zd], and Qλ-

formula Φλ, such that R(Φλ) = Ψ
(k)
d (S ∩Wλ).

3: end for
4: Θ← (

∑
s∈T Ys − 1 = 0) ∧

∧
s∈T (Ys ≥ 0).

5: Q̃ ← {
∑
s∈T Ys − 1} ∪

⋃
s∈T {Ys} ∪

⋃
λ∈CompMax(k,d)Qλ.

6: Φ̃
(T )
k ← Θ ∧

∨
λ∈CompMax(k,d) Φλ.

7: for T ′ ⊂ T do
8: for µ ∈ CompMax(length(λ(T ′)), d) do
9: Using the algorithm from [12, Corollary 6] applied to the family

P, the formula Φ ∧
∧

1≤i≤k−1(Xi ≤ Xi+1), the linear equations

defining the subspace the face ιµ(W(length(T ′))
λ ), and the polyno-

mial map Φ
(k)
d , obtain a family of polynomials formula QT ′,µ ⊂

R[Z1, . . . , Zd], and QT ′,µ-formula ΦT ′,µ, such that R(ΦT ′,µ) =

Φ
(k)
d (S ∩ ιµ(W(length(T ′))

µ ).
10: end for
11: Φk,T ′ =

∨
µ∈CompMax(length(λ(T ′)),d) ΦT ′,µ ∧ (

∑
s∈T ′ Ys − 1 = 0) ∧∧

s∈T−T ′(Ys = 0).
12: end for
13:

Q̃ ← Q̃ ∪
⋃
T ′⊂T

⋃
µ∈CompMax(length(λ(T ′)),d)

QT ′,µ.

14: Φ̃Tk ←
∨
T ′⊂T Φk,T ′ .

Proposition 10. Algorithm 2 is correct and its complexity, measured by the number
of arithmetic operations in the domain D, is bounded by

(skd)O(d+card(T )).

Moreover, card(Q̃) ≤ (skd)O(d+card(T )), and the degrees of the polynomials in Q̃
are bounded by dO(d+card(T )).
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Proof. It follow from Proposition 8 and [12, Corollary 6], that the first order formu-
las Φλ, λ ∈ CompMax(k, d), computed in Line 2 of Algorithm 2 have the property
that

R

 ∨
λ∈CompMax(k,d)

Φλ

 = Φ
(k)
d (Sk).

It now follows from the definition of S̃
(T )
k (cf. Definition 11), that the formula Φ̃

(T )
k

computed in Line 6 in Algorithm 2 satisfies

R(Φ̃
(T )
k ) = S̃

(T )
k .

Similarly, it follows from Corollary 2, and [12, Corollary 6], that the first order
formulas ΦT ′,µ, µ ∈ CompMax(length(λ(T ′)), d) computed in Line 9 of Algorithm
2 have the property that,

R

 ∨
µ∈CompMax(length(λ(T ′)),d)

ΦT ′,µ

 = Φ
(k)
d (Sk,T ′,d).

It now follows from the definition of S̃k,T (cf. Definition 11), that the formula Φ̃Tk
computed in Line 14 of Algorithm 2 satisfies

R(Φ̃Tk ) = S̃Tk .

This completes the proof of the correctness of Algorithm 2. The complexity
upper bound is a consequence of the complexity bound in [12, Corollary 6], and the
following:

(i) the number of iterations of the ‘for’ loop in Line 1 is bounded by

card(CompMax(k, d)) ≤ kO(d);

(ii) the number of iterations of the ’for’ loop in Line 7 bounded by

2card(T );

and,
(iii) the number of iterations of the ‘for’ loop in Line 8is bounded by

card(CompMax(length(T ′), d)) ≤ kO(d).

�

5.6. Algorithm for computing the the Betti numbers of symmetric semi-
algebraic sets. We are now in a position to describe our algorithm for computing
the first (` + 1) Betti numbers of symmetric semi-algebraic sets which will finally
prove Theorem 3.
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Algorithm 3 (Computing the first `+ 1 cohomology groups of a symmetric semi-
algebraic set)

Input:
(A) An ordered domain D contained in a real closed field R;
(B) Integers k, d, ` ≥ 0, `, d ≤ k;

(C) a finite set P ⊂ D[X1, . . . , Xk]Sk≤d ;

(D) a P-formula Φ.
Output:

The integers b0(R(Φ)), . . . , b`(R(Φ)).
Procedure:

1: Φ← Φ̃`+1 (cf. Eqn. (5.1)).
2: D← D′ = D[ε, ε0, δ0, . . . , ε`+1, δ`+1].
3: R← R′ = R〈ε, ε0, δ0, . . . , ε`+1, δ`+1〉.
4: for T ⊂ Cox(k), card(T ) < `+ 2d− 1 do

5: Compute using Algorithm 2, the family of polynomials Q̃ and the formulas

Φ̃
(T )
k and Φ̃Tk .

6: Compute a semi-algebraic triangulation hT : |KT | → R(Φ̃
(T )
k ), such that

h−1
T (R(Φ̃

(T )
k ) = |K ′T |, K ′T is a sub-complex of KT , as in the proof of

Theorem 5.43 [9].

7: Compute bi(R(Φ̃
(T )
k ), Φ̃Tk ) = bi(KT ,K

′
T ) for 0 ≤ i ≤ ` (using for example the

Gauss-Jordan elimination algorithm from elementary linear algebra).
8: Compute using Algorithm 1, the set Par(k, T ).
9: for λ ∈ Par(k, T ) do

10: mλ,T ← multSλ(Ψ
(k)
T ).

11: end for
12: end for
13: for 0 ≤ i ≤ ` do
14: for λ ∈ Par(k), length(λ) ≤ i+ 2d− 1 do
15: mi,λ ← 0.
16: end for
17: for T ⊂ Cox(k), card(T ) < i+ 2d− 1 do
18: for λ ∈ Par(k, T ) do

19: mi,λ ← mi,λ + bi(R(Φ̃
(T )
k ),R(Φ̃Tk )) ·mλ,T .

20: end for
21: end for
22:

bi(R(Φ))←
∑

λ∈Par(k),length(λ)≤i+2d−1

mi,λ · dimQ Sλ,

calculating dimQ Sλ using Eqn. (6.2).
23: end for

Proposition 11. Algorithm 3 is correct and has complexity, measured by the num-

ber of arithmetic operations in the domain D, bounded by (skd)2O(d+`)

.
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If D = Z, and the bit-sizes of the coefficients of the input is bounded by τ , then
the bit-complexity of Algorithm 3 is bounded by

(τskd)2O(d+`)

.

Proof. First observe that the formula Φ̃`+1 in Line 1 is a P̃`+1-closed formula, where

P̃`+1 ⊂ D[ε, ε0, δ0, . . . , ε`+1, δ`+1]Sk≤d ,

and S = R(Φ̃`+1) is closed and bounded.
Moreover, using Remark 13, we have that

(5.3) bi(R(Φ)) = bi(S), 0 ≤ i ≤ `.

It follows from Proposition 10, that the pair of formulas (Φ̃
(T )
k , Φ̃Tk ) computed in

Line 5 of Algorithm 3 has the property that,

(R(Φ̃
(T )
k ),R(Φ̃Tk )) = (S̃

(T )
k , S̃Tk ).

It follows from Proposition 9, that

H∗(S̃
(T )
k , S̃Tk ) ∼= H∗(Sk, S

T
k ),

and it follows from Theorem 5.43 in [9], that the numbers bi(S̃
(T )
k , S̃Tk ) = bi(Sk, S

T
k )

are computed correctly in Line 7 of Algorithm 3 (for 0 ≤ i ≤ `).
It follows from Theorem 7 that,

(5.4) bi(S) =
∑

T⊂Cox(k)

bi(Sk, S
T
k ) · dim Ψ

(k)
T .

It follows from (4.4) that the sum on the right hand side of Eqn. (5.4) needs to
be taken only over those T ⊂ Cox(k), satisfying card(T ) < i+ 2d− 1, i.e.

bi(S) =
∑

T⊂Cox(k),card(T )<i+2d−2

bi(Sk, S
T
k ) · dim Ψ

(k)
T .

The correctness of the algorithm now follows from Proposition 7 and (5.3).
In order to analyze the complexity, first notice that in Line 2, the ordered do-

main D is replaced by the ordered domain D′ = D[ε, ε0, δ0, . . . , ε`+1, δ`+1]. Each
subsequent arithmetic operation takes place in the larger domain

D′ = D[ε, ε0, δ0, . . . , ε`+1, δ`+1].

Since the number of arithmetic operations in D needed for computing the sum and
the product of two polynomials in D′ of degrees bounded by D is at most DO(`), and
the degrees of the polynomials in D′ that show up in the intermediate computations
are well controlled, it suffices to bound the number of arithmetic operations in the
new ring D′.

The number of iterations of the ‘for’ loop in Line 4 is bounded by
(

k−1
`+2d−2

)
=

kO(d+`). In each iteration, notice that the semi-algebraic sets S̃
(T )
k , S̃Tk ⊂ Rcard(T )×

Rd, and thus the number of variables in the calls to the triangulation algorithm in
Line 6 equals card(T ) + d ≤ (`+ 2d− 1) + d = O(`+ d). The number of arithmetic
operations in D′ in each iteration is thus bounded by

(`sdk)2O(d+`)
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from the complexity bounds in Propositions 7, 10, and the complexity of the trian-
gulation algorithm.

Since, the degrees of the polynomials appearing in the computations are bounded

by d2O(d+`)

, it follows that the number of arithmetic operations in D is also bounded
by

(`sdk)2O(d+`)

.

It follows from Proposition 7, that the number of iterations of the ‘for’ loop in

Line 9 is bounded by kO((d+`)2). Also, the number of iterations of the ‘for’ loop
in Line 14 is bounded by kO(d+`) using the trivial upper bound on the number of
partitions of k of length bounded by `+ 2d− 1 and the number of iterations of the
‘for’ loop in Line 17 is bounded by

(
k−1

`+2d−2

)
= kO(d+`). Thus, the complexity of

the whole algorithm is bounded by

(`sdk)2O(d+`)

.

The bit bound on the complexity follows in a standard manner by keeping track
of the bit-lengths ofthe integers occuring in the intermediate computations and
using standard algorithms for arithmetic over integers. We omit the details. �

Proof of Theorem 3. The theorem follows directly from Proposition 11. �

6. Appendix

This section is divided into two subsections. The first subsection consists of
fairly standard material on representation theory of finite groups, and in the second
subsection we discuss the representation theory of the symmetric groups. We chose
to include this in order to make the paper reasonably self-contained. A standard
reference for this material for this material is Serre’s classic book [44]. However, in
Serre’s book the field of scalars is taken (in most parts) to be algebraically closed.
Since we consider representations over Q, we refer the reader to the book [40] for
the basic results listed below.

6.1. A quick digest of representation theory of finite groups. In this paper
we only consider group representations over the field Q. So all vector spaces in the
following are finite dimensional Q-vector spaces and all groups are finite.

Definition 13 (Representations of a group G). A representation of a group G is a
group homomorphism ρ : G→ GL(V ) for some vector space V . The representation
ρ induces a left action of the group G on the vector space V , by g·v = ρ(g)(v), v ∈ V ,
making V into a left G-module. We will use the language of representations and
modules interchangeably.

We call dimQ V the dimension of the representation ρ .

Definition 14 (Morphism of representations). Given two representations ρ1 : G→
GL(V1), ρ2 : G → GL(V2), a homomorphism T : V1 → V2, is a morphism of G-
modules (or equivalently, an intertwining operator) if it satisfies,

ρ2(g) ◦ T (v1) = T ◦ ρ1(g)(v1),

for all g ∈ G, v1 ∈ V1.
The representations ρ1, ρ2 are equivalent if there exists a morphism of G-modules

T : V1 → V2 which is an isomorphism.

Two canonically defined examples will play an important role.
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(A) The one dimensional representation, corresponding to the constant homo-
morphism G → IdV , where V is a one-dimensional vector space is called
the trivial representation of G (denoted 1G).

(B) Let A = Q[G] denote the group algebra of G. Then, A has a natural
structure of a left G-module. The corresponding representation is called the
regular representation of G. The dimension of the regular representation of
G is clearly equal to the order of the group G.

Definition 15 (Direct sums and tensor products of representations ·⊕ ·, ·⊗ ·, ·� ·).
Given two representations ρ1 : G→ V1, ρ2 : G→ V2:

(A) One defines the representation ρ1⊕ρ2 : G→ GL(V1⊕V2) by (ρ1⊕ρ2)(g)(v1⊕
v2) = ρ1(g)(v1)⊕ ρ2(g)(v2).

(B) Similarly the representation ρ1 ⊗ ρ2 : G → GL(V1 ⊗Q V2) is defined by
(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = ρ1(g)(v1)⊗ ρ2(g)(v2).

Given two representations ρ1 : G1 → GL(V1), ρ2 : G2 → GL(V2), we define a
representation ρ1 � ρ2 : G1 × G2 → GL(V1 ⊗Q V2) of the direct product group
G1 ×G2 by

(ρ1 � ρ2)(g1, g2)(v1 ⊗ v2) = ρ1(g1)(v1)⊗ ρ2(g2)(v2).

Definition 16 (Irreducible representations). A representation ρ : G → GL(V )
is irreducible if V does not contain a non-zero proper sub-representation (i.e. a
non-zero proper subspace W ⊂ V which is closed under ρ(g) for every g ∈ G).

Lemma 5 (Schur’s Lemma). [40, Corollary on page 151] Let ρ1 : G→ V1, ρ2 : G→
V2 be two irreducible representations, and T : V1 → V2 an intertwining operator.
Then T is either 0 or an isomorphism.

Definition 17. Let α be an isomorphism class of irreducible representations of a
finite group G and let M be a finite-dimensional G-module. Let Mα denote the sum
of all submodules of M isomorphic to α. We call Mα to be the isotypic ccomponent
of M of type α.

With the same notation as in Definition 17:

Theorem 9 (Isotypic decomposition). [40, Theorem, Section 2.3] The isotypic
components give a direct sum decomposition of M .

Moreover, Lemma 5 (Schur’s Lemma) implies the following.

Theorem 10. Suppose that M and N are two finite dimensional G-module, α
an isomorphism class of irreducible G-modules and f : M → N a morphism of
G-modules. Then, there is a commutative diagram of G-module homomorphisms

M
f
//

��

N

��

Mα
f |Mα

// Nα

where the vertical arrows are canonical projections.

Finally, with the same hypothesis as Definition 17:

Proposition 12. [40, Section 2.1, Corollaries 1,2] Each Mα is (non-canonically)
isomorphic to the direct sum of mα copies of the irreducible representation of type
α for some mα ≥ 0.
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Definition 18 (Multiplicity). We will call the non-negative integer mα that ap-
pears in Proposition 12 to be the multiplicity of α in M , and denote

mα = multα(M).

It follows from Theorem 10 that multα(M) is well defined.

It is obvious that a representation of a group G restricts to a representation of
any subgroup of G. It is less obvious how to lift a representation of a subgroup of
G to a representation of G itself. There is in fact a canonically defined lift which is
referred to as the induced representation. The notion of induced representations is
used in Lemma 1 in the paper.

The construction of the induced representation is best stated in the language of
modules. Let H ⊂ G be a subgroup of G, and let ρ : H → V be a representation
of H. Then V is naturally a left Q[H]-module and Q[G] a right Q[H]-module.

Definition 19 (Induced representation). We denote by indGHV the left G-module
Q[G]⊗Q[H] V (called the induced representation of V on G).

6.2. Representation theory of symmetric groups. In this paper we are con-
cerned with the representations of the symmetric groups Sk and certain subgroups
of the symmetric groups. We state below the main definitions and results related
to this very classical topic.

Notation 20 (Partitions and compositions). We denote by Par(k) the set of par-
titions of k, where each partition λ ∈ Par(k) (also denoted λ ` k) is a tuple
(λ1, λ2, . . . , λ`), with λ1 ≥ λ2 ≥ · · · ≥ λ` ≥ 1, and λ1 + λ2 + · · ·+ λ` = k. We call
` the length of the partition λ, and denote length(λ) = `.

A tuple (λ1, λ2, . . . , λ`), with λ1 + λ2 + · · · + λ` = k (but not necessarily non-
increasing) will be called a composition, and we still call ` the length of the com-
position λ, and denote length(λ) = `. The set of of all compositions of k will be
denoted by Comp(k).

Notation 21 (Transpose of a partition). For a partition λ = (λ1, . . . , λ`) ` k, we
will denote by tλ the transpose of λ. More precisely, tλ = (tλ1, . . . ,

t λ˜̀), where
tλj = card({i | λi ≥ j}), and ˜̀= λ1.

Definition 20 (Young diagrams). Partitions are often identified with Young dia-
grams. We follow the English convention and associate the partition λ = (λ1, λ2, . . .)
with the Young diagram with its i-th row consisting of λi boxes. Thus, the Young
diagram corresponding to the partition λ = (3, 2) is

,

the Young diagram associated to its transpose, tλ = (2, 2, 1), is

(note that the Young diagram of tλ is obtained by reflecting the Young diagram of
λ about its diagonal). Thus, for any partition λ, length(λ) (respectively length(tλ))
equals the number of rows (respectively columns) of the Young diagram of λ (re-
spectively tλ).
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Definition 21 (Young’s tableau). A tableau on a given Young diagram correspond-
ing to a partition λ ` k is a filling of its squares with 1, . . . , k (with no repetitions).

The representation theory of the symmetric groups, Sk, is a classical subject (see
for example [27] for details) and it is well known that the irreducible representations
(Specht modules) of Sk are indexed by partitions of k.

These are defined as follows.

Definition 22 (Specht modules). Let A = Q[Sk] be the group algebra of Sk.
Then A is a Q-vector space of dimension k! and left multiplication by elements of
Sk makes A into a Sk-module (usually referred to as the regular representation of
the group Sk).

For λ ` k, fix a tableau T on the Young diagram of λ. Let Pλ ⊂ Sk be the set
of permutations that stabilizes the rows of the tableau T , and similarly Qλ ⊂ Sk

be the set of permutations that fixes the columns of T .
Let

aλ =
∑
w∈Pλ

w,

bλ =
∑
w∈Qλ

sign(w)w,

cλ = aλbλ.(6.1)

Then the left ideal Acλ of A is an irreducible Sk-module, and we denote it Sλ (the
Specht module corresponding to λ). It is easy to check that for λ = (k), S(k) is
isomorphic to the one-dimensional trivial representation which we will also denote

by 1Sk , and for λ = (1, . . . , 1) (often denoted by 1k), the Specht module S(1k) is
isomorphic to the one-dimensional sign representation which we will also denote by
signk.

Definition 23 (Hook lengths). Let B(λ) denote the set of boxes in the Young
diagram (cf. Definition 20) corresponding to a partition λ ` k. For a box b ∈ B(λ),
the length of the hook of b, denoted hb is the number of boxes strictly to the right
and below b plus 1.

The following classical formula (due to Frobenius) gives the dimension of the
representation Sλ in terms of the hook lengths of the partition λ.

dimQ Sλ =
k!∏

b∈B(λ) hb
.(6.2)
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