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Abstract. Let R be a real closed field, d, k ∈ Z>0, y = (y1, . . . , yd) ∈
Rd, and let V

(k)
d,y ⊂ Rk denote the Vandermonde variety defined by p

(k)
1 =

y1, . . . , p
(k)
d = yd, where p

(k)
j =

∑k
i=1X

j
i . Then, the cohomology groups

H∗(V
(k)
d,y ,Q) have the structure of Sk-modules. We prove that for all parti-

tions λ ` k, and d ≥ 2, the multiplicity of the Specht module Sλ in Hi(V
(k)
d,y ,Q)

is zero if length(λ) ≥ i + 2d − 1. This vanishing result allows us to prove a

similar vanishing result for arbitrary symmetric semi-algebraic sets defined by
symmetric polynomials of degrees bounded by d. These new results depend

on results from the cohomological study of mirrored spaces due to Davis [23]

and Solomon [37], as well as the fundamental results on Vandermonde varieties
due to Arnold [1], Giventhal [26] and Kostov [28], and a careful topological

analysis of certain regular cell complexes that arise in the process of combining

these results.
A surprising outcome of the vanishing results stated above is a polynomial

upper bound on the algorithmic complexity of the problem of computing cer-

tain (the first few) Betti numbers of semi-algebraic sets defined by symmetric
polynomials of fixed degrees. The algorithmic problem of computing the Betti

numbers of semi-algebraic sets (not necessarily symmetric) is of central im-
portance in complexity theory (especially in the Blum-Shub-Smale model [17]

where it plays the same role as that of ‘counting’ in discrete complexity the-

ory [19, 16]), and has been the subject of many investigations (most recently
by Bürgisser et al. [20]). No algorithm with complexity better than singly

exponential is known for computing even the zero-th Betti number of a real al-

gebraic variety defined by one polynomial of degree≥ 3. We prove that for each
fixed `, d ≥ 0, there exists an algorithm that takes as input a quantifier-free first

order formula Φ with atoms P = 0, P > 0, P < 0, P ∈ P ⊂ D[X1, . . . , Xk]
Sk
≤d ,

where D is an ordered domain contained in R, and computes the isotypic de-
composition, as well as the ranks of the first (` + 1) cohomology groups, of

the symmetric semi-algebraic set defined by Φ. The complexity of this algo-
rithm (measured by the number of arithmetic operations in D) is bounded by

a polynomial in k and card(P) (for fixed d and `). This result contrasts with

the PSPACE-hardness of the problem of computing just the zero-th Betti
number (i.e. the number of semi-algebraically connected components) in the

general case for d ≥ 2 [34] (taking the ordered domain D to be equal to Z).
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1. Introduction and Main Results

We fix a real closed field R. The intersections of the level sets of the first d
(weighted) Newton power sums in Rk for some d ≤ k have been called Vander-
monde varieties by Arnold [1] and Giventhal [26], who studied their topological
properties in detail. In fact, if one replaces the Newton power sums with any other
set of generators of the ring of Sk-invariant polynomials (for example the elemen-
tary symmetric polynomials), the intersection of the level sets of the generators
of degree at most d give the same class of real varieties. (Indeed, Vandermonde
varieties can be defined as level sets of the first d generators of the invariant ring
of any finite reflection group, and many results and techniques introduced in the
current paper extend to more general reflection groups. However, the case of the
symmetric group is the most important from the point of view of applications,
and we restrict ourselves to this special case in this paper.) When the weights
are all equal the Vandermonde varieties are also symmetric with respect to the
standard action (by permuting coordinates) of the symmetric group Sk, and thus
the cohomology groups of the Vandermonde varieties acquire the structure of finite
dimensional Sk-modules (here and everywhere else in this paper without further
mention we only consider cohomology with rational coefficients).

In their foundational work on the topic, Arnold [1], Giventhal [26] and Kostov
[28], proved that the intersection of a symmetric Vandermonde variety with the
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Weyl chamber in Rk, defined by the inequalities X1 ≤ · · · ≤ Xk is contractible if
non-empty, which in turn implies that the quotient space of a symmetric Vander-
monde variety is contractible if non-empty. In this paper, we study the Sk-module
structure of the cohomology groups of symmetric Vandermonde varieties themselves
(not just their quotient space).

1.1. Main Results. Our main representation-theoretic results concern the Sk-
module structure of the cohomology groups of Vandermonde varieties, and more
generally of symmetric semi-algebraic sets defined by symmetric polynomials of
small degrees. We prove that the Specht modules corresponding to partitions hav-
ing long lengths cannot occur with positive multiplicity in the isotypic decompo-
sitions of small dimensional cohomology modules of semi-algebraic sets defined by
symmetric polynomials of small degree.

We then exploit these results to obtain the first algorithm with polynomially
bounded complexity for computing the first few Betti numbers of such sets. This
result is surprising because the analogous algorithmic problem of computing Betti
numbers of general (not necessarily symmetric) semi-algebraic sets defined by poly-
nomials of degree bounded by d is a PSPACE-hard problem for d ≥ 2, and thus
unlikely to admit algorithms with polynomially bounded complexity.

1.1.1. Representation-theoretic results. We obtain restrictions on the Specht mod-
ules, Sλ, λ ` k, that are allowed to appear depending on d and k, as well as the
dimension (or the degree) of the cohomology group under consideration. These
restrictions are of two kinds. We prove that when d is fixed, the Specht modules
corresponding to partitions having long lengths cannot occur with positive multi-
plicity in the isotypic decompositions of small dimensional cohomology modules of

Vandermonde varieties V
(k)
d,y ⊂ Rk, as well as a similar result for more general sym-

metric semi-algebraic sets defined by symmetric polynomials of degrees bounded
by d. In the opposite direction, we prove that the Specht modules corresponding
to partitions having short lengths cannot occur with positive multiplicity in the
isotypic decompositions of the high dimensional cohomology modules of of Van-

dermonde varieties V
(k)
d,y ⊂ Rk, and a similar result for more general symmetric

semi-algebraic sets as well.

Notation 1. For any symmetric semi-algebraic subset S ⊂ Rk and i ≥ 0, we will
denote by

Pari(S) = {λ ` k | multSλ(Hi(S)) 6= 0}.

We prove the following theorems. (The notation used in the theorems in this
section is mostly standard and/or self-explanatory; but readers unfamiliar with
them should consult Section 1.3 below where we collect together some of the basic
notation that we use throughout the paper).

Theorem 1. Let d, k ∈ Z>0, d ≥ 2, y = (y1, . . . , yd) ∈ Rd, and let V
(k)
d,y denote the

Vandermonde variety defined by p
(k)
1 = y1, . . . , p

(k)
d = yd, where p

(k)
j =

∑k
i=1X

j
i .

Then, for all λ ` k:

(a)

multSλ(Hi(V
(k)
d,y )) = 0, for i ≤ length(λ)− 2d+ 1,

or equivalently,
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(1.1) max
λ∈Pari(V

(k)
d,y )

length(λ) < i+ 2d− 1;

(b)

multSλ(Hi(V
(k)
d,y )) = 0, for i ≥ k − length(tλ) + 1,

or equivalently,
max

λ∈Pari(V
(k)
d,y )

length(tλ) < k − i+ 1.

Remark 1 (Cases d = 1, 2). The case d = 1 is omitted in Theorem 1. Indeed, Part

(a) is not true as stated in the case d = 1. In this case, V
(k)
d,y is the hyperplane

defined by the equation
k∑
i=1

Xi = y1,

and is Sk-equivariantly contractible to the point 1
k · (y1, . . . , y1). Hence,

Hi(V
(k)
d,y ) ∼=Sk S(k), if i = 0,

∼=Sk 0, otherwise

(recall that the Specht module Sλ for λ equal to the trivial partition (k) is isomor-
phic to the one-dimensional trivial representation). It follows that for i = 0,

multS(k)(H
i(V

(k)
d,y )) = 1 6= 0,

but
length((k)) = 1 6< i+ 2d− 1 = 0 + 2− 1 = 1,

which violates (1.1).
On the other hand, the case d = 2 already indicates that the vanishing condition

in Theorem 1 is sharp.

If d = 2 and k ≥ 3, the Vandermonde variety V
(k)
d,y is the defined by the equation

k∑
i=1

Xi = y1,

k∑
i=1

X2
i = y2,

and can be empty, a point, or semi-algebraically homeomorphic to a sphere of
dimension k − 2 (depending on whether y2

1 − ky2 is > 0,= 0, or < 0, respectively).
In the last case (i.e. when y2

1 − ky2 < 0):

Hi(V
(k)
2,y ) ∼=Sk S(k), if i = 0,

Hi(V
(k)
2,y ) ∼=Sk S1k , if i = k − 2,(1.2)

∼=Sk 0, otherwise

(see Subsection 2.4.1 below for a proof).
It follows that for i = k − 2, k ≥ 3 and y2 > 0,

multS1k (Hk−2(V
(k)
d,y )) = 1 6= 0⇒ 1k ∈ Park−2(V k2,y),

and

max
λ∈Park−2(V

(k)
2,y )

length(λ) = length(1k) = k < k − 2 + 2 · 2− 1 = k + 1.
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The restrictions on the Sk-module structure for Vandermonde varieties, pro-
duce via an application of an argument involving the (equivariant) Leray spectral
sequence, similar (slightly looser) restrictions on the cohomology modules of ar-
bitrary symmetric semi-algebraic sets defined by quantifier-free formula involving
qualities and inequalities of symmetric polynomials of degrees bounded by d ≤ k
(cf. Theorem 2).

Theorem 2. Let d, k ∈ Z>0 d ≥ 2, and S ⊂ Rk be a P-semi-algebraic set with
P ⊂ R[X1, . . . , Xk]Sk≤d . Then, for all λ ` k:

(a)

multSλ(Hi(S)) = 0, for i ≤ length(λ)− 2d+ 1,

or equivalently,

max
λ∈Pari(S)

length(λ) < i+ 2d− 1;

(b)

multSλ(Hi(S)) = 0, for i ≥ k − length(tλ) + d+ 1,

or equivalently,

max
λ∈Pari(S)

length(tλ) < k − i+ d+ 1.

Part (a) of Theorem 2 can be read as saying that for any fixed i ≥ 0, and S ⊂ Rk

a P-semi-algebraic set with P ⊂ R[X1, . . . , Xk]Sk≤d ,

max
λ∈Pari(S)

length(λ) < i+ 2d− 1 = O(d).

Similarly, Part (b) of Theorem 2 can be read as saying that

max
λ∈Park−i(S))

length(tλ) < i+ d+ 1 = O(d).

The following illustrative example shows that up to a multiplicative constant the
above necessary conditions are tight.

Example 1. For d, k ∈ Z>0, let

Fk,d,ε =
k∑
i=1

d∏
j=1

(Xi − j)2 − ε ∈ R[X1, . . . , Xk]Sk≤2d,

and

Vk,d,ε = Z(Fk,d,ε),

(where Z(P ) denotes the real zeros of a polynomial P ∈ R[X1, . . . , Xk]). Note
that deg(Fk,d,ε) = 2d, and for 0 < ε � 1, Vd,k,ε consists of dk disjoint topological
spheres, each sphere infinitesimally close (as a function of ε) to one of the dk points
{1, . . . , d}k ⊂ Rk.

Thus, for 0 < ε � 1, dimQ(H0(Vd,k,ε)) = dimQ(Hk−1(Vd,k,ε)) = dk, and and

Hi(Vd,k,ε) = 0, i 6= 0, k − 1.

We now describe the isotypic decomposition of Hi(Vk,d,ε) for 0 < ε � 1, and
i = 0, k − 1. It is easy to see that

(1.3) H0(Vk,d,ε) ∼=Sk

⊕
λ=(λ1,...,λd)∈Zd≥0∑d

i=1 λi=k

H0(Vλ),
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where Vλ is the Sk-orbit of the connected component of Vk,d,ε infinitesimally close
(as a function of ε) to the point xi = (1, . . . , 1︸ ︷︷ ︸

λ1

, · · · , d, . . . , d︸ ︷︷ ︸
λd

).

For λ = (λ1, . . . , λd) ∈ Zd≥0,
∑d
i=1 λi = k, denote by λ̃ the partition of k obtained

by permuting the λi’s so that they are in non-increasing order.

Then, for λ = (λ1, . . . , λd) ∈ Zd≥0,
∑d
i=1 λi = k,

(1.4) H0(Vλ) ∼=Sk M
λ̃

(where for any µ ` k we denote by Mµ the Young module associated to the partition
µ).

Moreover, as is well known, the isotypic decomposition of the Young module Mµ

is given by the Young’s rule ([22, Theorem 3.6.11])

(1.5) Mµ ∼=Sk S
µ ⊕

⊕
µ′ . µ,µ′ 6=µ

K(µ′, µ) Sµ
′
,

where . denotes the partial order often referred to as the dominance order on the
set of partitions of k, and K(µ′, µ) are the Kostka numbers (see [22] for definitions).
It follows from the definition of the partial order . that,

(1.6) µ′ . µ⇒ length(µ′) ≤ length(µ).

We can deduce from (1.3), (1.4) and (1.5), that

(1.7) H0(Vk,d,ε) ∼=Sk

⊕
λ=(λ1,...,λd)∈Zd≥0∑d

i=1 λi=k

Sλ̃ ⊕ ⊕
µ . λ̃,µ 6=λ̃

K(µ, λ̃) Sµ
 .

This immediately implies using (1.7) and (1.6) that

max
λ∈Par0(Vk,d,ε)

length(λ) ≤ d.

Moreover, it is clear that there exists λ ` k with length(λ) = d, such that

multSλ(H0(Vk,d,ε)) > 0,

which shows that the restriction, length(λ) = O(d) (in the case i = 0) in Part (a)
of Theorem 2 is tight up to a multiplicative factor.

It follows from the Sk-equivariant Poincaré duality (see for example [14, Theo-
rem 3.23]), that

(1.8) Hk−1(Vk,d,ε) ∼=Sk

⊕
λ=(λ1,...,λd)∈Zd≥0∑d

i=1 λi=k

Stλ̃ ⊕ ⊕
µ . λ̃,µ 6=λ̃

K(µ, λ̃) S
tµ

 .

Together with (1.6), (1.8) implies that

max
λ∈Park−1(Vk,d,ε)

length(tλ) ≤ d.

It is also clear there exists λ ` k with length(tλ) = d, such that

multSλ(Hk−1(Vk,d,ε)) > 0.
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This shows that the restriction, length(tλ) = O(d) (in the case i = 0) in the Part (b)
of Theorem 2 is also tight up to a multiplicative factor.

Theorems 1 and 2 are improvements over prior results in [14] (Theorem 2.5,
Part (1)) having similar flavor in several different ways. Firstly, the restrictions
on partitions given in [14, Theorem 2.5] are in terms of upper bounds on their
ranks rather than their lengths. The rank of a partition µ is the length of the
main diagonal in the Young diagram (cf. Definition 2) of µ. While the length of
a partition is an upper bound on its rank, a partition having small rank can be
arbitrarily long. For example, the partition 1k := (1, . . . , 1) has rank 1, but its
length is clearly the maximum possible, namely k. Secondly, the restrictions in
[14, Theorem 2.5] do not take into consideration the dimension (or the degree) of
the cohomology groups under consideration. In contrast, the restrictions on the
partitions λ given in Theorems 1 and 2 in the current paper, do depend in a strong
manner on the dimension (or the degree) of the cohomology group. As a result in
small dimensions, we obtain that only the partitions with a small length can appear
unlike the restrictions obtained in [14], where there were no non-trivial restriction
on the length. The restriction on the length is a key ingredient in the algorithmic
result obtained in this paper.

The results of the current paper depend on:

(a) results from the cohomological study of mirrored spaces due to Davis [23] and
Solomon [37],

(b) fundamental results on Vandermonde varieties due to Arnold [1], Giventhal [26]
and Kostov [28], and

(c) a careful topological analysis of certain regular cell complexes that arise in the
process of combining these results.

In contrast, the proofs of the results in [14] are based essentially on equivariant
Morse theory which plays no role in the current paper. The reader who is curious
about the interplay of results coming from different areas and how they combine
together in the study of Vandermonde varieties, can skip forward to Examples 2.4.1
and 2.4.2 where the examples of Vandermonde varieties of degree 2 in Rk, k ≥ 3,
and that of degree 3 in R4 are worked out in full detail.

1.1.2. Algorithmic result. The new result (Theorem 2) on the vanishing of the mul-
tiplicities of Specht modules (corresponding to partitions having long lengths) has
an important algorithmic consequence. It paves the way for obtaining a new al-
gorithm for computing the first ` + 1 (for any fixed `) Betti numbers of any given
semi-algebraic set S ⊂ Rk defined in terms of symmetric polynomials of small
degrees with complexity which is polynomially bounded.

The algorithmic problem of computing Betti numbers of arbitrary semi-algebraic
sets is a central and extremely well-studied problem in algorithmic semi-algebraic
geometry. It has many ramifications, ranging from the applications in the theory of
computational complexity where it plays the role of ‘generalized counting’ in real
models of computation (see [19, 16]), to robot motion planning where the problem of
computing the zero-th Betti umber, that is the number of connected components of
the free space of a robot, which is usually a semi-algebraic set, is a central problem
[36, 21]).

While many advances have been made in recent years [10, 3, 4, 20] (see also
Remark 3 below) the best algorithm for computing all the Betti numbers of any
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given semi-algebraic set S ⊂ Rk still has doubly exponential (in k) complexity, even
in the case where the degrees of the defining polynomials are assumed to be bounded
by a constant (≥ 2) [36]. The existence of algorithms with singly exponential
complexity for computing all the Betti numbers of a given semi-algebraic set is
considered to be a major open question in algorithmic semi-algebraic geometry (see
the survey [5]). One important reason why this problem is open is that while the
Betti numbers of semi-algebraic sets are bounded by a singly exponential function
[33, 39, 32], the best known algorithm for obtaining semi-algebraic triangulation
has doubly exponential complexity [36].

As mentioned above some partial progress on this important problem has been
made. Algorithms for computing the zero-th Betti number (i.e. the number of semi-
algebraically connected components) of semi-algebraic sets have been investigated
in depth, and nearly optimal algorithms are known for this problem [7, 15]. An
algorithm with singly exponential complexity is known for computing the first Betti
number of semi-algebraic sets is given in [10], and then extended to the first ` (for
any fixed `) Betti numbers in [3]. The Euler-Poincaré characteristic, which is the
alternating sum of the Betti numbers, is easier to compute, and a singly exponential
algorithm for computing it is known [2, 8].

From the point of view of lower bounds, the problem of computing even the num-
ber of connected components (i.e. the zero-th Betti number) of general (not neces-
sarily symmetric) semi-algebraic sets defined by polynomials of degrees bounded by
any constant d ≥ 2 is a PSPACE-hard problem [34], and thus unlikely to have al-
gorithms with polynomially bounded complexity. In contrast to these results which
are applicable to general semi-algebraic sets, we prove in this paper that there exists
an algorithm with polynomially bounded complexity, for computing the first ` + 1
Betti numbers of semi-algebraic sets defined by symmetric polynomials of degrees
bounded by d, for every fixed d and `. Before stating this theorem formally, we
first make precise the notion of ‘complexity’ that we are going to use.

Definition 1 (Definition of complexity). In our algorithms we will usually take as
input polynomials with coefficients belonging to an ordered domain (say D). By
complexity of an algorithm we will mean the number of arithmetic operations and
comparisons in the domain D. Since Z is always a subring of D, this will include
operations involving integers. If D = R, then the complexity of our algorithm will
agree with the Blum-Shub-Smale notion of real number complexity [17]. In case,
D = Z, then we are able to deduce the bit-complexity of our algorithms in terms
of the bit-sizes of the coefficients of the input polynomials, and this will agree with
the classical (Turing) notion of complexity.

Theorem 3. Let D be an ordered domain contained in a real closed field R,
and let `, d ≥ 0. There exists an algorithm with takes as input a finite set P ⊂
D[X1, . . . , Xk]Sk≤d , and a P-formula Φ, and computes:

1. For each i, 0 ≤ i ≤ `, a set Mi of pairs (mi,λ ∈ Z>0, λ ` k) such that

Hi(S) ∼=Sk

⊕
(mi,λ,λ)∈Mi

mi,λ Sλ.

2. The tuple of integers

(b0(R(Φ)), . . . , b`(R(Φ))).
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Moreover, the complexity of the algorithm, measured by the number of arithmetic

operations in D, is bounded by (skd)2O(d+`)

.
If D = Z, and the bit-sizes of the coefficients of the input is bounded by τ , then

the bit-complexity of our algorithm is bounded by

(τskd)2O(d+`)

.

Remark 2 (Polynomiality). Note that the complexity of the algorithm in Theorem 3
is bounded by a polynomial in s and k for every fixed `, d.

Remark 3 (Other models). We should also mention here that there has been recent
work on the algorithmic problem of computing Betti numbers of semi-algebraic sets
in which the authors have given algorithms with singly exponential complexity for
computing all the Betti numbers of semi-algebraic sets [20]. Unlike, the algorithms
described in the current paper which have uniform upper bounds on their complex-
ity (i.e. independent of the coefficients of the input polynomials), the complexity
of the algorithms in [20] depend on the ‘condition number’ of the input – and could
be infinite if the given input is ill-conditioned. Thus, such algorithms will fail to
produce any result on certain inputs. It is possible that the algorithmic insights
from the current paper may have consequences for this different model, but we do
not investigate this in this paper.

Several new ideas (compared to previous algorithms for computing Betti numbers
of semi-algebraic sets) appear in the design of the algorithm cited in Theorem 3. The
first key idea is of course to utilize the Sk-module structure of the cohomology of
the given symmetric semi-algebraic sets. This reduces the problem of computing the
dimensions of the cohomology groups, to computing the multiplicities of the various
Specht modules appearing in them – the Betti numbers can then be recovered from
these multiplicities, and the dimensions of the Specht modules for which there is
an easily computable formula, namely the so called hook formula (see Eqn. (1.9)
below).

The second key idea is to utilize the techniques underlying the proofs of Theo-
rems 1 and 2. This helps us in two ways. Firstly, (in small dimensions) it guarantees
that at most only a polynomial many of the multiplicities to be computed can be
non-zero, and this restricts the set of partitions that enters into the computation.
Secondly, it allows us to obtain a dimension reduction, reducing the problem of
computing the multiplicities for any given symmetric semi-algebraic set S ⊂ Rk

defined in terms of symmetric polynomials of degrees bounded by d, to the prob-
lem of computing the Betti numbers of pairs of semi-algebraic subsets, which are
not symmetric any more but contained in a much smaller (O(d + `)) dimensional
space. For the latter problem it suffices to use the standard algorithms mentioned
previously. We refer the reader to Section 4.1 for a more detailed outline.

1.2. Prior work. The Sk-module properties of cohomology groups of symmetric
semi-algebraic subsets of Rk defined by symmetric polynomials of degrees bounded
by d ≤ k were studied in [11, 13, 14]. The main highlights of the results proved in
the afore-mentioned papers are the following.

1. The Sk-equivariant cohomology groups, H∗Sk(S), symmetric semi-algebraic sub-

set S ⊂ Rk are isomorphic to H∗(S/Sk) (the cohomology groups of the quotient
of S by Sk). In [11], it was shown that unlike the ordinary Betti numbers,
the equivariant Betti numbers of symmetric semi-algebraic sets defined in terms
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of symmetric polynomials of degrees bounded by some fixed constant d, are
bounded polynomially in the parameters s, k (where s is the number of polyno-
mials appearing in the definition of S). This result was subsequently sharpened
to a tight form, using different methods in [13].

2. The cohomology modules H∗(S) of the previous paragraph admit an isotypic
decomposition into direct sums (as Sk-modules) of isotypic components, mλSλ,
indexed by partitions λ ` k, and where Sλ is the Specht module indexed by
λ, and mλ denotes the multiplicity of Sλ in H∗(S) (in other words, mλ =
dimQ homSk(H∗(S),Sλ)). In [14], the multiplicities mλ’s were studied and sev-
eral results were proved. In particular, it was shown that in the setting of the
previous paragraph, mλ 6= 0 implies that rank(λ) < 2d. Moreover, for every
fixed d, polynomial upper bounds were proved on the multiplicities mλ. Note
that unlike the results of the current paper, the restrictions on the partitions
allowed to appear in the isotypic decomposition of the cohomology modules did
not depend on the dimension (or the degree) of the cohomology. Moreover, the
rank restriction allows partitions having both long rows, and long columns to
appear (unlike in Theorems 1) and 2 . This improvement in the restriction (al-
beit only in small dimensions) is the key to the algorithmic result proved in the
current paper.

3. The study of efficient algorithms for computing topological invariants of sym-
metric semi-algebraic sets has a shorter history than of such algorithms for
arbitrary semi-algebraic set. Using the so called ‘degree principle’ proved by
Timofte [40, 41, 42] and Riener [35], one can design an algorithm for deciding
emptiness of symmetric algebraic sets in Rk defined by symmetric polynomials
of degree d, having complexity kO(d) (i.e polynomial in s, k for fixed d). The
algorithmic questions of computing the equivariant Betti numbers and also the
Euler-Poincaré characteristics were considered by the authors of the current pa-
pers. In [13], an algorithm with polynomially bounded complexity (polynomial
in k for fixed d) was described for computing all the equivariant Betti numbers
of a closed symmetric semi-algebraic set S ⊂ Rk defined by a formula involving
at most s symmetric polynomials of degree bounded by d. Since we consider
cohomology with rational coefficients and because Sk is a finite group, there is
isomorphism H∗(S/Sk) ∼= H∗Sk(S), and hence this amounts to computing the
Betti numbers of the quotient. In [12], an algorithm with polynomially bounded
complexity (better than that of the algorithm mentioned above) was given for
computing the equivariant as well as the ordinary Euler-Poincaré characteristics
of symmetric semi-algebraic sets.

1.3. Basic notation and definitions. In this section we collect together some
basic notation and definitions that we will use for the rest of the paper.

Notation 2 (Zeros). For P ∈ R[X1, . . . , Xk], we denote by Z(P,Rk) the set of
zeros of P in Rk. More generally, for any finite set P ⊂ R[X1, . . . , Xk], we denote
by Z(P,Rk) the set of common zeros of P in Rk.

Notation 3 (Realizations, P- and P-closed semi-algebraic sets). For any finite
family of polynomials P ⊂ R[X1, . . . , Xk], we call an element σ ∈ {0, 1,−1}P , a
sign condition on P. For any semi-algebraic set Z ⊂ Rk, and a sign condition
σ ∈ {0, 1,−1}P , we denote by R(σ, Z) the semi-algebraic set defined by

{x ∈ Z | sign(P (x)) = σ(P ), P ∈ P},
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and call it the realization of σ on Z.
More generally, we call any Boolean formula Φ with atoms, P = 0, P < 0, P >

0, P ∈ P, to be a P-formula. We call the realization of Φ, namely the semi-algebraic
set

R (Φ) :=
{
x ∈ Rk | Φ(x)

}
a P-semi-algebraic set.

Finally, we call a Boolean formula without negations, and with atoms P{≥,≤}0,
P ∈ P, to be a P-closed formula, and we call the realization, R (Φ), a P-closed
semi-algebraic set.

Notation 4 (Betti numbers). Let S ⊂ Rk be any semi-algebraic set. We denote
by bi(S) = dimQ Hi(S,Q). It is worth noting that the precise definition of the

cohomology groups Hi(S,Q), requires some care if the semi-algebraic set S is defined
over an arbitrary (possibly non-archimedean) real closed field. For details we refer
to [9, Chapter 6].

Notation 5 (Symmetric polynomials of bounded degrees). For all d, k ≥ 0, we

will denote by R[X1, . . . , Xk]Sk≤d the subspace of the polynomial ring R[X1, . . . , Xk]
consisting of symmetric polynomials of degree at most d.

Notation 6 (Partitions and compositions). We denote by Par(k) the set of par-
titions of k, where each partition λ ∈ Par(k) (also denoted λ ` k) is a tuple
(λ1, λ2, . . . , λ`), with λ1 ≥ λ2 ≥ · · · ≥ λ` ≥ 1, and λ1 + λ2 + · · ·+ λ` = k. We call
` the length of the partition λ, and denote length(λ) = `.

A tuple (λ1, λ2, . . . , λ`), with λ1 + λ2 + · · · + λ` = k (but not necessarily non-
increasing) will be called a composition, and we still call ` the length of the com-
position λ, and denote length(λ) = `. The set of of all compositions of k will be
denoted by Comp(k).

Notation 7 (Transpose of a partition). For a partition λ = (λ1, . . . , λ`) ` k, we
will denote by tλ the transpose of λ. More precisely, tλ = (tλ1, . . . ,

t λ˜̀), where
tλj = card({i | λi ≥ j}).

Definition 2 (Young diagrams). Partitions are often identified with Young dia-
grams. We follow the English convention and associate the partition λ = (λ1, λ2, . . .)
with the Young diagram with its i-th row consisting of λi boxes. Thus, the Young
diagram corresponding to the partition λ = (3, 2) is

,

the Young diagram associated to its transpose, tλ = (2, 2, 1), is

(note that the Young diagram of tλ is obtained by reflecting the Young diagram of
λ about its diagonal). Thus, for any partition λ, length(λ) (respectively length(tλ))
equals the number of rows (respectively columns) of the Young diagram of λ (re-
spectively tλ).
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The representation theory of the symmetric groups, Sk, is a classical subject (see
for example [22] for details) and it is well known that the irreducible representations
(Specht modules) of Sk are indexed by partitions of k.

Notation 8 (Specht modules). For λ ` k, we will denote by Sλ the correspond-
ing Specht module. In particular, S(k) is the one-dimensional trivial representation

which we will also denote by 1Sk , and S(1k) is the one-dimensional sign represen-
tation which we will also denote by signk.

Definition 3 (Hook lengths). Let B(λ) denote the set of boxes in the Young
diagram (cf. Definition 2) corresponding to a partition λ ` k. For a box b ∈ B(λ),
the length of the hook of b, denoted hb is the number of boxes strictly to the right
and below b plus 1.

The following classical formula (due to Frobenius) gives the dimensions of the
representations Sλ in terms of the hook lengths of the partition λ defined below.

dimQ Sλ =
k!∏

b∈B(λ) hb
.(1.9)

The rest of the paper is dedicated to the proofs of Theorems 1, 2, and 3. In
Section 2 we give an outline of the proofs of Theorems 1 and 2, and also describe
two key examples illustrating the main steps. In Section 3, we give the proofs of
Theorems 1 and 2. In Section 4 we give the proof of Theorem 3, after introducing
the necessary preliminary results.

2. Outline of our method and two key examples

2.1. Outline of the proofs of Theorems 1 and 2. We first observe that sym-
metric semi-algebraic subsets S ⊂ Rk, defined in terms of equalities and inequalities
of symmetric polynomials of degree at most d, admits a map to Rd (by the first
d Newton power sum polynomials restricted to S), whose fibers are Vandermonde
varieties. Moreover the action of Sk keeps the fibers stable, and thus the action of
Sk on S also induces an action on the Leray spectral sequence of this map. As a
result in order to prove the vanishing of certain irreducible Sk-modules, it suffices
to prove this vanishing for Vandermonde varieties. The Vandermonde varieties are
well studied and have nice topological and geometric properties. For us the most
important property implicit in the work of Arnold, Giventhal and Kostov is that
the intersection Z of a Vandermonde variety V with a Weyl chamber W(k) in Rk

is either a point or a regular cell of the dimension of the variety. Moreover, the
structure of the boundary of Z (in case Z is a regular cell) is well understood in
terms of the combinatorics of the faces of W(k) with which Z has a non-empty
intersection.

We recall that the symmetric group Sk is generated by the transpositions (i, i+
1), 1 ≤ i ≤ k, and we will denote the transposition (i, i + 1) by si, and we denote
by Cox(k) the set {s1, . . . , sk−1}. If we identify Sk as the Weyl group of the root
system Ak−1 in V = Rk, the various si are the root reflections corresponding to a
set of fundamental roots, and W(k) is a fundamental chamber. Each co-dimension
one face of the W(k) is the intersection of W(k) with a hyperplane defined by
Xi = Xi+1 for some i, 1 ≤ i ≤ k, and this thus labeled by the Coxeter element si,

and we denote this face by W(k)
si .



COHOMOLOGY OF SYMMETRIC SEMI-ALGEBRAIC SETS 13

In order to relate the cohomology of the symmetric Vandermonde variety V ,
with that of Z = V ∩W(k), we make use of the notion of a mirrored space. Given
a Coxeter system (W,S), where W is a Coxeter group and S a set of reflections
generating W , a space Z with a family of closed subspaces (Zs)s∈S is called a mirror
structure on Z [24, Chapter 5.1], and Z along with the collection (Zs)s∈S is called
a mirrored space over S. Given a mirrored space, Z, (Zs)s∈S over S, there is a
classical construction of a space U(W,Z) with a W -action [29, 43, 44, 23].

For a general mirrored space Z, the cohomology groups H∗(U(W,Z)) gets a
structure of a W -module from the W -action on U(W,Z), and H∗(U(W,Z)) can then
be expressed as a direct sum of certain tensor products of W -modules, ΨW

T , and
the cohomology groups of the pair (Z,ZT ), where T ⊂ Cox(k), and ZT =

⋃
s∈S Zs

([24, Theorem 15.4.3]). In our situation, (W,S) = (Sk,Cox(k)), Z = V ∩ W(k),

Zs = Z ∩W(k)
s , s ∈ Cox(k), and the space U(Sk, Z) is equivariantly homeomorphic

to V with the standard action of Sk. Applying [24, Theorem 15.4.3] to our situation
we obtain that the cohomology group of V are isomorphic to direct sums of tensor

products of certain Sk-modules, Ψ
(k)
T , indexed by subsets T ⊂ Cox(k), and the

cohomology groups of the pairs (Z,ZT ), T ⊂ Cox(k), where as before

ZT =
⋃
s∈T

Zs

(see Theorem 4 below).

The representations Ψ
(k)
T may be understood as analogs of Specht modules, but

defined in terms of MacMahon’s tableau [30, Vol 1, Chapter 1, Sect IV, 129.]
rather than Young’s tableau (where the role of partitions is replaced by that of

compositions). Unlike the Specht modules, the representations Ψ
(k)
T need not be

irreducible (see, for example (2.7) and (2.8) below). But we are able to obtain a

necessary condition for a Specht module to appear with positive multiplicity in Ψ
(k)
T

using a recursive formula due to Solomon [37, Corollary 3.2] (cf. Eqn. (3.3) below).
We show using an inductive argument (cf. Proposition 2) that only those Specht

modules can appear in Ψ
(k)
T whose number of rows is bounded by card(T ) + 1 (and

a similar restriction in terms of the number of columns).
One final ingredient is the observation that in the case when Z has the expected

dimension k−d, then the intersection of Z with the various faces ofW(k), induces a
structure of a regular cell complex, and the boundary of Z is then semi-algebraically
homeomorphic to the (k−d−1)-dimensional sphere, and the intersection of Z with

the variousW(k)
s , s ∈ Cox(k), gives an acyclic covering of the boundary of Z having

cardinality at most k−1. This implies via an argument using the nerve lemma and
Alexander duality that the cohomology groups Hi(Z,ZT ) must vanish if i is large
compared to the cardinality of T and also a dual statement (cf. Proposition 3).

Putting these together we obtain our theorem on the vanishing of certain mul-
tiplicities for Vandermonde varieties (cf. Theorem 1). Theorem 2 is then a con-
sequence of Theorem 1 and an argument involving (an equivariant version of) the
Leray spectral sequence.

Finally, the restriction result that we prove also allows us, via the Solomon-
Davis formula alluded to above, and some additional ingredients (see the outline in
Section 4.1) including certain standard algorithms from semi-algebraic geometry,
to effectively compute the Betti numbers bi(S), 0 ≤ i ≤ `, for any fixed ` with
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complexity which is polynomial in the number of variables and the number of
polynomials. Here we are assuming that the degrees of the input polynomials are
also bounded by a constant.

We will now proceed to describe two simple examples, whose analysis already
exposes the central ideas behind the proofs of the main theorems.

But we first need to introduce a few relevant definitions and notation.

2.2. Solomon decomposition of the symmetric group. Recall that a Coxeter
pair (W,S), consists of a group W and a set of generators, S = {si | i ∈ I}, of W
each having order 2, and numbers (mi,j)i,j∈I such that (sisj)mij = e. We consider
the symmetric group Sk as a Coxeter group with the set of Coxeter generators,
Cox(k) = {si = (i, i+1) | 1 ≤ i ≤ k−1}. Following the same notation as in [24], for
T ⊂ Cox(k), we denote by ST

k the subgroup of Sk generated by T . Let A = Q[Sk]
denote the regular representation of Sk.

For J ⊂ Cox(k), let

ξ
(k)
J = card(SJ

k )−1
∑
w∈SJk

w,

η
(k)
J = card(SJ

k )−1
∑
w∈SJk

(−1)`(w)w.

For P,Q ⊂ S(k), P ∩ Q = ∅, we denote (following [37]) by Ψ
(k)
P,Q the sub-

representation of the regular representation of Sk defined by,

(2.1) Ψ
(k)
P,Q = Aξ

(k)
P η

(k)
Q .

For ease of notation we will denote the representation Ψ
(k)
Cox(k)−T,T by Ψ

(k)
T . As

remarked before the representations Ψ
(k)
T (unlike the Specht modules) need not be

irreducible in general. However, it is easy to see from (2.1) that in the following
two special cases, they are indeed irreducible.

Ψ
(k)
∅

∼=Sk S(k) ∼=Sk 1Sk ,(2.2)

Ψ
(k)
Cox(k)

∼=Sk S(1k) ∼=Sk signk.(2.3)

Another easy consequence of (2.1) is

Ψ
(k)
Cox(k)−T

∼=Sk Ψ
(k)
T ⊗ signk.(2.4)

2.3. Weyl chambers and mirrored spaces. We now describe how the Sk-

modules, Ψ
(k)
T introduced in Section 2.2 can be used to decompose the cohomol-

ogy groups of a symmetric semi-algebraic set S as a direct sum of certain Sk-
submodules. This decomposition (cf. Theorem 4 below) is a key ingredient in what
follows.

Notation 9. We denote by W(k) ⊂ Rk the cone defined by X1 ≤ X2 ≤ · · · ≤ Xk,
and by W(k),o the interior of W(k) (i.e. the cone defined by X1 < X2 < · · · < Xk).

For every m ≥ 0, and w = (w1, . . . , wk) ∈ Rk
>0 we consider

p
(k)
w,m : Rk −→ R

x = (x1, . . . , xk) 7−→
∑k
j=1 wjx

m
j ,
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and for every d ≥ 0, and w ∈ Rk
>0 we denote by Φ

(k)
w,d the continuous map defined

by

Φ
(k)
w,d : Rk −→ Rd′

x = (x1, . . . , xk) 7−→ (p
(k)
w,1(x), . . . , p

(k)
w,d′(x)),

where d′ = min(k, d).
Finally, we denote by

Ψ
(k)
w,d :W(k) −→ Rd′

the restriction of Φ
(k)
w,d to W(k).

If w = 1k := (1, . . . , 1), then we will denote by p
(k)
m the polynomial p

(k)
w,m (the

m-th Newton sum polynomial), and by Φ
(k)
d (respectively, Ψ

(k)
d ) the map Φ

(k)
w,d

(respectively, Ψ
(k)
w,d).

For every w ∈ Rk
≥0, d, k ≥ 0, d ≤ k, and y ∈ Rd, we will denote by

V
(k)
w,d,y := (Φ

(k)
w,d)

−1(y), and Z
(k)
w,d,y := (Ψ

(k)
w,d)

−1(y).

If w = 1k := (1, . . . , 1), then we just denote V
(k)
w,d,y by V

(k)
d,y , and Z

(k)
w,d,y by Z

(k)
d,y.

Notation 10. For k ∈ Z≥0, we denote by Comp(k) the set of integer tuples

λ = (λ1, . . . , λ`), λi > 0, |λ| :=
∑̀
i=1

λi = k.

Definition 4. For k ∈ Z≥0, and λ = (λ1, . . . , λ`) ∈ Comp(k), we denote by Wλ

the subset of W(k) defined by,

X1 = · · · = Xλ1
≤ Xλ1+1 = · · · = Xλ1+λ2

≤ · · · ≤ Xλ1+···+λ`−1+1 = · · · = Xk,

and denote by Wo
λ the subset of W(k) defined by

X1 = · · · = Xλ1
< Xλ1+1 = · · · = Xλ1+λ2

< · · · < Xλ1+···+λ`−1+1 = · · · = Xk.

We denote by Lλ the subspace defined by

X1 = · · · = Xλ1
, Xλ1+1 = · · · = Xλ1+λ2

, · · · , Xλ1+···+λ`−1+1 = · · · = Xk,

which is the linear hull of Wλ.

Notation 11. For s = (i, i + 1) ∈ Cox(k), we denote by W(k)
s the face of W(k)

defined by Xi = Xi+1. More generally, for T ⊂ Cox(k), we denote:

W(k)
T =

⋂
s∈T
W(k)
s ,

W(k,T ) =
⋃
s∈T
W(k)
s .

We also define λ(T ) ∈ Comp(k) implicitly by the equation

(2.5) Wλ(T ) =W(k)
T .
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Notation 12. Finally, for any semi-algebraic set Z ⊂ W(k), T ⊂ Cox(k), we set

ZT = Z ∩W(k,T ),

ZT = Z ∩W(k)
T .

For any semi-algebraic subset S ⊂ Rk, we will denote

Sk = S ∩W(k),

and we will for convenience of notation write Sk,T (respectively, STk ), in place of
(Sk)T (respectively, (Sk)T ).

2.3.1. Mirrored spaces and a key theorem. We will also use the following theorem
proved in a more general context of mirrored space in [24]. If S is a closed sym-
metric semi-algebraic subset of Rk, then (using Notation 12) Sk ⊂ W(k). The tuple

of closed subspaces (Sk,s = Sk ∩ W(k)
s )s∈Cox(k) of Sk (cf. Notation 11) is then

an example of a mirror structure on Sk over Cox(k), and S is Sk-equivariantly
homeomorphic to U(Sk, Sk) (using the language of [24, Chapter 5]). The following
theorem is an adaptation of a more general theorem in [24] to the special case that
we need.

Theorem 4. [24, Theorem 15.4.3] Let S be a closed symmetric semi-algebraic
subset of Rk. Then,

H∗(S) ∼=Sk

⊕
T⊂Cox(k)

H∗(Sk, S
T
k )⊗Ψ

(k)
T .

We are now ready to discuss the promised examples.

2.4. Examples.

2.4.1. Key Example I. We first consider the case d = 2 for k ≥ 3, which has already
being alluded to in Remark 1. Recall that in this case, the Vandermonde variety

V
(k)
2,y is defined by the equation

k∑
i=1

Xi = y1,

k∑
i=1

X2
i = y2,

and is empty, a point, or a semi-algebraically homeomorphic to a sphere of dimen-
sion k − 2 (depending on whether y2

1 − ky2 is > 0,= 0, or < 0, respectively).

The first two cases are trivial. In the last case, Z
(k)
2,y = V

k)
2,y ∩ W(k) is a closed

disk of dimension k − 2, and has a non-empty intersection with all the faces of the

Weyl chamber W(k). (See Figure 1 for the case k = 4, where Z
(4)
2,y is one of the

triangles on the two-dimensional sphere equal to V
4)
2,y. Notice that in this case Z

(4)
2,y

meets all the three faces of the Weyl chamber W(4).)
It follows that in this case

Hi(Z
(k)
2,y, Z

(k,T )
2,y ) ∼= Q if (i, T ) = (0, ∅) or (k − 2,Cox(k)),(2.6)

= 0 otherwise.

The Sk-module structure of V
(k)
2,y , y

2
1−ky2 < 0, k ≥ 3 stated in (1.2) in Remark 1

now follows from (2.6), (2.2), (2.3),and Theorem 4.
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2.4.2. Key example II. We now study the cohomology of the symmetric Vander-

monde varieties (curves) V
(4)
3,y ⊂ R4, as S4-modules, for various y = (y1, y2, y3) ∈

R3.
In this case the Weyl chamber W(4) ⊂ R4 has three faces corresponding to

the compositions (2, 1, 1), (1, 2, 1) and (1, 1, 2). In terms of the Coxeter elements
s1 = (1, 2), s2 = (2, 3), and s3 = (3, 4), these faces correspond to s1, s2, and s3

respectively. In other words, using the notation introduced in (2.5),

λ({s1}) = (2, 1, 1),

λ({s2}) = (1, 2, 1),

λ({s3}) = (1, 1, 2).

Also, note that

λ({s1, s2}) = (3, 1),

λ({s1, s3}) = (2, 2),

λ({s2, s3}) = (1, 3).

We first need a preliminary calculation. Observe that

IndS4

S3
Ψ

(3)
∅

∼=S4
S(4) ⊕ S(3,1)

∼=S4
Ψ

(4)
∅ ⊕Ψ

(4)
{s1} (using Proposition 2).

From this we deduce that

Ψ
(4)
{s1}

∼=S4
S(3,1),(2.7)

and using (2.4) that,

Ψ
(4)
Cox(4)−{s1}

∼=S4
S(2,1,1).(2.8)

Returning to the study of topology of the curve V
(4)
3,y , there are five different

cases possible depending on the configuration of the curve V
(4)
3,y inside W(4). Recall

(cf. Notation 9) that we denote Z
(k)
3,y = V

(4)
3,y ∩W(4).

Case 1. The Vandermonde variety V
(4)
2,(y1,y2) is empty: in this case Z

(4)
3,y = ∅, and

H0(V
(4)
3,y ) = H0(V

(4)
3,y ) = 0.

Case 2. The Vandermonde variety V
(4)
2,(y1,y2) is singular and V

(4)
3,y is non-empty: in

this case, Z
(4)
3,y is a point which must necessarily belong to the face labeled

by (4) of W(4). Thus, Z
(4)
3,y belongs to all non-zero faces of W(4), and y2

is a minimum value of p
(4)
2 on V

(4)
1,(y1). (This preceding fact follows from

Theorem 5 stated later.)
In this case (using Notation 12)

H0(Z
(4)
3,y, Z

(4,T )
3,y ) ∼= Q, if T = ∅,

H0(Z
(4)
3,y, Z

(4,T )
3,y ) = 0, otherwise.

This implies that

H0(V
(4)
3,y ) ∼=S4 Ψ

(4)
∅

∼=S4
1S4

(using (2.2)).
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Figure 1. Example of the non-singular Vandermonde variety V
(4)
2,(y1,y2).

It follows that b0(V
(4)
3,y ) = 1 (using the Eqn. (1.9)). Clearly, H1(V

(4)
3,y ) =

0 in this case.
Case 3. The Vandermonde variety V

(4)
2,(y1,y2) is non-empty and non-singular. Lets

fix y1, y2 such that V
(4)
2,(y1,y2) is non-empty and non-singular. In this case,

V
(4)
2,(y1,y2) is a sphere which is depicted in Figure 1.

The hyperplanes (shown in grey) in Figure 1 cutting out the 4! = 24
triangles on the sphere are the walls of the various Weyl chambers. Notice
that there are 14 vertices in the arrangement of great circles on the sphere,
8 of them incident on 3 circles and the remaining 6 incident on 2 circles.
There are several sub-cases to consider. The (non-empty) sub-cases are

depicted in Figures 2,3,4 and 5 (V
(4)
3,y is shown in blue).

It follows from Theorem 5 that there exist,

a(y1, y2) = min
x∈V (4)

2,(y1,y2)

p
(4)
3 (x) < b(y1, y2) < c(y1, y2) = max

x∈V (4)

2,(y1,y2)

p
(4)
3 (x),

giving a partition of R into points and open intervals (more precisely, three

points and four open intervals) such that the Vandermonde variety V
(4)
3,y

can be characterized topologically by which element of the partition y3

belongs to.

3a. y3 ∈ (−∞, a(y1, y2)): In this case, V
(4)
3,y = ∅;

3b. y3 = a(y1, y2): In this case, V
(4)
3,y is non-empty and singular, and co-

incides with 4 of the 8 vertices of degree 6, and Z
(4)
3,y is a point which

must necessarily belong to the face labeled by (3, 1) (cf. Theorem 5).
In this case

H0(Z
(4)
3,y,4, Z

(4,T )
3,y ) = 0
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Figure 2. Vandermonde variety V
(4)
3,y in Case 3b.

Figure 3. Vandermonde variety V
(4)
3,y in Case 3c.

if
T = {s2}, {s3}, {s2, s3}, {s1, s2, s3}

(since in these cases Z
(4)
3,y = Z

(4,T )
3,y ), and

H0(Z
(4)
3,y, Z

(4,T )
3,y ) ∼= Q
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Figure 4. Vandermonde variety V
(4)
3,y in Case 3d.

Figure 5. Vandermonde variety V
(4)
3,y in Case 3e.

in the case

T = ∅, {s1}.
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Figure 6. Vandermonde variety V
(4)
3,y in Case 3f.

This implies that

H0(V
(4)
3,y ) ∼=S4

Ψ
(4)
∅ ⊕Ψ

(4)
{s1}

∼=S4
1S4
⊕ S(3,1) (using (2.2) and (2.7)).

It follows that

b0(V
(4)
3,y ) = 1 + 3 = 4

(using (1.9) to derive dimQ(S(3,1)) = 3). Clearly, H1(V
(4)
3,y ) = 0 in this

case.
3c. y3 ∈ (a(y1, y2), b(y1, y2)): In this case V

(4)
3,y is a non-singular curve, and

Z
(4)
3,y intersects the faces labeled by (1, 1, 2) and (1, 2, 1) corresponding

to Coxeter elements s3 and s2 respectively.
In this case,

H0(Z
(4)
3,y, Z

(4,T )
3,y ) = 0

if
T = {s2}, {s3}, {s2, s3}, {s1, s2, s3}

and
H0(Z

(4)
3,y, Z

(4,T )
3,y ) ∼= Q

if
T = ∅, {s1}.

This implies that

H0(V
(4)
3,y ) ∼=S4

Ψ
(4)
∅ ⊕Ψ

(4)
{s1}

∼=S4
1S4
⊕ S(3,1) (using (2.2) and (2.7)).

In dimension one we have,



22 SAUGATA BASU AND CORDIAN RIENER

H1(Z
(4)
3,y, Z

(4,T )
3,y ) = 0

if

T = ∅, {s1}{s2}, {s3}, {s1, s3}, {s1, s2}
and

H1(Z
(4)
3,y, X

(4,T )
3,y ) ∼= Q

if

T = {s2, s3}, {s1, s2, s3}.
This implies that

H1(V
(4)
3,y ) ∼=S4

Ψ
(4)
{s2,s3} ⊕Ψ

(4)
{s1,s2,s3}

∼=S4
S2,1,1 ⊕ sign4 (using (2.8) and (2.3)).

It follows that

b0(V
(4)
3,y ) = 1 + 3 = 4,

and

b1(V
(4)
3,y ) = 3 + 1 = 4.

3d. y3 = b(y1, y2): In this case, the Vandermonde variety V
(4)
3,y is of dimen-

sion 1 but has singularities, and Z
(4)
3,y intersects the faces labeled by

(2, 2) and (1, 2, 1) (the intersection with the face labeled (1, 2, 1) are

the singular points of V
(4)
3,y ). Thus, Z

(4)
3,y intersects the faces labeled by

Coxeter elements s1, s2 and s3.
In this case,

H0(Z
(4)
3,y, Z

(4,T )
3,y ) = 0

if

T = {s1}, {s2}, {s3}, {s1, s3}, {s1, s2}, {s2, s3}, {s1, s2, s3},

and

H0(Z
(4)
3,y, Z

(4,T )
3,y ) ∼= Q

if

T = ∅.
This implies that

H0(V
(4)
3,y ) ∼=S4 Ψ

(4)
∅

∼=S4 1S4 .

In dimension one we have,

H1(Z
(4)
3,y, Z

(4,T )
3,y ) = 0,

if

T = ∅, {s1}, {s2}, {s3}, {s1, s3},
and

H1(Z
(4)
3,y, Z

(4,T )
3,y ) ∼= Q,

if

T = {s1, s2}, {s2, s3}, {s1, s2, s3}.



COHOMOLOGY OF SYMMETRIC SEMI-ALGEBRAIC SETS 23

This implies that

H1(V
(4)
3,y ) ∼=S4

Ψ
(4)
{s1,s2} ⊕Ψ

(4)
{s2,s3} ⊕Ψ

(4)
{s1,s2,s3}

∼=S4
2S2,1,1 ⊕ sign4 (using (2.8) and (2.3)).

It follows that

b0(V
(4)
3,y ) = 1,

and

b1(V
(4)
3,y ) = 2 · 3 + 1 = 7.

This last equation can be verified directly by hand noting that V
(4)
3,y

has the structure of a connected graph containing 6 vertices (the
(

4
2

)
singular points consisting of the orbit of the point Z

(4)
3,y ∩W(2,2)), and

the degree of each vertex is 4. Thus the graph has 12 edges, and hence

χ(V
(4)
3,y ) = −6

= b0(V
(4)
3,y )− b1(V

(4)
3,y )

= 1− b1(V
(4)
3,y ),

and thus,

b1(V
(4)
3,y ) = 7.

3e. y3 ∈ (b(y1, y2), c(y1, y2)): In this case, V
(4)
3,y is a non-singular curve, and

Z
(4)
3,y intersects the faces labeled by (2, 1, 1) and (1, 2, 1) corresponding

to Coxeter elements s1 and s2 respectively. The isotypic decomposition

of H∗(V
(4)
3,y ) in this case is identical to the Case (3c) and is omitted.

3f. y3 = c(y1, y2): In this case, V
(4)
3,y is non-empty and singular, and coin-

cides with other 4 (compared to Case (3b)) of the 8 vertices of degree

6. In this case, Z
(4)
3,y is a point which must necessarily belong to the

face labeled by (1, 3). The isotypic decomposition of H∗(V
(4)
3,y ) in this

case is identical to the Case (3b) and is omitted.

3g. y3 ∈ (c(y1, y2),∞): In this case, V
(4)
3,y is again empty.

Notice, that the Specht module S(2,2) does not appear with positive multiplicity

in H∗(V
(4)
3,y ), y ∈ R3 in the above analysis. Using an equivariant Leray spectral se-

quence argument (cf. proof of Theorem 2) we can deduce from this fact the following
‘toy’ theorem (which is not directly deducible from the statement of Theorem 2):

Theorem. If S ⊂ R4 is a P-semi-algebraic set, for P ⊂ R[X1, . . . , X4]S4

≤3, then

multS(2,2)(H
∗(S)) = 0.

Proof. See proof of Theorem 2 and the preceding remark. �

Remark 4. Note that it follows from the analysis in Example 2.4.2 that

max
y∈R3,λ∈Par0(V

(4)
3,y )

length(λ) = 2,

max
y∈R3,λ∈Par1(V

(4)
3,y )

length(λ) = 4,
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while the Part (a) of Theorem 1 provides the upper bounds:

max
y∈R3,λ∈Par0(V

(4)
3,y )

length(λ) < 0 + 2 · 3− 1 = 5,

max
y∈R3,λ∈Par1(V

(4)
3,y )

length(λ) < 1 + 2 · 3− 1 = 6.

We now return to the proofs of the main theorems.

3. Proofs of Theorems 1 and 2

We first need a few preliminary results.

3.1. Preliminary Results. The following proposition which has been referred to
before, and which describes the topological structure of the intersection of a general
Vandermonde variety with a Weyl chamber, is a key topological ingredient in our
proofs.

We start by recalling a standard definition.

Definition 5. We say that a semi-algebraic set S ⊂ Rk is a semi-algebraic reg-
ular cell of dimension p, if the pair (S, S) is semi-algebraically homeomorphic to

(Bp(0, 1), Bp(0, 1)) where Bp(0, 1) denotes the unit ball in Rp.

Remark 5 (Monotonicity and regularity of semi-algebraic sets). We will prove in
Proposition 1 that the intersections of weighted Vandermonde varieties with the
interior of W(k) is a semi-algebraic regular cell of dimension k− d, if the dimension
of the variety is equal to k−d, and this property will play an important role later in
the paper (see Lemma 2 and Proposition 3). To prove that a given semi-algebraic
set is a semi-algebraic regular cell is often not easy. In order to overcome this
difficulty, a stronger notion, that of a monotone cell, was introduced in [6]. The
property that a semi-algebraic set is a monotone cell is much easier to check. We
do not reproduce the definition of a monotone cell here but refer the reader to
[6, Theorem 9] for one of the several equivalent definitions which is the easiest to

check for the sets Z
(k)
w,d,y. Finally, the main result (Theorem 6) in [6] states that a

semi-algebraic set which is a monotone cell is a semi-algebraic regular cell, which
is what we will use in the proof of Proposition 1.

The following proposition which has been referred to before, and which describes
the topological structure of the intersection of a general Vandermonde variety with
a Weyl chamber, is a key topological ingredient in our proofs.

Proposition 1. For every w ∈ Rk
>0, d, k ≥ 0, d ≤ k, and y ∈ Rd, Z

(k)
w,d,y is either

empty, a point, or semi-algebraically homeomorphic to the closed ball of dimension

k − d. In the last case, Z
(k)
w,d,y is semi-algebraically homeomorphic to the closure

of a semi-algebraic regular cell of dimension k − d, and the boundary of Z
(k)
w,d,y is

semi-algebraically homeomorphic to the sphere Sk−d−1.

Proof. Suppose that Z
(k)
w,d,y is not empty. Let x ∈ Z(k)

w,d,y and suppose that x is a
regular point of the intersection of the Vandermonde variety Vw,d,y with the linear
subspace Lλ (i.e. the linear hull of the face Wλ) for some λ ∈ Comp(k). Then, x

is a regular point of Vw,d,y, and x ∈ Z(k)
w,d,y ∩W(k),o.
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We next prove that if Z
(k)
w,d,y 6= Z

(k)
w,d,y ∩W(k),o, then Z

(k)
w,d,y must be a point.

Indeed, if x ∈ Z(k)
w,d,y, but x 6∈ Z(k)

w,d,y ∩W(k),o, then by the above observation and

[1, Theorem 5], x ∈ Wo
λ, with length(λ) < d, and moreover Z

(k)
w,d,y ∩ Wo

λ = {x}.
Moreover, in this case x must be an isolated point of Z

(k)
w,d,y, since any neighborhood

of x in Z
(k)
w,d,y, unless equal to just x itself, will contain some regular point x′

of the intersection of Z
(k)
w,d,y with Lλ′ with λ ≺ λ′, and this would imply that

x ∈ Z(k)
w,d,y ∩W(k),o. But on the other hand we know that Z

(k)
w,d,y is contractible

[28, Theorem 1.1]. This proves that in this case Z
(k)
w,d,y = {x}, and hence if Z

(k)
w,d,y 6=

Z
(k)
w,d,y ∩W(k),o, Z

(k)
w,d,y is a point.

So we might suppose that

(3.1) Z
(k)
w,d,y = Z

(k)
w,d,y ∩W(k),o.

In this case Z
(k)
w,d,y ∩ W(k),o 6= ∅, and using [1, Theorem 5] Z

(k)
w,d,y ∩ W(k),o is

non-singular of dimension k − d. Now using [28, Corollary 2.2], and [6, Theorem

9] we deduce that Z
(k)
w,d,y ∩ W(k),o is a monotone cell (see [6] for the definition of

a monotone cell). This implies using [6, Theorem 13] that Z
(k)
w,d,y ∩ W(k),o is a

regular cell. In conjunction with (3.1) this implies that Z
(k)
w,d,y is semi-algebraically

homeomorphic to the closure of a regular cell, and the boundary of Z
(k)
w,d,y is semi-

algebraically homeomorphic to the sphere Sk−d−1. �

Remark 6. Using Proposition 1 again on the intersection of Zw,d,k with the faces

ofW(k) we get that if Zw,d,k is not empty or a point, then its boundary is a regular

cell complex (homeomorphic to Sk−d−1).

We next give a necessary condition on partitions λ such that Sλ can occur with

positive multiplicity in the representation Ψ
(k)
T , in terms of k and the cardinality of

T .

Notation 13. For µ ` k − 1, we denote by S(µ) the set of all partitions of k
obtained by adding one to some part (row) of µ.

Example 2. For example,

S((2, 1)) = {(3, 1), (2, 2), (2, 1, 1)}.

The significance of the set S(µ) is encapsulated in the following lemma. With
the same notation as in Notation 13:

Lemma 1.

IndSk
Sk−1

Sµ =
∑

λ∈S(µ)

Sλ.

Proof. This is just Pieri’s rule. See for instance [31]. �

Proposition 2. Let k ≥ 1, T ⊂ Cox(k). Then, for λ ` k,

multSλ(Ψ
(k)
T ) = 0 if length(λ) > card(T ) + 1 or if length(tλ) > k − card(T ).
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Proof. We first prove that

(3.2) multSλ(Ψ
(k)
T ) 6= 0⇒ length(λ) ≤ card(T ) + 1.

The proof is by double induction on k, and on t = card(T ). Clearly, (3.2) holds for
k = 1 and for all T . Also, if T = ∅ (i.e t = 0)

Ψ
(k)
∅
∼= S(k),

and (3.2) holds for all k ≥ 1.
Now suppose that the theorem is true for all k′ < k, and for given k for all t′ < t

and suppose that t > 0. Let s ∈ T , and T ′ = T − {s}. Without loss of generality
we can assume that s = sk−1, and in this case we can identify T ′ ⊂ Cox(k) with
the corresponding subset of Cox(k − 1).

It follows from [37, Corollarly 3.2] that

(3.3) indSk
Sk−1

(Ψ
(k−1)
T ′ ) ∼= Ψ

(k)
T ⊕Ψ

(k)
T ′ .

From the induction hypothesis it follows that for all µ ` k − 1,

(3.4) multSµ(Ψ
(k−1)
T ′ ) 6= 0⇒ length(µ) ≤ card(T ′) + 1 = card(T ).

Notice that it follows from Lemma 1 that for any partition µ ` k − 1,

(3.5) indSk
Sk−1

(Sµ) ∼=
⊕

λ∈S(µ)

Sλ (cf. Notation 13).

The inductive step follows from (3.3), (3.4) and (3.5), and the fact that for every
λ ∈ S(µ), length(µ) ≤ length(λ) ≤ length(µ) + 1.

This completes the proof of (3.2).
In order to deduce that

(3.6) multSλ(Ψ
(k)
T ) 6= 0⇒ length(tλ) ≤ k − card(T ),

first observe that using (2.4)

S
tλ ∼= Sλ ⊗ S1k ,

Ψ
(k)
Cox(k)−T

∼= Ψ
(k)
T ⊗ S1k .

It follows that

multSλ(Ψ
(k)
T ) 6= 0 ⇔ multStλ(Ψ

(k)
Cox(k)−T ) 6= 0

⇒ length(tλ) ≤ card(Cox(k)− T ) + 1 using (3.2)

⇒ length(tλ) ≤ k − card(T ).

�

We will need an elementary result concerning semi-algebraic regular cell com-
plexes.

Definition 6. Let X be a closed and bounded semi-algebraic set and C be a finite
set of closed semi-algebraic subsets of X. We say that C = (Ci)i∈I , where I is a
finite set, is a closed Leray cover of X if C satisfies:

(a) X =
⋃
i∈I Ci;

(b) for each subset J ⊂ I,
⋂
j∈J Cj is empty or semi-algebraically contractible.
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S

SJ′,ε

Figure 7. Schematic depiction of the sets S and SJ′,ε

We say that C is a regular closed Leray cover if in addition for each subset J ⊂ I,⋂
j∈J Cj is empty or the closure of a regular semi-algebraic cell.

Notation 14 (Nerve complex associated to a closed Leray cover). Given a closed
Leray cover C = (Ci)i∈I with I = [1, N ], we will denote by N (C) the simplicial
complex, whose set of p-dimensional simplices are given by

Np(C) = {(α0, . . . , αp) | 1 ≤ α0 < · · · < αi ≤ N,Cα0 ∩ · · · ∩ Cαp 6= ∅}.

We need the following technical lemma in the proof of Proposition 3 which plays
an important role in the proof of Theorem 1.

Lemma 2. Let (Pi)i∈I , and (Qj)j∈J be finite tuples of polynomials in R[X1, . . . , Xk],
and S ⊂ Rk basic closed semi-algebraic set defined by∧

i∈I
(Pi = 0) ∧

∧
j∈J

(Qj > 0),

and the closure S of S is defined by∧
i∈I

(Pi = 0) ∧
∧
j∈J

(Qj ≥ 0).

Moreover, suppose that the pair (S, S) is semi-algebraically homeomorphic to

(Bp(0, 1), Bp(0, 1))

where Bp(0, 1) denotes the unit ball in Rp.
Then for all J ′ ⊂ J , and all sufficiently small ε > 0, the semi-algebraic set SJ′,ε

(see Figure 7) defined by∧
i∈I

(Pi = 0) ∧
∧
j∈J

(Qj ≥ ε)
∧

j∈J−J′
(Qj ≥ 0)

is semi-algebraically contractible.



28 SAUGATA BASU AND CORDIAN RIENER

Proof. Let S′, S′′ be the semi-algebraic subsets of S defined by∧
i∈I

(Pi = 0) ∧
∧
j∈J

(Qj > 0)
∧

j∈J−J′
(Qj ≥ 0),

and ∧
i∈I

(Pi = 0) ∧
∧
j′∈J′

(Qj′ = 0) ∧
∧

j∈J−J′
(Qj ≥ 0),

respectively.
Observe that

S′ = S − S′′,

and

S′′ ⊂ S − S.

Let φ : S × [0, 1] → S be the homeomorphic image of the standard retraction of

Bp(0, 1) to 0 (i.e. (x, t) 7→ (1− t)x).
Since S′′ is contained in the boundary of S, we can restrict the retraction φ to

S′ = S−S′′ and obtain that S′ is also semi-algebraically contractible. It now follows
from the the local conic structure theorem for semi-algebraic sets [18, Theorem
9.3.6] that for all small enough ε > 0 that S′ and SJ′,ε are semi-algebraically
homotopy equivalent, and hence SJ′,ε is also semi-algebraically contractible. �

Proposition 3. Let 2 ≤ d ≤ k, y ∈ Rd, V = V
(k)
d,y , dim(V ) = k − d, K =

V ∩
⋃
s∈Cox(k)W

(k)
s , I = {s ∈ Cox(k) | V ∩ W(k)

s 6= ∅}. Let J ⊂ I, and KJ =

V ∩
⋃
s∈Cox(k)W

(k)
s . Then:

1. K is semi-algebraically homeomorphic to the Sn, where n = k + d− 1.

2. The tuple C = (Vs = V ∩W(k)
s )s∈I is a regular closed Leray cover of K.

3. Hi(KJ) = 0 for i ≥ card(J);
4. Hi(KJ) = 0 for 0 < i ≤ card(J)− d− 1;
5. H0(KJ) ∼= Q if card(J) ≥ d+ 1.

Proof. Parts (1) and (2) are immediate from Proposition 1, since each intersection

of the various Vs are semi-algebraically homeomorphic to some Z
(p)
w,,.y

for some p,

0 ≤ p < k, and w ∈ Zp>0 (using the notation from Proposition 1), and is thus
empty, a point, or semi-algebraically homeomorphic to a regular cell of dimension
p.

It follows from the nerve lemma that H∗(KJ) ∼= H∗(N (CJ)), where CJ = (Vs)s∈J .
Since N (CJ) is a simplicial complex with card(J) vertices, Hi(N (CJ)) = 0 for
i ≥ card(J). This proves Part (3).

We now prove Parts (4) and (5). We can assume that J 6= ∅ which implies that
KJ 6= ∅, since otherwise the claim is obviously true.

For s = (i, i+ 1) ∈ Cox(k), let Ps denote the polynomial Xi+1 −Xi.
Then, for each s ∈ I, Vs is the intersection with V of the semi-algebraic set

defined by

(Ps = 0) ∧
∧

s′∈Cox(k)−{s}

(Ps′ ≥ 0).
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For ε > 0, denote by KJ
ε denote the union of Vs,ε, s ∈ J , where Vs,ε is the

intersection with K of the open semi-algebraic set defined by

(−ε < Ps < ε) ∧
∧

s′∈Cox(k)−{s}

(Ps′ > −ε).

Then, using the local conic structure theorem for semi-algebraic sets [18, The-
orem 9.3.6] [18], for all small enough ε > 0, KJ

ε is semi-algebraically homotopy
equivalent to KJ and K−KJ

ε is closed and semi-algebraically homotopy equivalent
to K −KJ .

We now claim that for all small enough ε > 0, (Vs −KJ
ε )s∈I−J is a closed Leray

cover of K−KJ
ε . Let J ′ ⊂ I −J , and consider

⋂
s∈J′(Vs−KJ

ε ). Then, there exists

J ′′ ⊂ J such that
⋂
s∈J′(Vs −KJ

ε ) is the intersection with V of the semi-algebraic
set defined by∧

s∈J′
(Ps = 0) ∧

∧
s∈J′′

(Ps ≥ ε) ∧
∧

s∈Cox(k)−(J′∪J′′)

(Ps ≥ 0).

It follows from from Lemma 2 and the above description that for all ε > 0 small
enough,

⋂
s∈J′(Vs − KJ

ε ) is either empty or semi-algebraically contractible, and

hence (Vs−KJ
ε )s∈I−J is a closed Leray cover of K−KJ

ε . Using the same argument
involving the nerve complex as in the previous paragraph we obtain that

Hi(K −KJ
ε ) = 0

for i ≥ card(I) − card(J). However, by Alexander duality (see for example [38,
page 296]) we have that

(3.7) H̃i(KJ
ε ) ∼= H̃i(KJ) ∼= ˜Hn−i−1(K −KJ

ε ).

It follows from Part (3) and (3.7) that H̃i(KJ) = 0 for n−i−1 ≥ card(I)−card(J)
or equivalently for i ≤ n− card(I) + card(J)− 1.

Since, card(I) ≤ n + d, it follows that H̃i(KJ) = 0 for 0 ≤ i ≤ card(J)− d− 1.
Parts (4) and (5) of the proposition follows. �

3.2. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let V = V
(k)
d,y . We first prove Part (a). From Proposition 1

we have that V is either empty, or a finite union of points, or of dimension k − d.
If V is empty there is nothing to prove. Suppose that V is not empty.

Using Theorem 4 we have that

(3.8) Hi(V ) ∼=
⊕

T⊂Cox(k)

Hi(Vk, V
T
k )⊗Q Ψ

(k)
T .

Since we have from Proposition 2 that

multSλ(Ψ
(k)
T ) = 0 if length(λ) > card(T ) + 1,

we might as well also assume that

length(λ) ≤ card(T ) + 1,

or that

card(T ) ≥ length(λ)− 1.
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It thus suffices to prove that Hi(Vk, V
T
k ) = 0, for all pairs (i, T ) satisfying:

i ≤ length(λ)− 2d+ 1,

card(T ) ≥ length(λ)− 1,

for which it suffices to prove that Hi(Vk, V
T
k ) = 0 for all (i, T ) satisfying

(3.9) i ≤ card(T )− 2d+ 2⇔ card(T ) ≥ i+ 2d− 2.

We now fix the pair (i, T ) satisfying (3.9), and treat the cases i = 0, i = 1, and
i > 1 separately.

Case i = 0: In this case, if Vk 6= ∅, H0(Vk, V
T
k ) 6= 0 if and only if V Tk = ∅. If Vk 6= ∅,

it must meet a d-dimensional face of the W(k), which is incident on k − d of the

k − 1 codimension one faces, W(k)
s , s ∈ Cox(k), of W(k). This implies that

V Tk = ∅ ⇒ card(T ) ≤ d− 1.

Since, for d > 1, 2d− 2 > d− 1, it follows that

card(T ) ≥ i+ 2d− 2 = 2d− 2⇒ card(T ) > d− 1⇒ V Tk 6= ∅ ⇒ H0(Vk, V
T
k ) = 0.

This completes the proof of Part (a) in the case i = 0.

We now consider the cases i = 1, i > 1. Let for s ∈ Cox(k), Vs = V ∩W(k)
s . We

denote (following the notation in Proposition 3)

I = {s ∈ Cox(k) | Vs 6= ∅},
JT = T ∩ I,
K =

⋃
s∈I

Vs,

KJT =
⋃
s∈JT

Vs

(= V Tk ).

Using Parts (1) and (2) of Proposition 3, K is semi-algebraically homeomorphic
to Sn, with n = k − d − 1, C = (Vs)s∈I , is a regular closed Leray cover of K (cf.
Definition 6).

It follows from [1, Theorem 7] that the maximum and minimum of p
(k)
d+1 is ob-

tained on Vk in two distinct d-dimensional faces of W(k). Moreover, each of these
two distinct d-dimensional faces are incident on exactly k − d co-dimension one

faces, W(k)
s , s ∈ Cox(k), of W(k). This implies that card(I) ≥ k − d + 1. We thus

have

(3.10) k − d+ 1 ≤ card(I) ≤ k − 1 = n+ d.

Clearly, card(JT ) = card(T ∩ I) ≤ card(T ).
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On the other hand,

card(JT ) = card(T ∩ I)

= card(T ) + card(I)− card(T ∪ I)

≥ card(T ) + card(I)− card(Cox(k))

≥ card(T ) + card(I)− (k − 1)

≥ card(T ) + (k − d+ 1)− (k − 1) (using inequality (3.10))

= card(T )− d+ 2.(3.11)

Case i = 1: We only need to consider the case i = 1 ≤ card(T ) − 2d + 2. We
distinguish the following two cases:

• If T = ∅, then since d > 1, the inequality i = 1 ≤ card(T )− 2d+ 2 cannot
hold.

• If T 6= ∅, and i = 1 ≤ card(T )− 2d+ 2, then

card(JT ) ≥ card(T )− d+ 2 ≥ 2d− 1− d+ 2 = d+ 1,

and it follows from Part (5) of Proposition 3 that H0(V Tk ) = H(KJT ) ∼=
Q. In this case the restriction homomorphism H0(Vk) → H0(V Tk ) is an

isomorphism which implies that H1(Vk, V
T
k ) = 0.

Case i > 1: In this case, we can assume that dim(V ) = k − d. Otherwise, V is
zero-dimensional and Hi(V ) = 0 for i > 0.

From the exactness of the long exact sequence,

· · · → Hi−1(V Tk )→ Hi(Vk, V
T
k )→ Hi(Vk)→ · · ·

of the pair (Vk, V
T
k ) and the fact that Hi(Vk) = 0 for i ≥ 1, it suffices to prove

that Hi−1(V Tk ) = 0 for 1 < i ≤ card(T ) − 2d + 2 or equivalently Hj(V Tk ) = 0 for
1 ≤ j ≤ card(T )− 2d+ 1.

Applying Parts (3) and (4) of Proposition 3, noting that KT = V Tk , we obtain
that

Hj(KJT ) = Hj(V Tk ) = 0

for 0 < j ≤ card(T )− 2d+ 1. This completes the proof for the case i > 1.
This completes the proof of Part (a).

We now prove Part (b). First assume that dim(V ) = k − d.
Since we have from Proposition 2 that

multSλ(Ψ
(k)
T ) = 0 if length(tλ) > k − card(T ),

we might as well also assume that

length(tλ) ≤ k − card(T ),

or that

card(T ) ≤ k − length(tλ).

It thus suffices to prove that Hi(Vk, V
T
k ) = 0, for all pairs (i, T ) satisfying:

i ≥ k − length(tλ) + 1,

card(T ) ≤ k − length(tλ),

for which it suffices to prove that Hi(Vk, V
T
k ) = 0 for all (i, T ) satisfying

i ≥ card(T ) + 1.
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From the exactness of the long exact sequence,

· · · → Hi−1(V Tk )→ Hi(Vk, V
T
k )→ Hi(Vk)→ · · ·

of the pair (Vk, V
T
k ) and the fact that Hi(Vk) = 0 for i ≥ 1, it suffices to prove that

Hi−1(V Tk ) = 0 for i ≥ card(T ) + 1 or equivalently Hj(V Tk ) = 0 for j ≥ card(T ).

It follows from Part (3) of Proposition 3, that Hj(V Tk ) = Hj(KJT ) = 0 for
j ≥ card(T ).

If dim(V ) = 0, we only need to consider the case i = 0. In this case, we need to
show that for λ ` k satisfying

length(tλ) ≥ k + 1,

multStλ(H0(V )) = 0. But since length(tλ) ≤ k, this case does not occur. This
completes the proof of Part (b). �

3.3. Replacing an arbitrary semi-algebraic set by a closed and bounded
one. Before proving Theorem 2 we first recall a fundamental construction due to
Gabrielov and Vorobjov [25] which allows us to reduce to the case when the given
symmetric semi-algebraic set is closed and bounded.

We first need some preliminaries. In this section we recall some basic facts about
real closed fields and real closed extensions.

3.3.1. Real closed extensions and Puiseux series. We will need some properties of
Puiseux series with coefficients in a real closed field. We refer the reader to [9] for
further details.

Notation 15. For R a real closed field we denote by R 〈ε〉 the real closed field of al-
gebraic Puiseux series in ε with coefficients in R. We use the notation R 〈ε1, . . . , εm〉
to denote the real closed field R 〈ε1〉 〈ε2〉 · · · 〈εm〉. Note that in the unique ordering
of the field R 〈ε1, . . . , εm〉, 0 < εm � εm−1 � · · · � ε1 � 1.

We refer the reader to [9, Chapter 6] for the definitions of cohomology of semi-
algebraic sets over arbitrary real closed fields.

Let P ⊂ R[X1, . . . , Xk], S be a P-semi-algebraic set defined by a P-formula Φ.
Without loss of generality we can suppose that

Φ = Φ1 ∨ · · · ∨ ΦN ,

where for 1 ≤ i ≤ N ,

Φi =
∧

P∈Pi,0

(P = 0) ∧
∧

P∈Pi,1

(P > 0) ∧
∧

P∈Pi,−1

(P < 0),

where Pi,0,Pi,1,Pi,−1 is a partition of the set P.
For ε, δ > 0 we denote

Φi,ε,δ =
∧

P∈Pi,0

((P − ε ≤ 0)∧ (P + ε ≥ 0))∧
∧

P∈Pi,1

(P − δ ≥ 0)∧
∧

P∈Pi,−1

(P + δ ≤ 0),

and

Φε,δ =

N∧
i=1

Φi,ε,δ.

Gabrielov and Vorobjov [25] proved the following theorem. 1

1The theorem in [25] is not stated using the language of non-archimedean extensions and
Puiseux series but it is easy to translate it into the form stated here.



COHOMOLOGY OF SYMMETRIC SEMI-ALGEBRAIC SETS 33

Theorem. [25, Theorem 1.10] Let P ⊂ R[X1, . . . , Xk] and S = R(Φ), where Φ is
a P-formula. For 0 ≤ m ≤ k, let

(3.12) Φ̃m =

 ∨
0≤j≤m

Φεj ,δj

 ∧ (ε(X2
1 + · · ·+X2

k − 1 ≤ 0)),

and let S̃m = R(Φ̃m) ⊂ R〈ε, ε0, δ0, · · · , εm, δm〉k. Then,

Hi(S) ∼= Hi(S̃m)

for 0 ≤ i < m.

Remark 7. Observe that S̃m is a bounded a P̃m-closed semi-algebraic set, where

P̃m =
⋃
P∈P

⋃
0≤i≤m

{P ± εi, P ± δi} ∪ {ε
∑
i

X2
i − 1}.

Moreover, if P ⊂ R[X1, . . . , Xk]Sk≤d , d ≥ 2, then

P̃m ⊂ R〈ε, ε0, δ0, . . . , εm, δm〉[X1, . . . , Xk]Sk≤d ,

and card(P̃m) = 4m · card(P) + 1.
Furthermore, it is easy to verify (by following closely the proof of the theorem

in [25]) that if P ⊂ R[X1, . . . , Xk]Sk , and hence S, S̃m are both symmetric, then

the isomorphisms Hi(S) ∼= Hi(S̃m), 0 ≤ i < m, in the theorem are in fact Sk-
equivariant.

In our algorithmic application (cf. Algorithm 3 below) we will replace the given

semi-algebraic set S ⊂ Rk by the closed and bounded semi-algebraic set S̃`+1 ⊂
R〈ε, ε0, δ0, . . . , ε`+1, δ`+1〉k. By the preceding theorem the first `+ 1 Betti numbers

of S and S̃`+1 are equal. Moreover, the number of infinitesimals appearing in the

definition of S̃`+1 is bounded by O(`). The number of infinitesimals used to make

the deformation from S to S̃`+1 is important for analyzing the complexity of our
algorithms. In our algorithms, we will extend the given ring of coefficients to a
polynomial ring in these infinitesimals. As a result each arithmetic operation in
this larger ring needs several operations to be performed in the original ring – and
this added cost enters as a multiplicative factor in the complexity upper bounds
(see proof of Proposition 8).

Proof of Theorem 2. In view of the Remark 7 (replacing S by S̃k) we can assume
that the given semi-algebraic set S is closed and bounded. Since S is a P-semi-
algebraic set, and P ⊂ R[X1, . . . , Xk]Sk≤d , it follows from the fundamental theorem
of symmetric polynomials, that

S = (Φ
(k)
d )−1(Φ

(k)
d (S)).

Let f = Φ
(k)
d |S and observe that f is a proper map. We have a spectral sequence

(the Leray spectral sequence of the map f), converging to Hp+q(S), whose E2-term
is given by

Ep,q2 = Hp(T,Rqf∗(QS)),

where T = f(S), and QS denotes the constant sheaf on S.
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We also have using the proper base change theorem (see for example [27, §3,
Theorem 6.2] that for y ∈ T ,

(3.13) Rqf∗(QS)y ∼= Hq(V
(k)
d,y ,Q),

and this gives Rqf∗(QS) the structure of a sheaf of Sk-modules. Moreover, since
the action of Sk on S leaves the fibers of the map f : S → T invariant, the action
of Sk on Ep,q2 is given by its action on the sheaf Rqf∗(QS).

Now, Hn(S) is isomorphic as an Sk-module to a (Sk-equivariant) subquotient
of ⊕

p+q=n

Ep,q2 .

Using Theorem 1, we have that

multSλ(Hi(V
(k)
d,y )) = 0, for i ≤ length(λ)− 2d+ 1.

This implies using (3.13) that,

multSλ(Ep,n−p2 ) = 0, for n− p ≤ length(λ)− 2d+ 1,

or equivalently for n ≤ length(λ)− 2d+ p+ 1.(3.14)

From the fact that Hp+q(S) is a (Sk-equivariant) subquotient of
⊕

p+q E
p,q
2 , and

(3.14), we obtain that

multSλ(Hn(S)) = 0, for n ≤ length(λ)− 2d+ 1.

This proves Part (a).
In order to prove Part (b), recall first that Theorem 1 implies that

(3.15) multSλ(Hi(V
(k)
d,y )) = 0, for i ≥ k − length(tλ) + 1.

Using (3.13) and (3.15) we obtain that,

multSλ(Ep,n−p2 ) = 0, for n− p ≥ k − length(tλ) + 1

or equivalently for n ≥ p+ k − length(tλ) + 1.(3.16)

Now observe that since dim(T ) ≤ d, Ep,q2 = 0 for p ≥ d. Applying this to (3.16),
we get that

multSλ(Ep,n−p2 ) = 0, for n− p ≥ k − length(tλ) + 1,

or equivalently for n ≥ k + d− length(tλ) + 1.

This completes the proof of Part (b). �

4. Proof of Theorem 3

In this section we prove Theorem 3 by describing an algorithm for efficiently
computing the first ` + 1 Betti numbers of any given symmetric semi-algebraic
subset of Rk defined by symmetric polynomials of degrees bounded by d, having
complexity bounded by a polynomial in k (for fixed d and `).

We first outline our method.
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4.1. Outline of the proof of Theorem 3. We use Theorem 4 to decompose the
task of computing bi(S) = dimQ Hi(S) into two parts:

(A) computing the dimensions of Hi(Sk, S
T
k );

(B) computing the isotypic decompositions of the modules Ψ
(k)
T for various

subsets T ⊂ Cox(k). Notice that using Theorem 2, in order to compute

bi(S) for i ≤ `, we need to compute isotypic decompositions of Ψ
(k)
T with

card(T ) < `+ 2d− 1.

We first describe an algorithm (cf. Algorithm 1) for computing the isotypic

decomposition of Ψ
(k)
T , which has complexity polynomially bounded in k if card(T )

is bounded by ` + 2d − 1 (considering ` and d to be fixed). The key ingredient
for this algorithm is Proposition 2 which allows a recursive scheme to be used for
computing the decomposition. The fact that we need to consider only subsets T of
small cardinality (using Theorem 2) is key in keeping the complexity bounded by
a polynomial. This accomplishes task (B).

We next address task (A). We first prove that that the cohomology groups of

the pair (Sk, S
T
k ) are isomorphic to those of another semi-algebraic pair (S̃

(T )
k , S̃Tk )

(cf. Proposition 6). Proposition 6 is the key mathematical result behind our al-

gorithm. The advantage of the pair (S̃
(T )
k , S̃Tk ) over the original pair (Sk, S

T
k ) is

that S̃
(T )
k , S̃Tk are subsets of an O(d+`)-dimensional space (unlike Sk, S

T
k which are

subsets of W(k) ⊂ Rk). Moreover, a semi-algebraic description of (S̃
(T )
k , S̃Tk ) can

be computed efficiently (i.e. with polynomially bounded complexity) from that of
the pair (Sk, S

T
k ) using a slightly modified version of efficient quantifier elimination

algorithm over reals (cf. Algorithm 2). The number and the degrees of the polyno-

mials appearing in the description of (S̃
(T )
k , S̃Tk ) are bounded by a polynomial in k

(for fixed d and `). Finally, we compute the Betti numbers of the pair (S̃
(T )
k , S̃Tk )

using effective algorithms for computing semi-algebraic triangulations (cf. Algo-
rithm 3). We exploit the fact that this is now a constant (i.e. O(d+`)) dimensional
problem, and we can use algorithms which have doubly exponential complexity in
the number of variables without affecting the overall polynomial complexity of our
algorithm.

4.2. Computing the isotypic decomposition of Ψ
(k)
T . We now describe more

precisely our algorithm for computing the multiplicities of various Specht modules

in the representations Ψ
(k)
T .

Algorithm 1 (Computing isotypic decomposition of Ψ
(k)
T )

Input:
An integer k ∈ Z>0, and T ⊂ Cox(k).

Output:

(A) The set Par(k, T ) = {λ ` k | multSλ(Ψ
(k)
T ) 6= 0};

(B) multSλ(Ψ
(k)
T ) for each λ ∈ Par(k, T ).
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Procedure:
1: if T = ∅ then
2: Output Par(k, T ) = {(k)}, and multS(k)(Ψ

(k)
T ) = 1 and terminate.

3: else
4: if k = 2 then
5: output Par(k, T ) = {(1, 1)}, and multS(1,1)(Ψ

(k)
T ) = 1 and terminate.

6: end if
7: for λ ` k do
8: mλ ← 0.
9: end for

10: PT ← ∅.
11: T ← {si+(k−1−j0) ∈ Cox(k) | si ∈ T}, where j0 = max{j | sj ∈ T}.
12: end if
13: T ′ ← T \ {sk−1}.
14: Using a recursive call to Algorithm 1 with input k−1 and T ′, compute Par(k−

1, T ′) and multSµ(Ψ
(k−1)
T ′ ) for each µ ∈ Par(k − 1, T ′).

15: for µ ∈ Par(k − 1, T ′) do
16: for λ ∈ S(µ) do (cf. Notation 13)
17: PT ← PT ∪ {λ}.
18: mλ ← mλ + multSµ(Ψ

(k−1)
T ′ ).

19: end for
20: end for
21: Using a recursive call to Algorithm 1 with input k and T ′, compute Par(k, T ′)

and multSλ(Ψ
(k)
T ′ ) for each λ ∈ Par(k, T ′).

22: for λ ∈ Par(k, T ) do

23: mλ ← mλ −multSλ(Ψ
(k)
T ′ ).

24: if mλ = 0 then
25: PT ← PT \ {λ}.
26: else
27: PT ← PT ∪ {λ}.
28: end if
29: end for
30: Output Par(k, T ) = PT , and for each λ ∈ Par(k, T ), output multSλ(Ψ

(k)
T ) = mλ.

Proposition 4. Algorithm 1 is correct and has complexity, measured by the number
of arithmetic operations in Z, bounded by k(O(n))n. Moreover, the cardinality of
the set Par(k, T ) output is also bounded by k(O(n))n.

Proof. Let F (k, n) denote the maximum complexity of the algorithm over all inputs
(k, T ), where card(T ) = n. We can assume that F (k, n) is also an upper bound on
the cardinality of the set Par(k, T ) produced in the output of the algorithm. First
consider the recursive call to the algorithm in Line 14. Using (3.2), we have that
for each µ belonging to the output Par(k − 1, T ′) of this recursive call is bounded
by, length(µ) ≤ card(T ′) + 1 = n. Thus the total cost of the ‘for’ loop in Line 15 is
bounded by CnF (k− 1, n− 1) for all large enough constant C > 0. The cost of the
recursive call in Line 21 is bounded by F (k, n− 1), and the cost of the ‘for’ loop in
Line 22 is bounded by CF (k, n− 1) for all large enough constant C > 0. Thus the
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function F (k, n) satisfies the following inequalities for some large enough constant
C > 0:

F (k, 0) ≤ C · k,
F (2, ·) ≤ C,

F (k, n) ≤ C · (nF (k − 1, n− 1) + F (k, n− 1) + k)

≤ C · (n+ 1)(F (k, n− 1) + k).

It follows from the above inequalities that F (k, n) that there exists some constant
C ′ such that

F (k, n) ≤ k · (C ′n)n.

�

4.3. The pair (S̃
(T )
k , S̃Tk ) and its properties. In this section we define the pair

(S̃
(T )
k , S̃Tk ), and prove its key property.

Notation 16. For any finite set T and s ∈ T , we denote by ∆T ⊂ RT , the standard
simplex in RT . In other words, ∆T is the convex hull of the points (es)s∈T , where
es is defined by πt(es) = δs,t where for each t ∈ T , πt : RT → R is the projection
map on to the t-th coordinate. For T ′ ⊂ T , we denote by ∆T ′ , th convex hull of
the points (es)s∈T ′ , and call ∆T ′ the face of ∆T corresponding to the subset T ′.

Definition 7. Let k ∈ Z≥0, and λ, µ ∈ Comp(k). We denote, λ ≺ µ, if Wλ ⊂ Wµ.
It is clear that ≺ is a partial order on Comp(k) making Comp(k) into a poset.

Notation 17. For λ = (λ1, . . . , λ`) ∈ Comp(k), we denote length(λ) = `, and for
k, d ∈ Z≥0, we denote

CompMax(k, d) = {λ = (λ1, . . . , λd) ∈ Comp(k) | λ2i+1 = 1, 0 ≤ i < d/2},
Comp(k, d) =

⋃
λ∈CompMax(k,d)

{λ′ ∈ Comp(k) | λ′ ≺ λ} if d ≤ k,

= Comp(k), if d > k.

We denote by

W(k)
d =

⋃
λ∈Comp(k,d)

Wλ.

We state the following important theorem due to Arnold [1] which has been
referred to in Example 2.4.2. It plays a key role in the proof of Proposition 5
below. Since we refer the reader to [13] for the proof of Proposition 5, we do not
use Theorem 5 subsequently in this paper.

Theorem 5. [1, Theorem 7]

For every w ∈ Rk
≥0, d, k ≥ 0, d′ = min(k, d), and y ∈ Rd′ the function p

(k)
w,d+1

has exactly one local maximum on (Ψ
(k)
w,d)

−1(y), which furthermore depends contin-
uously on y.

Moreover, a point x ∈ Vw,y ∩W(k) is a local maximum if and only if x ∈ W(k)
λ

for some λ ∈ Comp(k, d′).

We need some more notation.
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Notation 18. For λ = (λ1, . . . , λ`) ∈ Comp(k), we denote by ιλ :W(`) →W(k) the
embedding that takes (y1, . . . , y`) ∈ W(`) to the point (y1, . . . , y1︸ ︷︷ ︸

λ1

, . . . , y`, . . . , y`︸ ︷︷ ︸
λ`

).

Notation 19. For T ⊂ Cox(k) and d ≥ 0, we denote:

W(k)
T,d = ιλ(T )(W

(length(λ(T )))
d ).

Definition 8. For any semi-algebraic set S ⊂ Rk, T ′, T ⊂ Cox(k), T ′ ⊂ T , and
d ≥ 0, we set

Sk = S ∩W(k),

Sk,d = S ∩W(k)
d ,

STk = W(k,T ) ∩ S,
Sk,T = W(k)

T ∩ S,

Sk,T,d = S ∩W(k)
T,d.

Proposition 5. Let 1 < d, and P ⊂ R[X1, . . . , Xk]Sk≤d , S ⊂ Rk, a P-closed and

bounded semi-algebraic set, and w ∈ Rk
>0. Then the following holds.

1. The map Ψ
(k)
w,d restricted to Sk,d is a semi-algebraic homeomorphism on to its

image, and

2. Ψ
(k)
w,d(Sk,d) = Ψ

(k)
w,d(Sk).

Proof. Both parts follow from the weighted version of Part (1) of Proposition 9 in
[13]. �

We have the following corollary of Proposition 5 that we will need. With the
same hypothesis as in Proposition 5:

Corollary 1. For each subset T ⊂ Cox(k), Ψ
(k)
d restricted to Sk,T,d is a semi-

algebraic homeomorphism on to its image, and

Ψ
(k)
d (Sk,T ) = Ψ

(k)
d (Sk,T,d).

Proof. Let ` = length(λ(T )), and S′` = ι−1
λ(T )(Sk,T ) (cf. Notation 18). Then, by

Definition 8

Sk,T,d = ιλ(T )(S
′
`,d),

and

Ψ
(k)
d |Sk,T = Ψ

(`)
λ(T ),d ◦ ι

−1
λ(T ).

The corollary now follows from Proposition 5, and the fact that ιλ(T ) is a semi-
algebraic homeomorphism on to its image. �

Now, let 1 < d, and P ⊂ R[X1, . . . , Xk]Sk≤d , S ⊂ Rk, a P-closed and bounded

semi-algebraic set, and T ⊂ Cox(k).
We define:

Definition 9.

S̃
(T )
k = Ψ

(k)
d (Sk)×∆T ⊂ Rd × RT ,
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and

S̃Tk =
⋃
T ′⊂T

Ψ
(k)
d (Sk,T ′)×∆T ′ ⊂ S̃(T )

k .

The key property of the pair (S̃
(T )
k , S̃Tk ) defined above that will be used later is

the following.
Using the definitions given above we have:

Proposition 6.

H∗(S̃
(T )
k , S̃Tk ) ∼= H∗(Sk, S

T
k ).

Before proving Proposition 6 we recall the notion of the blow-up complex of a
collection of closed and bounded semi-algebraic subsets of RN .

Definition 10 (Blow-up complex). Given a finite family A = (Aα)α∈I of closed
and bounded semi-algebraic subsets of RN , we denote

Bl(A) =
∐
J⊂I

AJ ×∆J/ ∼,

where for J ⊂ I, AJ =
⋂
α∈J Aα, and ∆J is the face of the standard simplex

∆I ⊂ RI (i.e. ∆J = {(xα)α∈I ∈ ∆I | ∀(α 6∈ J)xα = 0}, and ∼ is the obvious
identification.

It is an easy consequence of the Vietoris-Begle theorem that (using the same
notation as in Definition 10) the map

π : Bl(A)→ A =
⋃
α

Aα, π(x; t) = x,

is a homotopy equivalence.
Moreover, if B = (Bα)α∈I is another family of closed and bounded semi-algebraic

sets, such that for each α ∈ I, Aα ⊂ Bα, then there is an obvious inclusion Bl(A) ↪→
Bl(A), and we have a commutative diagram,

Bl(A) Bl(B)

A =
⋃
αAα B =

⋃
αBα

π π ,

where the horizontal arrows are inclusions. This gives a map between the pairs
(Bl(B),Bl(A)) → (B,A). (In particular, note that if Bα = B for all α ∈ I,
Bl(B) = B ×∆I .)

Lemma 3. The induced homomorphism

H∗(B,A)→ H∗(Bl(B),Bl(A))

is an isomorphism.

Proof. The lemma is a consequence of the ‘five-lemma’, and the fact that the in-
duced homomorphisms, π∗ : H∗(A)→ H∗(Bl(A)),H∗(B)→ H∗(Bl(B)) are isomor-
phisms. �
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Proof of Proposition 6. Let A = (Sk,{s})s∈T , and B = (Sk)s∈T . Then, using

Lemma 3 and noting that STk =
⋃
s∈T Sk,{s}, we have that

H∗(Sk, S
T
k ) ∼= H∗(Bl(B),Bl(A)).

Moreover, observe that for T ′′ ⊂ T ′ ⊂ T , we have a commutative diagram

Sk,T ′ Sk,T ′′

Ψ
(k)
d (Sk,T ′) Ψ

(k)
d (Sk,T ′′)

Ψ
(k)
d Ψ

(k)
d

where the horizontal arrows are inclusions.

This allows us to define a map, Bl(B)→ S̃
(T )
k , by

((x; t), (x′; t′) 7→ (Ψ
(k)
d (x); t),Ψ

(k)
d (x′); t′)),

which restricts to a map Bl(A)→ S̃Tk .
Hence, we have a induced map of pairs

(4.1) (Bl(B),Bl(A))→ (S̃
(T )
k , S̃Tk ).

The fibers of the maps Bl(B) → S̃
(T )
k , Bl(A) → S̃Tk , defined above are weighted

Vandermonde varieties inside Weyl chambers and are thus contractible using Propo-

sition 1. Hence, the induced homomorphisms, H∗(S̃
(T )
k ) → H∗(Bl(B)), H∗(S̃Tk ) →

H∗(Bl(A) are isomorphisms.
Using the ‘five lemma’ we obtain that the homomorphism,

H∗(S̃
(T )
k , S̃Tk )→ H∗(Bl(B),Bl(A))

induced by the map in (4.1) is an isomorphism. This proves the proposition. �

4.4. Algorithm for computing a semi-algebraic description of the pair

(S̃
(T )
k , S̃Tk ). We now describe an efficient algorithm which takes as input the semi-

algebraic description of a symmetric semi-algebraic subset S ⊂ Rk, which uses
symmetric polynomials of degree at most d, and produces semi-algebraic descrip-

tions of S̃
(T )
k and S̃Tk .

Algorithm 2 (Computing semi-algebraic descriptions of (S̃
(T )
k , S̃Tk ))

Input:
(A) Integers k, d ≥ 0, d ≤ k;

(B) a finite set P ⊂ D[X1, . . . , Xk]Sk≤d ;

(C) a P-closed formula, Φ such that R(Φ) = S;
(D) T ⊂ Cox(k).

Output:
(A) An ordered domain D contained in a real closed field R;

(B) A finite family of polynomials Q̃ ⊂ D[(Ys)s∈T , Z1, . . . , Zd];

(C) Q̃ formulas, Φ̃
(T )
k and Φ̃Tk , such that R(Φ̃

(T )
k ) = S̃

(T )
k and R(Φ̃Tk ) = S̃Tk .
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Procedure:
1: for λ ∈ CompMax(k, d) do
2: Using the algorithm from [13, Corollary 6] applied to the family P, the

formula Φ ∧
∧

1≤i≤k−1(Xi ≤ Xi+1), and the linear equations defining

the subspace Lλ containing the face Wλ, and the polynomial map Φ
(k)
d ,

obtain a family of polynomials formula Qλ ⊂ R[Z1, . . . , Zd], and Qλ-

formula Φλ, such that R(Φλ) = Ψ
(k)
d (S ∩Wλ).

3: end for
4: Θ← (

∑
s∈T Ys − 1 = 0) ∧

∧
s∈T (Ys ≥ 0).

5: Q̃ ← {
∑
s∈T Ys − 1} ∪

⋃
s∈T {Ys} ∪

⋃
λ∈CompMax(k,d)Qλ.

6: Φ̃
(T )
k ← Θ ∧

∨
λ∈CompMax(k,d) Φλ.

7: for T ′ ⊂ T do
8: for µ ∈ CompMax(length(λ(T ′)), d) do
9: Using the Algorithm from [13, Corollary 6] applied to the family

P, the formula Φ ∧
∧

1≤i≤k−1(Xi ≤ Xi+1), the linear equations

defining the subspace the face ιµ(W(length(T ′))
λ ), and the polyno-

mial map Φ
(k)
d , obtain a family of polynomials formula QT ′,µ ⊂

R[Z1, . . . , Zd], and QT ′,µ-formula ΦT ′,µ, such that R(ΦT ′,µ) =

Φ
(k)
d (S ∩ ιµ(W(length(T ′))

µ ).
10: end for
11: Φk,T ′ =

∨
µ∈CompMax(length(λ(T ′)),d) ΦT ′,µ ∧ (

∑
s∈T ′ Ys − 1 = 0) ∧∧

s∈T−T ′(Ys = 0).
12: end for
13:

Q̃ ← Q̃ ∪
⋃
T ′⊂T

⋃
µ∈CompMax(length(λ(T ′)),d)

QT ′,µ.

14: Φ̃Tk ←
∨
T ′⊂T Φk,T ′ .

Proposition 7. Algorithm 2 is correct and its complexity, measured by the number
of arithmetic operations in the domain D, is bounded by

(skd)O(d+card(T )).

Moreover, card(Q̃) ≤ (skd)O(d+card(T )), and the degrees of the polynomials in Q̃
are bounded by dO(d+card(T )).

Proof. It follow from Proposition 5 and [13, Corollary 6], that the first order formu-
las Φλ, λ ∈ CompMax(k, d), computed in Line 2 of Algorithm 2 have the property
that

R

 ∨
λ∈CompMax(k,d)

Φλ

 = Φ
(k)
d (Sk).

It now follows from the definition of S̃
(T )
k (cf. Definition 9), that the formula Φ̃

(T )
k

computed in Line 6 in Algorithm 2 satisfies

R(Φ̃
(T )
k ) = S̃

(T )
k .
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Similarly, it follows from Corollary 1, and [13, Corollary 6], that the first order
formulas ΦT ′,µ, µ ∈ CompMax(length(λ(T ′)), d) computed in Line 9 of Algorithm
2 have the property that,

R

 ∨
µ∈CompMax(length(λ(T ′)),d)

ΦT ′,µ

 = Φ
(k)
d (Sk,T ′,d).

It now follows from the definition of S̃k,T (cf. Definition 9), that the formula Φ̃Tk
computed in Line 14 of Algorithm 2 satisfies

R(Φ̃Tk ) = S̃Tk .

This completes the proof of the correctness of Algorithm 2. The complexity
upper bound is a consequence of the complexity bound in [13, Corollary 6], and the
following:

(i) the number of iterations of the ‘for’ loop in Line 1 is bounded by

card(CompMax(k, d)) ≤ kO(d);

(ii) the number of iterations of the ’for’ loop in Line 7 bounded by

2card(T );

and,
(iii) the number of iterations of the ‘for’ loop in Line 8is bounded by

card(CompMax(length(T ′), d)) ≤ kO(d).

�

4.5. Algorithm for computing the isotypic decomposition of cohomology
groups and the Betti numbers of symmetric semi-algebraic sets. We are
now in a position to describe our algorithm for computing the isotypic decomposi-
tion and the Betti numbers of symmetric semi-algebraic sets (in dimensions ≤ `+1),
which will finally prove Theorem 3.

Algorithm 3 (Computing the isotypic decomposition and the dimensions of the
first `+ 1 cohomology groups of a symmetric semi-algebraic set)

Input:
(A) An ordered domain D contained in a real closed field R;
(B) Integers k, d, ` ≥ 0, `, d ≤ k;

(C) a finite set P ⊂ D[X1, . . . , Xk]Sk≤d ;

(D) a P-formula Φ, such that R(Φ) = S ⊂ Rk.
Output:

(A) For each i, 0 ≤ i ≤ `, a set Mi of pairs (mi,λ ∈ Z>0, λ ` k) such that

Hi(S) ∼=Sk

⊕
(mi,λ,λ)∈Mi

mi,λ Sλ.

(B) The integers b0(S), . . . , b`(S).
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Procedure:
1: Φ← Φ̃`+1 (cf. Eqn. (3.12)).
2: D← D′ = D[ε, ε0, δ0, . . . , ε`+1, δ`+1].
3: R← R′ = R〈ε, ε0, δ0, . . . , ε`+1, δ`+1〉.
4: for T ⊂ Cox(k), card(T ) < `+ 2d− 1 do

5: Compute using Algorithm 2, the family of polynomials Q̃ and the formulas

Φ̃
(T )
k and Φ̃Tk .

6: Compute a semi-algebraic triangulation hT : |KT | → R(Φ̃
(T )
k ), such that

h−1
T (R(Φ̃

(T )
k ) = |K ′T |, K ′T is a sub-complex of KT , as in the proof of

Theorem 5.43 [9].

7: Compute bi(R(Φ̃
(T )
k ), Φ̃Tk ) = bi(KT ,K

′
T ) for 0 ≤ i ≤ ` (using for example the

Gauss-Jordan elimination algorithm from elementary linear algebra).
8: Compute using Algorithm 1, the set Par(k, T ).
9: for λ ∈ Par(k, T ) do

10: mλ,T ← multSλ(Ψ
(k)
T ).

11: end for
12: end for
13: for 0 ≤ i ≤ ` do
14: Mi ← ∅.
15: for λ ∈ Par(k), length(λ) ≤ i+ 2d− 1 do
16: mi,λ ← 0.
17: end for
18: for T ⊂ Cox(k), card(T ) < i+ 2d− 1 do
19: for λ ∈ Par(k, T ) do

20: mi,λ ← mi,λ + bi(R(Φ̃
(T )
k ),R(Φ̃Tk )) ·mλ,T .

21: end for
22: end for
23: for λ ∈ Par(k), length(λ) ≤ i+ 2d− 1 do
24: if mi,λ 6= 0 then
25: Mi ←Mi ∪ {(mi,λ, λ)}.
26: end if
27: end for
28: Output Mi and

bi(S) =
∑

λ∈Par(k),length(λ)≤i+2d−1

mi,λ · dimQ Sλ,

calculating dimQ Sλ using Eqn. (1.9).
29: end for

Proposition 8. Algorithm 3 is correct and has complexity, measured by the number

of arithmetic operations in the domain D, bounded by (skd)2O(d+`)

.

Proof. First observe that the formula Φ̃`+1 in Line 1 is a P̃`+1-closed formula, where

P̃`+1 ⊂ D[ε, ε0, δ0, . . . , ε`+1, δ`+1]Sk≤d ,

and R(Φ̃`+1) is closed and bounded.
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It follows from Proposition 7, that the pair of formulas (Φ̃
(T )
k , Φ̃Tk ) computed in

Line 5 of Algorithm 3 has the property that,

(R(Φ̃
(T )
k ),R(Φ̃Tk )) = (S̃

(T )
k , S̃Tk ).

It follows from Proposition 6, that

H∗(S̃
(T )
k , S̃Tk ) ∼= H∗(Sk, S

T
k ),

and it follows from Theorem 5.43 in [9], that the numbers bi(S̃
(T )
k , S̃Tk ) = bi(Sk, S

T
k )

are computed correctly in Line 7 of Algorithm 3 (for 0 ≤ i ≤ `).
It follows from Theorem 4 that,

(4.2) bi(S) =
∑

T⊂Cox(k)

bi(Sk, S
T
k ) · dim Ψ

(k)
T .

It follows from (3.9) that the sum on the right hand side of Eqn. (4.2) needs to
be taken only over those T ⊂ Cox(k), satisfying card(T ) < i+ 2d− 1, i.e.

bi(S) =
∑

T⊂Cox(k),card(T )<i+2d−2

bi(Sk, S
T
k ) · dim Ψ

(k)
T .

The correctness of the algorithm now follows from Proposition 4.
In order to analyze the complexity, first notice that in Line 2, the ordered do-

main D is replaced by the ordered domain D′ = D[ε, ε0, δ0, . . . , ε`+1, δ`+1]. Each
subsequent arithmetic operation takes place in the larger domain

D′ = D[ε, ε0, δ0, . . . , ε`+1, δ`+1].

Since the number of arithmetic operations in D needed for computing the sum and
the product of two polynomials in D′ of degrees bounded by D is at most DO(`), and
the degrees of the polynomials in D′ that show up in the intermediate computations
are well controlled, it suffices to bound the number of arithmetic operations in the
new ring D′.

The number of iterations of the ‘for’ loop in Line 4 is bounded by
(

k−1
`+2d−2

)
=

kO(d+`). In each iteration, notice that the semi-algebraic sets S̃
(T )
k , S̃Tk ⊂ Rcard(T )×

Rd, and thus the number of variables in the calls to the triangulation algorithm in
Line 6 equals card(T ) + d ≤ (`+ 2d− 1) + d = O(`+ d). The number of arithmetic
operations in D′ in each iteration is thus bounded by

(`sdk)2O(d+`)

from the complexity bounds in Propositions 4, 7, and the complexity of the trian-
gulation algorithm.

Since, the degrees of the polynomials appearing in the computations are bounded

by d2O(d+`)

, it follows that the number of arithmetic operations in D is also bounded
by

(`sdk)2O(d+`)

.

It follows from Proposition 4, that the number of iterations of the ‘for’ loop in
Line 9 is bounded by k(d+`)O(d+`). Also, the number of iterations of the ‘for’ loop
in Line 15 is bounded by kO(d+`) using the trivial upper bound on the number of
partitions of k of length bounded by `+ 2d− 1 and the number of iterations of the



COHOMOLOGY OF SYMMETRIC SEMI-ALGEBRAIC SETS 45

‘for’ loop in Line 18 is bounded by
(

k−1
`+2d−2

)
= kO(d+`). Thus, the complexity of

the whole algorithm is bounded by

(`sdk)2O(d+`)

.

�

Proof of Theorem 3. The theorem now follows directly from Proposition 8. �

Remark 8. We note that using the more sophisticated algorithm for computing
the first ` + 1 Betti numbers of semi-algebraic sets given in [3], it is possible to
improve the dependence on d in the complexity upper bound in Theorem 3 from
doubly exponential to singly exponential. However, since our focus is on obtaining
an algorithm with polynomially bounded complexity for fixed d and `, we chose not
to introduce the technical modifications that would be required to achieve this.
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