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Abstract

In this paper, we consider the problem of computing the Betti numbers of an ar-
rangement of n compact semi-algebraic sets, Si,...,S, C RF, where each §; is
described using a constant number of polynomials with degrees bounded by a con-
stant. Such arrangements are ubiquitous in computational geometry. We give an
algorithm for computing ¢-th Betti number, §,(U!;S;), 0 < £ < k — 1, using
O(n**2) algebraic operations. Additionally, one has to perform linear algebra on
integer matrices of size bounded by O(nf*+2). All previous algorithms for computing
the Betti numbers of arrangements, triangulated the whole arrangement giving rise
to a complex of size O(n2k) in the worst case. Thus, the complexity of computing
the Betti numbers (other than the zero-th one) for these algorithms was O(an).
To our knowledge this is the first algorithm for computing £,(Ul" ;S;) that does not
rely on such a global triangulation, and has a graded complexity which depends on
L.
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1 Introduction

The combinatorial, algebraic and topological analysis of arrangements of real
algebraic hyper-surfaces in higher dimensions are active areas of research in
computational geometry (see (1; 11; 23)). Arrangements of lines and hyper-
planes have been studied quite extensively earlier. It was later realized that
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arrangements of curved surfaces are a significant generalization and have a
wider range of applications. There has been substantial progress in analyzing
the combinatorial complexity — that is the number of cells (appropriately de-
fined) of various dimensions occurring in the boundary — of substructures in
arrangements (23).

However, there is another source of geometric complexity in arrangements
of hyper-surfaces — namely topological complexity. Arrangements of hyper-
surfaces are distinguished from arrangements of hyperplanes by the fact that
arrangements of hyper-surfaces are topologically more complicated than ar-
rangements of hyperplanes. For instance a single hyper-surface or intersec-
tions of two or more hyper-surfaces, can have non-vanishing higher homology
groups and thus sets defined in terms of such hyper-surfaces can be topologi-
cally more complicated in various non-intuitive ways. It is often necessary to
estimate the topological complexity of arrangements (9) and sometimes these
estimates even play a role in bounding the combinatorial complexity (see (3)).

An important measure of the topological complexity of a set S are the Betti
numbers [;(S). Here and elsewhere in the paper the set S will always be
semi-algebraic, (that is defined in terms of a finite number of real polynomial
equalities and inequalities) and closed and 3;(S) will denote the rank of the
H?(S) (the i-th singular cohomology group with real coefficients). Intuitively,
Bi(S) measures the number of i-dimensional holes in S. The zero-th Betti
number [,(S) is the number of connected components.

For example, if T is topologically a hollow torus, then Gy(7) = 1,5(T) =
2,6:(T) = 1,B8;(T) = 0,i > 2, confirming our intuition that the torus has
two 1-dimensional holes and one 2-dimensional hole. Analogously, for the two
dimensional sphere, S, 5y(S) =1, 51(S) =0, B2(S) = 1, 5;(S) = 0,7 > 2.

1.1 Brief History

The basic result in bounding the Betti numbers of semi-algebraic sets defined
by polynomial inequalities was proved independently by Oleinik and Petrovsky
(19), Thom (24) and Milnor (16).

They proved:

Theorem 1 (19; 24; 16) Let S C RF be the set defined by the conjunction of
n inequalities,

P, >0,...,P,>0,P € R[Xi,..., X4

deg(P;) <d,1 <i<n.



Then,

3" 5i(S) = O(nd)*.

However, the proof techniques used to prove theorem 1 does not allow us to
prove bounds on the individual Betti numbers separately. Nor do they suggest
an efficient algorithm for actually computing the Betti numbers.

The first bounds on the individual Betti numbers of semi-algebraic sets were
proved in (2). The following two theorems were proved bounding the Betti
numbers of semi-algebraic sets obtained as intersections or as unions of sets,
each defined by a single polynomial inequality.

Theorem 2 Let S C RF be the set defined by the conjunction of n inequalities,
P >0,...,P,>0,P, € R[Xq,..., Xy,

deg(P;) <d,1 <i<n.

contained in a variety Z(Q) of real dimension k', and

deg(Q) < d.

Then,

n

1 () < O(d)*.

s <, )ow

Theorem 3 Let S C RF be the set defined by the disjunction of n inequalities,
P >0,...,P,>0,P, € R[Xq,...,Xy,

deg(P;) < d,1 <i<n.

Then,

5i(S) < ( n )O(cok.

1+1

Note that, a special case of the above theorem is the situation when S is the
union of n sets each defined by a polynomial equation P; = 0. We just replace
the equalities by the inequalities, —P? > 0.



A crucial new ingredient in the proofs of these bounds is the use of a spectral
sequence argument. In this paper, we extend this argument so as to be able to
actually compute the Betti numbers of a union of semi-algebraic sets efficiently.
We note that similar techniques would also work in the case of intersections.

In many applications in computational geometry one is often interested in
understanding the topological complexity of the whole arrangement. For in-
stance, unions of balls in R® has been studied by Edelsbrunner (9) from both
combinatorial and topological view-point motivated by applications in molec-
ular biology, and efficient algorithms for computing the various Betti numbers
of such unions are currently being studied (10). There is also a whole body of
mathematical literature studying the topology of arrangements of hyperplanes
in complex as well as real spaces (see (20)).

1.2 Computing Topology via Global Triangulations

The standard technique of computing the Betti numbers of an arrangement is
to associate a simplicial complex to the arrangement, and compute the simpli-
cial homology groups of this complex (see (22)). Since compact semi-algebraic
sets are triangulable (4), there always exists such a simplicial complex (cor-
responding to that of the triangulation). Thus, in order to compute the Betti
numbers of an arrangement of n real algebraic hyper-surfaces in R¥ it suffices
to first triangulate the arrangement and then compute the Betti numbers of
the corresponding simplicial complex. However, currently the most efficient
way known to obtain such a triangulation is via the technique of cylindrical
algebraic decomposition (8), and this produces O(n2") simplices in the worst
case. Moreover, if the sets S; are defined by polynomials of degrees at most
d, the size of the triangulation is bounded by (O(nd))**. However, since the
Betti numbers of such an arrangement is bounded by O(n*), it is reasonable
to ask for algorithms whose complexity is bounded by O(n*). More efficient
ways of decomposing arrangements into topological balls have been proposed.
In (7), the authors provide a decomposition into O*(n?=3) cells (see (13) for
a recent improvement of this result). However, this decomposition does not
produce a cell complex and is therefore not directly useful in computing the
Betti numbers of the arrangement.

Also, note that the problem of computing 3y of an arrangement is easier and
efficient algorithms whose complexity is O(n**!) is known for this problem.
Moreover, the dependence on the degree is also single exponential in this case
(see (6) for the best results in this direction).



Fig. 1. The nerve complex of a union of disks.

1.8 Local Method

In certain simple situations, it is possible to compute the Betti numbers of
an arrangement, without having to compute a triangulation. For instance,
when the sets are compact and convex, a classical result of topology, the nerve
lemma (21), gives us an efficient way of computing the Betti numbers of the
union. The nerve lemma states that the homology groups of such a union
is isomorphic to the homology groups of a combinatorially defined simplicial
complex, the nerve complex. The nerve complex has n vertices, one vertex for
each set in the union, and a simplex for each non-empty intersection among
the sets. Thus, the (£ + 1)-skeleton of the nerve complex can be computed by
testing for non-emptiness of each of the possible 37 ;<2 (’;) = O(n**?) at
most (¢+2)-ary intersections among the n given sets. The /-th Betti number of
the union can then be computed from the (£+1)-skeleton using linear algebra.
(Actually, the nerve lemma requires only that all finite intersections of the sets
be topologically trivial and convex sets clearly satisfy this condition.) This
technique would work, for instance, if one is interested in computing the Betti
numbers of a union of balls in R* (see (9)).



1.4 The Leray Spectral Sequence

When the given sets are not necessarily convex, which would be the case in very
many applications, the nerve lemma does not apply. However, even though one
cannot directly associate a simplicial complex in general, it is possible to as-
sociate a more complicated combinatorial object — namely a spectral sequence
of vector spaces — which converges to the cohomology groups of the union in
finitely many steps. In fact, the nerve lemma is a particular case of this spec-
tral sequence which degenerates in one step to yield the cohomology groups.
Using the spectral sequence we will give an algorithm for computing the /-th
Betti number of an arrangement of n compact semi-algebraic sets, which needs
to triangulate only O(n‘*?) sub-arrangements each of small (constant) size.

Spectral sequences were first introduced by Leray (14; 15) and are familiar
objects in algebraic topology, and we refer the reader to (17) for a compre-
hensive survey. The spectral sequence method was used to prove the first
graded bound on the individual Betti numbers of an arrangement of algebraic
hyper-surfaces (2). In this paper, we show that using a spectral sequence, it
is possible to compute the Betti numbers of an arrangement without having
to compute a global triangulation of the whole arrangement. In order to com-
pute the /-th Betti number of the arrangement, it suffices to compute O(n**?)
triangulations of all sub-arrangements consisting of at most ¢+ 2 of the given
sets. Each such triangulation will be of constant size and description complex-
ity and the cost of computing such a triangulation is O(1). Thus, in order to
compute all the non-zero Betti numbers, By, ..., Br_1, we will need to produce
O(n**1) different constant sized triangulations.

By complexity of our algorithm we will mean the number of arithmetic oper-
ations including comparisons on elements of the ring generated by the coef-
ficients of the input polynomials (those describing the input sets). Thus, we
are only counting the cost of computing the different triangulations, and not
the cost of performing the linear algebra over Q in order to determine the
Betti numbers. This is because the cost of the algebraic operations usually far
outweigh the cost of integer arithmetic. However, we also provide bounds on
the cost of doing the linear algebra separately.

We prove the following theorem.

Theorem 4 Let Si,...,S, C R be compact semi-algebraic sets of constant
description complezity and let S = U1<i<pS;, and 0 < £ < k — 1. Then, there
is an algorithm to compute Bo(S), ..., Be(S), whose complezity is O(n*+2).

The idea of using filtrations for computing Betti numbers has been used in
(10) for incremental algorithms for computing the homology groups of certain



complexes in low dimensions. However, our techniques in this paper are quite
different.

Also note that, efficient decomposition of an arrangement of n algebraic sur-
faces of constant degree in R¥, into simple cells remains one of the outstanding
open problems in computational geometry. Here by simple we mean that the
individual cells should be describable in terms of a fixed number of polyno-
mials of fixed degree (independent of n). The dependence on the degrees of
the input polynomials is allowed to be doubly exponential in £ or even worse.
The main conjecture in this area is that there exists such a decomposition of
size O(n¥), which is also a bound on the Betti numbers of such an arrange-
ment. Such a decomposition would lead to more efficient algorithms for a host
of different problems in computational geometry. Even though in this paper,
we do not produce a decomposition of the whole arrangement of size O(n*),
we prove that O(n**1) independent decompositions are enough to compute
important topological information about the arrangement (namely the Betti
numbers).

Finally, computing the Betti numbers of semi-algebraic sets in single expo-
nential time is a major open question in algorithmic semi-algebraic geometry.
The algorithm described in this paper does not answer this question, as we use
triangulations whose sizes are doubly exponential in the dimension; their sizes
are bounded by d2°“ where d is a bound on the degrees of the defining poly-
nomials. However, as is usual in computational geometry we will assume that
the degree d of the defining polynomials, as well as the dimension & are fixed
constants and hence these triangulations are of sizes O(1) for the purposes of
this paper.

We assume that the reader is familiar with the notions of simplicial complexes,
triangulations of semi-algebraic sets and simplicial co-homology theory. We
refer the reader to (18) and (5) for a more detailed exposition of these topics.

The rest of the paper is organized as follows. In section 2, we state a result on
triangulations of semi-algebraic sets which we will use heavily in the rest of the
paper. We also describe an algebraic subroutine used to compute homomor-
phisms between the co-chain complexes of two triangulations, one of which is
a refinement of the other. In section 3, we define double complexes of vector
spaces and associated filtrations giving rise to two spectral sequences asso-
ciated with any double complex. We state without proving some basic facts
about spectral sequences, using (17) as our reference. In section 4, we describe
the generalized Mayer-Vietoris exact sequence and the double complex asso-
ciated to it. Finally, in section 5 we describe our algorithm for computing the
Betti numbers of a union of semi-algebraic sets, each of constant description
complexity.



2 Semi-algebraic Triangulations

Given a simplicial complex K, we will denote by C*(K) the Q-vector space of
i co-chains of K (that is the dual vector space to the vector space of formal Q-
linear combinations of the i-simplices in K'), and denote by C*(K) the direct
sum @&;C*(K).

2.1 Triangulation of semi-algebraic sets

A triangulation of a compact semi-algebraic set S is a simplicial complex A
together with a semi-algebraic homeomorphism from |A| to S. Given such a
triangulation we will often identify the simplices in A with their images in S
under the given homeomorphism, and will refer to the triangulation by A.

Given a triangulation A, the cohomology groups H'(S) are isomorphic to the
simplicial cohomology groups H*(A) of the simplicial complex A and are in
fact independent of the triangulation A.

We call a triangulation by : |A;| — S of a semi-algebraic set S, to be a
refinement of a triangulation hy : |Ay| — S if for every simplex oy € Ay, there
exists a simplex g9 € Ay such that hy(oy) C ha(0o9).

If Ay, Ay are two triangulations of a compact semi-algebraic set S, and A, is
a refinement of Ay, then there exists a homomorphism A : C*(Ag) — C*(A),
such that the induced map A\* : H*(Ay) — H*(A;) is an isomorphism (18).

Identifying the simplices of A; with their images under the homeomorphisms
h;, the homomorphism A is obtained as follows.

We first choose a simplicial map, A : C,(A;) — C,(A,) which is a simplicial
approximation to the identity (18). For any vertex v € A; we define 5\(1)) =0
if v is also a vertex of Ay, else A(v) is chosen to be any vertex of the simplex
of Ay containing v in its interior. Finally, for a simplex o = [vp, ..., v,] of Ay,
AM[vo, - --,vp)) = [A(v0), ..., A(v,)], and A is extended to C,(A;) by linearity.
Clearly, Misa simplicial approximation to the identity map and hence induces
an isomorphism between the homology groups H,(A;) and H,(A,). Finally,
A is the homomorphism dual to A

For future reference, we record the algorithm described above as a subroutine.



Refinement Subroutine

Input: Two semi-algebraic triangulations, A;, Ay, of a compact
semi-algebraic set S C RF, such that A; is a refinement
of AQ.

Output: For each ¢, 0 < ¢ < k, the matrix for homomorphisms,
Ay 1 CUAy) — C’q(A ), such that the induced map A :

HQ(AZ) — H9(A;) is an isomorphism.

Procedure: Lexicographically order the vertices of As. For each vertex
v e Ay, let A(v) = v, if v is also a vertex of A,. Else, let
A(v) be the lexicographically smallest vertex of the simplex
of Ay containing v in its interior.

For each simplex o = [uy, ..., v,] of Ay, let A([vg, . . .,v,]) =

[A(v0), - - -, A(vg)]-
For each ¢,0 < ¢ < k, compute the matrix M, of the linear

transformation A,.

Output the matrices, M g, corresponding to the dual homo-
morphisms.

Let S; C Sy be two compact semi-algebraic subsets of R¥. We say that a semi-
algebraic triangulation h : |A| — Sy of Sy, respects S; if for every simplex
o € A, h(c) NS, = h(o) or (. In this case, h™'(S;) is naturally identified
with a sub-complex of A and hl,-1(s,) : A7'(S1) — Si is a semi-algebraic
triangulation of S;. We will refer to this sub-complex by Alg,.

We will need the following theorem which can be deduced from section 9.2 in
(4) (see also (5)) and the Refinement Subroutine described above.

Theorem 5 Let S; C Sy C RF be closed and bounded semi-algebraic sets, and
let h; : A; — S;, 1 = 1,2 be semi-algebraic triangulations of S1, Ss. Then, there
exists a semi-algebraic triangulation h : A — Sy of Ss, such that A respects
S1, A is a refinement of Ao, and Alg, is a refinement of A;.

Moreover, there exists an algorithm which computes such a triangulation and
if the sets S1,Sa, as well as the triangulations Ay, A are of constant descrip-
tion complexity, then the triangulation A produced by the algorithm is also of
constant description complexity.



Also, all the homomorphisms in the following diagram,

C*(Ay) C* (A1)
Ao A1

C*(A) — C*(Alg,)

are all computable in constant time. (Here the vertical homomorphisms Ag, A
are as described above and r is induced by restriction.)

Note that, if S; and Sy are each defined by at most s; polynomials of de-
grees at most d;, and the given triangulations hi, ho are defined in terms of
s9 polynomials of degrees at most ds, then the complexity of the algorithm in
Theorem 5, the size of the triangulation A, as well as the number of polynomi-
als defining A are all bounded by (s1d; + 82d2)20(k). Moreover, the degrees of
the polynomials appearing in the definition of A are bounded by (d; +d2)20(k).

3 Double Complexes

In this section, we introduce the basic notions of a double complex of vector
spaces and associated spectral sequences.

d d d
00’2 4 _ 01,2 4 N 02,2 d
d d d
00,1 0 . Cl,l 4 N 02,1 0
d d d
CO’O 4 _ Cl,O 4 N C2,0 4

A double complex is a bi-graded vector space,

C = aCP,

10



with co-boundary operators d : C?? — CP%+! and § : CP4 — CP+19 and such
that dé + 0d = 0. In our case, the double complex would be a single quadrant
double complex, which means that we can assume that C?-? = 0 if either p < 0
or g < 0.

Out of a double complex we can form an ordinary complex of vector spaces,

namely the associated total complex, which is a graded vector space, defined
by C" = &, 4-nCP, with co-boundary operator D =d + § : C" — C™*,

> OP Latl > Pt 2, optlhetl _© L

e Cpfl,qfl , Cp,qfl ., Cp+1,qfl ..

There is a natural decreasing filtration that we can define on the associated
total complex, by restricting p to be greater or equal .

We denote by C} the n-th graded piece of this complex. In other words,

n —_— )
C¥ = Optgnp>eC™1.

We denote
Zy ={z € C¢|Dz = 0},

B" = DCn—l;

11



and

HM = Z"/Z" N B™.

We thus have a decreasing filtration, --- D Hy | D H D Hp ,---

of the

cohomology group Hp(C). We denote the successive quotients Hy' /H}' , by

Hk,nfk‘

The Leray spectral sequence is a sequence of complexes (E,,d,) such that
E”'+1 = Hdr (E"')

Any element in C" = @;,;—,C* will have a leading term at a position (p, g),
where p denotes the smallest 7 such that the component at position (i,n — %)
does not vanish.

Let ZP? denote the set of the (p,q) components of co-cycles whose leading
term is at position (p', ¢'), with p’ > p and p’'+ ¢’ = p+ ¢. In other words, Z7»¢
denotes the set of all a € CP? such that the following system of equations has

a solution.

da=0

12

(1)



da=—da™
6aV = —da®
6a? = —da®

Here, a® € CP*%47%. Hence, the element a ® a™ @ a - - - lies in Z2*¢ with
a € 4P,

Similarly, let B2 C CP? consist of all b with the property that the following
system of equations admits a solution.

db® + -1 =
dbY + b2
db=2 + p=%

b
0
0

Here, b)) ¢ CP—bati-1,
It is easy to see that, HP? = 7P/ BP4.
Now, let

7P ={a € C*3(aV,...,a"V|(a,aV,..., a"Y)

satisfies equations (1)}.

Also, let

BP4 = {bec P36, 5V, . )6, 0, 6 )

satisfies equations (2)with b~ = b~ "t = ... = 0}.

We thus have a sequence of vector subpaces of C?¢, satisfying

B{’aq C Bqu C . C Bp’q C Zpaq C Z;{)’q C . C Cp;q.

The (p, q)-th graded piece, E??, of the r-th element, F,, of the spectral se-
quence is defined by EP9 = ZP9/BP4. It should be seen as an approximation
to Hpiq — Zpaq/Bp7q‘

13



We will now define the differentials d,. Let [a] € EP? for some a € ZP9. Then,
there exists a(!), ..., a(""") satisfying equations 1. It is a fact (see (17)) that
the homomorphism, d, : EP¢ — EPT74="+1 defined by

d,[a] = [5a"" V] € EptroT, (3)

is well-defined (that is independent of the choice of the representative a).

q

p+a=t p+a=t+1
. —r+1
Fig. 2. d, : EP9 — EPYHO 7T

The sequence of graded complexes, (E,,d,), where the complex E,,; is ob-
tained from E, by taking its homology with respect to d, (that is E,,; =
H, (E,)) is called the spectral sequence associated to the double complex CP?
(with respect to the horizontal filtration).

Observe that the homomorphism d, takes EP? to EP*™4"+1 and hence if the
double complex CP+? is non-zero in only the first quadrant, then d, = 0 for all
r > q+1. Thus, Ef?%y = E%? for such complexes.

4 The Mayer-Vietoris Double Complex

In this section, we describe the double complex of interest to us — namely, the
one arising from the Mayer-Vietoris exact sequence.

Let Aq,..., A, be sub-complexes of a finite simplicial complex A such that A =
A;U---UA,. Note that the intersections of any number of the subcomplexes,
Aj;, is again a subcomplex of A. We will denote by A,,,...o, the sub-complex
Agg NN Ay,

Let C*(A) denote the Q-vector space of i co-chains of A, and C*(4) =
®;C'(A).

14



We will denote by d : C9(A) — C97'(A) the usual co-boundary homomor-
phism. More precisely, given w € C?(A), and a ¢+1 simplex [ay, - . ., ag+1] € A4,

dw(a, .. ag)) = S (=1w(ag, .., a51)) (4)

0<i<q+1
(here and everywhere else in the paper ~denotes omission). Now extend dw to
a linear form on all of C,y1(A) by linearity, to obtain an element of C4**(A).

Recall that a sequence of vector space homomorphisms

d;_ d; d;
- ‘V; > Vit+l =

is said to be exact if ker(d;) = Im(d,;_) for each i.

The Mayer-Vietoris exact sequence is an exact sequence of vector spaces, each
of the form @g,<..ca,C*(Aa,,...a,)- (Here and everywhere else in the paper ®
denotes the direct sum of vector spaces). The connecting homomorphisms are
“generalized” restrictions and will be defined below.

Consider the following sequence of homomorphisms.

0 — C*(A) - B0y C™(Aag) 2 Bagear C" (Aag.ar) —=> -+ —2

@a0<---<apc (Aao,...,ap) — ®ao<---<ap+1c (Aao,...,ap+1) —r

where r is induced by restriction and the connecting homomorphisms § are
defined below.

Given an w € @qg<..<a,C¥(Aag,....a,) We define d(w) as follows: First note
that 0(w) € Bag<-<apsi C(Aag,.aps1), and it suffices to define d(w)q,
for each p + 2-tuple 0 < @y < --- < apq1 < n. Note that, 6(w)a,...aps: 19
a linear form on the vector space, Cq(Aao,___,ap +1), and hence is determined
by its values on the g-simplices in the complex Aq,. ... q,,,- Furthermore, each
g-simplex, s € Ag, . a,,, 15 automatically a simplex in each of the complexes
Aao,...,di,...ap+1a0 S i S D+ 1.

yeenQip i1

We define,

(5w)a0,...,ap+1 (S) - Z (_l)iwag,...,di,...,ap+1 (8)

0<i<p+1

It was shown in (2) that

Lemma 1 The sequence defined above is exact.

15



We now consider the following bigraded double complex MP4 with a total
differential D = § + (—1)?d, where

MP1 = 6915050 <-<ap Sncq (Aao,...,ap) .

0

0

0

0

d d d
3 5 3 5 3
B C (Aao) — Dag<a, C (Aao,al) — Bap<ar<ar C (Aao,al,az) -
d d d
2 5 2 (5 2
630400 (Aao) - 69040<0410 (Aao,al) - 69040<061<0120 (Aao,al,a2) - =
d d d
1 5 1 (5 1
690400 (Aao) - @ao<a10 (Aao,al) - ®ao<a1<azc (Aao,al,a2) - =
d d d
0 5 0 6 0
EB&OC (Aao) - EBa0<a1C (Aao,oq) - ®a0<a1<a20 (Aao,al,ag) - "
d d d
0 0 0

Interchanging the roles of the horizontal and the vertical differentials, we
obtain two spectral sequences, (E,d.), (E,,d,), (corresponding to the vertical

and horizontal filtrations respectively) associated with M?? both converging
to Hj(M). The first terms of these are E; = HsM,FE), = Hy;H;M, and
E, = HM, Es = HsH,M. Because of the exactness of the generalized Mayer-
Vietoris sequence, we have that, Ej is:

16



and El is:

d d
-0 -
d d
g g
d d
g g
d d
g g
d d

0 0

17



0 0 0

0 H3(A) L 0 LA 0 -
0 0 0

0 H2(A) 0 R
0 0 0

0 H) o2 g .
0 0 0

0 H°(A) L 0 o 0 -
0 0 0

0 0 0

The degeneration of this sequence at FY, shows that Hj (M) = H*(A).

The initial term E; of the second spectral sequence is given by:

18



0

0

0

0 0
EBocofI?’(Aoco) - EBao<a1H3(Aa0,a1) - EBoco<0t1<042I-I?’(‘Llcm,cn,az) -

A

) )
69oon2(Aozo) - 69ao<oz1l_12(Aozo,oz1) - @a0<a1<a2H2(Aa0,a1,a2) - >

A

0 0
GB040}11 (Aao) - 69Ozo<041I—I1 (Aao,a1) - 69Ozo<041<OzzIJI(AOto,Ot1,Otz) -

A

0 0 0
0 6 0 6 0
EBOéofI (Aoéo) - 63060<0t1[_I (Aao,al) - 63060<Ot1<062I—I (Aao,al,az) - e
0 0 0
0 0 0

5 Computing the Betti numbers

We define a new double complex M and compute the terms EP of its spec-
tral sequence. We then show that the spectral sequences EP9 and EP9Y are
isomorphic.

Let Si,...,S, C R* be compact semi-algebraic sets of constant description
complexity. For J C {1,...,n}, we denote by T (respectively S;) the set
UjesS; (respectively NjesS;) .

For each j, 0 < j < /41, and for each (j + 1)-tuple (4, ...,%;) with 1 <ip <
i1 < --- <1i; < n, we compute a semi-algebraic triangulation A . of the
set T(i,...i;} = SipU...USy;, such that for each J C {io, ..., 4}, J #0, Afo,___7ij

respects 1’y and Ago’___’ij |7, is a refinement of the triangulation A|JJ|_1.
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We denote by A the homomorphisms,

A CHAT s, = CH (AL, ilsy)-

£0y-eny

Let A be a semi-algebraic triangulation (which we do not compute) of S =

Ui<i<nSi, which respects the sets Ty;,,...;;; and such that A|T{i0 i is a refine-
<i<nPi, WILICN TESPECES LhE SIS L {4,...4;} alld SUCh that Az, :

ment of Aj ;..
Let A be the simplicial complex corresponding to the triangulation A, and
Ay, ..., A, the sub-complexes corresponding to the sets S, ..., S,. Since the
triangulation A respects the sets S;, it is clear that each set S; gives rise to
a sub-complex of A. Note that the intersections of any number of the sub-
complexes, A;, is again a subcomplex of A. We will denote by Ag, ..., the
sub-complex Ay, N ---N Ag,. Let M be the Mayer-Vietoris double complex
corresponding to Ay, ..., A, (see Section 4) and FE the spectral sequence as-
sociated to it corresponding to the horizontal filtration.

We now define the double complex M. Let Aio,___,ip be the simplicial complex
corresponding to the triangulation, A} . We define the bigraded

yeenslp ‘Sio ..... ip

double complex MP4, with a total differential D = § + (—1)?d as follows:

Mp,q == ®1§a0 <e<Lap Sncq (Aao,...,ap) .

The vertical differentials d are direct sums of the usual co-boundary homo-
morphisms:

d: Cq(Aio,...,ip) — 0q+1(z‘ii0,...,ip)-

Fora € @1Si0<--.<ipsncq(Aio,...,ip)7 let a’io,...,lip be the component of @ in C?(A;,,..;,)
and let a;, = Mai,...i,) € Cq(AP+ |S,-0 ..... 'ip)'

yeenalpiipt1 10y eslpyip+1

Let, T(&go,...,ip;z’pﬂ) € C1(A
striction homomorphism.

be the image of a; under the re-

Z07---711)4—1) ,...,ip;ip+1

Let

Nioye.sipiipr1 - Cq(Aio,...,ip) - Cq(Aio,...,ip+1)

denote the homomorphism which takes

_ _t
a’io,...,ip = T(aio,...,ip;ip+1 ) .
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Then,

5(a)i07---aip+1 = Z (_]‘)Jnio,...,i},...,ip+1;’ij (aio,...,i},...,ip+1)‘
0<j<p+1

We have the following commutative diagram:

C*(Aig..a,) . O (i i)
A A
A A A G
A Id
C*(Aio,...,ip) C*(Aio,...,ip,ipH)

Moreover, the homomorphisms A can be chosen such that for all0 < 75 < -+ - <

ip < n and dpy1,0, 1 & {4, .., %} the following diagram is commutative.
CHAT o o) e O (A
005+--sp sy 4 1 Sigeemrip 10yevnsip

A A

_ A
O (Aio,...,ip) C*(A]‘J+1 |S' ip)

10 5eenslpylp41

The commutativity of the above diagram implies that the homomorphisms A
induce a homomorphism between the spectral sequences E, and E,. Moreover,
it is clear that the induced homomorphisms

EP1 — EP B1<ip<-<ip<nH (Sig,....ip)
are isomorphisms. It follows that (see (17), page 66, Theorem 3.4) EP? and
EP? are isomorphic for all » > 1.

We next show how to compute the ranks of the different E5?. We compute a
basis for the vector spaces 25, Bb'? as follows.
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The vector space Z5 is the set of all @ € D1<jgc..ci,<nC1(A
the following system of equations has a solution.

) such that

10 y.nylp

Similarly, B5 is the set of all @ € EBiO,___,iqu(ﬁio,___,ip) such that the following
system of equations has a solution.

d b® + 5(0Y) =b,
=D =0, i > 2.

We compute the ranks of the vector spaces Z5? and BY? using Gaussian
elimination on the matrices corresponding to the above systems of equations,
and rank(F5?) = rank(Z5?) — rank(B5?).

Similarly, we can compute E, for 1 < r < / + 2, by computing the sequence
a,aV,a?, ... a" Y, as well as the sequence b,b® p(=D _ pl=r+D),

The crucial observation here is that EP? can be computed just from the data

. . . -1
of the various local triangulations, A?™"~ .
05--slptr—1

The rank of /-th cohomology group of S is equal to

> rank(ER%) = ) rank(EDY).
pt+q=t pt+q=t

Thus, in order to compute 5,(.S) it suffices to compute the ranks of _fﬁ: 19,0 <
p < /£, and hence we do not have to consider intersections of more than £ + 2
sets at a time.

We now give a formal description of the algorithm.
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Algorithm Betti

Input: A number /,0 < ¢ <k — 1, and the various triangulations,
Afo,...,i;,’ O S P S g + 1

Output: 5(95).
Procedure: Foreach p,0 <p</{ letq=F¢—pandr=¢—p+2.

Compute bases for vector subspaces ZP4, BP? of

@io,---,ipcq(Aio,...,ip) as follows.
The vector space ZF*¢ is the set of all @ € @,,.;, C1( Ay, ;)
such that the following system of equations has a solution.
da=0
§(a) = —da'"

6(@")=—dav

Similarly, B is the set of all b € EBiO,___,iqu(Az-o,___,ip) such
that the following system of equations has a solution.

45O 4 5(BD) =5

d b 4 §(p-T D) _ 0
b= =0, 5> 7.

Y

Compute the ranks of the vector spaces ZP¢ and BP4 using
Gaussian elimination and output

S (rank(Z247,) — rank(BE5,)).
0<p<t

5.1 Complexity

We only count the number of arithmetic operations in the ring of the co-
efficients. Since each triangulation takes O(1) time, it suffices to count the

number of distinct triangulations we need to compute the ranks of Ef’_ep_ o
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The triangulations needed are computed at the beginning, and there are
Yi<i<tt2 é) = O(n**?) of these. Thus, the total number of triangulations

needed is O(n*?).

The dimensions of the matrices whose ranks are computed in the computation

of Ef’_zp_fg are bounded by O(nP+t4+-nP*24. . .4 np+1+6=p+1) Thus, the Gaussian

elimination is applied to matrices of size at most O(n‘*2).

Also, note that if each of the sets S; are defined by at most s polynomials
of degree at most d, then the complexity of computing each of the different

. 2
triangulations Aj ;. is bounded by (sd)2°“”. This is a consequence of the
complexity estimate following Theorem 5. Thus, the constant hidden in the
20(+)

big-Oh notation has a dependence on s, d of the form (sd)
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