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Abstract. Let R be a real closed field, Q ⊂ R[Y1, . . . , Y`, X1, . . . , Xk], with
degY (Q) ≤ 2, degX(Q) ≤ d, Q ∈ Q, #(Q) = m, and P ⊂ R[X1, . . . , Xk]

with degX(P ) ≤ d, P ∈ P, #(P) = s. Let S ⊂ R`+k be a semi-algebraic
set defined by a Boolean formula without negations, with atoms P = 0, P ≥
0, P ≤ 0, P ∈ P ∪ Q. We describe an algorithm for computing the the

Betti numbers of S generalizing a similar algorithm described in [6]. The

complexity of the algorithm is bounded by (`smd)2
O(m+k)

. The complexity of
the algorithm interpolates between the doubly exponential time bounds for the

known algorithms in the general case, and the polynomial complexity in case
of semi-algebraic sets defined by few quadratic inequalities [6]. Moreover, for

fixed m and k this algorithm has polynomial time complexity in the remaining

parameters.

1. Introduction and Main Results

Let R be a real closed field and S ⊂ Rk a semi-algebraic set defined by a Boolean
formula with atoms of the form P > 0, P < 0, P = 0 for P ∈ P ⊂ R[X1, . . . , Xk].
We call S a P-semi-algebraic set and the Boolean formula defining S a P-formula.
If, instead, the Boolean formula has atoms of the form P = 0, P ≥ 0, P ≤ 0, P ∈ P,
and additionally contains no negation, then we will call S a P-closed semi-algebraic
set, and the formula defining S a P-closed formula. Moreover, we call a P-closed
semi-algebraic set S basic if the P-closed formula defining S is a conjunction of
atoms of the form P = 0, P ≥ 0, P ≤ 0, P ∈ P.

For any closed semi-algebraic set X ⊂ Rk, we denote by bi(X) the dimension of
the Q-vector space, Hi(X, Q), which is the i-th homology group of X with coeffi-
cients in Q. We refer to [10] for the definition of homology in the case of R being
an arbitrary real closed field, not necessarily the field of real numbers.

1.1. Brief History. Designing efficient algorithms of computing the Betti numbers
of semi-algebraic sets is an important problem which has been considered by several
authors. We give a brief description of the recent advances and direct the reader
to the survey article [5] for a more detailed exposition.

For general semi-algebraic sets the best known algorithm for computing all the
Betti numbers is via triangulation using cylindrical algebraic decomposition (see
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for example [10]) whose complexity is doubly exponential in the number of vari-
ables. There have been some small advances in obtaining singly exponential time
algorithms for computing some of the Betti numbers, but we are still very far from
having an algorithm for computing all the Betti numbers of a given semi-algebraic
set in singly exponential time. Singly exponential time algorithms for computing
the number of connected components of a semi-algebraic set S (i.e. b0(S)) has
been known for quite some time [18, 15, 17, 20, 13]. More recently, an algorithm
with singly exponential complexity is given in [11] for computing the first Betti
number of semi-algebraic sets. The above result is generalized in [12], where a
singly exponential time algorithm is given for computing the first ` Betti numbers
of semi-algebraic sets, where ` is allowed to be any constant. Finally, note that
singly exponential time algorithm is also known for computing the Euler-Poincaré
characteristic (which is the alternating sum of Betti numbers) of semi-algebraic sets
[4].

In another direction, several researchers have considered a special class of semi-
algebraic sets – namely, semi-algebraic sets defined using quadratic polynomials.
While the topology of such sets can be arbitrarily complicated (since any semi-
algebraic set can be defined as the image under a linear projection of a semi-
algebraic defined by quadratic inequalities), it is possible to prove bounds on the
Betti numbers of such sets which are polynomial in the number of variables and
exponential in only the number of inequalities [3, 8]. (In contrast a semi-algebraic
set defined by a single polynomial of degree > 2 can have exponentially large Betti
numbers.) Polynomial time algorithms for testing emptiness of such sets (where the
number of inequalities is fixed) were given in [2, 19]. A polynomial time algorithm
(without any restriction on the number of inequalities) is given in [6](see also [7])
for computing a constant number of the top Betti numbers of semi-algebraic sets
defined by quadratic inequalities. If moreover the number of inequalities is fixed
then the algorithm computes all the Betti numbers in polynomial time. More
precisely, an algorithm is described which takes as input a semi-algebraic set, S,
defined by Q1 ≥ 0, . . . , Qm ≥ 0, where each Qi ∈ R[Y1, . . . , X`] has degree ≤ 2, and
computes the top p Betti numbers of S, bk−1(S), . . . , bk−p(S), in polynomial time.
The complexity of the algorithm is

∑p+2
i=0

(
m
i

)
`2

O(min(p,m))
. For fixed m, we obtain

by letting p = `, an algorithm for computing all the Betti numbers of S whose
complexity is `2

O(m)
.

The goal of this paper is to design an algorithm for computing the Betti numbers
of semi-algebraic sets defined in terms of partly quadratic systems of polynomials
whose complexity interpolates between the doubly exponential time bounds for the
known algorithms in the general case, and the polynomial complexity in case of
semi-algebraic sets defined by few quadratic inequalities. Our algorithm is partly
based on techniques developed in [9], where we prove a quantitative result bounding
the Betti numbers of semi-algebraic sets defined by partly quadratic systems of
polynomials. Before stating this result we introduce some notation that we are
going to fix for the rest of the paper.

Notation 1. We denote by
• Q ⊂ R[Y1, . . . , Y`, X1, . . . , Xk], a family of polynomials with

degY (Q) ≤ 2,degX(Q) ≤ d, Q ∈ Q,#(Q) = m,

and by
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• P ⊂ R[X1, . . . , Xk] a family of polynomials with

degX(P ) ≤ d, P ∈ P,#(P) = s.

The following theorem is proved in [9].

Theorem 1.1. Let S ⊂ R`+k be a (P ∪Q)-closed semi-algebraic set. Then

b(S) ≤ `2(O(s + ` + m)`d)k+2m.

In particular, for m ≤ `, we have b(S) ≤ `2(O(s + `)`d)k+2m.

The above theorem interpolates previously known bounds on the Betti numbers
of general semi-algebraic sets (which are exponential in the number of variables)
[22, 24, 21, 4, 16], and bounds on Betti numbers of semi-algebraic sets defined by
quadratic inequalities (which are exponential only in the number of inequalities
and polynomial in the number of variables) [3, 8]. Indeed we recover these extreme
cases by by setting ` and m (respectively, s, d and k) to O(1) in the above bound.

1.2. Main Results. The main result of this paper is algorithmic. We describe an
algorithm (Algorithm 5 below) for computing all the Betti numbers of a closed semi-
algebraic set defined by partly quadratic systems of polynomials. The complexity
of this algorithm interpolates the complexity of the best known algorithms for
computing the Betti numbers of general semi-algebraic sets on one hand, and those
described by quadratic inequalities on the other.

Definition 1.2 (Complexity). By complexity of an algorithm we will mean the
number of arithmetic operations (including comparisons) performed by the algo-
rithm in R. We refer the reader to [10, Chapter 8] for a full discussion about the
various measures of complexity.

We prove the following theorem.

Theorem 1.3. There exists an algorithm that takes as input the description of a
(P ∪ Q)-closed semi-algebraic set S (following the same notation as in Theorem
1.1) and outputs its Betti numbers b0(S), . . . , b`+k−1(S). The complexity of this
algorithm is bounded by (`smd)2

O(m+k)
.

The algorithm we describe is an adaptation of the algorithm in [6], to the case
where there are parameters, and the degrees with respect to these parameters could
be larger than two. In addition, in this paper we also treat the case of general P∪Q-
closed sets, not just basic closed ones as was done in [6]. We also provide more
details and analyze the complexity of the algorithm more carefully, in order to take
into account the dependence on the additional parameters.

1.3. Significance from the point of view of computational complexity the-
ory. The problem of computing the Betti numbers of semi-algebraic sets in general
is a PSPACE-hard problem. We refer the reader to [6] and the references contained
therein, for a detailed discussion of these hardness results. On the other hand, as
shown in [6], the problem of computing the Betti numbers of semi-algebraic sets
defined by a constant number of quadratic inequalities is solvable in polynomial
time. This result depends critically on the quadratic dependence of the variables,
as witnessed by the fact that the problem of computing the Betti numbers of a
real algebraic variety defined by a single quartic equation is also PSPACE-hard.
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We show in this paper that the problem of computing the Betti numbers of semi-
algebraic sets defined by a constant number of polynomial inequalities is solvable in
polynomial time, even if we allow a small (constant sized) subset of the variables to
occur with degrees larger than two in the polynomials defining the given set. Note
that such a result is not obtainable directly from the results in [6] by the naive
method of replacing the monomials having degrees larger than two by a larger set
of quadratic ones (introducing new variables and equations in the process).

The rest of the paper is organized as follows. In Section 2 we describe some
mathematical results concerning the topology of sets defined by quadratic inequal-
ities. We often omit proofs if these appear elsewhere and just provide appropriate
pointers to literature. In Section 3 we describe our algorithm for computing all the
Betti numbers of semi-algebraic sets defined by partly quadratic systems of poly-
nomials and prove its correctness and complexity bounds, thus proving Theorem
1.3.

2. Topology of sets defined by partly quadratic systems of
polynomials

In this section we recall a construction described in [9] that will be important
for the algorithm described later. We parametrize a construction introduced by
Agrachev in [1] while studying the topology of sets defined by (purely) quadratic
inequalities (that is without the parameters X1, . . . , Xk in our notation). However,
we do not make any non-degeneracy assumptions on our polynomials, and we also
avoid construction of Leray spectral sequences as done in [1].

We first need to fix some notation.

2.1. Mathematical Preliminaries.

2.1.1. Some Notation. For all a ∈ R we define

sign(a) = 0 if a = 0,

= 1 if a > 0,

= −1 if a < 0.

Let A be a finite subset of R[X1, . . . , Xk]. A sign condition on A is an element of
{0, 1,−1}A. The realization of the sign condition σ, R(σ,Rk), is the basic semi-
algebraic set

{x ∈ Rk |
∧

P∈A
sign(P (x)) = σ(P )}.

A weak sign condition on A is an element of {{0}, {0, 1}, {0,−1}}A. The real-
ization of the weak sign condition ρ, R(ρ,Rk), is the basic semi-algebraic set

{x ∈ Rk |
∧

P∈A
sign(P (x)) ∈ ρ(P )}.

We often abbreviate R(σ,Rk) by R(σ), and we denote by Sign(A) the set of
realizable sign conditions Sign(A) = {σ ∈ {0, 1,−1}A | R(σ) 6= ∅}.

More generally, for any A ⊂ R[X1, . . . , Xk] and a A-formula Φ, we denote by
R(Φ,Rk), or simply R(Φ), the semi-algebraic set defined by Φ in Rk.
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2.1.2. Use of Infinitesimals. Later in the paper, we extend the ground field R by
infinitesimal elements. We denote by R〈ζ〉 the real closed field of algebraic Puiseux
series in ζ with coefficients in R (see [10] for more details). The sign of a Puiseux
series in R〈ζ〉 agrees with the sign of the coefficient of the lowest degree term in ζ.
This induces a unique order on R〈ζ〉 which makes ζ infinitesimal: ζ is positive and
smaller than any positive element of R. When a ∈ R〈ζ〉 is bounded from above
and below by some elements of R, limζ(a) is the constant term of a, obtained by
substituting 0 for ζ in a. We denote by R〈ζ1, . . . , ζn〉 the field R〈ζ1〉 · · · 〈ζn〉 and in
this case ζ1 is positive and infinitesimally small compared to 1, and for 1 ≤ i ≤ n−1,
ζi+1 is positive and infinitesimally small compared to ζi, which we abbreviate by
writing 0 < ζn � · · · � ζ1 � 1.

Let R′ be a real closed field containing R. Given a semi-algebraic set S in Rk,
the extension of S to R′, denoted Ext(S, R′), is the semi-algebraic subset of R′k

defined by the same quantifier free formula that defines S. The set Ext(S, R′) is
well defined (i.e. it only depends on the set S and not on the quantifier free formula
chosen to describe it). This is an easy consequence of the transfer principle (see for
instance [10]).

2.2. Homogeneous Case.

Notation 2. We denote by
• Qh the family of polynomials obtained by homogenizing Q with respect to

the variables Y , i.e.

Qh = {Qh | Q ∈ Q} ⊂ R[Y0, . . . , Y`, X1, . . . , Xk],

where Qh = Y 2
0 Q(Y1/Y0, . . . , Y`/Y0, X1, . . . , Xk),

• Φ a formula defining a P-closed semi-algebraic set V ,
• Ah the semi-algebraic set

(2.1) Ah =
⋃

Q∈Qh

{(y, x) | |y| = 1 ∧ Q(y, x) ≤ 0 ∧ Φ(x)},

• Wh the semi-algebraic set

(2.2) Wh =
⋂

Q∈Qh

{(y, x) | |y| = 1 ∧ Q(y, x) ≤ 0 ∧ Φ(x)}.

Let

(2.3) Ω = {ω ∈ Rm | |ω| = 1, ωi ≤ 0, 1 ≤ i ≤ m}.
Let Q = {Q1, . . . , Qm} and Qh = {Qh

1 , . . . , Qh
m}. For ω ∈ Ω we denote by

〈ω,Qh〉 ∈ R[Y0, . . . , Y`, X1, . . . , Xk] the polynomial defined by

(2.4) 〈ω,Qh〉 =
m∑

i=1

ωiQ
h
i .

For (ω, x) ∈ Ω × V , we denote by 〈ω,Qh〉(·, x) the quadratic form in Y0, . . . , Y`

obtained from 〈ω,Qh〉 by specializing Xi = xi, 1 ≤ i ≤ k.
Let B ⊂ Ω× S` × V be the semi-algebraic set defined by

(2.5) B = {(ω, y, x) | ω ∈ Ω, y ∈ S`, x ∈ V, 〈ω,Qh〉(y, x) ≥ 0}.

We denote by ϕ1 : B → F and ϕ2 : B → S` × V the two projection maps (see
diagram below).
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B
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The following key proposition was proved by Agrachev [1] in the unparametrized
situation, but as we see below it works in the parametrized case as well.

Proposition 2.1. The semi-algebraic set B is homotopy equivalent to Ah.

Proof. See [9]. �

We will use the following notation.

Notation 3. For a quadratic form Q ∈ R[Y0, . . . , Y`], we denote by index(Q) the
number of negative eigenvalues of the symmetric matrix of the corresponding bi-
linear form, i.e. of the matrix M such that Q(y) = 〈My, y〉 for all y ∈ R`+1 (here
〈·, ·〉 denotes the usual inner product). We also denote by λi(Q), 0 ≤ i ≤ ` the
eigenvalues of Q in non-decreasing order, i.e.

λ0(Q) ≤ λ1(Q) ≤ · · · ≤ λ`(Q).

For F = Ω× V as above we denote

Fj = {(ω, x) ∈ F | index(〈ω,Qh〉(·, x)) ≤ j}.
It is clear that each Fj is a closed semi-algebraic subset of F and we get a

filtration of the space F given by

F0 ⊂ F1 ⊂ · · · ⊂ F`+1 = F.

Lemma 2.2. The fibre of the map ϕ1 over a point (ω, x) ∈ Fj \ Fj−1 has the
homotopy type of a sphere of dimension `− j.

Proof. See [9]. �

For each (ω, x) ∈ Fj \ Fj−1, let L+
j (ω, x) ⊂ R`+1 denote the sum of the non-

negative eigenspaces of 〈ω,Qh〉(·, x). Since index(〈ω,Qh〉(·, x)) = j stays invariant
as (ω, x) varies over Fj \ Fj−1, L+

j (ω, x) varies continuously with (ω, x).
We denote by C the semi-algebraic set defined by the following. We first define

for 0 ≤ j ≤ ` + 1

(2.6) Cj = {(ω, y, x) | (ω, x) ∈ Fj \ Fj−1, y ∈ L+
j (ω, x), |y| = 1},

and finally we define

(2.7) C =
`+1⋃
j=0

Cj .

The following proposition proved in [9] relates the homotopy type of B to that
of C.

Proposition 2.3. The semi-algebraic set C defined by (2.7) is homotopy equivalent
to B.
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The following example which also appears in [9] illustrates Proposition 2.3.

Example 2.4. In this example m = 2, ` = 3, k = 0, and Qh = {Qh
1 , Qh

2} with

Qh
1 =− Y 2

0 − Y 2
1 − Y 2

2 ,

Qh
2 =Y 2

0 + 2Y 2
1 + 3Y 2

2 .

The set Ω is the part of the unit circle in the third quadrant of the plane,
and F = Ω in this case (since k = 0). In the following Figure 1, we display
the fibers of the map ϕ−1

1 (ω) ⊂ B for a sequence of values of ω starting from
(−1, 0) and ending at (0,−1). We also show the spheres, C ∩ ϕ−1

1 (ω), of di-
mensions 0, 1, and 2, that these fibers retract to. At ω = (−1, 0), it is easy to
verify that index(〈ω,Qh〉) = 3, and the fiber ϕ−1

1 (ω) ⊂ B is empty. Starting
from ω = (− cos(arctan(1)),− sin(arctan(1))) we have index(〈ω,Qh〉) = 2, and
the fiber ϕ−1

1 (ω) consists of the union of two spherical caps, homotopy equiva-
lent to S0. Starting from ω = (− cos(arctan(1/2)),− sin(arctan(1/2))) we have
index(〈ω,Qh〉) = 1, and the fiber ϕ−1

1 (ω) is homotopy equivalent to S1. Finally,
starting from ω = (− cos(arctan(1/3)),− sin(arctan(1/3))), index(〈ω,Qh〉) = 0,
and the fiber ϕ−1

1 (ω) stays equal to to S2.

Figure 1. Type change: ∅ → S0 → S1 → S2. ∅ is not shown.

Let Λ ∈ R[Z1, . . . , Zm, X1, . . . , Xk, T ] be the polynomial defined by

Λ = det(T · Id`+1 −MZ·Qh),

= T `+1 + C`T
` + · · ·+ C0,

where Z · Qh =
∑m

i=1 ZiQ
h
i , and each Ci ∈ R[Z1, . . . , Zm, X1, . . . , Xk].

Note that for (ω, x) ∈ Ω×Rk, the polynomial Λ(ω, x, T ), being the characteristic
polynomial of a real symmetric matrix, has all its roots real. It then follows from
Descartes’ rule of signs (see for instance [10]), that for each (ω, x) ∈ Ω × Rk,
index(〈ω,Qh〉(·, x)) is determined by the sign vector

(sign(C`(ω, x)), . . . , sign(C0(ω, x))).

More precisely, the number of sign variations in the sequence

sign(C0(ω, x)), . . . , (−1)isign(Ci(ω, x)), . . . , (−1)`sign(C`(ω, x)),+1

is equal to index(〈ω,Qh〉(·, x)).
Hence, denoting

(2.8) C = {C0, . . . , C`} ⊂ R[Z1, . . . , Zm, X1, . . . , Xk],

we have

Lemma 2.5. Fj is the intersection of F with a C-closed semi-algebraic set Dj ⊂
Rm+k, for each 0 ≤ j ≤ ` + 1. �
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3. Computing the Betti numbers

We now consider the algorithmic problem of computing all the Betti numbers of
a semi-algebraic set defined by a partly quadratic system of polynomials.

3.1. Summary of the main idea. The main idea behind the algorithm can be
summarized as follows.

By virtue of Proposition 2.1, in order to compute the Betti numbers of Ah, it
suffices to construct a cell complex, K(B, V ), whose associated space is homotopy
equivalent to the set B defined by (2.5). In order to do so, we first compute a
semi-algebraic triangulation, h : ∆ → F , such that as (ω, x) varies over the image
of any simplex σ ∈ ∆, the index(〈ω,Qh〉(·, x)) stays fixed, and we have a continuous
choice of an orthonormal basis,

{e0(σ, ω, x), . . . , e`(σ, ω, x)}

consisting of eigenvectors of the symmetric matrix associated to the quadratic form
〈ω,Qh〉(·, x).

Moreover, if index(〈ω,Qh〉(·, x)) = j for (ω, x) ∈ h(σ), then ϕ−1
1 (ω, x) can be

retracted to S` ∩ span(ej(σ, ω, x), . . . , e`(σ, ω, x)), and the flag of subspaces defined
by the orthonormal basis, {e0(σ, ω, x), . . . , e`(σ, ω, x)}, gives an efficient regular cell
decomposition of the sphere S` ∩ span(ej(σ, ω, x), . . . , e`(σ, ω, x)) into 2(` − j + 1)
cells, having two cells of each dimension from 0 to `− j (see Definition 3.3).

Now consider a pair of simplices, σ, τ ∈ ∆, with σ ≺ τ . The orthonormal basis
{e0(τ, ω, x), . . . , e`(τ, ω, x)}, defined for (ω, x) ∈ h(τ) might not have a continuous
extension to h(σ) on the boundary of h(τ). In particular, the cell decompositions
of the fibers, S` ∩ span(ej(σ, ω, x), . . . , e`(σ, ω, x)), over points in (ω, x) ∈ h(σ)
might not be compatible with those over neighboring points in h(τ). In order to
obtain a proper cell complex we need to compute a common refinement of the
cell decomposition of the sphere over each point in (ω, x) ∈ h(σ) induced by the
basis {e0(σ, ω, x), . . . , e`(σ, ω, x)}, and the one obtained as a limit of those over
certain points in h(τ) converging to (ω, x). We need to further subdivide h(σ) to
ensure that over each cell of this sub-division the combinatorial type of the above
refinements stays the same. Since a simplex σ ∈ ∆ can be incident on many
other simplices of ∆, we might in the above procedure need to simultaneously
refine cell decompositions of the sphere coming from many different simplices. In
order to ensure (for complexity reasons) that we do not have to simultaneously
refine cell decompositions coming from too many simplices, we thicken the simplices
infinitesimally and as a result only need to refine at most m+k cell decompositions
at a time.

Before describing the construction of K(B, V ) in more detail, we need some
preliminaries on triangulations.

3.2. Triangulations. We first need to recall a fact from semi-algebraic geometry
about triangulations of semi-algebraic sets, and then we define the notion of an
Index Invariant Triangulation and give an algorithm for computing it.

3.2.1. Triangulations of semi-algebraic sets. A triangulation of a closed and bound-
ed semi-algebraic set S is a simplicial complex ∆ together with a semi-algebraic
homeomorphism from |∆| to S. We always assume that the simplices in ∆ are open.
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Given such a triangulation we will often identify the simplices in ∆ with their images
in S under the given homeomorphism, and will refer to the triangulation by ∆.

Given a triangulation ∆, the cohomology groups Hi(S) are isomorphic to the
simplicial cohomology groups Hi(∆) of the simplicial complex ∆ and are in fact
independent of the triangulation ∆ (this fact is classical over R; see for instance
[10] for a self-contained proof in the category of semi-algebraic sets).

We call a triangulation h1 : |∆1| → S of a semi-algebraic set S, to be a refinement
of a triangulation h2 : |∆2| → S if for every simplex σ1 ∈ ∆1, there exists a simplex
σ2 ∈ ∆2 such that h1(σ1) ⊂ h2(σ2).

Let S1 ⊂ S2 be two compact semi-algebraic subsets of Rk. We say that a semi-
algebraic triangulation h : |∆| → S2 of S2, respects S1 if for every simplex σ ∈ ∆,
h(σ) ∩ S1 = h(σ) or ∅. In this case, h−1(S1) is identified with a sub-complex of ∆
and h|h−1(S1) : h−1(S1) → S1 is a semi-algebraic triangulation of S1. We will refer
to this sub-complex by ∆|S1 .

We will need the following theorem which can be deduced from Section 9.2 in
[14] (see also [10]).

Theorem 3.1. Let S1 ⊂ S2 ⊂ Rk be closed and bounded semi-algebraic sets, and
let hi : ∆i → Si, i = 1, 2 be semi-algebraic triangulations of S1, S2. Then there
exists a semi-algebraic triangulation h : ∆ → S2 of S2, such that ∆ respects S1, ∆
is a refinement of ∆2, and ∆|S1 is a refinement of ∆1.

Moreover, there exists an algorithm which computes such a triangulation with
complexity bound (sd)O(1)k

, where s is the number of polynomials used in the defi-
nition of S1 and S2, and d is a bound on their degrees.

3.2.2. Parametrized eigenvector basis. Let M(ω, x) be the symmmetric matrix as-
sociated to the quadratic form 〈ω,Qh〉(·, x) defined by (2.4). When M(ω, x) has
simple eigenvalues for all possible choice of ω, x in some domain, there is a finite
choice of orthonormal bases consisting of eigenvectors of M(ω, x). However, when
M(ω, x) has multiple eigenvalues, the number of choices of orthonormal basis of
eigenvectors is infinite. In order to avoid the problem caused by the latter situation
we are going to use an infinitesimal deformation as follows.

Let 0 < ε � 1 be an infinitesimal and

(3.1) Mε(ω, x) = (1− ε)M(ω, x) + ε diag(0, 1, 2, . . . , `).

Note that for every (ω, x) ∈ Ω × Rk the eigenvalues of Mε(ω, x) in R〈ε〉 are dis-
tinct and nonzero. Indeed, replace ε by t in the definition of Mε(ω, x) and obtain
Mt(ω, x). Observe that the statement is true if t = 1, since the matrix M1(ω, x)
has distinct eigenvalues. Thus, the set of t’s in the algebraically closed field R[i]
for which Mt(ω, x) has ` + 1 distinct eigenvalues is non-empty, constructible and
contains a open subset, since the condition of having distinct eigenvalues is a stable
condition. Thus, there exists ε0 > 0, such that for all t ∈ (0, ε0), Mt(ω, x) has `+1
distinct eigenvalues, and hence it is also the case for the infinitesimal ε.

Denote by Λ(Mε(ω, x, T )) = det(T · Id`+1 − Mε(ω, x)) the characteristic poly-
nomial of Mε(ω, x). Let A ⊂ R[Z1, . . . , Zm, X1, . . . , Xk] be a set of polynomials
containing C (see (2.8)) and such that for every sign condition ρ ∈ {0, 1,−1}A and
every (ω, x) ∈ R(ρ,Ω × Rk), the Thom encodings of the roots of Λ(Mε(ω, x), T )
stay fixed, as well as the list of the non-singular minors of size ` in Mε(ω, x, T ) at
each root of Λ(Mε(ω, x), T ).
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Then choosing a non-vanishing minor and using Cramer’s rule, we find (` + 1)2

rational functions in the variables u, ω, x, T which give for every (u, ω, x) ∈ R(ρ,Ω×
Rk+1) the coordinates of an eigenvector vε(u, ω, x, tε) associated to the eigenvalue
tε (where u denotes the co-ordinate left out in the non-singular `× ` minor chosen
for this eigenvalue in the application of Cramer’s rule). We denote by eε(ω, x, tε)
the unit eigenvector vε(1, ω, x, tε)/‖vε(1, ω, x, tε)‖ when tε is an eigenvalue.

If the eigenvalues λε,0 < . . . < λε,` are in increasing order, we define

eε,i(ω, x) = eε(ω, x, λε,i).

Note that for every (ω, x) ∈ Ω× Rk

(lim
ε

(eε,0(ω, x)), . . . , lim
ε

(eε,`(ω, x)))

is an orthonormal basis consisting of eigenvectors of M(ω, x).

3.2.3. Index Invariant Triangulations. We now define a certain special kind of semi-
algebraic triangulation of F that will play an important role in our algorithm.

Definition 3.2. (Index Invariant Triangulation) An index invariant triangulation
of F is a triangulation

h : ∆ → F

of F , which respects all the realization of the weak sign conditions on P and A
(see definition in 3.2.2). As a consequence, h respects the subsets FI for ev-
ery I ⊂ Q. Moreover, index(〈ω,Qh〉(·, x)), stays invariant as (ω, x) varies over
h(σ), and the maps eε,0(σ), . . . , eε,` sending (ω, x) ∈ h(σ) to the orthonormal
basis eε,0(ω, x), . . . , eε,`(ω, x), are uniformly defined. Note also that for every
(ω, x) ∈ h(σ),

{ej(σ, ω, x)), . . . , e`(σ, ω, x)) = {lim
ε

(eε,j(ω, x)), . . . , lim
ε

(eε,`(ω, x))}

is a basis for the linear subspace L+(ω, x) ⊂ R`+1, (which is the orthogonal com-
plement to the sum of the eigenspaces corresponding to the first j eigenvalues of
〈ω,Qh〉(·, x)).

We now describe an algorithm for computing index invariant triangulations.

Algorithm 1 (Index Invariant Triangulation).

Input
• A family of polynomials, Qh = {Qh

1 , . . . , Qh
m} ⊂ R[Y0, . . . , Y`, X1, . . . , Xk],

where each Qh
i is homogeneous of degree 2 in the variables Y0, . . . , Y`, and

of degree at most d in X1, . . . , Xk,
• another family of polynomials, P ⊂ R[X1, . . . , Xk], with deg(P ) ≤ d, P ∈
P,#(P) = s,

• a P-closed formula Φ defining a bounded P-closed semi-algebraic set V ⊂
Rk.

Output : an index invariant triangulation,

h : ∆ → F

of F and for each simplex σ of ∆, the rational functions eε,0(σ), . . . , eε,`(σ).
Procedure
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Step 1. Let ε > 0 be an infinitesimal and let Z = (Z1, . . . , Zm). Let Mε be the
symmetric matrix corresponding to the quadratic form (in Y0, . . . , Y`) defined by

Mε(X, Z) = (1− ε)(Z1Q
h
1 + · · ·+ ZmQh

m) + εQ̄,

where Q̄ =
∑`

i=0 iY 2
i . Compute the polynomials

Λ(Z,X, T ) =det(T · Id`+1 −Mε) = T `+1 + C`T
` + · · ·+ C0.(3.2)

Step 2. Using Algorithm 11.19 in [10] (Restricted Elimination), compute a family of
polynomials A′ ⊂ R[ε][Z1, . . . , Zm, X1, . . . , Xk] such that for each ρ ∈ Sign(A′), and
(ω, x) ∈ R(ρ,Ω×Rk)∩F the Thom encodings of the roots of Λ(ω, x, T ) in R〈ε〉 and
the number of non-negative roots of Λ(ω, x, T ) in R〈ε〉 stay fixed, as well as the list
of the non singular minors of size ` in Mε(ω, x, T ) at each root of Λ(Mε(ω, x), T ).
Let A ⊂ R[Z1, . . . , Zm, X1, . . . , Xk] be the set of all coefficients of the polynomials
in A′, when each of them is written as a polynomial in ε.

Step 3. Using the algorithm implicit in Theorem 3.1 (Triangulation), compute a
semi-algebraic triangulation,

h : ∆ → F,

respecting all the realizations of the weak sign conditions on A ∪ P.
Step 4. For each simplex σ of ∆, output the maps eε,0(σ), . . . , eε,`(σ).

Complexity Analysis: The complexity of the algorithm is dominated by the
complexity of Step 3, which is (s`md)2

O(m+k)
. �

Proof of Correctness: It follows from the fact that the triangulation respects
all weak sign conditions on A that index(〈ω,Qh〉(·, x)) is constant for (ω, x) ∈ h(σ)
for any simplex σ of ∆,

Since eε,0(σ, ω, x), . . ., eε,`(σ, ω, x) are orthonormal, so are e0(σ, ω, x), . . .,
e`(σ, ω, x) for every (ω, x) ∈ h(σ). Moreover, letting j = index(〈ω,Qh〉(·, x)) for
(ω, x) ∈ h(σ), we have that eε,j(σ, ω, x), . . . , eε,`(σ, ω, x) span the sum of the non-
negative eigenspaces of Mε(ω, x), their images under the limε map will span the
sum of the non-negative eigenspaces of M(ω, x). �

3.3. Computing Betti numbers in the homegeneous union case. Now that
we obtained an Index Invariant Triangulation ∆, our next goal is to construct a cell
complex K(B, V ) homotopy equivalent to B (see Notation 2.5) that will be used to
compute the Betti numbers of Ah (see Notation 2). The cell complex K(B, V ) is
obtained by glueing together certain regular cell complexes, K(σ), where σ ∈ ∆.

3.3.1. Definition of C(∆). Let 1 � ε0 � ε1 � · · · � εm+k > 0 be infinitesimals.
For τ ∈ ∆, we denote by Dτ the subset of τ̄ defined by

Dτ = {v ∈ τ̄ | dist(v, θ) ≥ εdim(θ) for all θ ≺ σ},

where dist refers to the ordinary Euclidean distance. Now, let σ ≺ τ be two
simplices of ∆. We denote by Dσ,τ the subset of τ̄ defined by

Dσ,τ = {v ∈ τ̄ | dist(v, σ) ≤ εdim(σ), and dist(v, θ) ≥ εdim(θ) for all θ ≺ σ}.

Note that
|∆| =

⋃
σ∈∆

Dσ ∪
⋃

σ,τ∈∆,σ≺τ

Dσ,τ .
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τ

σ1

σ2

Figure 2. The complex ∆.

Dσ1,σ2

Dσ2

Dσ1,σ2 ∩Dσ2

Dτ

Dσ2,τ

Dσ1,τ

Dτ ∩Dσ1,τ ∩Dσ2,τ

Dτ ∩Dσ2,τ

Figure 3. The corresponding complex C(∆).

Also, observe that the various Dτ ’s and Dσ,τ ’s are all homeomorphic to closed
balls, and moreover all non-empty intersections between them also have the same
property. Thus, the union of the Dτ ’s and Dσ,τ ’s together with the non-empty
intersections between them form a regular cell complex, C(∆), whose underlying
topological space is |∆| (see Figures 2 and 3).

3.3.2. Definition of K(σ) and K(σ, τ) where σ, τ are simplices of ∆. We now as-
sociate to each Dσ (respectively, Dσ,τ ) a regular cell complex, K(σ), (respectively,
K(σ, τ)) homotopy equivalent to ϕ−1

1 (h(Dσ)) (respectively, ϕ−1
1 (h(Dσ,τ )).

For each σ ∈ ∆, and (ω, x) ∈ h(σ), the orthonormal basis

{e0(σ, ω, x)), . . . , e`(σ, ω, x)}
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determines a complete flag of subspaces, F(σ, ω, x), consisting of

F 0(σ, ω, x) =0,

F 1(σ, ω, x) =span(e`(σ, ω, x)),

F 2(σ, ω, x) =span(e`(σ, ω, x), e`−1(σ, ω, x)),
...

F `+1(σ, ω, x) =R`+1.

Definition 3.3. For 0 ≤ j ≤ `, let c+
j (σ, ω, x) (respectively, c−j (σ, ω, x)) denote the

(` − j)-dimensional cell consisting of the intersection of the F `−j+1(σ, ω, x) with
the unit hemisphere in R`+1 defined by

{y ∈ S` | 〈y, ej(σ, ω, x)〉 ≥ 0}

(respectively, {y ∈ S` | 〈y, ej(σ, ω, x)〉 ≤ 0} ).

The regular cell complex K(σ) (as well as K(σ, τ)) is defined as follows.
For each v ∈ |∆| and σ ∈ ∆, let v(σ) ∈ |σ| denote the point of |σ| closest to v.
The cells of K(σ) are

{(y, ω, x) | y ∈ c±j (σ, ω, x), (ω, x) ∈ h(c)},

where index(〈ω,Qh〉(·, x)) ≤ j ≤ `, and c ∈ C(∆) is either Dσ itself, or a cell
contained in the boundary of Dσ.

Similarly, the cells of K(σ, τ) are

{(y, ω, x) | y ∈ c±j (σ, h(v(σ))), v = h−1(ω, x) ∈ c},

where index(〈ω,Qh〉(·, x)) ≤ j ≤ `, c ∈ C(∆) is either Dσ,τ itself, or a cell contained
in the boundary of Dσ,τ .

3.3.3. Definition of K(D), where D is a cell of C(∆). Our next step is to obtain cel-
lular subdivisions of each non-empty intersection amongst the spaces associated to
the complexes constructed above, and thus obtain a regular cell complex, K(B, V ),
whose associated space, |K(B, V )|, will be shown to be homotopy equivalent to B
(Proposition 3.6 below).

First notice that |K(σ′, τ ′)| (respectively, |K(σ)|) has a non-empty intersection
with |K(σ, τ)| only if Dσ′,τ ′ (respectively, Dσ′) intersects Dσ,τ .

Let D be some non-empty intersection amongst the Dσ’s and Dσ,τ ’s, that is D
is a cell of C(∆). Then D ⊂ |τ | for a unique simplex τ ∈ ∆, and

D = Dσ1,τ ∩ · · · ∩Dσp,τ ∩Dτ ,

with σ1 ≺ σ2 ≺ · · · ≺ σp ≺ σp+1 = τ and p ≤ m + k.
For each i, 1 ≤ i ≤ p+1, let {f0(σi, v), . . . , f`(σi, v)} denote a orthonormal basis

of R`+1 where

fj(σi, v) = lim
t→0

ej(σi, h(tv(σi) + (1− t)v(σ1))), 0 ≤ j ≤ `,
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and let F(σi, v) denote the corresponding flag, consisting of

F 0(σi, v) =0,

F 1(σi, v) =span(f`(σi, v)),

F 2(σi, v) =span(f`(σi, v), f`−1(σi, v)),
...

F `+1(σi, v) =R`+1.

We thus have p + 1 different flags,

F(σ1, v), . . . ,F(σp+1, v),

and these give rise to p + 1 different regular cell decompositions of S`.

F(σ1, ω)

F(σ2, ω)

Figure 4. The cell complex K′(D, v).

There is a unique smallest regular cell complex, K′(D, v), that refines all these cell
decompositions, whose cells are the following. Let L ⊂ R`+1 be any j-dimensional
linear subspace, 0 ≤ j ≤ ` + 1, which is an intersection of linear subspaces
L1, . . . , Lp+1, where Li ∈ F(σi, v), 1 ≤ i ≤ p + 1 ≤ m + k + 1. The elements of
the flags, F(σ1, v), . . . ,F(σp+1, v) of dimensions j + 1, partition L into polyhedral
cones of various dimensions. The intersections of these cones with S`, over all such
subspaces L ⊂ R`+1, are the cells of K′(D, v). Figure 4 illustrates the refinement
described above in case of two flags in R3. We denote by K(D, v) the sub-complex
of K′(D, v) consisting of only those cells included in L+(σ1, h(v(σ1))) ∩ S`.

We now triangulate h(D) using the algorithm implicit in Theorem 3.1 (Triangu-
lation), so that the combinatorial type of the arrangement of flags,

F(σ1, v), . . . ,F(σp+1, v)
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and hence the combinatorial type of the cell decomposition K′(D, v), stays invariant
over the image, hD(θ), of each simplex, θ, of this triangulation.

Note that in case the eigenvalues of M(h(v)) are all distinct, we have that
F(σ1, v) = · · · = F(σp+1, v) since the vectors

f0(σi, v), . . . , f`(σi, v)

is an orthonromal basis of eigen-vectors with each fj(σi, v) uniquely defined upto
sign. Thus the cell decompositions of S` induced by the flags F(σ1, v) = · · · =
F(σp+1, v) are identical to each other and hence also to K′(D, v).

However, if the eigenvalues of M(h(v)) are not all distinct then the refinement
K′(D, v) can be non-trivial. For example suppose we have that λα(h(v)) = · · · =
λβ(h(v)), 0 ≤ α < β ≤ `. Then in general the sub-flags consisting of subspaces
F`+1−β(σi, v) ⊂ · · · ⊂ F`+1−α(σi, v) and F`+1−β(σj , v) ⊂ · · · ⊂ F`+1−α(σj , v) will
in general not coincide for i 6= j.

In this case the combinatorial type of the refinement K′(D, v) is determined by
the dimensions of the intersections amongst the subspaces

F`+1−β(σi, v), . . . , F`+1−α(σi, v), 1 ≤ i ≤ p + 1.

The dimensions of these intersections are determined by the minimal linear depen-
dencies amongst the vectors fi(σj , v), α ≤ i ≤ β, 1 ≤ j ≤ p + 1, and these are in
turn determined by the ranks of matrices with at most ` + 1 rows of the following
form. The rows of the matrix consists of at most p + 1 blocks, with the j-th block
of the shape fα(σj , v), . . . , fαj

(σj , v), where α ≤ αj ≤ β. (Note that every row of
the above matrix consists of rational functions evaluated at a single root λα(h(v))
of Λ(M(h(v)), T ), and this root is common to all the rows. This fact is important
since in order to perform algebraic computations on the entries of the matrix we
need to eliminate just one variable corresponding to this single root.)

Introducing an infinitesimal δ such that 1 � δ � ε > 0, we note that for each
0 ≤ j ≤ `,

fj(σi, h
−1(ω, x)) = lim

δ
eε,j(h(δv(σi) + (1− δ)v(σ1)))

= lim
t→0

ej(σi, h(tv(σi) + (1− t)v(σ1))).

We consider all matrices with at most ` + 1 rows consisting of blocks of the
shape, fα(σj , v), . . . , fαj (σj , v), with 0 ≤ α ≤ αj ≤ β ≤ `, 0 ≤ j ≤ m + k, and
λα(h(v)) = · · · = λβ(h(v)). The number of such matrices is clearly bounded by
`O(m+k).

Using the uniform formula defining eε,j(σi) and Proposition 14.7 of [10], and
Algorithm 8.16 in [10] (for computing determinants over an arbitrary domain), we
compute a family of polynomials in R[Z1, . . . , Zm, X1, . . . , Xk] such that over each
sign consition of this family the rank of the given matrix stays fixed.

Let

AD ⊂ R[Z1, . . . , Zm, X1, . . . , Xk]

be the union of all these sets of polynomials.
The combinatorial type of the cell decomposition K′(D, v) will stay invariant

as (ω, x) varies over each connected component of any realizable sign condition on
AD ⊂ R[Z1, . . . , Zm, X1, . . . , Xk].
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Given the degree bounds on the rational functions defining {eε,0(σ), . . . , eε,`(σ)},
(ω, x) ∈ h(σ), and the complexity of Algorithm 8.16 in [10], it is clear that the num-
ber and degrees of the polynomials in the family AD are bounded by (s`md)2

O(m+k)
.

We then use the algorithm implicit in Theorem 3.1 (Triangulation), with AD as
input, to obtain the required triangulation.

The closures of the sets

{(y, ω, x) | y ∈ c ∈ K(D,h−1(ω, x)), (ω, x) ∈ h(hD(θ))}
form a regular cell complex which we denote by K(D).

The following proposition gives an upper bound on the size of the complex K(D).
We use the notation introduced in the previous paragraph.

Proposition 3.4. For each (ω, x) ∈ h(D), the number of cells in K(D,h−1(ω, x))
is bounded by `O(m+k). Moreover, the number of cells in the complex K(D) is
bounded by (s`md)2

O(m+k)
.

Proof. The first part of the proposition follows from the fact that there are at most
(` + 1)m+k+1 choices for the linear space L and the number of (j − 1) dimensional
cells contained in L is bounded by 2m+k (which is an upper bound on the number of
full dimensional cells in an arrangement of at most m+k hyperplanes). The second
part is a consequence of the complexity estimate in Theorem 3.1 (Triangulation)
and the bounds on number and degrees of polynomials in the family AD stated
above. �

3.3.4. Definition of K(B, V ). Note that there is a homeomorphism

iD,σi
: |K(σi, τ)| ∩ ϕ−1

1 (h(D)) → |K(D)|
which takes each cell of |K(σi, τ)| ∩ϕ−1

1 (h(D)) to a union of cells in K(D). We use
these homeomorphisms to glue the cell complexes K(σi, τ) together to form the cell
complex K(B, V ).

Definition 3.5. The complex K(B, V ) is the union of all the complexes K(D)
constructed above, where we use the maps iD,σi to make the obvious identifications.
It is clear that K(B, V ) so defined is a regular cell complex.

We have

Proposition 3.6. |K(B, V )| is homotopy equivalent to B.

Proof. We have from Proposition 2.3 that the semi-algebraic set C ⊂ B (see (2.7) for
definition) is homotopy equivalent to B. We now prove that |K(B, V )| is homotopy
equivalent to C which will prove the proposition.

Let Xm+k = |K(B, V )| and for 0 ≤ j ≤ m + k − 1, let Xj = limεj
Xj+1.

It follows from an application of the Vietoris-Smale theorem [23] that for each
j, 0 ≤ j ≤ m + k− 1, Ext(Xj ,R〈ε0, . . . , εj〉) is homotopy equivalent to Xj+1. Also,
by construction of K(B, V ), we have that X0 = limε0 |K(B, V )| = C, which proves
the proposition. �

We also have

Proposition 3.7. The number of cells in the cell complex K(B, V ) is bounded by
(s`md)2

O(m+k)
.

Proof. The proposition is a consequence of Proposition 3.4 and the fact that the
number of cells in the complex C(∆) is bounded by (s`md)2

O(m+k)
. �
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3.3.5. Algorithm for computing the Betti numbers in the homogeneous union case.
We now describe formally an algorithm for computing the Betti numbers of Ah

using the complex K(B, V ) described above.

Algorithm 2 (Betti numbers, homogeneous union case).
Input

• A family of polynomials Qh ⊂ R[Y0, . . . , Y`, X1, . . . , Xk], homogeneous of
degree 2 in the variables Y0, . . . , Y`, degX(Qh) ≤ d, Qh ∈ Qh,#(Qh) = m,

• another family of polynomials P ⊂ R[X1, . . . , Xk], with degX(P ) ≤ d, P ∈
P,#(P) = s,

• a P-closed formula Φ(x) defining a bounded P-closed semi-algebraic set
V ⊂ Rk.

Output
• a description of the cell complex K(B, V ),
• the Betti numbers of Ah where the semi-algebraic set Ah is defined by

Ah =
⋃

Qh∈Qh

{(y, x) | |y| = 1 ∧ Q(y, x) ≤ 0 ∧ Φ(x)}.

Procedure

Step 1. Call Algorithm 1 (Index Invariant Triangulation) with input Qh,P and Φ
and compute h and ∆.

Step 2. Construct the cell complex C(∆) (following its definition given in Section
3.3).

Step 3. For each cell D ∈ C(∆), compute, using the algorithm implicit in Theorem
3.1 (Triangulation), the cell complex K(D).

Step 4. Compute a description of K(B, V ), including the matrices corresponding to
the differentials in the complex C•(K(B, V )).

Step 5. Compute the Betti numbers of the complex C•(K(B, V )) using linear alge-
bra.

Complexity Analysis: The complexity of the algorithm is (s`md)2
O(m+k)

, using
the complexity of Algorithm 1. �

Proof of Correctness: The correctness of the algorithm is a consequence of
the correctness of Algorithm 1 and Proposition 3.6. �

3.4. Computing Betti numbers in the homogeneous intersection case.

3.4.1. Definition of K(BI , V ). We now define a subcomplex of K(B, V ) correspond-
ing to a subset I ⊂ [m].

We first extend a few definitions from Section 2.
For each subset I ⊂ [m], we denote by Qh

I the subset of Qh of polynomials with
indices in I and by ΩI the subset of

Ω = {ω ∈ Rm | |ω| = 1, ωi ≤ 0, 1 ≤ i ≤ m},

obtained by setting the coordinates corresponding to the elements of [m] \ I to 0.
More precisely,

ΩI = {ω ∈ Rm | |ω| = 1, ωi ≤ 0, for i ∈ I, and ωi = 0 for i ∈ [m] \ I}.
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Note that we have a natural inclusion ΩI ↪→ Ω[m] = Ω.
Similarly, we denote by FI ⊂ F = F[m], the set ΩI × V , and denote by BI ⊂

ΩI × S` × V the semi-algebraic set defined by

BI = {(ω, y, x) | ω ∈ ΩI , y ∈ S`, x ∈ V, 〈ω,Qh〉(y, x) ≥ 0}.
We denote by ϕ1,I : BI → FI and ϕ2,I : BI → S` × V the two projection maps.
Now we define K(BI , V ) for every I ⊂ [m].

Definition 3.8. The complex K(BI , V ) is the union of all the complexes K(D)
in C(∆I) , where C(∆I) is the subcomplex of C(∆) consisting of cells contained in
∆I = h−1(FI).

Using proofs similar to the ones give for K(B, V ), we have

Proposition 3.9. |K(BI , V )| is homotopy equivalent to BI . �

Algorithm 3 (Computing the collection of K(BI , V ), I ⊂ [1 . . . , m]).

Input
• Qh = {Qh

1 , . . . , Qh
m} ⊂ R[Y0, . . . , Y`, X1, . . . , Xk], where each Qh

i is homo-
geneous of degree 2 in the variables Y0, . . . , Y`, and of degree at most d in
X1, . . . , Xk,

• P ⊂ R[X1, . . . , Xk], with deg(P ) ≤ d, P ∈ P,
• a P-closed formula Φ(x) defining a bounded P-closed semi-algebraic set

V ⊂ Rk.
Output

• For each subset I ⊂ [m], a description of the cell complex K(BI , V ).
• For each I ⊂ J ⊂ [m], a homomorphism

iI,J : C•(BI , V ) → C•(BJ , V )

inducing the inclusion homomorphism iI,J∗ : H∗(BI , V ) → H∗(BJ , V ).
Procedure

Step 1. Call Algorithm 2 to compute K(B, V ).
Step 2. Give a description of K(BI , V ) for each I ⊂ [m] and compute the matrices
corresponding to the differentials in the complex C•(K(BI , V )).

Step 3. For I ⊂ J ⊂ [m] with compute the matrices for the homomorphisms of
complexes,

iI,J : C•(K(BI , V )) → C•(K(BJ , V ))
in the following way.

The complex K(BI , V ) is a subcomplex of K(BJ , V ) by construction. Compute
the matrix for the inclusion homomorphism,

iI,J : C•(K(BI , V )) → C•(K(BJ , V ))

and output the matrix for the homomorphism.

Complexity Analysis: The complexity of the algorithm is (s`md)2
O(m+k)

, using
the complexity of Algorithm 1. �

Proof of Correctness: The correctness of the algorithm is a consequence of
the correctness of Algorithm 1 and Proposition 3.6. �
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3.4.2. Algorithm for computing the Betti numbers in the homogeneous intersection
case. Let Wh ⊂ S` × Rk be the semi-algebraic set defined by

Wh =
⋂

Q∈Qh

{(y, x) | |y| = 1 ∧Q(y, x) ≤ 0 ∧ Φ(x)},

using Notation 2.
Then

(3.3) H∗(Wh) ∼= H∗(Tot•(N•,•(K(B, V )))),

where N•,•(K(B, V )) is the bi-complex

(3.4) Np,q(K(B, V )) =
⊕

J⊂[m],#(J)=p+1

Cq(K(BJ , V )),

with the horizontal and vertical differentials defined as follows. The vertical differ-
entials

(3.5) dp,q : Np,q(K(B, V )) → Np,q−1(K(B, V )),

are induced by the boundary homomorphisms,

∂q : Cq(K(BI , V )) → Cq−1(K(BJ , V )),

and the horizontal differentials

(3.6) δp,q : Np,q(K(B, V )) → Np+1,q(K(B, V ))

are defined by

(δp,q(ϕ))J =
∑
j∈J

iJ\{j},J(ϕJ\{j}),

where J ⊂ [m],#(J) = p + 1,

ϕ ∈ Np,q(K(B, V )) =
⊕

J⊂[m],#(J)=p+1

C•(K(BJ , V )),

and for I ⊂ J ⊂ [m]

iI,J : C•(K(BI , V )) → C•(K(BJ , V ))

denotes the homomorphism induced by inclusion.
For a proof of (3.3) see [6].
Using (3.3), we are able to compute the Betti numbers of Wh using only linear

algebra, once we have computed the various complexes K(BI , V ), as well as the ho-
momorphisms iI,J for all I ⊂ J ⊂ [m] using Algorithm 3. Moreover, the complexity
of this algorithm is asymptotically the same as that of Algorithm 3.

We now formally describe this algorithm.

Algorithm 4 (Betti numbers, homogeneous intersection case).

Input
• A family of polynomials, Qh = {Qh

1 , . . . , Qh
m} ⊂ R[Y0, . . . , Y`, X1, . . . , Xk],

homogeneous of degree 2 with respect to Y0, . . . , Y`, degX(Qh) ≤ d, Qh ∈
Qh,

• another family, P ⊂ R[X1, . . . , Xk] with degX(P ) ≤ d, P ∈ P,#(P) = s,
• a formula Φ defining a bounded P-closed semi-algebraic set V .
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Output the Betti numbers bi(Wh), where Wh is the semi-algebraic set defind by

Wh =
⋂

Qh∈Qh

{(y, x) | |y| = 1 ∧ Qh(y, x) ≤ 0 ∧ Φ(x)}.

Procedure

Step 1. Call Algorithm 3 (Computing the collection of K(BI , V )) to compute for
each I ⊂ J ⊂ [m], the complex C•(K(BI , V )) using the natural basis consisting of
the cells of K(BI , V ) of various dimensions, as well as the matrices in this basis for
the inclusion homomorphisms

iI,J : C•(K(BI , V )) → C•(K(BJ , V )).

Step 2. Using the data from the previous step, compute matrices corresponding to
the differentials in the complex, Tot•(N•,•(K(B, V ))), where N•,•(K(B, V )) is the
bi-complex described by (3.4)-(3.6).

Step 3. Compute, using linear algebra subroutines

bi(Wh) = Hi((Tot•(N•,•(K(B, V ))))).

Complexity Analysis: The complexity of the algorithm is dominated by the first
step, whose complexity is (s`md)2

O(m+k)
, using the complexity of Algorithm 3. �

Proof of Correctness: The correctness of the algorithm is a consequence of
the correctness of Algorithm 3 and (3.3). �

3.5. Computing Betti numbers of general P ∪Q-closed sets. Let S ⊂ R`+k

be a semi-algebraic set defined by a P ∪Q closed formula Φ.
Let Σ̄Q denote the set of all possible weak sign conditions on the family Q, i.e.

Σ̄Q = {0, {0, 1}, {0,−1}}Q.

In the last section we defined a bi-complex N•,•(K(B, V )) whose total complex
has homology groups isomorphic to these of the semi-algebraic set Wh = R(ρh∩φ),
where ρ ∈ Σ̄Q is given by ρ(Qi) = {0,−1} for each i, 1 ≤ i ≤ m, and ρh is
obtained from ρ by replacing each Qi ∈ Q by Qi

h. We now generalize this definition
to the case of multiple weak sign conditions. More precisely, given a set Σ =
{ρ1, . . . , ρN} ⊂ Σ̄Q, we define a corresponding bi-complex having properties similar
to that of N•,•(K(B, V )), but now with respect to Σ instead of a single weak sign
condition ρ.

Without loss of generality we can write Φ in the form

Φ =
∨

ρ∈Σ̄Q

ρ ∧ φρ,

where each φρ is a P-closed formula.
Let

Wρ =R(ρ ∧ φρ,R`+k),

Vρ =R(φρ,Rk).

Let 1 � ε > 0 be an infinitesimal, and let
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Q0 =ε2(Y 2
1 + · · ·+ Y 2

` )− 1,

P0 =ε2(X2
1 + · · ·+ X2

k)− 1,

and Sb ⊂ R〈ε〉`+k be the semi-algebraic set defined by

Sb =
m⋂

i=0

{(y, x) | Q0(y) ≤ 0 ∧ P0(x) ≤ 0 ∧ Φ(x)}.

We denote by Φb (resp. φρ,b) the formula (Q0(y) ≤ 0) ∧ (P0(x) ≤ 0) ∧ Φ (resp.
(P0(x) ≤ 0) ∧ φρ.)

Let Sh
b ,Wh

ρ,b ⊂ S` × R〈ε〉k be the sets defined by Φb and ρ ∧ (Qh
0 ≤ 0) ∧ φρ,b

respectively on S` × R〈ε〉k after replacing each Qi ∈ Q by Qh
i in the formulas Φb

and ρ.
Let

Vρ,b = R(φρ,b,R〈ε〉k).

Let Qh
± = {±Qh | Qh ∈ Qh}, and let K(B, V ) denote the complex constructed by

Algorithm 3, with input the families of polynomials Qh
±, Pb = P ∪ {P0}, and the

semi-algebraic subset V = Bk(0, 1/ε).
It follows from the correctness of Algorithm 4 that for each ρ ∈ Σ̄Q, there exists

Jρ ⊂ Qh
±, and a subcomplex, K(BJρ

, Vρ,b) ⊂ K(B, V ), such that

H∗(Tot•(N•,•(K(BJρ
, Vρ,b))) ∼= H∗(Wh

ρ,b).

More generally, for any Σ = {ρ1, . . . , ρN} ⊂ Σ̄Q, there exists a subcomplex,
K(BJρ

, Vρ1,b ∩ · · ·VρN ,b) ⊂ K(B, V ), such that the homology groups of the complex

(3.7) CΣ,• = Tot•(N•,•(K(BJρ , Vρ1,b ∩ · · ·VρN ,b))

are naturally isomorphic to those of Wh
ρ,b, where ρ is the common refinement of

ρ1, . . . , ρN defined by

(3.8) ρ(P ) =
N⋂

i=0

ρi(P )

for each P ∈ A. Moreover, for Σ ⊂ Σ′ ⊂ Σ̄Q, there exists a natural homomorphism,

iΣ,Σ′ : CΣ′,• → CΣ,•

such that the induced homomorphism,

iΣ,Σ′,∗ : H∗(CΣ′,•) → H∗(CΣ,•)

is the one induced by the inclusion⋂
ρ∈Σ′

Wh
ρ,b ↪→

⋂
ρ∈Σ

Wh
ρ,b.

Definition 3.10. Let C•(Φ) denote the complex defined by

(3.9) C•(Φ) = Tot•(N•,•(Φ)),

where

(3.10) Np,q(Φ) =
⊕

Σ⊂Σ̄Q,#(Σ)=p+1

CΣ,q.
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The vertical and horizontal homomorphisms in the complex N•,•(Φ) are induced
by the the differentials in the individual complexes CΣ,• and the inclusion homo-
morphisms iΣ,Σ′ respectively.

By the properties of the complexes CΣ,• stated above and the exactness of the
generalized Mayer-Vietoris sequence, we obtain

Theorem 3.11.
H∗(Sh

b ) ∼= H∗(C•(Φ)).

We are now in a position to describe formally the algorithm for computing all
the Betti numbers of a given P ∪Q-closed set S.

3.5.1. Description of the algorithm in the general case.

Algorithm 5 (Betti numbers, general case).
Input

• A family of polynomials Q = {Q1, . . . , Qm} ⊂ R[Y1, . . . , Y`, X1, . . . , Xk],
with degY (Qi) ≤ 2,degX(Qi) ≤ d, 1 ≤ i ≤ `,

• another family of polynomials P ⊂ R[X1, . . . , Xk] with deg(P ) ≤ d, P ∈ P,
• a Q∪ P-closed semi-algebraic set S defined by a Q∪ P-closed formula Φ.

Output the Betti numbers b0(S), . . . , bk+`−1(S).
Procedure

Step 1. Define Q0 = ε2
0(Y

2
1 + . . . + Y 2

` )− 1, P0 = ε2
0(X

2
1 + . . . + X2

k)− 1. Replace S
by R(S, R〈ε〉) ∩ (R(P0 ≤ 0)×R(Q0 ≤ 0)).

Step 2. Define Qh
± = {±Qh | Qh ∈ Qh} ∪ {Qh

0}, and let K(B, V ) denote the
complex constructed by Algorithm 3, with input the families of polynomials Qh

±,Pb,
and the semi-algebraic set V = Bk(0, 1/ε) ⊂ R〈ε〉k.

Step 3. Compute, using the definitions given above, the matrices corresponding to
the differentials in the complex C•(Φ).

Step 4. Compute, using linear algebra subroutines, for each i, 0 ≤ i ≤ k + `− 1

bi(Sh
b ) = Hi(C•(Φ)).

Step 5. Output for each i, 0 ≤ i ≤ k + `− 1,

bi(S) =
1
2
bi(Sh

b ).

Proof of Correctness: The correctness of the algorithm follows from Theorem
3.11 and the correctness of Algorithm 3. �
Complexity Analysis: Since #(Σ̄Q) = 3m, the number of subsets that enters
in the definition of N•,•(Φ) (cf. (3.10)) is at most 23m

. The complexity of the
algorithm is now seen to be (s`md)2

O(m+k)
, using the complexity of Algorithm 3. �

Proof of Theorem 1.3. The correctness and complexity analysis of Agorithm 5 also
proves Theorem 1.3. �
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matik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12,

Springer-Verlag, Berlin, 1987. MR 949442 (90b:14030)
15. J. Canny, Computing road maps in general semi-algebraic sets, The Computer Journal 36

(1993), 504–514.
16. Andrei Gabrielov and Nicolai Vorobjov, Betti numbers of semialgebraic sets defined by

quantifier-free formulae, Discrete Comput. Geom. 33 (2005), no. 3, 395–401. MR 2121987

(2005i:14075)
17. L. Gournay and J. J. Risler, Construction of roadmaps of semi-algebraic sets, Appl. Algebra

Eng. Commun. Comput. 4 (1993), no. 4, 239–252.
18. D. Grigoriev and N. Vorobjov, Counting connected components of a semi-algebraic set in

subexponential time, Comput. Complexity 2 (1992), no. 2, 133–186.

19. Dima Grigoriev and Dmitrii V. Pasechnik, Polynomial-time computing over quadratic maps.

I. Sampling in real algebraic sets, Comput. Complexity 14 (2005), no. 1, 20–52. MR 2134044
(2005m:68262)
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IRMAR (URA CNRS 305), Université de Rennes I, Campus de Beaulieu 35042 Rennes

cedex FRANCE.

E-mail address: marie-francoise.roy@univ-rennes1.fr


