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Abstract

We prove explicit bounds on the radius of a ball centered at the origin which is
guaranteed to contain all bounded connected components of a semi-algebraic set
S ⊂ Rk defined by a weak sign condition involving s polynomials in Z[X1, . . . , Xk]
having degrees at most d, and whose coefficients have bitsizes at most τ . Our bound
is an explicit function of s, d, k and τ , and does not contain any undetermined
constants. We also prove a similar bound on the radius of a ball guaranteed to
intersect every connected component of S (including the unbounded components).
While asymptotic bounds of the form 2τdO(k)

on these quantities were known before,
some applications require bounds which are explicit and which hold for all values
of s, d, k and τ . The bounds proved in this paper are of this nature.
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1 Introduction

Let S ⊂ Rk be a semi-algebraic subset of Rk defined by a weak sign condition
(see precise definition in Section 2.1), where P ⊂ Z[X1, . . . , Xk] is a set of
polynomials, with #P = s, deg(P ) ≤ d for P ∈ P , and the bitsizes of the
coefficients of P ∈ P are bounded by τ . In this paper we consider the problem
of obtaining an upper bound on the radius of a ball guaranteed to contain all
bounded semi-algebraically connected components of S, as well as on the radius
of a ball guaranteed to meet every semi-algebraically connected component of
S. Such bounds have many applications in different areas of mathematics as
well as computer science. For instance, bounds of these types play a critical
role in recent work on proving uniform bounds in the infinitesimal version of
Hilbert’s sixteenth problem (2; 3), as well as in proving certain lower bounds
in computer science (5).

We obtain explicit upper bounds (in terms of s, d, k and τ) on the radii of such
balls in each of the two cases mentioned above. Our bounds are slightly better
in the special case when the semi-algebraic set S is a real algebraic variety
defined by one polynomial equation (in this case s = 1). Indeed, the bound
in the general case is proved by reducing the problem to this special case.
Hence, we first prove the results for algebraic sets in Section 4, and prove the
bounds for general semi-algebraic sets in Section 5.

1.1 History

Asymptotic bounds on the radius of a ball guaranteed to meet all connected
components of a semi-algebraic subset of Rk defined by a weak sign condition
involving polynomials in Z[X1, . . . , Xk] in terms of the number s, the maxi-
mum degree d, and the maximum bitsize τ of the coefficents of the defining
polynomials, were known before. The best of these bounds were of the form
2τdO(k)

(1; 4; 7), with undetermined constants. We do not improve this result,
and we believe that there is little hope to improve it in a significant way. While
such bounds are already useful in many contexts, certain applications might
require more precise and completely explicit estimates valid for all values of
s, d, k, and τ . This is what we do in this paper.
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2 Main Results

2.1 Some notation

We first fix some notation.

Let R be a real closed field. If P is a finite subset of R[X1, . . . , Xk], we write
the set of zeros of P in Rk as

Zer(P , Rk) = {x ∈ Rk |
∧

P∈P
P (x) = 0}.

A sign condition on P is an element of {0, 1,−1}P , i.e. a mapping from P
to {0, 1,−1}.

We say that P realizes the sign condition σ at x ∈ Rk if
∧

P∈P sign(P (x)) =
σ(P ).

The realization of the sign condition σ is

Reali(σ) = {x ∈ Rk |
∧

P∈P
sign(P (x)) = σ(P )}.

The sign condition σ is realizable if Reali(σ) is non-empty.

A weak sign condition on P is an element of {{0}, {0, 1}, {0,−1}}P , i.e. a
mapping from P to {{0}, {0, 1}, {0,−1}}.

We say that P realizes the weak sign condition σ̄ at x ∈ Rk if
∧

P∈P sign(P (x)) ∈
σ̄(P ).

The realization of the weak sign condition σ̄ is

Reali(σ̄) = {x ∈ Rk |
∧

P∈P
sign(P (x)) ∈ σ̄(P )}.

The weak sign condition σ̄ is realizable if Reali(σ̄) is non-empty.

Given an integer n, we denote by bit(n) the number of bits of its absolute
value in the binary representation. Note that

bit(nm) 6 bit(n) + bit(m), (1)

bit

(
n∑

i=1

mi

)
6 bit(n) +

n
sup
i=1

(bit(mi)). (2)
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The main results of the paper can now be stated as follows. Our results in the
algebraic case are slightly better than in the semi-algebraic case and we state
them separately.

2.2 Algebraic Case

Theorem 1. (Ball containing all bounded components) Let Q ∈ Z[X1, . . . , Xk]
be a polynomial of degreed, and suppose that the coefficients of Q in Z have
bitsizes at most τ . Then, every bounded semi-algebraically connected compo-
nent of Zer(Q,Rk) is contained inside a ball centered at the origin of radius

k1/2(N + 1)2ND(τ+bit(N)+bit(d+1)+3)

where

N = (d + 1)dk−1,

D = k(d− 1) + 2.

In particular, all isolated points of Zer(Q,Rk) are contained inside the same
ball.

Theorem 2. (Ball meeting all components) Let Q ∈ Z[X1, . . . , Xk] be a
polynomial of degree d, and suppose that the coefficients of Q in Z have
bitsizes at most τ . Then there exists a ball centered at the origin of radius
bounded by

(
(2DN(2N − 1) + 1)2(2N−1)(τ ′+bit(2N−1)+bit(2DN+1))

)1/2

intersecting every semi-algebraically connected component of Zer(Q,Rk), where

d′ = sup(2(d + 1), 6),

D = k(d′ − 2) + 2,

N = d′(d′ − 1)k−1,

τ ′ = N(τ2 + bit(N) + 2 bit(2D + 1) + 1),

τ2 = τ1 + 2(k − 1) bit(N) + (2k − 1) bit(k),

τ1 = D(τ0 + 4 bit(2D + 1) + bit(N))− 2 bit(2D + 1)− bit(N),

τ0 = 2τ + k bit(d + 1) + bit(2d′).
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2.3 Semi-algebraic case

Theorem 3. Let P = {P1, . . . , Ps} ⊂ Z[X1, . . . , Xk], and suppose that P ∈ P
have degrees at most d, and the coefficients of P ∈ P have bitsizes at most τ .
Then there exists a ball centered at the origin of radius bounded by

k1/2(N + 1)22ND(2τ+bit(N)+k bit(d+1)+bit(s)+3)

where

N = (2d + 1)(2d)k−1,

D = k(2d− 1) + 2,

containing every bounded semi-algebraically connected component of the re-
alization of every realizable weak sign condition on P .

Theorem 4. Let P = {P1, . . . , Ps} ⊂ Z[X1, . . . , Xk] and suppose that P ∈ P
have degrees at most d, and the coefficients of P ∈ P have bitsizes at most τ .
Then there exists a ball centered at the origin of radius

(
(2DN(2N − 1) + 1)2(2N−1)(τ ′′+bit(2N−1)+bit(2DN+1))

)1/2

where

d′ = sup(2(d + 1), 6),

D = k(d′ − 2) + 2,

N = d′(d′ − 1)k−1,

τ ′′ = N(τ ′2 + bit(N) + 2 bit(2D + 1) + 1),

τ ′2 = τ ′1 + 2(k − 1) bit(N) + (2k − 1) bit(k),

τ ′1 = D(τ ′0 + 4 bit(2D + 1) + bit(N))− 2 bit(2D + 1)− bit(N),

τ ′0 = 2τ + k bit(d + 1) + bit(2d′) + bit(s)

intersecting every semi-algebraically connected component of the realization
of every realizable sign condition (resp. realizable weak sign condition) on P .

Remark 1. Note that all the bounds above are of the form 2τdO(k)
, similar to

the results obtained in (1; 4; 7). The only point which needs some explanation
is the fact that s plays a role in our estimates for the semi-algebraic case, while
it does not appear in the formula 2τdO(k)

. This is because the total number of
polynomials of degree at most d in k variables with bitsizes bounded by τ is

bounded by (2τ+1)(
d+k

k ) = 2τdO(k)
.

5



3 Preliminaries

In order to prove the bounds on the radii of various balls we need a careful
analysis of the bit sizes of the entries of certain matrices corresponding to
multiplication by certain variables in a zero-dimensional ideal of a very special
type. This analysis, appearing in (1), is similar in spirit to the techniques in
(6). We reproduce here the results (without proofs which appear in (1)) for
the benefit of the readers.

Let D be an ordered domain contained in a field K. We first define a spe-
cial type of Groebner basis with coefficients in D. We say that G(Y, Z) is a
parametrized special Groebner basis if it is of the form

G(Y, Z) = {ZXd1
1 + Q1(Y,X), . . . , ZXdk

k + Qk(Y,X)}

with Qi ∈ D[Y ][X1, . . . , Xk], degX(Qi) < di, degXj
(Qi) < dj, i 6= j, where

degX is the total degree with respect to the variables X1, . . . , Xk, degXj
is the

degree with respect to the variables Xj, d1 ≥ . . . ≥ dk ≥ 1, and Z is a new
variable.

Define Mon(G)(Z) as the set of elements Z |α|Xα = Z |α|Xα1
1 · · ·Xαk

k with αi <
di and Bor(G)(Z) as the set of elements Z |α|Xα such that αi = di for some
i ∈ {1, . . . , k} and αi ≤ di for any i ∈ {1, . . . , k}.

Note that for every z 6= 0, (y, z) ∈ K`+1 with z 6= 0, G(y, z) is a Groebner basis
of the ideal Id(G(y, z)) it generates, Mon(G)(z) is a basis of K[X1, . . . , Xk]/ Id(G(y, z)),
and the dimension of K[X1, . . . , Xk]/ Id(G(y, z)) as a vector space is N =
d1 . . . dk.

The description and complexity analysis of the following algorithm is described
in (1)(Algorithm 12.10). Here we just recall the input, output and the esti-
mates on the degrees and bitsizes of the output.

Algorithm 1. [Parametrized Special Matrices of Multiplication]

• Structure: a ring D contained in a field K.
• Input: a parametrized special Groebner basis

G = {ZXd1
1 + Q1(Y,X), . . . , ZXdk

k + Qk(Y,X)} ⊂ D[Y, Z][X1, . . . , Xk]

with Y = (Y1, . . . , Y`).
• Output: parametrized matrices of multiplication by the variables in the

basis Mon(G)(Z) of the quotient by the ideal generated by G(Y, Z): i.e. for
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every variable Xi a matrix M ′
i(Y, Z) with entries in D[Y, Z] such that for

every (y, z) ∈ K`+1 with z 6= 0, M ′
i(y, z) is the matrix of multiplication

by zX1, . . . , zXk in the ring K[X1, . . . , Xk]/ Id(G(y, z)), expressed in the
basis Mon(G)(z).

Estimates on the size of the output. Let N = d1 · · · dk, D = (d1 + · · · + dk −
k + 1).

Suppose that degY (Qi) ≤ λ for 1 ≤ i ≤ k. Then the matrices M ′
i(Y, Z) are

of dimension N , and the entries of the matrix M ′
i(Y, Z) have degrees in Z

bounded by D and degrees in Y bounded by Dλ.

When D = Z, suppose that τ is a bound the bitsizes of the coefficients of the
polynomials in G(Y,Z). Then the bitsizes of entries the matrix M ′

i(Y, Z) are
bounded by

D(τ + 2` bit(Dλ + 1) + bit(N))− ` bit(Dλ + 1)− bit(N).

4 Algebraic Case.

In this section we prove Theorems 1 and 2.

We first introduce some notation. Let R be a real closed field. For any poly-
nomial P ∈ R[X1, . . . , Xk], let Zerb(P, Rk) denote the union of the semi-
algebraically connected components of Zer(P, Rk) which are bounded over
R.

We denote by R〈ε〉 the real closed field of algebraic Puiseux series in ε with
coefficients in R. The order of a Puiseux series a =

∑
i>i0

aiε
i/q , with q ∈ N,

i0 ∈ Z is the rational number i0/q. The elements of R〈ε〉 with non-negative
order constitute a valuation ring denoted R〈ε〉b. The elements of R〈ε〉b are ex-
actly the elements of R〈ε〉 bounded over R (i.e. their absolute value is less than
a positive element of R). We denote by limεthe ring homomorphism from R〈ε〉b
to R which maps

∑
i∈N aiε

i/q to a0. The mapping limε simply replaces ε by 0
in a bounded Puiseux series.

If S is a semi-algebraic subset of Rk, defined by a quantifier-free first-order
formula Φ with coefficients in R (see (1)(Chapter 2)), Ext(S, R〈ε〉) is the semi-
algebraic subset of R〈ε〉k defined by the same formula Φ (now considered as
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a formula with coefficients in R〈ε〉).

A subset A of R〈ε〉k is bounded over R if it is contained in a ball of center 0
and radius r ∈ R, i.e.

A ⊂ Ext(Bk(0, r), R〈ε〉) = {x ∈ R〈ε〉k | |x| 6 r}.

Proof of Theorem 1. In order to find a bound on the radius of a ball containing
Zerb(Q,Rk), it is enough to find an interval [a, b] such that.

Zerb(Q,Rk) ⊂ [a, b]×Rk−1.

We are going to introduce convenient deformations of Q with coefficients in
R〈ζ〉, where ζ is a new variable, and prove that it is possible to obtain such
an interval from an interval [aζ , bζ ] such that the cylinder based on [aζ , bζ ]
contains all the semi-algebraically connected components of the zero sets of
these deformations of Q which are bounded over R.

We define

Q+
ζ = Q +

ζ

d + 1

(
Xd+1

1 + · · ·+ Xd+1
k

)
,

Q−
ζ = Q− ζ

d + 1

(
Xd+1

1 + · · ·+ Xd+1
k

)
.

Observe that Zer(Q+
ζ ,R〈ζ〉k) (resp. Zer(Q−

ζ ,R〈ζ〉k)) is an hypersurface with
isolated singular points since the ideal generated by

∂Q+
ζ

∂X1

, · · · ,
∂Q+

ζ

∂Xk

(
resp .

∂Q−
ζ

∂X1

, · · · ,
∂Q−

ζ

∂Xk

)

is zero-dimensional.

Observe now that if C is a bounded semi-algebraically connected component
of Zer(Q,Rk), there exists a finite number of semi-algebraically connected
components C1, . . . , Cc of Zer(Q+

ζ ,R〈ζ〉k)⋃Zer(Q−
ζ ,R〈ζ〉k), bounded over R

such that
C = lim

ζ
(C1 ∪ . . . ∪ Cc) .

In order to see this, note that

Zer(Q+
ζ ,R〈ζ〉k)

⋃
Zer(Q−

ζ ,R〈ζ〉k) = Zer(Qζ ,R〈ζ〉k),

where

Qζ = Q2 −
(

ζ

d + 1

)2 (
Xd+1

1 + · · ·+ Xd+1
k

)2
.
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Moreover, the polynomial (Xd+1
1 + · · ·+Xd+1

k )2 is non-negative everywhere in
R

k. Now apply Proposition 12.37 in (1), after noting that by Proposition 12.35
in (1), limζ of a semi-algebraically connected component of Zer(Qζ ,R〈ζ〉k)
bounded over R remains semi-algebraically connected and bounded.

This implies that, denoting by π the projection to the X1-axis,

π(C) = lim
ζ

(π(C1 ∪ . . . ∪ Cc)) . (3)

Let [a, b] = π(C), and aζ and bζ be the minimum and maximum of π(C1 ∪
. . . ∪ Cc). It follows from (3) that limζ(aζ) = a, limζ(bζ) = b.

In order to describe aζ and bζ , we define the polynomial systems

Cr(Q+
ζ ) =

{
(d + 1)Q+

ζ −
(
X2

∂Q+
ζ

∂X2

+ · · ·+ Xk

∂Q+
ζ

∂Xk

)
,
∂Q+

ζ

∂X2

, · · · ,
∂Q+

ζ

∂Xk

}
,

Cr(Q−
ζ ) =

{
(d + 1)Q−

ζ −
(
X2

∂Q−
ζ

∂X2

+ · · ·+ Xk

∂Q−
ζ

∂Xk

)
,
∂Q−

ζ

∂X2

, · · · ,
∂Q−

ζ

∂Xk

}
,

which are both parametrized special Groebner bases.

Notice that the zero set of Cr(Q+
ζ ) (resp. Cr(Q−

ζ )) is the set of critical points on
Zer(Q+

ζ ,R〈ζ〉k) (resp. Zer(Q−
ζ ,R〈ζ〉k)) and consider the characteristic poly-

nomials χ+(ζ, T ) (resp. χ−(ζ, T )) of the multiplication by ζX1 in the ring
R〈ζ〉[X1, . . . , Xk]/ Id(Cr(Q+

ζ )) (resp. R〈ζ〉[X1, . . . , Xk]/ Id(Cr(Q−
ζ ))).

Since aζ and bζ are extremal values of π on C1 ∪ . . . ∪ Cc, they are roots of
the polynomials F+(ζ, T ) ∈ R[ζ, T ] and F−(ζ, T ) ∈ R[ζ, T ] obtained by sub-
stituting ζT to T and dividing by the maximum possible power of ζ. Finally,
since aζ and bζ are bounded over R, a and b are roots of f+(T ) = F+(0, T ) or
f−(T ) = F−(0, T ).

The bitsizes of the coefficients of the polynomials in Cr(Q+
ζ ) (resp. Cr(Q−

ζ ))
are bounded by

τ + bit(d + 1).

According to degrees and bitsize estimates of Algorithm Parametrized Special
Matrices of Multiplication (see Preliminaries), it follows that the matrices M+

and M− of multiplication by ζX1 have dimension

N = (d + 1)dk−1,

and the degrees in ζ of their entries are bounded by

D = (k(d− 1) + 2),
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since Cr(Q+
ζ ), Cr(Q−

ζ ) are both parametrized special Groebner bases with

d1 = d + 1, d2 = · · · = dk = d, ` = 0.

Moreover, the bitsizes of their entries are bounded by

τ1 = D(τ + bit(d + 1) + bit(N))− bit(N).

So the characteristic polynomial χ+(ζ, T ) (resp. χ−(ζ, T )) of M+ (resp. M−)
is a polynomial in ζ and T with degree in ζ bounded by DN and bitsizes
bounded by

N(τ1 + bit(N) + bit(D + 1) + 1) ≤ ND(τ + bit(N) + bit(d + 1) + 3),

since
bit(D + 1) 6 2D,

using Proposition 8.16 of (1).

Thus, a and b are roots of a polynomial -either f+(T ) or f−(T )- of degree at
most N and whose bitsizes are bounded by

ND(τ + bit(N) + bit(d + 1) + 3)

Using the Cauchy bound (see (1) Lemma 10.2) we finally obtain that |a| and
|b| are bounded by

(N + 1)2ND(τ+bit(N)+bit(d+1)+3).

The theorem follows immediately from this.

Proof of Theorem 2. For bounded connected components of Zer(Q,Rk), we
apply the previous theorem.

To deal with unbounded connected components, let ε be a new variable. We
define

Qε = Q2 + (ε(X2
1 + · · ·+ X2

k)− 1)2. (4)

Notice that the extension to R〈ε〉 of every unbounded connected compo-
nent of Zer(Q,Rk) meets Zer(Q2 + (ε(X2

1 + · · · + X2
k) − 1)2,R〈ε〉k) and that

Zer(Qε,R〈ε〉k) is contained in the ball B(0, ε−1/2). So B(0, ε−1/2) intersects
the extension to R〈ε〉 of every unbounded connected component of Zer(Q,Rk).
We then replace ε by a small enough positive u ∈ R and prove that B(0, u−1/2)
intersects every unbounded connected component of Zer(Q,Rk).

Noting that Qε is everywhere non-negative, we can proceed in a way similar
to the proof of Theorem 1 and take
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Qε,ζ = Qε −
ζ

d′

(
Xd′

1 + · · ·+ Xd′

k + d′(X2
2 + . . . + X2

k + 2k)
)
,

Cr(Qε,ζ) =

{
d′Qε,ζ −

(
X2

∂Qε,ζ

∂X2

+ · · ·+ Xk
∂Qε,ζ

∂Xk

)
,
∂Qε,ζ

∂X2

, · · · ,
∂Qε,ζ

∂Xk

}
,

with d′ = sup(2(d + 1), 6).

Note that for every unbounded connected component C of Zer(Q,Rk), the ele-
ments of limζ(Zer(Cr(Qε,ζ),R〈ε〉〈ζ〉)) meet Ext(C,R〈ε〉) by Proposition 12.37
of (1).

Moreover, Cr(Qε,ζ) is a parametrized special Groebner basis with

Z = ζ, Y1 = ζ, Y2 = ε, d1 = d′, d2 = · · · = dk = d′ − 1, ` = 2, λ = 2,

and all its zeroes are simple (Proposition 12.46).

Using the the complexity analysis of Algorithm 8.5 in (1) (1), (2) , it is easy
to see that the bitsizes of the coefficients of Qε are bounded by

2τ + k bit(d + 1) + 1

and the bitsizes of the coefficients of the polynomials in Cr(Qε,ζ) are bounded
by

τ0 = 2τ + k bit(d + 1) + bit(d′) + 1 = 2τ + k bit(d + 1) + bit(2d′).

According to the degree and bitsize estimates of Algorithm Parametrized Spe-
cial Matrices of Multiplication (see Preliminaries), it follows that the matrix
Mi of multiplication by ζXi has dimension

N = d′(d′ − 1)k−1.

Moreover, defining

D = k(d′ − 2) + 2,

the degree in ε, ζ are bounded by 2D, while the bitsizes of its entries is bounded
by

τ1 = D(τ0 + 4 bit(2D + 1) + bit(N))− 2 bit(2D + 1)− bit(N).

For every j, denote by Lj the matrix of mutiplication by the linear form
ζ(X1 + jX2 + · · · + jk−1Xk), by χ(j, ε, ζ, T ) its characteristic polynomial.
Define G(j, ε, ζ, T ) ∈ Z[ε, ζ, T ] as the polynomial obtained by substituting
ζT to T in χ(j, ε, ζ, T ) and dividing by the biggest possible power of ζ,
and by g(j, ε, T ) the polynomial G(j, ε, 0, T ). It follows from (1) (Algorithm
12.13) that there exists 0 ≤ j ≤ (k − 1)N2, such that every point x(ε) of
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limζ(Zer(Cr(Qε,ζ),R〈ε〉〈ζ〉)) is of the form r(ε, t(ε)) where t(ε) is a root of
g(j, ε, T ) and r(ε, T ) is a rational function with denominator a derivative of
g(j, ε, T ). Finally, for every unbounded connected component C of Zer(Q,Rk),
there is a root t(ε) of g(j, ε, T ) and a rational function r(ε, T ) with denomi-
nator a derivative of g(j, ε, T ) such that r(ε, t(ε)) ∈ Ext(C,R〈ε〉).

The matrix M of mutiplication by the linear form ζ(X1 + jX2 + · · ·+ jk−1Xk)
has entries with bitsizes bounded by

τ2 = τ1 + 2(k − 1) bit(N) + (2k − 1) bit(k).

So the characteristic polynomial, χ(j, ε, ζ, T ) of M is a polynomial in ε, ζ, T
with degree in T bounded by N , degree in ε, ζ bounded by 2DN , and bitsizes
bounded by

τ ′ = N(τ2 + bit(N) + 2 bit(2D + 1) + 1)

using Proposition 8.16 of (1).The same estimate holds for the bitsize of g(j, ε, T ).

Now let u0 ∈ R, with u0 > 0, be such that the number and multiplicities of the
real roots of g(j, u, T ) stay constant for all u ∈ (0, u0) and denote by t(u) the
root of g(u, T ) having the same number as t(ε) as a root of g(j, ε, T ). Then for
every point x(ε) of limζ(Zer(Cr(Qε,ζ),R〈ε〉〈ζ〉)), such that x(ε) = r(ε, t(ε)),
the function r(u, t(u)) is defined from (0, u0) to Zer(Q,Rk). The graph of this
function is connected and intersect D, since r(ε, t(ε)) ∈ Ext(D,R〈ε〉).

Let A(ε) be the set of all subresultants of g(ε, T ) and g(`)(ε, T ), 1 ≤ ` ≤ N−1,
with respect to the variable T . From the definition of the subresultants (see
(1) Notation 4.22 and Proposition 8.15), the polynomials in A(ε) have degrees
in ε bounded by

2DN(2N − 1)

and bitsizes bounded by

(2N − 1)(τ ′ + bit(2N − 1) + bit(2DN + 1) + bit(N !)).

Choosing u0 smaller that the smallest positive root of the polynomials in A(ε),
the number and multiplicities of the real roots of g(j, u, T ) stay constant for
all u ∈ (0, u0) by using the properties of subresultants.

Finally, applying the Cauchy bound (see (1) Lemma 10.2) we see that we can
choose the rational number u0 such that | 1

u0
| is bounded by

(2DN(2N − 1) + 1)2(2N−1)(τ ′+bit(2N−1)+bit(2DN+1)+bit(N !)).
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5 Semi-algebraic case

Proof of Theorem 3. Suppose that C ′ is a bounded semi-algebraically con-
nected component of the realization of a weak sign condition on P , and let
a ∈ R be an extremal value (either maximum or minimum) of the X1-co-
ordinate realized on C ′. Then, there exists P ′ ⊂ P and a bounded semi-
algebraically connected component C of the algebraic set Zer(P ′,Rk)a such
that C ⊂ C ′ (where π is the projection map on the X1-co-ordinate). Indeed, let
A = {x ∈ C ′|π(x) = a}. For any point x ∈ A, let Px = {P ∈ P | P (x) = 0}.
We choose x ∈ A such that Px is maximal with respect to inclusion yand let
P ′ = P§.

Q =
∑

P∈P ′
P 2.

Let C be the semi-algebraically connected component of Zer(Q,Rk)a which
contains x. Then, C ⊂ C ′ by the maximality of P ′. Otherwise, choose a
semi-algebraic path γ : [0, 1] → C, such that γ(0) = x, and γ(1) ∈ C \ C ′.
Then, there exists t0 ∈ (0, 1], with y = γ(t0) ∈ C, γ([0, t0]) ⊂ C ′, and some
P ∈ P \ P ′, with P (y) = 0. This contradicts the maximality of P ′, since
y ∈ C ′, π(y) = a, and Py is strictly bigger than P ′. Also, C is bounded, since
C ′ is bounded.

Since a is a local extremum of X1 on Zer(Q,Rk), we can choose r positive and
small enough, so that a remains an extremal value of π(C ′′) where C ′′ is the
semi-algebraically connected component of Zer(Q,Rk)[a−r,a+r] containing C.
As in the proof of Theorem 1, there exists a finite number of semi-algebraically
connected components C1, . . . , Cc of (Zer(Q+

ζ ,R〈ζ〉k)⋃Zer(Q−
ζ ,R〈ζ〉k)

)
[w−r,w+r]

which are bounded over R and such that

C ′′ = lim
ζ

(C1 ∪ . . . ∪ Cc) .

Suppose now, without loss of generality, that w is the maximal value of X1-
co-ordinate realized on C ′′. Let aζ be the maximum of π(C1 ∪ . . . ∪ Cc) . It
follows from the above that limζ(aζ) = a.

We now apply the same technique as in the proof of Theorem 1 above to
bound |a|, noting that the degree of Q is bounded by 2d and the bitsizes of
its coefficients are bounded by

2τ + k bit(d + 1) + bit(s).

Applying the same technique as in the proof of Theorem 1, we obtain that

|a| ≤ (N + 1)2ND(2τ+bit(N)+(k+1) bit(d+1)+bit(s)+3),

where
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N = (2d + 1)(2d)k−1,

D = k(2d− 1) + 2.

Proof of Theorem 4. Since every semi-algebraically connected component of
the realization of a weak sign condition on P must contain a connected com-
ponent of some algebraic set Zer(P ′,Rk), where P ′ ⊂ P , it suffices to apply
Theorem 2 to obtain an upper bound on the radius of a ball guaranteed to
meet all such components.

Note that for any subset P ′ ⊂ P , the degree of the polynomial
∑

P∈P ′ P 2 is
bounded by 2d, and the bitsizes of its coefficients are bounded by

2τ + k bit(d + 1) + bit(s)

using the complexity analysis of Algorithm 8.5 in (1) and (2). Note also that
we can use directly

∑
P∈P ′ P 2 without squaring in (4).

The theorem is then a straightforward consequence of Theorem 2.
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