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Combinatorial complexity in o-minimal geometry

Saugata Basu

Abstract

In this paper we prove tight bounds on the combinatorial and topological complexity of sets
defined in terms of n definable sets belonging to some fixed definable family of sets in an
o-minimal structure. This generalizes the combinatorial parts of similar bounds known in the
case of semi-algebraic and semi-Pfaffian sets, and as a result vastly increases the applicability
of results on combinatorial and topological complexity of arrangements studied in discrete and
computational geometry. As a sample application, we extend a Ramsey-type theorem due to
Alon et al. [Crossing patterns of semi-algebraic sets, J. Combin. Theory Ser. A 111 (2005),
310–326. MR 2156215 (2006k:14108)], originally proved for semi-algebraic sets of fixed description
complexity to this more general setting.

1. Introduction

Over the last twenty years there has been a lot of work on bounding the topological complexity
(measured in terms of their Betti numbers) of several different classes of subsets of R

k, most
notably semi-algebraic and semi-Pfaffian sets. The usual setting for proving these bounds is
as follows. One considers a semi-algebraic (or semi-Pfaffian) set S ⊂ R

k defined by a Boolean
formula whose atoms consists of P > 0, P = 0, P < 0, P ∈ P, where P is a set of polynomials
or Pfaffian functions of degrees bounded by a parameter or whose Pfaffian complexity is
bounded by certain parameters, respectively, and #P = n. It is possible to obtain bounds
on the Betti numbers of S in terms of n and k, and the parameters bounding the complexity
of the functions in P.

1.1. Known bounds in the semi-algebraic and semi-Pfaffian cases

In the semi-algebraic case, if we assume that the degrees of the polynomials in P are bounded
by d, and denoting by bi(S) the ith Betti number of S, then it is shown in [23] that,∑

i�0

bi(S) � n2kO(d)k. (1.1)

A similar bound is also shown for semi-Pfaffian sets [23].
In another direction, we also have reasonably tight bounds on the sum of the Betti numbers

of the realizations of all realizable sign conditions of the family P. A sign condition on P is an
element of {0, 1,−1}P , and the realization of a sign condition σ is the set given by

R(σ) = {x ∈ Rk | sign(P (x)) = σ(P ) ∀P ∈ P}.
It is shown in [6] that

∑
σ∈{0,1,−1}P

bi(R(σ)) �
k−i∑
j=0

(
n

j

)
4jd(2d − 1)k−1 = nk−iO(d)k. (1.2)
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We refer the reader to [5, 6, 22, 23, 25], as well as the survey article [7] for a comprehensive
history of the work leading up to the above results, as well as several other interesting results
in this area.

1.2. Combinatorial and algebraic complexity

Note that the bounds in (1.1) and (1.2) are products of two quantities, one that depends only on
n (and k), and another part that is independent of n, but depends on the parameters controlling
the complexity of individual elements of P (such as degrees of polynomials in the semi-algebraic
case, or the degrees and the length of the Pfaffian chain defining the functions in the Pfaffian
case). It is customary to refer to the first part as the combinatorial part of the complexity, and
the latter as the algebraic (or Pfaffian) part. Moreover, the algebraic or the Pfaffian parts of
the bound depend on results whose proofs involve Morse theory (for instance, the well-known
Oleinik–Petrovsky–Thom–Milnor bounds on the Betti numbers of real varieties [28, 29, 33]).

While understanding the algebraic part of the complexity is a very important problem,
in several applications, most notably in discrete and computational geometry, it is the
combinatorial part of the complexity that is of primary interest (the algebraic part is assumed
to be bounded by a constant). The motivation behind this point of view is the following. In
problems in discrete and computational geometry, one typically encounters arrangements of a
large number of objects in R

k (for some fixed k), where each object is of ‘bounded description
complexity’ (for example, defined by a polynomial inequality of degree bounded by a constant).
Thus, it is the number of objects that constitutes the important parameter, and the algebraic
complexity of the individual objects are thought of as small constants. It is this second setting
that is our primary interest in this paper.

The main results of this paper generalize (combinatorial parts of) the bounds in (1.1) and
(1.2) to sets which are definable in an arbitrary o-minimal structure over a real closed field R
(see Paragraph 1.4.1 below for the definition of an o-minimal structure and definable sets).

Instead of only considering sets having ‘bounded description complexity’, we allow the sets
in an arrangement A to be fibers of some fixed definable map π : T → R�, where T ⊂ Rk+�

is a definable set. This vastly expands the applicability of results concerning complexity of
arrangements in discrete and computational geometry, since it is no longer necessary that
the objects in the arrangements be defined only in terms of polynomials. As we shall see
shortly, the sets we consider are allowed to be fairly arbitrary. They include sets defined
by restricted analytic functions, including (but not by any means restricted to) polynomials,
Pfaffian functions such as exponential, logarithmic, trigonometric and inverse trigonometric
functions, subject to some mild conditions. All hitherto considered families of objects in the
computational geometry literature, such as hyperplanes, simplices, and more generally sets
having bounded description complexity are special instances of this general definition. We also
consider sets belonging to the Boolean algebra generated by n sets in Rk each of which is a
fiber of a fixed definable map. We prove tight bounds on the Betti numbers, the topological
complexity of projections, as well as on the complexity of cylindrical decomposition of such
sets, in terms of n and k. The role of the algebraic complexity is played by a constant that
depends only on the particular definable family. In this way, we are able to generalize the
notion of combinatorial complexity to definable sets over an arbitrary o-minimal structure.

Apart from the intrinsic mathematical interest of the results proved in the paper, we
believe that the techniques used to prove them would be of interest to researchers in discrete
and computational geometry. We show that most (if not all) results on the complexity of
arrangements are consequences of a set of very simple and well-studied axioms (those defining
o-minimal structures). Many widely used techniques in the study of arrangements are strongly
dependent on the assumption that the sets under consideration are semi-algebraic. For example,
it is common to consider real algebraic varieties of fixed degree as hyperplane sections of the
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corresponding Veronese variety in a higher (but still fixed) dimensional space, a technique
called ‘linearization’ in computational geometry literature (see [2]). Obviously, such methods
fail if the given sets are not semi-algebraic. Our methods make no use of semi-algebraicity of the
objects, nor bounds derived from Morse theory such as the classical Oleinik–Petrovsky–Thom–
Milnor bounds on Betti numbers of real algebraic varieties. We believe that this point of view
simplifies proofs, and simultaneously generalizes vastly the class of objects that are allowed,
at the same time getting rid of unnecessary assumptions such as requiring the objects to be in
general position. It is likely that the techniques developed here will find further applications
in the combinatorial study of arrangements other than those discussed in this paper.

1.3. Arrangements in computational geometry

We now make precise the notions of arrangements, cells and their complexities, following their
usual definitions in discrete and computational geometry [2, 26].

Let A = {S1, . . . , Sn} such that each Si is a subset of Rk belonging to some ‘simple’ class of
sets. (We define the class of admissible sets that we consider precisely in Subsection 1.5 below).

For I ⊂ {1, . . . , n}, we let A(I) denote the set⋂
i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj ,

and it is customary to call a connected component of A(I) a cell of the arrangement (even
though it might not be a cell in the sense of topology). We let C(A) denote the set of all
non-empty cells of the arrangement A.

The cardinality of C(A) is called the combinatorial complexity of the arrangement A. Since
different cells of an arrangement might differ topologically, it makes sense to give more weight
to a topologically complicated cell than to a topologically simple one in the definition of
complexity. With this in mind we define (as in [4]) the topological complexity of a cell to be
the sum of its Betti numbers (the ranks of singular homology groups of the cell).

The class of sets usually considered in the study of arrangements are sets with ‘bounded
description complexity’ (see [2]). This means that each set in the arrangement is defined by
a first-order formula in the language of ordered fields involving at most a constant number
of polynomials whose degrees are also bounded by a constant. Additionally, there is often a
requirement that the sets be in ‘general position’. The precise definition of ‘general position’
varies with context, but often involves restrictions such as: the sets in the arrangements are
smooth manifolds, intersecting transversally.

1.4. Arrangements over an o-minimal structure

O-minimal structures present a natural mathematical framework to state and prove results on
the complexity of arrangements. In this paper we consider arrangements whose members come
from some fixed definable family in an o-minimal structure (see below for definitions). The
usual notion of ‘bounded description complexity’ turns out to be a special case of this more
general definition.

1.4.1. O-minimal structures. O-minimal structures were invented and first studied by
Pillay and Steinhorn in the pioneering papers [30, 31] in part to show that the tame topological
properties exhibited by the class of semi-algebraic sets are consequences of a set of a few simple
axioms. Later the theory was further developed through the contributions of other researchers,
most notably van den Dries, Wilkie, Rolin, Speissegger among others [15–17, 32, 34, 35]. We
particularly recommend the book by van den Dries [14] and the notes by Coste [12] for an easy
introduction to the topic as well as the proofs of the basic results that we use in this paper.
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An o-minimal structure on a real closed field R is just a class of subsets of Rk, with k � 0
(called the definable sets in the structure) satisfying these axioms (see below). The class of
semi-algebraic sets is one obvious example of such a structure, but in fact there are much
richer classes of sets which have been proved to be o-minimal (see below). For instance, subsets
of R

k defined in terms of inequalities involving not just polynomials, but also trigonometric
and exponential functions on restricted domains have been proved to be o-minimal.

We now formally define o-minimal structures (as in [12]).

Definition 1. An o-minimal structure on a real closed field R is a sequence S(R) =
(Sn)n∈N, where each Sn is a collection of subsets of Rn, satisfying the following axioms [12].

(i) All algebraic subsets of Rn are in Sn.
(ii) The class Sn is closed under complementation and finite unions and intersections.
(iii) If A ∈ Sm and B ∈ Sn, then A × B ∈ Sm+n.
(iv) If π : Rn+1 → Rn is the projection map on the first n coordinates and A ∈ Sn+1, then

π(A) ∈ Sn.
(v) The elements of S1 are precisely finite unions of points and intervals.

1.4.2. Examples of o-minimal structures. A few such examples are given below.

Example 1. Our first example of an o-minimal structure S(R) is the o-minimal structure
over a real closed field R, where each Sn is the class of semi-algebraic subsets of Rn. It follows
easily from the Tarski–Seidenberg principle (see [11]) that the class of sets Sn satisfies the
axioms in Definition 1. We denote this o-minimal structure by Ssa(R).

If Example 1 was the only example of o-minimal structure available, then the notion of
o-minimality would not be very interesting. However, there are many more examples (see, for
example [14–17, 32, 34, 35).

Example 2 [34]. Let Sn be the images in R
n under the projection maps R

n+k → R
n of

sets of the form {(x,y) ∈ R
n+k | P (x,y, ex, ey) = 0}, where P is a real polynomial in 2(n + k)

variables, ex = (ex1 , . . . , exn) and ey = (ey1 , . . . , eyk). We denote this o-minimal structure over
R by Sexp(R).

Example 3 [20]. Let Sn be the images in R
n under the projection maps R

n+k → R
n of

sets of the form {(x,y) ∈ R
n+k | P (x,y) = 0}, where P is a restricted analytic function in

n + k variables. A restricted analytic function in N variables is an analytic function defined on
an open neighborhood of [0, 1]N restricted to [0, 1]N (and extended by 0 outside). We denote
this o-minimal structure over R by Sana(R).

The o-minimality of the last two classes are highly non-trivial theorems.

1.5. Admissible sets

We now define the sets that will play the role of objects of ‘constant description complexity’
in the rest of the paper.
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Definition 2. Let S(R) be an o-minimal structure on a real closed field R and let T ⊂ Rk+�

be a definable set. Let π1 : Rk+� → Rk and π2 : Rk+� → R� be the projections onto the first k
and last � coordinates, respectively, as shown in the following:

T ⊂ Rk+�

π1
�����

���
���

�
π2

�����
���

���
�

Rk R�

We call a subset S of Rk to be a (T, π1, π2)-set if

S = π1(π−1
2 (y) ∩ T )

for some y ∈ R�, and when the context is clear we define Ty = π1(π−1
2 (y) ∩ T ). In this paper,

we consider finite families of (T, π1, π2)-sets, where T is some fixed definable set for each such
family, and we call a family of (T, π1, π2)-sets to be a (T, π1, π2)-family. We also sometimes
refer to a finite (T, π1, π2)-family as an arrangement of (T, π1, π2)-sets.

For any definable set X ⊂ Rk, we let bi(X) denote the ith Betti number of X, and we
let b(X) denote

∑
i�0 bi(X). We define the topological complexity of an arrangement A of

(T, π1, π2)-sets to be the number given by

∑
D∈C(A)

k∑
i=0

bi(D).

Remark 1. We remark here that for o-minimal structures over an arbitrary real closed
field R, ordinary singular homology is not well defined. Even though o-minimal versions of
singular co-homology theory, as well Čech co-homology theory, have been developed recently
(see [18, 19]), in this paper we take a simpler approach and use a modified homology theory
(which agrees with singular homology in case R = R and which is homotopy invariant) as
done in [8] in case of semi-algebraic sets over arbitrary real closed fields (see [8, p. 279]). The
underlying idea behind that definition is as follows. Since closed and bounded semi-algebraic
(as well as definable) sets are finitely triangulable, simplicial homology is well defined for such
sets. Furthermore, it is shown in [9] that it is possible to replace an arbitrary semi-algebraic
set by a closed and bounded one that is homotopy equivalent to the original set. We prove
an analogous result for arbitrary definable sets in this paper (see Theorem 3.3 below). We
now define the homology groups of the original set to be the simplicial homology groups of
the closed and bounded definable set which is homotopy equivalent to it. It is clear that this
definition is homotopy invariant.

We now give a few examples to show that arrangements of objects of bounded description
complexities are included in the class of arrangements we study, but our class is much larger
since T need not be semi-algebraic. A few such examples are given below.

Example 4. Let S(R) be the o-minimal structure Ssa(R). Let T ⊂ R2k+1 be the semi-
algebraic set defined by

T = {(x1, . . . , xk, a1, . . . , ak, b) | 〈a,x〉 − b = 0},
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where we denote a = (a1, . . . , ak) and x = (x1, . . . , xk), and let π1 and π2 be the projections
onto the first k and last k + 1 coordinates, respectively. A (T, π1, π2)-set is clearly a hyperplane
in Rk and vice versa.

Example 5. Again, let S(R) be the o-minimal structure Ssa(R). Let T ⊂ Rk+k(k+1) be the
semi-algebraic set defined by

T = {(x,y0, . . . ,yk) | x,y0, . . . ,yk ∈ Rk,x ∈ conv(y0, . . . ,yk)},

where conv denotes the convex hull operator, and let π1 and π2 be the projections onto the
first k and last k(k + 1) coordinates, respectively. A (T, π1, π2)-set is a (possibly degenerate)
k-simplex in Rk and vice versa.

Arrangements of hyperplanes as well as simplices have been well studied in computational
geometry, and thus the two previous examples do not introduce anything new. We now discuss
an example which could not be handled by the existing techniques in computational geometry,
such as linearization.

Example 6. Now, let S(R) be the o-minimal structure Sexp(R). Let T ⊂ R
k+m(k+1) be

the set defined by

T =

{
(x,y1, . . . ,ym, a1, . . . , am) | x,y1, . . . ,ym ∈ R

k, a1, . . . , am ∈ R,

x1, . . . , xk > 0,
m∑

i=0

aixyi = 0

}
,

and let π1 : R
k+m(k+1) → R

k and π2 : R
k+m(k+1) → R

m(k+1) be the projections onto the first k
and last m(k + 1) coordinates, respectively. It can be shown that T is definable in the structure
Sexp(R). The (T, π1, π2)-sets in this example include (among others) all semi-algebraic sets
consisting of intersections with the positive orthant of all real algebraic sets defined by a
polynomial having at most m monomials (different sets of monomials are allowed to occur in
different polynomials).

Definition 3. Let A = {S1, . . . , Sn} such that each Si ⊂ Rk is a (T, π1, π2)-set. For I ⊂
{1, . . . , n}, we let A(I) denote the set⋂

i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj , (1.3)

and we call such a set to be a basic A-set. We denote by C(A) the set of non-empty connected
components of all basic A-sets.

We call definable subsets S ⊂ Rk defined by a Boolean formula whose atoms are of the form,
x ∈ Si, with 1 � i � n, an A-set. An A-set is thus a union of basic A-sets. If T is closed and
the Boolean formula defining S has no negations, then S is closed, and we call such a set an
A-closed set.

Moreover, if V is any closed definable subset of Rk, and S is an A-set or an A-closed set,
then we call S ∩ V an (A, V )-set or an (A, V )-closed set, respectively.
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1.6. Known properties

Definable families of sets in an o-minimal structure (such as those defined above) have been
studied and they satisfy important finiteness properties similar to those of semi-algebraic
families. We list here a couple of properties that are important in the combinatorial study
of arrangements.

1.6.1. Finiteness of topological types. This is the first of the two finiteness properties
explained below.

Theorem 1.1 [12, 14]. Let S(R) be an o-minimal structure over a real closed field R and
let T ⊂ Rk+� be a closed definable set. Then, the number of homeomorphism types among
(T, π1, π2)-sets is finite.

Remark 2. Note that, since the sum of the Betti numbers of any definable set is finite
(since they are finitely triangulable [12, Theorem 4.4]), Theorem 1.1 implies that there exists
a constant C = C(T ) (depending only on T ) such that for any (T, π1, π2)-set S, we have

k∑
i=0

bi(S) � C.

1.6.2. Finiteness of VC dimension. The notion of Vapnik–Chervonenkis dimension is
important in many applications in computational geometry (see [26]). We note here that
(T, π1, π2)-families have finite Vapnik–Chervonenkis dimension for any fixed definable T ⊂
Rk+�. The following result is proved in [14].

We first recall the definition of the Vapnik–Chervonenkis dimension.

Definition 4 [26]. Let F be a set of subsets of an infinite set X. We say that a finite
subset A ⊂ X is shattered by F if each subset B of A can be expressed as FB ∩ A for some
FB ∈ F . The VC-dimension of F is defined as

sup
A⊂X,|A|<∞,A is shattered by F

|A|.

Theorem 1.2 [14]. Let T be some definable subset of Rk+� in some o-minimal struc-
ture S(R), and let π1 : Rk+� → Rk and π2 : Rk+� → R� be the two projections. Then the
VC-dimension of the family of (T, π1, π2)-sets is finite.

2. Main results

In this section we state our main results. As stated in the Section 1, our aim is to study the
combinatorial and topological complexity of sets defined in terms of n definable sets belonging
to a fixed definable family in terms of the parameter n. We show that the basic results on
combinatorial and topological complexity of arrangements continue to hold in this setting.
Finally, as a sample application of our results we extend a recent result of Alon et al. [3] on
crossing patterns of semi-algebraic sets to the o-minimal setting.

Remark 3. As remarked earlier, in many results on bounding the combinatorial complexity
of arrangements (of sets of constant description complexity), there is an assumption that the
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sets be in general position [1]. This is a rather strong assumption and enables one to assume,
for instance, if the sets of the arrangements are hypersurfaces, that they intersect transversally
and this property usually plays a crucial role in the proof. In this paper we make no assumption
on general positions, nor on the objects of the arrangement themselves (apart from the fact
that they come from a fixed definable family). The homological methods used in this paper
make such assumptions unnecessary.

2.1. Combinatorial and topological complexity of arrangements

Theorem 2.1. Let S(R) be an o-minimal structure over a real closed field R and let
T ⊂ Rk+� be a closed definable set. Then, there exists a constant C = C(T ) > 0 depending
only on T , such that for any (T, π1, π2)-family, A = {S1, . . . , Sn}, of subsets of Rk, the following
hold.

(i) For every i, with 0 � i � k, we have∑
D∈C(A)

bi(D) � C · nk−i.

In particular, the combinatorial complexity of A, which is equal to∑
D∈C(A)

b0(D),

is at most C · nk.
(ii) The topological complexity of any m cells in the arrangement A is bounded by m + C ·

nk−1.

Since dimension is a definable invariant (see [14]), we can refine the notions of combinatorial
and topological complexity to arrangements restricted to a definable set of possibly smaller
dimension than that of the ambient space as follows.

Let V be a closed definable subset of Rk of dimension k′ � k. For any (T, π1, π2)-family,
A = {S1, . . . , Sn}, of subsets of Rk, and I ⊂ {1, . . . , n}, we let A(I, V ) denote the set

V ∩
⋂

i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj , (2.1)

and we call a connected component of A(I, V ) a cell of the arrangement restricted to V .
Let C(A, V ) denote the set of all non-empty cells of the arrangement A restricted to V , and

we call the cardinality of C(A, V ) the combinatorial complexity of the arrangement A restricted
to V . Similarly, we define the topological complexity of an arrangement A restricted to V to
be the number given by ∑

D∈C(A,V )

k′∑
i=0

bi(D).

We have the following generalization of Theorem 2.1.

Theorem 2.2. Let S(R) be an o-minimal structure over a real closed field R, and let T ⊂
Rk+� and V ⊂ Rk be closed definable sets with dim(V ) = k′. Then, there exists a constant C =
C(T, V ) > 0 depending only on T and V , such that for any (T, π1, π2)-family, A = {S1, . . . , Sn},
of subsets of Rk, and for every i, with 0 � i � k′, we have∑

D∈C(A,V )

bi(D) � C · nk′−i.
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In particular, the combinatorial complexity of A restricted to V , which is equal to∑
D∈C(A,V ) b0(D), is bounded by C · nk′

.

Now, as before let S(R) be an o-minimal structure over a real closed field R, and let T ⊂ Rk+�

and V ⊂ Rk be closed definable sets with dim(V ) = k′.

Theorem 2.3. Let S(R) be an o-minimal structure over a real closed field R, and let
T ⊂ Rk+� and V ⊂ Rk be closed definable sets with dim(V ) = k′. Then, there exists a constant
C = C(T, V ) > 0 such that for any (T, π1, π2)-family, A, with |A| = n, and an A-closed set
S1 ⊂ Rk, and an A-set S2 ⊂ Rk, we have

k′∑
i=0

bi(S1 ∩ V ) � C · nk′
and

k′∑
i=0

bi(S2 ∩ V ) � C · n2k′
.

2.2. Topological complexity of projections

In Theorem 2.3, we obtained bounds on the topological complexity of definable sets belonging
to the Boolean algebra of sets generated by any (T, π1, π2)-family of sets of cardinality n. We
now consider the images of such sets under linear projections. Such projections are closely
related to the classical problem of quantifier elimination and play a very important role in
semi-algebraic geometry. In the case of semi-algebraic sets, there exist effective algorithms for
performing quantifier elimination, which enable one to compute semi-algebraic descriptions of
projections of semi-algebraic sets in an efficient manner (see, for instance, [8]). Note, however,
that unlike in the case of semi-algebraic sets, we do not have effective algorithms for performing
quantifier elimination over a general o-minimal structure.

Using our theorem on quantitative cylindrical definable cell decomposition (Theorem 2.5
below), it is possible to give a doubly exponential bound (of the form C(T ) · n2(2k−1)) on the
sum of the Betti numbers of such projections. However, adapting a spectral sequence argument
from [25], we have the following singly exponential bound.

Theorem 2.4 (Topological complexity of projections). Let S(R) be an o-minimal struc-
ture, and let T ⊂ Rk+� be a definable, closed and bounded set. Let k = k1 + k2 and let
π3 : Rk → Rk2 denote the projection map on the last k2 coordinates. Then, there exists a
constant C = C(T ) > 0 such that for any (T, π1, π2)-family, A, with |A| = n, and an A-closed
set S ⊂ Rk, we have

k2∑
i=0

bi(π3(S)) � C · n(k1+1)k2 .

2.3. Cylindrical definable cell decompositions

In semi-algebraic geometry, cylindrical algebraic decomposition is a very important method for
obtaining a decomposition of an arbitrary semi-algebraic set into topological balls of various
dimensions. Once such a decomposition is computed, it can be refined to a semi-algebraic
triangulation, and various topological information about a given semi-algebraic set (such as
its Betti numbers) can be computed easily from such a triangulation. Moreover, cylindrical
algebraic decomposition can also be used for solving the quantifier elimination problem (see
[8] for an exposition and pointers to the large amount of literature on this subject).
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The analog of cylindrical algebraic decomposition over an o-minimal structure is called
cylindrical definable cell decomposition. We first recall the definition of cylindrical definable
cell decomposition (henceforth called cdcd) as in [12].

Definition 5. A cdcd of Rk is a finite partition of Rk into definable sets (Ci)i∈I (called
the cells of the cdcd) satisfying the following properties.

(i) If k = 1, then a cdcd of R is given by a finite set of points a1 < . . . < aN and the cells
of the cdcd are the singletons {ai} as well as the open intervals (∞, a1), (a1, a2), . . . , (aN ,∞).

(ii) If k > 1, then a cdcd of Rk is given by a cdcd (C ′
i)i∈I′ of Rk−1 and for each i ∈ I ′, a

collection of cells Ci defined by

Ci = {φi(C ′
i × Dj) | j ∈ Ji},

where
φi : C ′

i × R → Rk

is a definable homeomorphism satisfying π ◦ φ = π; we have that (Dj)j∈Ji
is a cdcd of R and

π : Rk → Rk−1 is the projection map onto the first k − 1 coordinates. The cdcd of Rk is then
given by ⋃

i∈I′

Ci.

Given a family of definable subsets A = {S1, . . . , Sn} of Rk, we say that a cdcd is adapted to
A if each Si is a union of cells of the given cdcd.

The fact that, given any finite family A of definable subsets of Rk, there exists a cdcd of
Rk adapted to A is classical (see [12, 14]). However, for the purposes of this paper we need a
quantitative version of this result. Such quantitative versions are known in the semi-algebraic
as well as semi-Pfaffian categories (see, for example, [8, 22]), but is missing in the general
o-minimal setting.

Given a (T, π1, π2)-family A of cardinality n, we give a bound on the size of a cdcd of Rk

adapted to this family in terms of n, and furthermore show that cells of the cdcd come from a
definable family that depends only on T (independent of n) and each such cell can be defined
only in terms of a constant number of elements of A. This latter property is essential in the
combinatorial application described later in the paper.

Since we shall need to consider several different projections, we adopt the following
convention. Given m and p, with p � m, we denote by π�p

m : Rm → Rp and π>p
m : Rm → Rm−p

the projections onto the first p and the last m − p coordinates, respectively.
We prove the following theorem.

Theorem 2.5 (Quantitative cylindrical definable cell decomposition). Let S(R) be an
o-minimal structure over a real closed field R, and let T ⊂ Rk+� be a closed definable set.
Then, there exist constants C1, C2 > 0 depending only on T , and definable sets

{Tα}α∈I , Tα ⊂ Rk × R2(2k−1)·�,

depending only on T , with |I| � C1, such that for any (T, π1, π2)-family, A = {S1, . . . , Sn},
with Si = Tyi

, where yi ∈ R� and 1 � i � n, some subcollection of the sets

π�k
k+2(2k−1)·�

(
π>k

k+2(2k−1)·�
−1

(yi1 , . . . ,yi2(2k−1)
) ∩ Tα

)
,

α ∈ I, 1 � i1, . . . , i2(2k−1) � n

form a cdcd of Rk compatible with A. Moreover, the cdcd has at most C2 · n2(2k−1) cells.
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The combinatorial complexity bound in Theorem 2.5 compares favorably with the
combinatorial parts of similar quantitative results on cylindrical decomposition of semi-
algebraic sets (see, for instance, [8, Section 11.1]), as well as sub-Pfaffian sets (see the main
result in [21]). Moreover, since a doubly exponential dependence on k is unavoidable (see [13]),
the complexity bound in Theorem 2.5 is very close to the best possible. Note also that it is
possible to use Theorem 2.5 to give a doubly exponential bound on the Betti numbers of an
A-closed set. However, we prove much better (singly exponential) bounds on the Betti numbers
of such sets (Theorems 2.1 and 2.2) using different techniques.

2.4. Application

We end with an application (Theorem 2.6 below) that generalizes a Ramsey-type result due
to Alon et al. [3] from the class of semi-algebraic sets of constant description complexity
to (T, π1, π2)-families. One immediate consequence of Theorem 2.6 is that if we have two
(T, π1, π2)-families, A and B of sufficiently large size, then one can always find a constant
fraction, A′ ⊂ A , B′ ⊂ B of each, having the property that either every pair (A,B) ∈ A′ × B′

satisfies some definable relation (for example, having a non-empty intersection) or no pair in
A′ × B′ satisfies that relation.

More precisely, we give the following theorem.

Theorem 2.6. Let S(R) be an o-minimal structure over a real closed field R, and let F be
a closed definable subset of R� × R�. Then, there exists a constant 1 > ε = ε(F ) > 0, depending
only on F , such that for any set of n points

F = {y1, . . . ,yn ∈ R�},

there exist two subfamilies F1,F2 ⊂ F , with |F1|, |F2| � εn and either of the following
conditions holds:

(i) F1 ×F2 ⊂ F ;
(ii) F1 ×F2 ∩ F = ∅.

An interesting application of Theorem 2.6 is the following.

Corollary 2.7. Let S(R) be an o-minimal structure over a real closed field R, and let
T ⊂ Rk+� be a closed definable set. Then, there exists a constant 1 > ε = ε(T ) > 0 depending
only on T , such that for any (T, π1, π2)-family, A = {S1, . . . , Sn}, there exist two subfamilies
A1,A2 ⊂ A, with |A1|, |A2| � εn, and either of the following conditions holds:

(i) for all Si ∈ A1 and Sj ∈ A2, we have Si ∩ Sj �= ∅;
(i) for all Si ∈ A1 and Sj ∈ A2, we have Si ∩ Sj = ∅.

3. Proofs of the main results

We first need a few preliminary results.

3.1. Finite unions of definable families

Suppose that T1, . . . , Tm ⊂ Rk+� are closed, definable sets, π1 : Rk+� → Rk and π2 : Rk+� → R�

the two projections.
We show that there exists a certain closed definable subset T ′ ⊂ Rk+�+m depending only on

T1, . . . , Tm, such that for any collection of (Ti, π1, π2) families Ai, with 1 � i � m, the union
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⋃
1�i�m Ai is a (T ′, π′

1, π
′
2)-family, where π′

1 : Rk+m+� → Rk and π′
2 : Rk+�+m → R�+m are the

usual projections.

Lemma 3.1. The family
⋃

1�i�m Ai is a (T ′, π′
1, π

′
2) family, where

T ′ =
m⋃

i=1

Ti × {ei} ⊂ Rk+�+m,

with ei the ith standard basis vector in Rm, and π′
1 : Rk+�+m → Rk and π′

2 : Rk+�+m → R�+m,
the projections onto the first k and the last � + m coordinates, respectively.

Proof. Obvious.

3.2. Hardt’s triviality for definable sets

Our main technical tool will be the following o-minimal version of Hardt’s triviality theorem
(see [12, 14]).

Let X ⊂ Rk × R� and A ⊂ R� be definable subsets of Rk × R� and R�, respectively, and let
π : X → R� denote the projection map.

We say that X is definably trivial over A if there exist a definable set F and a definable
homeomorphism

h : F × A → X ∩ π−1(A),

such that the following diagram commutes:

F × A
h ��

π2

��

X ∩ π−1(A)

π

��������������

A

,

where π2 : F × A → A is the projection onto the second factor. We call h a definable
trivialization of X over A.

If Y is a definable subset of X, then we say that the trivialization h is compatible with
Y if there exists a definable subset G of F such that h(G × A) = Y ∩ π−1(A). Clearly, the
restriction of h to G × A is a trivialization of Y over A.

Theorem 3.2 (Hardt’s theorem for definable families). Let X ⊂ Rk × R� be a definable
set and let Y1, . . . , Ym be definable subsets of X. Then, there exists a finite partition of R�

into definable sets C1, . . . , CN such that X is definably trivial over each Ci, and moreover the
trivializations over each Ci are compatible with Y1, . . . , Ym.

Remark 4. Note that, in particular, it follows from Theorem 3.2, that there are only a
finite number of topological types among the fibers of any definable map f : X → Y between
definable sets X and Y (see Remark 2).

3.3. Some notation

For any definable set X ⊂ Rk we denote by Xc the complement of X, and by X̄ the closure of
X in Rk. We also denote by Bk(x, r) and B̄k(x, r) the open and closed balls in Rk of radius r
centered at x.
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For any closed definable subset X ⊂ Rk, we define

dX : Rk → R, dX(x) = dist(x,X).

Note that, it follows from the axioms in Definition 1that dX is a definable function (that is, a
function whose graph is a definable set).

Given closed definable sets X ⊂ V ⊂ Rk, and ε > 0, we define the open tube of radius ε
around X in V to be the definable set

OT(X,V, ε) = {x ∈ V | dX(x) < ε}.

Similarly, we define the closed tube of radius ε around X in V to be the definable set

CT(X,V, ε) = {x ∈ V | dX(x) � ε}

the boundary of the closed tube to be

BT(X,V, ε) = {x ∈ V | dX(x) = ε},

and finally for ε1 > ε2 > 0 we define the open annulus of radii ε1, ε2 around X in V to be the
definable set

Ann(X,V, ε1, ε2) = {x ∈ V | ε2 < dX(x) < ε1}

and the closed annulus of radii ε1, ε2 around X in V to be the definable set

Ann(X,V, ε1, ε2) = {x ∈ V | ε2 � dX(x) � ε1}.

For the sake of brevity we denote OT(X, Rk, ε), CT(X, Rk, ε), BT(X,Rk, ε)Ann(X, Rk, ε)
and Ann(X, Rk, ε) by OT(X, ε), CT(X, ε), BT(X, ε), Ann(X, ε) and Ann(X, ε),
respectively.

3.4. Replacing definable sets by closed and bounded ones maintaining homotopy type

Let A = {S1, . . . , Sn} be a collection of closed, definable subsets of Rk and let V ⊂ Rk be a
closed and bounded definable set. In this section we adapt a construction due to Gabrielov
and Vorobjov [23] for replacing any given (A, V )-set by a closed bounded (A′, V )-set (where
A′ is a new family of definable sets closely related to A) such that the new set has the same
homotopy type as the original one.

We denote by In(A, V ) the set

{I ⊂ [1 . . . n] | A(I) ∩ V �= ∅}.

Let ε2n 
 ε2n−1 
 . . . 
 ε2 
 ε1 > 0 be sufficiently small.
For each m, with 0 � m � n, we denote by Inm(A, V ) the set {I ∈ In(A, V ) | |I| = m}.
Given I ∈ Inm(A, V ), denote by A(I)cl the intersection of V with the closed definable set⋂

i∈I

CT(Si, ε2m) ∩
⋂

i∈[1...n]\I

Sc
i .

and denote by A(I)o the intersection of V with the open definable set⋂
i∈I

OT(Si, ε2m−1) ∩
⋂

i∈[1...n]\I

Sc
i .

Note that we have

A(I) ⊂ A(I)cl as well as A(I) ⊂ A(I)o.

Let X ⊂ V be an (A, V )-set such that X =
⋃

I∈Σ A(I) ∩ V , with Σ ⊂ In(A, V ). We denote
Σm = Σ ∩ Inm(A, V ) and define a sequence of sets Xm ⊂ Rk, with 0 � m � n inductively as
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follows:
(i) Let X0 = X.
(ii) For 0 � m � n, we define

Xm+1 =

(
Xm ∪

⋃
I∈Σm

A(I)cl

)∖ ⋃
I∈Inm(A,V )\Σm

A(I)o

We denote by X ′ the set Xn+1.
The following theorem is similar to [9, Theorem 8.1]. All the steps in the proof of [9, Theorem

8.1] also remain valid in the o-minimal context. One needs to replace the references to Hardt’s
theorem for semi-algebraic mappings by its o-minimal counterpart. Since repeating the entire
proof with this minor modification would be tedious, we omit it from this paper.

Theorem 3.3. The sets X and X ′ are definably homotopy equivalent.

Remark 5. Very recently, after this paper was written, Gabrielov and Vorobjov [24] have
given a much simpler construction for replacing an arbitrary definable set X by a closed and
bounded one, and if we use this new construction instead of the one described above, we obtain
a slightly improved bound in Theorem 2.3 (namely C · nk′

instead of C · n2k′
).

Remark 6. Note that X ′ is a (A′, V )-closed set, where

A′ =
n⋃

i,j=1

{Si,CT(Si, ε2j),OT(Si, ε2j−1)c}.

If A is a (T, π1, π2)-family for some definable closed subset T ⊂ Rk+�, then by Lemma 3.1, A′

is a (T ′, π′
1, π

′
2)-family for some definable T ′ depending only on T .

3.5. Mayer–Vietoris inequalities

We need a couple of inequalities which follows from the exactness of Mayer–Vietoris sequence.

Remark 7. Note that for a closed and bounded definable set X ⊂ Rk, the homology groups
H∗(X) are isomorphic to the simplicial homology groups of any definable triangulation of X and
in this case the proof of the exactness of the Mayer–Vietoris sequence is purely combinatorial
in nature and presents no difficulties (even in the case when R is an arbitrary real closed field
not necessarily equal to R). The same remark also applies to arbitrary definable closed sets
(not necessarily bounded), after intersecting the given sets with a large enough closed ball and
using the conical structure at infinity of definable sets.

We first consider the case of two closed definable sets and then generalize to the case of many
such sets.

Proposition 3.4. Let S1 and S2 be two closed definable sets. Then we have

bi(S1) + bi(S2) � bi(S1 ∪ S2) + bi(S1 ∩ S2), (3.1)
bi(S1 ∪ S2) � bi(S1) + bi(S2) + bi−1(S1 ∩ S2), (3.2)
bi(S1 ∩ S2) � bi(S1) + bi(S2) + bi+1(S1 ∪ S2). (3.3)
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Let S1, . . . , Sn ⊂ Rk be closed definable sets contained in a closed bounded definable set V
of dimension k′. For 1 � t � n, we let

S�t =
⋂

1�j�t

Sj and S�t =
⋃

1�j�t

Sj .

Also, for J ⊂ {1, . . . , n}, with J �= ∅, let

SJ =
⋂
j∈J

Sj and SJ =
⋃
j∈J

Sj .

Finally, let S∅ = V .
We have the following proposition.

Proposition 3.5. (a) For 0 � i � k′, we have

bi(S�n) �
i+1∑
j=1

∑
J⊂{1,...n},#(J)=j

bi−j+1(SJ). (3.4)

(b) For 0 � i � k′, we have

bi(S�n) � bk′(S∅) +
k′−i∑
j=1

∑
J⊂{1,...,n},#(J)=j

(bi+j−1(SJ) + bk′(S∅)). (3.5)

Proof. See [6].

3.6. Proof of Theorem 2.2

We use the following proposition in the proof of Theorem 2.2.

Proposition 3.6. Let A = {S1, . . . , Sn} be a collection of closed definable subsets of Rk

and let V ⊂ Rk be a closed and bounded definable set. Then for all sufficiently small 1 
 ε1 

ε2 > 0 the following holds. For any connected component C of A(I) ∩ V , with I ⊂ [1 . . . n],
there exists a connected component D of the definable set⋂

1�i�n

Ann(Si, ε1, ε2)c ∩ V

such that D is definably homotopy equivalent to C.

Proof. The proposition follows from the following two observations which are consequences
of Theorem 3.2 (Hardt’s theorem for o-minimal structures).

Observation 1. It follows from Theorem 3.2 that for all sufficiently small ε1 > 0 and for
each connected component C of A(I) ∩ V , there exists a connected component D′ of⋂

i∈I

Si ∩
⋂

j∈[1...n]\I

OT(Sj , ε1)c ∩ V,

definably homotopy equivalent to C.
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Observation 2. For all sufficiently small ε2, with 0 < ε2 � ε1, and for each connected
component D′ of ⋂

i∈I

Si ∩
⋂

j∈[1...n]\I

OT(Sj , ε1)c ∩ V,

there exists a connected component D of

W :=
⋂
i∈I

CT(Si, ε2) ∩
⋂

j∈[1...n]\I

OT(Sj , ε1)c ∩ V,

definably homotopy equivalent to D′.

Now note that D is connected and contained in the set⋂
1�i�n

Ann(Si, ε1, ε2)c ∩ V.

Let D′′ be the connected component of⋂
1�i�n

Ann(Si, ε1, ε2)c ∩ V

containing D. We claim that D = D′′, which will prove the proposition.
Suppose D′′ \ D �= ∅. Then we have D′′ \ W �= ∅, since otherwise D′′ ⊂ W , which would

imply that D′′ = D, since D′′ is connected and D ⊂ D′′ is a connected component of W . Let
x ∈ D′′ \ W and let y be any point in D. Since x /∈ W , either of the following conditions holds:

(i) there exists i ∈ I such that x ∈ OT(Si, ε1)c;
(ii) there exists i ∈ [1 . . . n] \ I such that x ∈ CT(Si, ε2).
Let γ : [0, 1] → D′′ be a definable path with γ(0) = x and γ(1) = y, and let di : D′′ → R be

the definable continuous function such that di(z) = dist(z, Si).
Then, in the first case, we have di(x) = di(γ(0)) � ε1 and di(y) = di(γ(1)) < ε2, implying

that there exists t ∈ (0, 1) with ε2 < di(γ(t)) < ε1, implying that di(γ(t)) �∈ Ann(Si, ε1, ε2)c,
and hence not in D′′ (a contradiction). In the second case, we have di(x) = di(γ(0)) < ε2

and di(y) = di(γ(1)) � ε1, implying that there exists t ∈ (0, 1) with ε2 < di(γ(t)) < ε1, again
implying that di(γ(t)) �∈ Ann(Si, ε1, ε2)c, and hence not in D′′ (a contradiction).

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. For 1 � i � n, let yi ∈ R� such that

Si = Tyi
,

and let

Ai(ε1, ε2) = Ann(Si, ε1, ε2)c ∩ V.

Applying Proposition 3.5 for 0 � i � k′, we have

bi

⎛
⎝ n⋂

j=1

Aj(ε1, ε2)

⎞
⎠ � bk′(V ) +

k′−i∑
j=1

∑
J⊂{1,...,n},#(J)=j

(
bi+j−1(AJ (ε1, ε2)) + bk′(V )

)
, (3.6)

where AJ(ε1, ε2) =
⋃

j∈J Aj(ε1, ε2).
Note that each Ann(Si, ε1, ε2)c, with 1 � i � n, is an (Ann(T, ε1, ε2)c, π1, π2)-set and

moreover,

Ann(Si, ε1, ε2)c = π1(π−1
2 (yi) ∩ Ann(T, ε1, ε2)c), 1 � i � n.
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For J ⊂ [1 . . . n] with |J | � k′, we define

SJ(ε1, ε2) =
⋃
j∈J

Ann(Sj , ε1, ε2)c.

Consider the definable set

BJ(ε1, ε2) =
∏
j∈J

Ann(T, ε1, ε2) ∩ Δ,

where Δ ⊂ R|J|(k+�) is the definable (in fact, semi-algebraic) set defined by

Δ = {(x, z1,x, z2, . . . ,x, z|J|) | x ∈ Rk, z1, . . . , z|J| ∈ R�}.

The projection map π2 induces a projection map, as follows:∏
j∈J

π2 : R|J|(k+�) →
∏
j∈J

R�.

We also have the natural projection given by

π1 : BJ(ε1, ε2) → Rk.

BJ(ε1, ε2)

π1
����������� ∏

j∈J π2

�����������

Rk R|J|�

It is now easy to see that for each J = {i1, . . . , i|J|}, we have that SJ(ε1, ε2)c is homeomorphic
to (

∏
j∈J π2)−1(yi1 , . . . ,yi|J|) ∩ BJ(ε1, ε2) via the projection π1.

Using Remark 4 we can conclude that there exists an upper bound depending only on T
(and independent of y1, . . . ,yn as well as ε1, ε2), on the number of topological types among
the pairs ⎛

⎜⎝Rk, π1

⎛
⎜⎝

⎛
⎝∏

j∈J

π2

⎞
⎠

−1

(yi1 , . . . ,yi|J|) ∩ BJ(ε1, ε2)

⎞
⎟⎠

⎞
⎟⎠ ,

and hence among the pairs (Rk, SJ(ε1, ε2)c) as well. This implies that there are only a finite
number (depending on T ) of topological types among SJ(ε1, ε2). Restricting all the sets to V
in the above argument, we obtain that there are only finitely many (depending on T and V )
topological types among the sets AJ(ε1, ε2) = SJ(ε1, ε2) ∩ V .

Thus, there exists a constant C(T, V ) such that

C(T, V ) = max
J⊂{1,...,n},|J|�k′,0�i+j�k′

(
bi+j−1(AJ (ε1, ε2)) + bk′(V )

)
+ bk′(V ).

It now follows from inequality (3.6) and Proposition 3.6 that∑
D∈C(A,V )

bi(D) � C · nk′−i.

We now prove Theorem 2.3.
The proof of Theorem 2.3 will follow from the following proposition. For the sake of greater

clarity, and since it does not affect in any way the proof of Theorem 2.3, we choose to be slightly
less precise in the next proposition, and prove a bound on the sum of the Betti numbers of S
(rather than prove separate bounds on each individual Betti number). Recall from before that
for any definable set X ⊂ Rk, we denote by b(X) the sum

∑
i�0 bi(X).
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Proposition 3.7. Let A = {S1, . . . , Sn} be a collection of closed definable subsets of Rk,
let V ⊂ Rk be a closed and bounded definable set and let S be an (A, V )-closed set. Then, for
all sufficiently small 1 
 ε1 
 ε2 
 . . . 
 εn > 0, we have

b(S) �
∑

D∈C(B,V )

b(D),

where

B =
n⋃

i=1

{Si,BT(Si, εi),OT(Si, 2εi)c}.

Proof. We define A>i = {Si+1, . . . , Sn},
Bi = {Si,BT(Si, εi),OT(Si, 2εi)c},

and

B�i =

⎧⎨
⎩X | X =

⋂
j=1,...,i

Xj ,Xj ∈ Bj

⎫⎬
⎭ .

The proof of the proposition will follow from the following proposition.

Proposition 3.8. For every (A, V )-closed set S, we have

b(S) �
∑

X∈B�s,X∩V ⊂S

b(X ∩ V ).

The main ingredient of the proof of the proposition is the following lemma.

Lemma 3.9. For every (A, V )-closed set S, and every X ∈ B�i, we have

b(S ∩ X) �
∑

Y ∈Bi+1

b(S ∩ X ∩ Y ).

Proof. Consider the sets

T1 = S ∩ X ∩ OT(Si+1, εi+1)c and T2 = S ∩ X ∩ CT(Si+1, 3εi+1).

Clearly, we have that S ∩ X = T1 ∪ T2.
Using Proposition 3.4, we have that

b(S ∩ X) � b(T1) + b(T2) + b(T1 ∩ T2).

Now, since
T1 ∩ T2 = S ∩ X ∩ Ann(Si+1, 3εi+1, εi+1)),

we have that
b(T1 ∩ T2) = b(S ∩ X ∩ Ann(Si+1, 3εi+1, εi+1)).

It is now easy to verify using Theorem 3.2 that

T1 ∼ S ∩ X ∩ OT(Si+1, 2εi+1)c,

T2 ∼ S ∩ X ∩ Si+1,

T1 ∩ T2 ∼ S ∩ X ∩ BT(Si+1, 2εi+1),
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where ∼ denotes definable homotopy equivalence.
Finally, we have

b(S ∩ X) �
∑

Y ∈Bi+1

b(S ∩ X ∩ Y ).

Proof of Proposition 3.8. Starting from the set S, apply Lemma 3.9 with X the empty
set. Now, repeatedly apply Lemma 3.9 to the terms appearing on the right-hand side of
the inequality obtained, noting that for any Y ∈ B�s, either S ∩ X = X and thus X ⊂ S,
or S ∩ X = ∅.

The proof of Proposition 3.7 now follows from Proposition 3.8.

3.7. Proof of Theorem 2.3

Proof of Theorem 2.3. Follows directly from Theorem 3.3, Theorem 2.2 and Proposition 3.7.

3.8. Proof of Theorem 2.4

The proof of Theorem 2.4 relies on the bounds in Theorem 2.1, and on the following theorem
which is adapted to the o-minimal setting from [25].

Theorem 3.10. Let X and Y be two closed, definable sets and let f : X → Y be a definable
continuous surjection that is closed (that is, f takes closed sets to closed sets). Then for any
integer q, we have

bq(Y ) �
∑

i+j=q

bj(W i
f (X)), (3.7)

where W i
f (X) denotes the (i + 1)-fold fibered product of X over f given by

W i
f (X) = {(x0, . . . ,xi) ∈ Xi+1 | f(x0) = . . . = f(xi)}.

Remark 8 (Regarding the proof of Theorem 3.10). Theorem 3.10 was proved in [25]
in the semi-algebraic and semi-Pfaffian setting and follows from the existence of a spectral
sequence Ei,j

r converging to H∗(Y ) and such that Ei,j
1

∼= Hj(W i
f (X)). Thus, the extension of

this theorem to general o-minimal structures over arbitrary real closed fields R (not necessarily
equal to R) requires some remarks. The existence of the spectral sequence Ei,j

r is a consequence
of the p-connectivity of the (p + 1)-fold join of any simplicial complex K and the Vietoris–Begle
theorem. The proof of the p-connectivity of the (p + 1)-fold join of any simplicial complex K
is combinatorial in nature (see, for instance, [27, Proposition 4.4.3]), and thus presents no
additional difficulties over general o-minimal structures. A purely combinatorial proof of the
Vietoris-Begle theorem is also known [10, Theorem 2] (see also [24, Corollary 2.6]). Since the
rest of the argument is combinatorial in nature, it extends without difficulty to closed maps in
arbitrary o-minimal structures after choosing appropriate triangulations. Finally, since in any
spectral sequence, the dimensions of the terms Ei,j

r are non-increasing when i and j are fixed
and r increases, we obtain

bn(Y ) =
∑

i+j=n

dim(Ei,j
∞ ) �

∑
i+j=n

dim(Ei,j
1 ),

yielding inequality (3.7).
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Proof of Theorem 2.4. Note that for each p, with 0 � p � k2, and any A-closed set
S ⊂ Rk1+k2 , we have that W p

π3
(S) ⊂ R(p+1)k1+k2 is an Ap-closed set, where

Ap =
p⋃

j=0

Ap,j ,

Ap,j =
n⋃

i=1

{Sp,j
i },

where Sp,j
i ⊂ R(p+1)k1+k2 is defined by

Sp,j
i = {(x0, . . . ,xp,y) | xj ∈ Rk1 ,y ∈ Rk2 , (xj ,y) ∈ Si}.

Also, note that Ap,j is a (T p,j , πp
1 , πp

2) family, where

T p,j = {(x0, . . . ,xp,y, z) | xj ∈Rk1 ,y∈Rk2 , z∈R�, (xj ,y, z)∈T, for some j, with 0� j � p},
and πp

1 : R(p+1)k1+k2+� → R(p+1)k1+k2 and πp
2 : R(p+1)k1+k2+� → R� are the appropriate

projections. Since each T p,j is determined by T , we have using Lemma 3.1 that Ap is a
(T ′, π′

1, π
′
2)-family for some definable T ′ determined by T . Note that, W p

π3
(S) ⊂ R(p+1)k1+k2 is

an Ap-closed set and #Ap = (p + 1)n. Applying Theorem 2.1, for each p and j, with 0 � p,
and j < k2, we get

bj(W p
π3

(S)) � C1(T ) · n(p+1)k1+k2

The theorem now follows from Theorem 3.10, since for each q, with 0 � q < k2, we have

bq(π3(S)) �
∑

i+j=q

bj(W i
π3

(S)) � C2(T ) · n(q+1)k1+k2 � C(T ) · n(k1+1)k2 .

3.9. Proof of Theorem 2.5

The proof of Theorem 2.5 will follow from the following lemma (which corresponds to the
first projection step in the more familiar cylindrical algebraic decomposition algorithm for
semi-algebraic sets (see, for instance, [8])).

Lemma 3.11. Let S(R) be an o-minimal structure over a real closed field R, and let T ⊂
Rk+� be a closed definable set. Then, there exist definable sets T1, . . . , TN ⊂ Rk−1+2� satisfying
the following. For each i, with 1 � i � N , and y,y′ ∈ R�, let

Bi(y,y′) = π�k−1
k−1+2�

(
π>k−1

k−1+2�

−1
(y1,y2) ∩ Ti

)
.

The projection π>1
k : Rk → Rk−1 restricted to the sets Ty ∪ Ty′ is definably trivial over Bi(y,y′)

and the trivialization is compatible with Ty and Ty′ .

Proof. Let

V0 = {(x,y,y′) | (x,y) ∈ T or (x,y′) ∈ T},
V1 = {(x,y,y′) | (x,y) ∈ T},
V2 = {(x,y,y′) | (x,y′) ∈ T}.

Note that V0 ⊂ Rk+2� and V1, V2 ⊂ V0 and V0, V1, V2 are all definable and determined by T .
Applying Hardt’s triviality theorem to the sets V0, V1, V2 and the projection map π>1

k+2�, we
get a definable partition of Rk−1+2� into definable sets T1, . . . , TN , such that π>1

k+2�|V0 can be
trivialized over each Ti and the trivializations respects the subsets V1 and V2. It is now easy
to check that the sets Ti have the required properties.
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Proof of Theorem 2.5. We use induction on k.
The base case is when k = 1 and the theorem is clearly true in this case.
Now suppose by induction hypothesis that the theorem is true for k − 1. We first apply

Lemma 3.11 to obtain definable sets T1, . . . , TN ⊂ Rk−1+2� satisfying the following conditions.
For each i, with 1 � i � N , and y,y′ ∈ R�, the projection π>1

k : Rk → Rk−1 restricted to the
sets Ty ∪ Ty′ is definably trivial over Bi(y,y′) and the trivialization is compatible with Ty and
Ty′ , where

Bi(y,y′) = π�k−1
k−1+2�

(
π>k−1

k−1+2�

−1
(y,y′) ∩ Ti

)
,

Now let T ′ =
⋃

1�i�N Bi × {ei}, where ei is that ith standard basis vector in RN . Note that
T ′ ⊂ Rk−1+2�+N .

Applying the induction hypothesis to the triple(
T ′ ⊂ Rk−1+2(2k−1−1)·(2�+N), π�k−1

k−1+2(2k−1−1)·(2�+N)
, π>k−1

k−1+2(2k−1−1)·(2�+N)

)
we obtain definable sets as follows:

{T ′
j}j∈J , T ′

j ⊂ Rk−1 × R2(2k−1−1)·(2�+N),

depending only on T having the property that, for any y1, . . . ,yn,∈ R� and
a = (a1, . . . ,a2(2k−1−1)) ∈ R2(2k−1−1)·N , where each ai is a standard basis vector in RN , some
subcollection of the sets

π�k−1
k−1+2(2k−1−1)·(2�+N)

(
π>k−1

k−1+2(2k−1−1)·(2�+N)

−1
(yi1 , . . . ,yi22(2k−1)

,a) ∩ Ti

)
form a cdcd of Rk compatible with the family⋃

1�i,j�n

⋃
1�h�N

{Bh(yi,yj)}.

For x ∈ Rk−1 and y ∈ R�, let

S(x,y) = {x ∈ R | (x,x,y) ∈ T}.
Now, for x ∈ Rk−1 and y,y′ ∈ R�, we have S(x,y), S(x,y′) ⊂ R and each of them is a union

of a finite number of open intervals and points. The sets S(x,y), S(x,y′) induce a partition of
R into pairwise disjoint subsets

V1(x,y,y′), V2(x,y,y′), . . . ,

where for i � 0, each V2i+1(x,y,y′) is a maximal open interval contained in one of

S(x,y) ∩ S(x,y′), S(x,y)c ∩ S(x,y′),
S(x,y) ∩ S(x,y′)c, S(x,y)c ∩ S(x,y′)c,

and V2i(x,y,y′) is the right end-point of the interval V2i−1(x,y,y′). We let V(x,y,y′) denote
the ordered sequence

(V1(x,y,y′), V2(x,y,y′), . . . , VM (x,y,y′)),

where M is a uniform upper bound on |V| depending on T , and with the understanding that
Vi(x,y,y′) can be empty for all i � i0 for some 0 � i0 � M . It is clear that the sets

Vi = {(Vi(x,y,y′),x,y,y′) | x ∈ Rk−1,y,y′ ∈ R�}
are definable and depend only on T .

For each T ′
j ⊂ Rk−1 × R2(2k−1−1)·(2�+N) for j ∈ J , with 1 � h � M , and a = (a1, . . . ,a2k−2),

where each ai is a standard basis vector in RN , let

T ′
j,h,a = {(Vh(x,y2k+1−3,y2k+1−2),x,y1, . . . ,y(2(2k−1)) | (x,y1, . . . ,y22(2k−1−1),a) ∈ T ′

j}.
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Let {Ti}i∈I be the collection of all possible T ′
j,h,a. It is now easy to verify that the family of

sets {Ti}i∈I satisfies the conditions of the theorem.

3.10. Proof of Theorem 2.6

The proof is very similar to the second proof of [3, Theorem 1.1]. However, instead of using
vertical decomposition as in [3], we use the cylindrical definable cell decomposition given by
Theorem 2.5. We repeat it here for the reader’s convenience.

Proof of Theorem 2.6. For each i, with 1 � i � n, let

Ai = π��
2� (π>�

2�

−1
(yi) ∩ F )

and G = {Ai | 1 � i � n}. Note that G is a (R, π��
2� , π>�

2� )-family.
We now use the Clarkson–Shor random sampling technique [26] (using Theorem 2.5 instead

of vertical decomposition as in [3]). Applying Theorem 2.5 to some subfamily G0 ⊂ G of
cardinality r, we get a decomposition of R� into at most Cr2(2�−1) = rO(1) definable cells,
each of them defined by at most 2(2� − 1) = O(1) of the yi. This decomposition satisfies the
necessary properties for the existence of 1/r-cuttings of size rO(1) (see [26, p. 163]).

More precisely, let τ be a cell of the cdcd of G0 and let G ∈ G. We say that G crosses τ if
G ∩ τ �= ∅ and τ �⊂ G. The well-known Cutting Lemma (see [26, Chapter 6, Section 5]) now
ensures that we can choose G0 such that each cell of the cdcd of G0 is crossed by no more than
(c1n log r)/r elements of G, where c1 is a constant depending only on F .

For each cell τ of the cdcd of G0, let Gτ denote the set of elements of G that cross τ and let
Fτ = F ∩ τ .

Since the total number of cells in the cdcd of G0 is bounded by rO(1), there must exist a cell
τ such that we have

|Fτ | � n

rO(1)
.

Now, every element of G \ Gτ either fully contains τ or is disjoint from it.
Setting α = 1/rO(1) and β = (1/2)(1 − (c1 log r)/r), we have that there exists a set F ′ = Fτ

of cardinality at least αn, and a subset G′ of cardinality at least βn such that either each
element of F ′ is contained in every element of G′, or no element of F ′ is contained in any
element of G′.

The proof is complete by taking F1 = F ′, and F2 = {yi | Ai ∈ G′} and choosing r so as to
maximize ε = min(α, β).

Proof of Corollary 2.7. For 1 � i � n, let yi ∈ R� be such that Si = Tyi
. Let F ⊂ R� × R�

be the closed definable set defined by

F = {(z1, z2) | z1, z2 ∈ R�, Tz1 ∩ Tz2 �= ∅}.
Clearly, F is completely determined by T . Now apply Theorem 2.6.

4. Conclusion and open problems

In this paper we have proved bounds on the combinatorial and topological complexities of
arrangements of sets belonging to some fixed definable family in an o-minimal structure, in
terms of the number of sets in the arrangement. These results generalize known results in the
case when the sets in the arrangements are semi-algebraic sets and of constant description
complexity. We also extended a Ramsey-type theorem due to Alon et al. [3], originally proved
for semi-algebraic sets of fixed description complexity to the more general setting of o-minimal
geometry.
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There are many other sophisticated results on the combinatorial complexity of substructures
of arrangements which have been proved in the semi-algebraic case. Usually there are some
extra assumptions about general position in these results. For instance, it was shown in [4]
that the complexity of a single cell in an arrangement of n semi-algebraic hypersurface patches
in Rk, which are in general position and have constant description complexity, is bounded by
O(nk−1+ε). Does this bound also hold for (T, π1, π2)-families? It would be interesting to know
if all or most results in the computational geometry literature relating to arrangements of sets
of constant description complexity, do in fact extend to the more general setting introduced
in this paper. It would also be interesting to find proofs of existing bounds using the kind of
homological methods used in this paper. Doing so might remove extraneous assumptions on
general positions in several results and possibly even lead to tighter bounds.

Acknowledgement. The author thanks an anonymous referee for several helpful remarks
that have helped to substantially improve the paper.
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