ON THE BETTI NUMBERS OF SIGN CONDITIONS

SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANÇOISE ROY

Abstract. Let R be a real closed field and let \mathcal{Q} and \mathcal{P} be finite subsets of $\mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ such that the set \mathcal{P} has s elements, the algebraic set Z defined by $\bigwedge_{Q \in \mathcal{Q}} Q=0$ has dimension k^{\prime} and the elements of \mathcal{Q} and \mathcal{P} have degree at most d. For each $0 \leq i \leq k^{\prime}$, we denote the sum of the i-th Betti numbers over the realizations of all sign conditions of \mathcal{P} on Z by $b_{i}(\mathcal{P}, \mathcal{Q})$. We prove that

$$
b_{i}(\mathcal{P}, \mathcal{Q}) \leq \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 4^{j} d(2 d-1)^{k-1}
$$

This generalizes to all the higher Betti numbers the bound $\binom{s}{k^{\prime}} O(d)^{k}$ on $b_{0}(\mathcal{P}, \mathcal{Q})$ obtained in [3]. We also prove, using similar methods, that the sum of the Betti numbers of the intersection of Z with a closed semi-algebraic set, defined by a quantifier-free Boolean formula without negations with atoms of the form $P \geq 0$ or $P \leq 0$ for $P \in \mathcal{P}$, is bounded by

$$
\sum_{i=0}^{k^{\prime}} \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 6^{j} d(2 d-1)^{k-1}
$$

making the bound $s^{k^{\prime}} O(d)^{k}$ obtained in [2] more precise.

1. Introduction

Let R be a real closed field. For an element $a \in \mathrm{R}$ we define

$$
\operatorname{sign}(a)= \begin{cases}0 & \text { if } \quad a=0 \\ 1 & \text { if } \quad a>0 \\ -1 & \text { if } \quad a<0\end{cases}
$$

Let \mathcal{Q} and \mathcal{P} be finite subsets of $\mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$. A sign condition on \mathcal{P} is an element of $\{0,1,-1\}^{\mathcal{P}}$.

For $r>0$ we define the sets Z and Z_{r} by

$$
Z=\mathcal{R}\left(\bigwedge_{Q \in \mathcal{Q}} Q=0\right)=\left\{x \in \mathrm{R}^{k} \mid \bigwedge_{Q \in \mathcal{Q}} Q(x)=0\right\}, Z_{r}=Z \cap B(0, r)
$$

The realization of the sign condition σ over $Z, \mathcal{R}(\sigma, Z)$, is the basic semi-algebraic set

$$
\left\{x \in \mathrm{R}^{k} \mid \bigwedge_{Q \in \mathcal{Q}} Q(x)=0 \wedge \bigwedge_{P \in \mathcal{P}} \operatorname{sign}(P(x))=\sigma(P)\right\} .
$$

[^0]The realization of the sign condition σ over $Z_{r}, \mathcal{R}\left(\sigma, Z_{r}\right)$, is the basic semi-algebraic set $\mathcal{R}(\sigma, Z) \cap B(0, r)$.

For the rest of the paper, we fix an open ball $B(0, r)$ with center 0 and radius r big enough so that, for every sign condition $\sigma, \mathcal{R}(\sigma, Z)$ and $\mathcal{R}\left(\sigma, Z_{r}\right)$ are homeomorphic. This is always possible by the local conical structure at infinity of semi-algebraic sets ([5], page 225).

A closed and bounded semi-algebraic set $S \subset \mathrm{R}^{k}$ is semi-algebraically triangulable (see [5]), and we denote by $H_{i}(S)$ the i-th simplicial homology group of S with rational coefficients. The groups $H_{i}(S)$ are invariant under semi-algebraic homeomorphisms and coincide with the corresponding singular homology groups when $\mathrm{R}=\mathbb{R}$. We denote by $b_{i}(S)$ the i-th Betti number of S (that is, the dimension of $H_{i}(S)$ as a vector space), and $b(S)$ the sum $\sum_{i} b_{i}(S)$. For a closed but not necessarily bounded semi-algebraic set $S \subset \mathrm{R}^{k}$, we will denote by $H_{i}(S)$ the i-th simplicial homology group of $S \cap \overline{B(0, r)}$, where r is sufficiently large. This is well-defined using the local conical structure at infinity of semi-algebraic sets ([5], page 225).

The definition of homology groups of arbitrary semi-algebraic sets in R^{k} requires some care and several possibilities exist. In this paper, we define the homology groups of realizations of sign conditions as follows. Let $\sigma \in\{0,1,-1\}^{\mathcal{P}}$ and let $S_{t} \subset$ $\mathrm{R}^{k}, t \in(0, \infty]$ be any semi-algebraic family of closed and bounded sets, satisfying $\bigcup_{0<t} S_{t}=\mathcal{R}\left(\sigma, Z_{r}\right)$ and $t_{1}>t_{2} \Rightarrow S_{t_{1}} \subset S_{t_{2}}$. It follows from Hardt's triviality theorem [6] that there exists $t_{0}>0$ such that for all $t \in\left(0, t_{0}\right], S_{t}$ is homeomorphic to $S_{t_{0}}$. We define $H_{i}(\mathcal{R}(\sigma, Z))$ to be the simplicial homology group $H_{i}\left(S_{t_{0}}\right)$ with coefficients in \mathbb{Q}. It is easy to see (again using Hardt's triviality theorem) that $H_{i}(\mathcal{R}(\sigma, Z))$ does not depend on the choice of the semi-algebraic family S_{t} and also that it is invariant under semi-algebraic homeomorphisms. Finally, in the case that $\mathrm{R}=\mathbb{R}, H_{i}(\mathcal{R}(\sigma, Z))$ is isomorphic to the i-th singular homology group of $\mathcal{R}(\sigma, Z)$ using the fact that the singular homology of a subset of \mathbb{R}^{k} is isomorphic to the direct limit of the singular homology groups of its compact subsets [9].

Let $b_{i}(\sigma)$ denote the i-th Betti number of $\mathcal{R}(\sigma, Z)$ i.e. the dimension of $H_{i}(\mathcal{R}(\sigma, Z))$ as a \mathbb{Q} vector space, and let $b_{i}(\mathcal{Q}, \mathcal{P})=\sum_{\sigma} b_{i}(\sigma)$. Note that, $b_{0}(\mathcal{Q}, \mathcal{P})$ is the total number of semi-algebraically connected components of the realizations of all realizable sign conditions of \mathcal{P} over Z.

We write $b_{i}\left(d, k, k^{\prime}, s\right)$ for the maximum of $b_{i}(\mathcal{Q}, \mathcal{P})$ over all \mathcal{Q}, \mathcal{P} where \mathcal{Q} and \mathcal{P} are finite subsets of of $\mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, whose elements have degree at most d, $\#(\mathcal{P})=s$ (i.e. \mathcal{P} has s elements) and the algebraic set Z has real dimension k^{\prime}.

In [3], it was shown that, $b_{0}\left(d, k, k^{\prime}, s\right)=\binom{s}{k^{\prime}} O(d)^{k}$. The main point in this paper is to prove an extension of this result by obtaining bounds for $b_{i}\left(d, k, k^{\prime}, s\right)$, for each $i, 0 \leq i \leq k^{\prime}$. Namely, we prove:

Theorem 1.1.

$$
b_{i}\left(d, k, k^{\prime}, s\right) \leq \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 4^{j} d(2 d-1)^{k-1}
$$

The bound in [3] is proved by using a general position argument. The given polynomials are perturbed using infinitesimals so as to put them in general position - i.e. so that no more than k^{\prime} of the polynomials in \mathcal{P} have a common real zero in Z. The main ideas behind the proofs of the results in this paper are very different. We use an inductive argument based on the Mayer-Vietoris sequence. The starting point of the induction is a dimension argument: namely, we use the fact that
the i-th Betti number of a semi-algebraic set is zero when i is greater than its dimension. Notice that for $i=0$, Theorem 1.1 gives a more precise bound than the one in [3]. In [1] separate bounds on the individual Betti numbers of basic closed semi-algebraic sets were proved using a spectral sequence argument. The spectral sequences described there suggest the inequalities proved in Proposition 2 below, but they hide the direct induction that we are performing here.

We start with preliminaries, prove Theorem 1.1 in Section 3, and in Section 4 study the sum of Betti numbers of closed semi-algebraic sets.

2. Preliminaries

We use two main ingredients: the Oleinik-Petrovski/Thom/Milnor bound on the sum of the Betti numbers of algebraic sets and the Mayer-Vietoris long exact sequence. Additionally, we will use certain tools from real algebraic geometry.

Let $b(k, d)$ be the maximum of the sum of the Betti numbers of any algebraic set defined by polynomials of degree d in R^{k}. The Oleinik-Petrovski/Thom/Milnor $[7,10,8]$ bound is the following:

$$
\begin{equation*}
b(k, d) \leq d(2 d-1)^{k-1} \tag{2.1}
\end{equation*}
$$

We use extensively the inequalities in the following Proposition 1, which are easy consequences of the exactness of the Mayer-Vietoris sequence of homology groups [9]: if S_{1}, S_{2} are two closed and bounded semi-algebraic sets, then there exists the following long exact sequence of homology groups.

$$
\cdots \rightarrow H_{i}\left(S_{1} \cap S_{2}\right) \rightarrow H_{i}\left(S_{1}\right) \oplus H_{i}\left(S_{2}\right) \rightarrow H_{i}\left(S_{1} \cup S_{2}\right) \rightarrow H_{i-1}\left(S_{1} \cap S_{2}\right) \rightarrow \cdots
$$

Proposition 1. Let S_{1}, S_{2} be two closed and bounded semi-algebraic sets. Then,

$$
\begin{gather*}
b_{i}\left(S_{1}\right)+b_{i}\left(S_{2}\right) \leq b_{i}\left(S_{1} \cup S_{2}\right)+b_{i}\left(S_{1} \cap S_{2}\right), \tag{2.2}\\
b_{i}\left(S_{1} \cup S_{2}\right) \leq b_{i}\left(S_{1}\right)+b_{i}\left(S_{2}\right)+b_{i-1}\left(S_{1} \cap S_{2}\right), \tag{2.3}\\
b_{i}\left(S_{1} \cap S_{2}\right) \leq b_{i}\left(S_{1}\right)+b_{i}\left(S_{2}\right)+b_{i+1}\left(S_{1} \cup S_{2}\right) . \tag{2.4}
\end{gather*}
$$

We perturb polynomials by various infinitesimals so that our geometric objects live over the field of algebraic Puiseux series in these infinitesimals. We denote by $R\langle\zeta\rangle$ the real closed field of algebraic Puiseux series in ζ with coefficients in R [4]. The sign of a Puiseux series in $\mathrm{R}\langle\zeta\rangle$ agrees with the sign of the coefficient of the lowest degree term in ζ. This order makes ζ infinitesimal: ζ is positive and smaller than any positive element of R . When $a \in \mathrm{R}\langle\zeta\rangle$ is bounded by an element of R , $\lim _{\zeta}(a)$ is the constant term of a, obtained by substituting 0 for ζ in a.

Let R denote a real closed field and R^{\prime} a real closed field containing R. Given a semi-algebraic set S in R^{k}, the extension of S to R^{\prime}, denoted $\operatorname{Ext}\left(S, \mathrm{R}^{\prime}\right)$, is the semi-algebraic subset of $\mathrm{R}^{\prime k}$ defined by the same quantifier free formula that defines S. The set $\operatorname{Ext}\left(S, \mathrm{R}^{\prime}\right)$ is well defined (i.e. it only depends on the set S and not on the quantifier free formula chosen to describe it). This is an easy consequence of the transfer principle [5]. Moreover, the Betti numbers are not changed after extension: $b_{i}(S)=b_{i}\left(\operatorname{Ext}\left(S, \mathrm{R}^{\prime}\right)\right)$ (see [4], Chapter 6$)$.

3. Bounds on Betti numbers of basic semi-Algebraic sets: proof of Theorem 1.1

Let $S_{1}, \ldots, S_{s} \subset \mathrm{R}^{k}$ be closed semi-algebraic sets, contained in a closed bounded semi-algebraic set T of dimension k^{\prime}. For $1 \leq t \leq s$, we let

$$
S_{\leq t}=\bigcap_{1 \leq j \leq t} S_{j}, \quad S^{\leq t}=\bigcup_{1 \leq j \leq t} S_{j}
$$

Also, for $J \subset\{1, \ldots, s\}, J \neq \emptyset$, let

$$
S_{J}=\cap_{j \in J} S_{j}, S^{J}=\cup_{j \in J} S_{j} .
$$

Finally, let $S^{\emptyset}=T$.
The following proposition, Proposition 2, plays a key role in the proofs of our theorems. The first part of the proposition bounds the Betti numbers of a union of s semi-algebraic sets in R^{k} in terms of the Betti numbers of the intersections of the sets taken at most k at a time. In some simple situations the Betti numbers of a union of s sets are easy to bound. For instance, when the sets are such that all non-empty intersections amongst them are contractible, a classical result of topology, the nerve lemma, gives us a bound on the individual Betti numbers of the union. The nerve lemma states that the homology groups of such a union is isomorphic to the homology groups of a combinatorially defined simplicial complex, the nerve complex. The nerve complex has s vertices and thus the i-th Betti number is bounded by $\binom{s}{i+1}$. The first part of the proposition can be thought of as a generalization of this bound to the case when the intersections are not topologically trivial. The second part of the proposition is a dual version of the first, with unions being replaced by intersections and vice-versa, with an additional complication arising from the fact that the empty intersection, corresponding to the base case of the induction, is an arbitrary real algebraic variety of dimension k^{\prime}, which is generally not contractible.

Proposition 2. For $0 \leq i \leq k^{\prime}$,

$$
\begin{gather*}
b_{i}\left(S^{\leq s}\right) \leq \sum_{j=1}^{i+1} \sum_{J \subset\{1, \ldots s\}, \#(J)=j} b_{i-j+1}\left(S_{J}\right), \tag{3.1}\\
b_{i}\left(S_{\leq s}\right) \leq b_{k^{\prime}}\left(S^{\emptyset}\right)+\sum_{j=1}^{k^{\prime}-i} \sum_{J \subset\{1, \ldots, s\}, \#(J)=j}\left(b_{i+j-1}\left(S^{J}\right)+b_{k^{\prime}}\left(S^{\emptyset}\right)\right) . \tag{3.2}
\end{gather*}
$$

Proof. (Proof of Inequality 3.1) We prove the claim by induction on s. The statement is clearly true for $s=1$.

Using Proposition 1(2.3), we have that

$$
b_{i}\left(S^{\leq s}\right) \leq b_{i}\left(S^{\leq s-1}\right)+b_{i}\left(S_{s}\right)+b_{i-1}\left(S^{\leq s-1} \cap S_{s}\right)
$$

Applying the induction hypothesis to the set $S^{\leq s-1}$ we deduce that,

$$
b_{i}\left(S^{\leq s-1}\right) \leq \sum_{j=1}^{i+1} \sum_{J \subset\{1, \ldots, s-1\}, \#(J)=j} b_{i-j+1}\left(S_{J}\right)
$$

Next, we apply the induction hypothesis to the set

$$
S^{\leq s-1} \cap S_{s}=\cup_{1 \leq j \leq s-1}\left(S_{j} \cap S_{s}\right)
$$

and get that

$$
b_{i-1}\left(S^{\leq s-1} \cap S_{s}\right) \leq \sum_{j=1}^{i} \sum_{J \subset\{1, \ldots, s-1\}, \#(J)=j} b_{i-j}\left(S_{J \cup\{s\}}\right) .
$$

Adding the inequalities obtained above we get,

$$
b_{i}\left(S^{\leq s-1}\right)+b_{i}\left(S_{s}\right)+b_{i-1}\left(S^{\leq s-1} \cap S_{s}\right) \leq \sum_{j=1}^{i+1} \sum_{J \subset\{1, \ldots, s\}, \#(J)=j} b_{i-j+1}\left(S_{J}\right)
$$

Proof. (Proof of Inequality 3.2) We first prove the claim when $s=1$. If $0 \leq i \leq$ $k^{\prime}-1$, the claim is

$$
b_{i}\left(S_{1}\right) \leq b_{k^{\prime}}\left(S^{\emptyset}\right)+\left(b_{i}\left(S_{1}\right)+b_{k^{\prime}}\left(S^{\emptyset}\right)\right) .
$$

If $i=k^{\prime}$, the claim is $b_{k^{\prime}}\left(S_{1}\right) \leq b_{k^{\prime}}\left(S^{\emptyset}\right)$. If the dimension of S_{1} is k^{\prime}, consider the closure V of the complement of S_{1} in T. The intersection W of V with S_{1}, which is the boundary of S_{1}, has dimension strictly smaller than k^{\prime} [5] (page 53), thus $b_{k^{\prime}}(W)=0$. Using Proposition $1(2.2), b_{k^{\prime}}\left(S_{1}\right)+b_{k^{\prime}}(V) \leq b_{k^{\prime}}\left(S^{\emptyset}\right)+b_{k^{\prime}}(W)$, and the claim follows. On the other hand, if the dimension of S_{1} is strictly smaller than $k^{\prime}, b_{k^{\prime}}\left(S_{1}\right)=0$.

The claim is now proved by induction on s. Assume that the induction hypothesis (3.2) holds for $s-1$ and for all $0 \leq i \leq k^{\prime}$. From Proposition 1(2.4) we have,

$$
b_{i}\left(S_{\leq s}\right) \leq b_{i}\left(S_{\leq s-1}\right)+b_{i}\left(S_{s}\right)+b_{i+1}\left(S_{\leq s-1} \cup S_{s}\right)
$$

Applying the induction hypothesis to the set $S_{\leq s-1}$, we deduce that

$$
b_{i}\left(S_{\leq s-1}\right) \leq b_{k^{\prime}}\left(S^{\emptyset}\right)+\sum_{j=1}^{k^{\prime}-i} \sum_{J \subset\{1, \ldots, s-1\}, \#(J)=j}\left(b_{i+j-1}\left(S^{J}\right)+b_{k^{\prime}}\left(S^{\emptyset}\right)\right) .
$$

Next, applying the induction hypothesis to the set, $S_{\leq s-1} \cup S_{s}=\cap_{1 \leq j \leq s-1}\left(S_{j} \cup\right.$ S_{s}), we get that,

$$
b_{i+1}\left(S_{\leq s-1} \cup S_{s}\right) \leq b_{k^{\prime}}\left(S^{\emptyset}\right)+\sum_{j=1}^{k^{\prime}-i-1} \sum_{J \subset\{1, \ldots, s-1\}, \#(J)=j}\left(b_{i+j}\left(S^{J \cup\{s\}}\right)+b_{k^{\prime}}\left(S^{\emptyset}\right)\right)
$$

Adding the inequalities obtained above we get,

$$
b_{i}\left(S_{\leq s}\right) \leq b_{k^{\prime}}\left(S^{\emptyset}\right)+\sum_{j=1}^{k^{\prime}-i} \sum_{J \subset\{1, \ldots, s\}, \#(J)=j}\left(b_{i+j-1}\left(S^{J}\right)+b_{k^{\prime}}\left(S^{\emptyset}\right)\right) .
$$

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\}$, and δ be a new variable. We consider the field, $\mathrm{R}\langle\delta\rangle$, of algebraic Puiseux series in δ, in which δ will be an infinitesimal. Let W_{0} (resp. W_{1}) be the union of the sets $\mathcal{R}\left(P_{i}^{2}\left(P_{i}^{2}-\delta^{2}\right)=0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right)$ (resp. $\left.\mathcal{R}\left(P_{i}^{2}\left(P_{i}^{2}-\delta^{2} \geq 0\right), \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right)\right)$ with $1 \leq i \leq j$.

Lemma 3.1.

$$
b_{i}\left(W_{0}\right) \leq\left(4^{j}-1\right) d(2 d-1)^{k-1}
$$

Proof. Each of the sets $\mathcal{R}\left(P_{i}^{2}\left(P_{i}^{2}-\delta^{2}\right)=0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right)$ is the disjoint union of three algebraic sets, namely

$$
\begin{aligned}
& \mathcal{R}\left(P_{i}=0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right), \\
& \mathcal{R}\left(P_{i}=\delta, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right),
\end{aligned}
$$

and

$$
\mathcal{R}\left(P_{i}=-\delta, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right) .
$$

Moreover, each Betti number of their union is bounded by the sum of the Betti numbers of all possible non-empty sets that can be obtained by taking, for $1 \leq \ell \leq j$, ℓ-ary intersections of these algebraic sets using inequality 3.1 of Proposition 2. The number of possible ℓ-ary intersection is $\binom{j}{\ell}$. Each such intersection is a disjoint union of 3^{ℓ} algebraic sets. The sum of the Betti numbers of each of these algebraic sets is bounded by $d(2 d-1)^{k-1}$ by the Oleinik-Petrovski/Thom/Milnor bound (2.1).

$$
\text { Thus, } b_{i}\left(W_{0}\right) \leq \sum_{\ell=1}^{j}\binom{j}{\ell} 3^{\ell} d(2 d-1)^{k-1}=\left(4^{j}-1\right) d(2 d-1)^{k-1} \text {. }
$$

Lemma 3.2.

$$
b_{i}\left(W_{1}\right) \leq\left(4^{j}-1\right) d(2 d-1)^{k-1}+b_{i}\left(Z_{r}\right) .
$$

Proof. Let $Q_{i}=P_{i}^{2}\left(P_{i}^{2}-\delta^{2}\right)$ and

$$
F=\mathcal{R}\left(\bigwedge_{1 \leq i \leq j}\left(Q_{i} \leq 0 \vee \bigvee_{1 \leq i \leq j} Q_{i}=0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right)\right.
$$

Now apply inequality (2.2) noting that, $W_{1} \cup F=\operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right), W_{1} \cap F=W_{0}$, since $b_{i}\left(Z_{r}\right)=b_{i}\left(\operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right)$. We get that, $b_{i}\left(W_{1}\right) \leq b_{i}\left(W_{1} \cap F\right)+b_{i}\left(W_{1} \cup F\right)=$ $b_{i}\left(W_{0}\right)+b_{i}\left(Z_{r}\right)$. We conclude using Lemma 3.1.

Let $S_{i}=\mathcal{R}\left(P_{i}^{2}\left(P_{i}^{2}-\delta^{2}\right) \geq 0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)\right), 1 \leq i \leq \ell$, and S be the intersection of the S_{i}. Then

Lemma 3.3.

$$
b_{i}(\mathcal{P}, \mathcal{Q})=b_{i}(S) .
$$

Proof. Consider a sign condition σ on \mathcal{P} such that, without loss of generality,

$$
\begin{array}{ll}
\sigma\left(P_{i}\right)=0 & \text { if } i=1, \ldots, j \\
\sigma\left(P_{i}\right)=1 & \text { if } i=j+1, \ldots, \ell \\
\sigma\left(P_{i}\right)=-1 & \text { if } i=\ell+1, \ldots, s
\end{array}
$$

and denote by $\overline{\mathcal{R}}(\sigma)$ the subset of $\operatorname{Ext}\left(Z_{r}, \mathrm{R}\langle\delta\rangle\right)$ defined by

$$
\begin{equation*}
\bigwedge_{i=1, \ldots, j} P_{i}(x)=0 \wedge \bigwedge_{i=j+1, \ldots, \ell} P_{i}(x) \geq \delta \wedge \bigwedge_{\ell+1, \ldots, s} P_{i}(x) \leq-\delta . \tag{3.3}
\end{equation*}
$$

It follows from our definition of $b_{i}(\sigma)$ and Hardt's triviality theorem [5] that $b_{i}(\sigma)=b_{i}(\overline{\mathcal{R}}(\sigma))$. Note that S is the disjoint union of the $\overline{\mathcal{R}}(\sigma)$ (for σ realizable sign condition) so that $\sum_{\sigma} b_{i}(\sigma)=b_{i}(S)$. On the other hand, by definition, $\sum_{\sigma} b_{i}(\sigma)=b_{i}(\mathcal{P}, \mathcal{Q})$.

We are now able to prove Theorem 1.1.

Proof. (Proof of Theorem 1.1) Using inequality 3.2 of Proposition 2, Lemma 3.2, and (2.1) which implies, for all $i<k^{\prime}, b_{i}\left(Z_{r}\right)+b_{k^{\prime}}\left(Z_{r}\right) \leq d(2 d-1)^{k-1}$, we deduce that

$$
b_{i}(S) \leq b_{k^{\prime}}\left(Z_{r}\right)+\sum_{j=1}^{k^{\prime}-i}\binom{s}{j}\left(4^{j} d(2 d-1)^{k-1}\right)
$$

Thus, we have $b_{i}(S) \leq \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 4^{j} d(2 d-1)^{k-1}$.
It now follows, using Lemma 3.3,

$$
b_{i}(\mathcal{P}, \mathcal{Q}) \leq \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 4^{j} d(2 d-1)^{k-1}
$$

and finally

$$
b_{i}\left(d, k, k^{\prime}, s\right) \leq \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 4^{j} d(2 d-1)^{k-1}
$$

4. Sum of Betti numbers of Closed semi-algebraic sets

A $(\mathcal{Q}, \mathcal{P})$-closed formula is a formula defined as follows:

- For each $P \in \mathcal{P}, \bigwedge_{Q \in \mathcal{Q}} Q=0 \wedge P=0, \bigwedge_{Q \in \mathcal{Q}} Q=0 \wedge P \geq 0, \bigwedge_{Q \in \mathcal{Q}} Q=$ $0 \wedge P \leq 0$, are $(\mathcal{Q}, \mathcal{P})$-closed formulas.
- If Φ_{1} and Φ_{2} are $(\mathcal{Q}, \mathcal{P})$-closed formulas, $\Phi_{1} \wedge \Phi_{2}$ and $\Phi_{1} \vee \Phi_{2}$ are $(\mathcal{Q}, \mathcal{P})$ closed formulas.
Clearly, $\mathcal{R}(\Phi)$, the intersection of the realization of a $(\mathcal{Q}, \mathcal{P})$-closed formula Φ with $B(0, r)$ is a closed semi-algebraic set. We denote by $b(\Phi)$ the sum of its Betti numbers.

We write $\bar{b}\left(d, k, k^{\prime}, s\right)$ for the maximum of $b(\Phi)$, where Φ is a $(\mathcal{Q}, \mathcal{P})$-closed formula, \mathcal{Q} and \mathcal{P} are finite subsets of $\mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, whose elements have degree at most $d, \#(\mathcal{P})=s$ and the algebraic set $\mathcal{R}\left(\bigwedge_{Q \in \mathcal{Q}} Q=0\right)$ has dimension k^{\prime}.

In [2], it was shown that $\bar{b}\left(d, k, k^{\prime}, s\right)$ is bounded by $s^{k^{\prime}} O(d)^{k}$. In this section, we prove a more precise bound:

Theorem 4.1.

$$
\bar{b}\left(d, k, k^{\prime}, s\right) \leq \sum_{i=0}^{k^{\prime}} \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 6^{j} d(2 d-1)^{k-1}
$$

For the proof of Theorem 4.1, we are going to introduce several infinitesimals. Given an ordered list of polynomials $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\}$ with coefficients in R, we introduce s new variables $\delta_{1}, \cdots, \delta_{s}$, and inductively define: $\mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{i+1}\right\rangle=$ $\mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{i}\right\rangle\left\langle\delta_{i+1}\right\rangle$. Note that δ_{i+1} is infinitesimal with respect to δ_{i}, which is denoted by

$$
\delta_{1} \gg \ldots \gg \delta_{s}
$$

We define $\mathcal{P}_{>i}=\left\{P_{i+1}, \ldots, P_{s}\right\}$ and

$$
\Sigma_{i}=\left\{P_{i}=0, P_{i}=\delta_{i}, P_{i}=-\delta_{i}, P_{i} \geq 2 \delta_{i}, P_{i} \leq-2 \delta_{i}\right\}
$$

$$
\Sigma_{\leq i}=\left\{\Psi \mid \Psi=\bigwedge_{j=1, \ldots, i} \Psi_{i}, \Psi_{i} \in \Sigma_{i}\right\}
$$

If Φ is a $(\mathcal{Q}, \mathcal{P})$-closed formula, we denote by $\mathcal{R}_{i}(\Phi)$ the extension of $\mathcal{R}(\Phi)$ to $\mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{i}\right\rangle^{k}$. For $\Psi \in \Sigma_{\leq i}$, we denote by $\mathcal{R}_{i}(\Phi \wedge \Psi)$ the intersection of the realization of Ψ with $\mathcal{R}_{i}(\Phi)$ and by $b(\Phi \wedge \Psi)$ the sum of the Betti numbers of $\mathcal{R}_{i}(\Phi \wedge \Psi)$.

Proposition 3. For every $(\mathcal{Q}, \mathcal{P})$-closed formula $\Phi, b(\Phi) \leq \sum_{\Psi \in \Sigma_{\leq s}, \mathcal{R}_{s}(\Psi) \subset \mathcal{R}_{s}(\Phi)} b(\Psi)$.
The main ingredient of the proof of the Proposition 3 is the following lemma.
Lemma 4.2. For every $(\mathcal{Q}, \mathcal{P})$-closed formula Φ, and every $\Psi \in \Sigma_{\leq i}, b(\Phi \wedge \Psi) \leq$ $\sum_{\psi \in \Sigma_{i+1}} b(\Phi \wedge \Psi \wedge \psi)$.
Proof. Consider the formulas

$$
\begin{aligned}
& \Phi_{1}=\Phi \wedge \Psi \wedge\left(P_{i+1}^{2}-\delta_{i+1}^{2}\right) \geq 0 \\
& \Phi_{2}=\Phi \wedge \Psi \wedge\left(0 \leq P_{i+1}^{2} \leq \delta_{i+1}^{2}\right)
\end{aligned}
$$

Clearly, $\mathcal{R}_{i+1}(\Phi \wedge \Psi)=\mathcal{R}_{i+1}\left(\Phi_{1} \vee \Phi_{2}\right)$. Using Proposition 1, we have that, $b(\Phi \wedge \Psi) \leq b\left(\Phi_{1}\right)+b\left(\Phi_{2}\right)+b\left(\Phi_{1} \wedge \Phi_{2}\right)$.

Now, since $\mathcal{R}_{i+1}\left(\Phi_{1} \wedge \Phi_{2}\right)$ is the disjoint union of

$$
\begin{gathered}
\mathcal{R}_{i+1}\left(\Phi \wedge \Psi \wedge\left(P_{i+1}=\delta_{i+1}\right)\right) \text { and } \mathcal{R}_{i+1}\left(\Phi \wedge \Psi \wedge\left(P_{i+1}=-\delta_{i+1}\right)\right) \\
b\left(\Phi_{1} \wedge \Phi_{2}\right)=b\left(\Phi \wedge \Psi \wedge\left(P_{i+1}=\delta_{i+1}\right)+b\left(\Phi \wedge \Psi \wedge\left(P_{i+1}=-\delta_{i+1}\right)\right) .\right.
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
b\left(\Phi_{1}\right)=b\left(\Phi \wedge \Psi \wedge\left(P_{i+1} \geq 2 \delta_{i+1}\right)\right)+b\left(\Phi \wedge \Psi \wedge\left(P_{i+1} \leq-2 \delta_{i+1}\right)\right) \\
b\left(\Phi_{2}\right)=b\left(\Phi \wedge \Psi \wedge\left(P_{i+1}=0\right)\right)
\end{gathered}
$$

Indeed, by Hardt's triviality theorem [5], denoting $F_{t}=\left\{x \in \mathcal{R}_{i}(\Phi \wedge \Psi) \mid\right.$ $\left.P_{i+1}(x)=t\right\}$, there exists $t_{0} \in \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{i}\right\rangle$ such that $F_{\left[-t_{0}, 0\right) \cup\left(0, t_{0}\right]}=\left\{x \in \mathcal{R}_{i}(\Phi \wedge\right.$ $\left.\Psi) \mid t_{0}^{2} \geq P_{i+1}(x)>0\right\}$ and $\left(\left[-t_{0}, 0\right) \times F_{-t_{0}}\right) \cup\left(\left(0, t_{0}\right] \times F_{t_{0}}\right)$, are homeomorphic.

This clearly implies that $F_{\left[\delta, t_{0}\right]}=\left\{x \in \mathcal{R}_{i+1}(\Phi \wedge \Psi) \mid t_{0} \geq P_{i+1}(x) \geq \delta\right\}$ and $F_{\left[2 \delta, t_{0}\right]}=\left\{x \in \mathcal{R}_{i+1}(\Phi \wedge \Psi) \mid t_{0} \geq P_{i+1}(x) \geq 2 \delta\right\}$ are homeomorphic, and moreover the homeomorphism can be chosen such that it is the identity on the fibers, $F_{-t_{0}}$ and $F_{t_{0}}$.

Hence, $b\left(\Phi_{1}\right)=b\left(\Phi \wedge \Psi \wedge\left(P_{i+1} \geq 2 \delta_{i+1}\right)\right)+b\left(\Phi \wedge \Psi \wedge\left(P_{i+1} \leq-2 \delta_{i+1}\right)\right)$.
Note that $F_{0}=\mathcal{R}_{i+1}\left(\Phi \wedge \Psi \wedge\left(P_{i+1}=0\right)\right)$ and $F_{[-\delta, \delta]}=\mathcal{R}_{i+1}\left(\Phi_{2}\right)$. Thus, it remains to prove that $b\left(F_{[-\delta, \delta]}\right)=b\left(F_{0}\right)$. By Hardt's triviality theorem [5], for every $0<u<1$ there is a fiber preserving semi-algebraic homeomorphism ϕ_{u} from $F_{[-\delta,-u \delta]}$ to $[-\delta,-u \delta] \times F_{-u \delta}$ (resp. a semi-algebraic homeomorphism ψ_{u} from $F_{[u \delta, \delta]}$ to $\left.[u \delta, \delta] \times F_{u \delta}\right)$. We define a continuous semi-algebraic homotopy g from the identity of $F_{[-\delta, \delta]}$ to $\lim _{\delta_{i+1}}$ from $F_{[-\delta, \delta]}$ to F_{0} as follows:

- $g(0,-)$ is $\lim _{\delta_{i+1}}$,
- for $0<u \leq 1, g(u,-)$ is the identity on $F_{[-u \delta, u \delta]}$ and sends $F_{[-\delta,-u \delta]}$ (resp. $\left.F_{[u \delta, \delta]}\right)$ to $F_{-u \delta}\left(\right.$ resp. $\left.F_{u \delta}\right)$ by ϕ_{u} (resp. ψ_{u})followed by the projection on $F_{u \delta}$ (resp. $F_{-u \delta}$).
Thus $b\left(F_{[-\delta, \delta]}\right)=b\left(F_{0}\right)$. Finally, $b(\Phi \wedge \Psi) \leq \sum_{\psi \in \Sigma_{i+1}} b(\Phi \wedge \Psi \wedge \psi)$.

Proof. (Proof of Proposition 3) Starting from the formula Φ apply Lemma 4.2 with Ψ the empty formula. Now, repeatedly apply Lemma 4.2 to the terms appearing on the right-hand side of the inequality obtained, noting that for any $\Psi \in \Sigma_{\leq s}$,

- either $\mathcal{R}_{s}(\Phi \wedge \Psi)=\mathcal{R}_{s}(\Psi)$, and $\mathcal{R}_{s}(\Psi) \subset \mathcal{R}_{s}(\Phi)$,
- or $\mathcal{R}_{s}(\Phi \wedge \Psi)=\emptyset$.

Using an argument analogous to that used in the proof of Theorem 1.1 we prove the following proposition.

Proposition 4.

$$
\sum_{\Psi \in \Sigma_{\leq s}} b(\Psi) \leq \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 6^{j} d(2 d-1)^{k-1}
$$

We first prove the following Lemma 4.3 and Lemma 4.4.
Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{j}\right\} \subset R\left[X_{1}, \ldots, X_{k}\right]$, and let

$$
Q_{i}=P_{i}^{2}\left(P_{i}^{2}-\delta_{i}^{2}\right)^{2}\left(P_{i}^{2}-4 \delta_{i}^{2}\right)
$$

Let W_{0} (resp. W_{1}) be the union of the sets $\mathcal{R}\left(Q_{i}=0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{j}\right\rangle\right)\right)$ (resp. $\mathcal{R}\left(Q_{i} \geq 0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{j}\right\rangle\right)\right)$), with $1 \leq i \leq j$.

Notice that $W_{1}=\cup_{\Psi \in \Sigma_{\leq s}} \mathcal{R}(\Psi)$.

Lemma 4.3.

$$
b_{i}\left(W_{0}\right) \leq\left(6^{j}-1\right) d(2 d-1)^{k-1}
$$

Proof. The set $\mathcal{R}\left(\left(P_{i}^{2}\left(P_{i}^{2}-\delta_{i}^{2}\right)^{2}\left(P_{i}^{2}-4 \delta_{i}^{2}\right)=0\right), Z_{r}\right)$ is the disjoint union of

$$
\begin{gathered}
\mathcal{R}\left(P_{i}=0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{j}\right\rangle\right)\right), \\
\mathcal{R}\left(P_{i}=\delta_{i}, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{j}\right\rangle\right)\right), \\
\mathcal{R}\left(P_{i}=-\delta_{i}, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{j}\right\rangle\right)\right), \\
\mathcal{R}\left(P_{i}=2 \delta_{i}, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{j}\right\rangle\right)\right),
\end{gathered}
$$

and

$$
\mathcal{R}\left(P_{i}=-2 \delta_{i}, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{j}\right\rangle\right)\right)
$$

Moreover, the i-th Betti numbers of their union W_{0} is bounded by the sum of the Betti numbers of all possible non-empty sets that can be obtained by taking intersections of these sets using inequality 3.1 of Proposition 2.

The number of possible ℓ-ary intersection is $\binom{j}{\ell}$. Each such intersection is a disjoint union of 5^{ℓ} algebraic sets. The i-th Betti number of each of these algebraic sets is bounded by $d(2 d-1)^{k-1}$ by (2.1).

$$
\text { Thus, } b_{i}\left(W_{0}\right) \leq \sum_{\ell=1}^{j}\binom{j}{\ell} 5^{\ell} d(2 d-1)^{k-1}=\left(6^{j}-1\right) d(2 d-1)^{k-1} \text {. }
$$

Lemma 4.4.

$$
b_{i}\left(W_{1}\right) \leq\left(6^{j}-1\right) d(2 d-1)^{k-1}+b_{i}\left(Z_{r}\right)
$$

Proof. Let $F=\mathcal{R}\left(\bigwedge_{1 \leq i \leq j} Q_{i} \leq 0 \vee \bigvee_{1 \leq i \leq j} Q_{i}=0, \operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{i}\right\rangle\right)\right)$. Now, $W_{1} \cup F=Z_{r}$ and $W_{1} \cap F=W_{0}$. Using inequality (2.2) and the fact that

$$
b_{i}\left(Z_{r}\right)=b_{i}\left(\operatorname{Ext}\left(Z_{r}, \mathrm{R}\left\langle\delta_{1}, \ldots, \delta_{i}\right\rangle\right)\right)
$$

we deduce that $b_{i}\left(W_{1}\right) \leq b_{i}\left(W_{1} \cap F\right)+b_{i}\left(W_{1} \cup F\right)=b_{i}\left(W_{0}\right)+b_{i}\left(Z_{r}\right)$. We conclude using Lemma 4.3.

Proof. (Proof of Proposition 4) Since for all $i<k^{\prime}, b_{i}\left(Z_{r}\right)+b_{k^{\prime}}\left(Z_{r}\right) \leq d(2 d-1)^{k-1}$ by (2.1), we have that

$$
\sum_{\Psi \in \Sigma_{\leq s}} b(\Psi)=b\left(W_{1}\right) \leq b_{k^{\prime}}\left(Z_{r}\right)+\sum_{j=1}^{k^{\prime}-i}\binom{s}{j}\left(6^{j} d(2 d-1)^{k-1}\right)
$$

using inequality 3.2 of Proposition 2 and Lemma 4.4. Thus,

$$
\sum_{\Psi \in \Sigma_{\leq s}} b(\Psi) \leq \sum_{j=0}^{k^{\prime}-i}\binom{s}{j} 6^{j} d(2 d-1)^{k-1}
$$

Proof. (Proof of Theorem 4.1) The statement follows from Proposition 4 and Proposition 3.

References

[1] S. Basu Different bounds on the Different Betti Numbers of Semi-algebraic Sets, Discrete and Computational Geometry, 30:65-85, 2003.
[2] S. Basu On Bounding the Betti Numbers and Computing the Euler Characteristics of Semialgebraic Sets, Discrete and Computational Geometry, 22:1-18, 1999.
[3] S. Basu, R. Pollack, M.-F. Roy On the number of cells defined by a family of polynomials on a variety, Mathematika, Vol 43, 120-126, 1996.
[4] S. Basu, R. Pollack, M.-F. Roy Algorithms in real algebraic geometry. Algorithms and Computation in Mathematics, Vol 10, Springer-Verlag (2003).
[5] J. Bochnak, M. Coste, M.-F. Roy Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Bd. 36, Berlin : Springer-Verlag (1998).
[6] R. M. Hardt Semi-algebraic Local Triviality in Semi-algebraic Mappings Am. J. Math. 102, 291-302 (1980).
[7] O. A. Oleinik, I. B. Petrovskii On the topology of real algebraic surfaces, Izv. Akad. Nauk SSSR 13, 389-402, (1949).
[8] J. Milnor On the Betti numbers of real varieties, Proc. AMS 15, 275-280, (1964).
[9] E. H. Spanier Algebraic Topology, McGraw-Hill Book Company, 1966.
[10] R. Tном Sur l'homologie des varietes algebriques reelles, Differential and Combinatorial Topology, Ed. S.S. Cairns, Princeton Univ. Press, 255-265, (1965).

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A. E-mail address: saugata@math.gatech.edu

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, U.S.A.

E-mail address: pollack@cims.nyu.edu
IRMAR (URA CNRS 305), Université de Rennes, Campus de Beaulieu 35042 Rennes cedex FRANCE.

E-mail address: mfroy@maths.univ-rennes1.fr

[^0]: 1991 Mathematics Subject Classification. Primary 14P10; Secondary 14P25.
 Key words and phrases. Betti numbers, Sign conditions, Semi-algebraic sets.
 Supported in part by NSF grant CCR-0049070 and an NSF Career Award 0133597.
 Supported in part by NSA grant MDA904-01-1-0057 and NSF grants CCR-9732101 and CCR0098246.

