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Abstract. Let S ⊂ Rk+m be a compact semi-algebraic set defined by P1 ≥
0, . . . , P` ≥ 0, where Pi ∈ R[X1, . . . , Xk, Y1, . . . , Ym], and deg(Pi) ≤ 2, 1 ≤ i ≤
`. Let π denote the standard projection from Rk+m onto Rm. We prove that
for any q > 0, the sum of the first q Betti numbers of π(S) is bounded by

(k + m)O(q`). We also present an algorithm for computing the the first q Betti

numbers of π(S), whose complexity is (k + m)2
O(q`)

. For fixed q and `, both

the bounds are polynomial in k + m.

1. Introduction

Designing efficient algorithms for computing the Betti numbers of semi-algebraic
sets is one of the outstanding open problems in algorithmic semi-algebraic geometry.
There has been some recent progress in this area. It has been known for a while
that the zero-th Betti number (which is also the number of connected components)
of semi-algebraic sets can be computed in single exponential time. Very recently,
it has been shown that even the first Betti number, and more generally the first
q Betti numbers for any fixed constant q, can be computed in single exponential
time [10, 8]. Since the problem of deciding whether a given semi-algebraic set in
Rk is empty or not is NP-hard, and that of computing its zero-th Betti number
is #P-hard, the existence of polynomial time algorithms for computing the Betti
numbers is considered unlikely.

One particularly interesting case is that of semi-algebraic sets defined by qua-
dratic inequalities. The class of semi-algebraic sets defined by quadratic inequal-
ities is the first interesting class of semi-algebraic sets after sets defined by linear
inequalities, in which case the problem of computing topological information re-
duces to linear programming for which (weakly) polynomial time algorithms are
known. From the point of view of computational complexity, it is easy to see that
the Boolean satisfiability problem can be posed as the problem of deciding whether
a certain semi-algebraic set defined by quadratic inequalities is empty or not. Thus,
deciding whether such a set is empty is clearly NP-hard and counting its number
of connected components is #P-hard. However, semi-algebraic sets defined by qua-
dratic inequalities are distinguished from arbitrary semi-algebraic sets in the sense
that, if the number of inequalities is fixed, then the sum of their Betti numbers
is bounded polynomially in the dimension. The following bound was proved by
Barvinok [3].
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Theorem 1.1. Let S ⊂ Rk be a semi-algebraic set defined by the inequalities,

P1 ≥ 0, . . . , P` ≥ 0, deg(Pi) ≤ 2, 1 ≤ i ≤ `. Then,
k∑

i=0

bi(S) ≤ kO(`), where

bi(S) denotes the i-th Betti number, which is the dimension of the i-th singular
cohomology group of S, Hi(S; Q), with coefficients in Q.

In view of Theorem 1.1, it is natural to consider the class of semi-algebraic
sets defined by a fixed number of quadratic inequalities from a computational point
of view. Algorithms for computing various topological properties of this class of
semi-algebraic sets have been developed, starting from the work of Barvinok [2],
who described an algorithm for testing whether a system of homogeneous quadratic
equations has a projective solution. Barvinok’s algorithm runs in polynomial time
when the number of equations is constant. This was later generalized and made
constructive by Grigoriev and Pasechnik in [21], where an algorithm is described
for computing sample points in every connected component of a semi-algebraic set
defined over a quadratic map. More recently, polynomial time algorithms have
been designed for computing the Euler-Poincaré characteristic [9] as well as all the
Betti numbers [7] of sets defined by a fixed number of quadratic inequalities (with
different dependence on the number of inequalities in the complexity bound). Note
also that the problem of deciding the emptiness of a set defined by a single quartic
equation is already NP-hard and hence it is unlikely that there exists polynomial
time algorithms for any of the above problems if the degree is allowed to be greater
than two.

A case of intermediate complexity between semi-algebraic sets defined by poly-
nomials of higher degree and sets defined by a fixed number of quadratic sign
conditions is obtained by considering projections of such sets. The operation of
linear projection of semi-algebraic sets plays a very significant role in algorithmic
semi-algebraic geometry. It is a consequence of the Tarski-Seidenberg principle
(see for example [11], page 61) that the image of a semi-algebraic set under a
linear projection is semi-algebraic, and designing efficient algorithms for comput-
ing properties of projections of semi-algebraic sets (such as its description by a
quantifier-free formula) is a central problem of the area and is a very well-studied
topic (see for example [31] or [11], Chapter 14). However, the complexities of the
best algorithms for computing descriptions of projections of general semi-algebraic
sets is single exponential in the dimension and do not significantly improve when
restricted to the class of semi-algebraic sets defined by a constant number of qua-
dratic inequalities. Indeed, any semi-algebraic set can be realized as the projection
of a set defined by quadratic inequalities, and it is not known whether quantifier
elimination can be performed efficiently when the number of quadratic inequalities
is kept constant. However, we show in this paper that, with a fixed number of
inequalities, the projections of such sets are topologically simpler than projections
of general semi-algebraic sets. This suggests, from the point of view of designing
efficient (polynomial time) algorithms in semi-algebraic geometry, that projections
of semi-algebraic sets defined by a constant number of quadratic inequalities is the
next natural class of sets to consider, after sets defined by linear and (constant
number of) quadratic inequalities, and this is what we proceed to do in this paper.

In this paper, we describe a polynomial time algorithm (Algorithm 2) for comput-
ing certain Betti numbers (including the zero-th Betti number which is the number
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of connected components) of projections of sets defined by a constant number of
quadratic inequalities, without having to compute a semi-algebraic description of
the projection. More precisely, let S ⊂ Rk+m be a compact semi-algebraic set de-
fined by P1 ≥ 0, . . . , P` ≥ 0, with Pi ∈ R[X1, . . . , Xk, Y1, . . . , Ym],deg(Pi) ≤ 2, 1 ≤
i ≤ `. Let π : Rk+m → Rm be the projection onto the last m coordinates. In what
follows, the number of inequalities, `, used in the definition of S will be considered
as some fixed constant. Since, π(S) is not necessarily describable using only qua-
dratic inequalities, the bound in Theorem 1.1 does not hold for π(S) and π(S) can
in principle be quite complicated. Using the best known complexity estimates for
quantifier elimination algorithms over the reals (see [11]), we get single exponential
(in k and m) bounds on the degrees and the number of polynomials necessary to
obtain a semi-algebraic description of π(S). In fact, there is no known algorithm
for computing a semi-algebraic description of π(S) in time polynomial in k and m.
Nevertheless, we are able to prove that for any fixed constant q > 0, the sum of
the first q Betti numbers of π(S) are bounded by a polynomial in k and m. More
precisely, we obtain the following complexity bound (see Section 4).

Theorem 1.2. Let S ⊂ Rk+m be a compact semi-algebraic set defined by

P1 ≥ 0, . . . , P` ≥ 0, Pi ∈ R[X1, . . . , Xk, Y1, . . . , Ym],deg(Pi) ≤ 2, 1 ≤ i ≤ `.

Let π : Rk+m → Rm be the projection onto the last m coordinates. For any q >
0, 0 ≤ q ≤ k,

q∑
i=0

bi(π(S)) ≤ (k +m)O(q`).

We also consider the problem of computing the Betti numbers of π(S). Previ-
ously, there was no polynomial time algorithm for computing any non-trivial topo-
logical property of projections of sets defined by few quadratic inequalities. We
describe a polynomial time algorithm for computing the first few Betti numbers of
π(S). The algorithm (Algorithm 2 in Section 7) computes b0(π(S)), . . . , bq(π(S)).
The complexity of the algorithm is (k +m)2

O(q`)
. If the coefficients of the input

polynomials are integers of bit-size bounded by τ , then the bit-size of the inte-
gers appearing in the intermediate computations and the output are bounded by
τ(k + m)2

O(q`)
. Note that the output of the algorithm includes b0(π(S)), which

is the number of connected components of π(S). Alternatively, one could obtain
b0(π(S)), . . . , bq(π(S)) by computing a semi-algebraic description of π(S) using an
efficient quantifier elimination algorithm (such as the one described in [5]) and then
using the algorithm described in [8] to compute the first few Betti numbers. How-
ever, the complexity of this method would be worse: single exponential in k and
m. Thus, our algorithm is able to compute efficiently non-trivial topological in-
formation about the projection, even though it does not compute a semi-algebraic
description of that projection (it is not even known whether such a description
could be computed in polynomial time).

In order to obtain Algorithm 2, we rely heavily on a certain spectral sequence,
namely the cohomological descent spectral sequence. Even though variants of this
spectral sequence have been known for some time [17, 32, 18, 24, 28, 34], to our
knowledge this is the first time it has been used in designing efficient algorithms. As
most constructions of the descent spectral sequence tend to use procedures which
are infinitary in nature, it was more convenient for our algorithmic purposes to take
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a more constructive approach to building the sequence. This new construction is
formally analogous to that of the Mayer-Vietoris spectral sequence, which has been
used several times recently in designing algorithms for computing Betti numbers of
semi-algebraic sets (see [6, 7, 8, 10]), and thus this construction (see Proposition 5.3
below) might be of independent interest.

2. Main Ideas

There are two main ingredients behind the results in this paper. The first is the
use of cohomological descent, a spectral sequence first introduced by Deligne [17, 32]
in the context of sheaf cohomology. This descent spectral sequence is used to
compute the cohomology of the target of a continuous surjection (under certain
hypotheses only, the limit of this spectral sequence is not, in general, the homology
of the target). The first terms of the sequence are cohomology groups of certain
fibered products over the surjection, and this allows to bound the Betti numbers
of the target space in terms of the Betti numbers of those fibered products. This
estimate was first used by Gabrielov, Vorobjov and Zell in [19] to give estimates
on the Betti numbers of projections of semi-algebraic sets (and more generally,
of semi-algebraic sets defined by arbitrary quantified formulas) without resorting
to quantifier elimination. Another use of this sequence to establish upper-bounds
can be found in [35] which contains effective estimates for the Betti numbers of
semi-algebraic Hausdorff limits.

The most striking feature of this spectral sequence argument is that it enables one
to deduce properties (for instance, bounds on the Betti numbers) of the projection
of a set without having to explicitly describe the projection. For instance, consider
a semi-algebraic subset of Rk defined by a polynomial having a constant number
(say m) of monomials (often referred to as a fewnomial). It is known due to classical
results of Khovansky [25] (see also [4]) that the Betti numbers of such sets can be
bounded in terms of m and k independent of the degree of the polynomial. Using
the spectral sequence argument mentioned above, it was proved in [19] that even
the Betti numbers of the projection of such a set can be bounded in terms of the
number of monomials, even though it is known (see [20]) that the projection itself
might not admit a description in terms of fewnomials.

The construction of the descent spectral sequence given in [19] involves consider-
ation of join spaces and their filtrations and is not directly amenable for algorithmic
applications. In Section 5, we give an alternate construction of a descent spectral
sequence. When applied to surjections between open sets this spectral sequence con-
verges to the cohomology of the image. The proof of this fact is formally analogous
to the proof of convergence of the spectral sequence arising from the generalized
Mayer-Vietoris sequence. This new proof allows us to identify a certain double com-
plex, whose individual terms correspond to the chain groups of the fibered products
of the original set. The fibered product (taken a constant number of times) of a set
defined by few quadratic inequalities is again a set of the same type.

However, since there is no known algorithm for efficiently triangulating semi-
algebraic sets (even those defined by few quadratic inequalities) we cannot directly
use the spectral sequence to actually compute the Betti numbers of the projections.
In order to do that we need an additional ingredient. This second main ingredient
is a polynomial time algorithm described in [7] for computing a complex whose
cohomology groups are isomorphic to those of a given semi-algebraic set defined
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by a constant number of quadratic inequalities. Using this algorithm we are able
to construct a certain double complex, whose associated total complex is quasi-
isomorphic to (implying having isomorphic homology groups) a suitable truncation
of the one obtained from the cohomological descent spectral sequence mentioned
above. This complex is of much smaller size and can be computed in polynomial
time and is enough for computing the first q Betti numbers of the projection in
polynomial time for any fixed constant q.

The rest of the paper is organized as follows. In Section 3 we recall certain
basic facts from algebraic topology including the notions of complexes, and double
complexes of vector spaces and spectral sequences. We do not prove any results
since all of them are quite classical and we refer the reader to appropriate references
[15, 26, 11] for the proofs. In Section 4 we prove the estimate on the sum of Betti
numbers (Theorem 1.2) of projections of semi-algebraic sets defined by quadratic
inequalities. In Section 5, we give our new construction of the cohomological de-
scent spectral sequence In Section 6, we briefly describe Algorithm 1 which is used
to compute cohomology groups of semi-algebraic sets given by quadratic inequal-
ities. This algorithm runs in polynomial time when the number of inequalities is
constant. We only describe the inputs, outputs and the complexity estimates of
the algorithms, referring the reader to [7] for more details. Finally, in Section 7 we
describe our algorithm (Algorithm 2) for computing the first few Betti numbers of
projections of semi-algebraic sets defined by quadratic inequalities.

3. Topological Preliminaries

We first recall some basic facts from algebraic topology, related to double com-
plexes, and spectral sequences associated to double complexes as well as to contin-
uous maps between semi-algebraic sets. We refer the reader to [15, 26] for detailed
proofs. We also fix our notations for these objects. All the facts that we need are
well known, and we merely give a brief overview.

3.1. Complex of Vector Spaces. A cochain complex is a sequence C• = {Ci | i ∈
Z} of Q-vector spaces together with a sequence of homomorphisms δi : Ci → Ci+1

for which δi+1 ◦ δi = 0 for all p.
The cohomology groups, Hi(C•) are defined by,

Hi(C•) = Zi(C•)/Bi(C•),

whereBi(C•) = Im(δi−1), and Zi(C•) = Ker(δi). The cohomology groups, H∗(C•),
are all Q-vector spaces (finite dimensional if the vector spaces Ci are themselves
finite dimensional). We will henceforth omit reference to the field of coefficients Q
which is fixed throughout the rest of the paper.

Given two complexes, C• = (Ci, δi) and D• = (Di, ∂i), a homomorphism of
complexes, φ : C• → D•, is a sequence of linear maps φi : Ci → Di verifying
∂i ◦ φi = φi+1 ◦ δi for all i.

In other words, the following diagram is commutative for all i.

· · · −→ Ci δi

−→ Ci+1 −→ · · ·yφi
yφi+1

· · · −→ Di ∂i

−→ Di+1 −→ · · ·
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A homomorphism of complexes, φ : C• → D•, induces homomorphisms, φ∗ :
H∗(C•) → H∗(D•). The homomorphism φ is called a quasi-isomorphism if the
homomorphisms φ∗ are isomorphisms.

3.2. Double Complexes. A double complex is a bi-graded vector space

C•,• =
⊕
i,j∈Z

Ci,j ,

with co-boundary operators d : Ci,j → Ci,j+1 and δ : Ci,j → Ci+1,j such that
d2 = δ2 = dδ + δd = 0. We say that C•,• is a first quadrant double complex if it
satisfies the condition that Ci,j = 0 when ij < 0.

Given a double complex C•,•, we can construct a complex Tot•(C•,•), called
the associated total complex of C•,• and defined by Totn(C•,•) =

⊕
i+j=n

Ci,j , with

differential Dn : Totn(C•,•) −→ Totn+1(C•,•) given by Dn = d+ δ.

...
...

...

δ- Ci−1,j+1

d

6

δ- Ci,j+1

d

6

δ- Ci+1,j+1

d

6

δ - · · ·

δ- Ci−1,j

d

6

δ - Ci,j

d

6

δ- Ci+1,j

d

6

δ - · · ·

δ- Ci−1,j−1

d

6

δ- Ci,j−1

d

6

δ- Ci+1,j−1

d

6

δ - · · ·

...

d

6

...

d

6

...

d

6

3.3. Spectral Sequences. A (cohomology) spectral sequence is a sequence of bi-
graded complexes {Ei,j

r | i, j, r ∈ Z, r ≥ a} endowed with differentials di,j
r : Ei,j

r →
Ei+r,j−r+1

r such that (dr)2 = 0 for all r. Moreover, we require the existence of
isomorphism between the complex Er+1 and the homology of Er with respect to
dr:

Ei,j
r+1

∼= Hdr
(Ei,j

r ) =
ker di,j

r

di+r,j−r+1
r

(
Ei+r,j−r+1

r

)
The spectral sequence is called a first quadrant spectral sequence if the initial

complex Ea lies in the first quadrant, i.e. Ei,j
a = 0 whenever ij < 0. In that case,

all subsequent complexes Er also lie in the first quadrant. Since the differential
di,j

r maps outside of the first quadrant for r > i, the homomorphisms of a first
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i + j = ` + 1i + j = `
p

q

d1

d2

d3

d4

Figure 1. dr : Ei,j
r → Ei+r,j−r+1

r

quadrant spectral sequence dr are eventually zero, and thus the groups Ei,j
r are

all isomorphic to a fixed group Ei,j
∞ for r large enough, and we say the spectral

sequence is convergent.
Given a double complex C•,•, we can associate to it two spectral sequences,

′E
i,j
∗ ,

′′E
i,j
∗ (corresponding to taking row-wise or column-wise filtrations respec-

tively).
If the double complex lies in the first quadrant, both of these spectral sequences

are first quadrant spectral sequence, and both converge toH∗(Tot•(C•,•)), meaning
that the limit groups verify

(3.1)
⊕

i+j=n

′E
i,j
∞
∼=
⊕

i+j=n

′′E
i,j
∞
∼= Hn(Tot•(C•,•)),

for each n ≥ 0.
The first terms of these are ′E1 = Hδ(C•,•), ′E2 = HdHδ(C•,•), and ′′E1 =

Hd(C•,•), ′′E2 = HδHd(C•,•).
Given two (first quadrant) double complexes, C•,• and C̄•,•, a homomorphism

of double complexes φ : C•,• → C̄•,• is a collection of homomorphisms, φi,j : Ci,j →
C̄i,j , such that the following diagrams commute.
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Ci,j δ−→ Ci+1,jyφi,j
yφi+1,j

C̄i,j δ−→ C̄i+1,j

Ci,j d−→ Ci,j+1yφi,j
yφi,j+1

C̄i,j d−→ C̄i,j+1

A homomorphism of double complexes, φ : C•,• → C̄•,• induces homomorphisms
φi,j

r : Ei,j
r → Ēi,j

r between the terms of the associated spectral sequences (corre-
sponding either to the row-wise or column-wise filtrations).

We will need the following useful fact (see [26], page 66, Theorem 3.4 for a proof).

Theorem 3.1. If φi,j
s is an isomorphism for some s ≥ 1 (and all i, j), then Ei,j

r

and Ēi,j
r are isomorphic for all r ≥ s. In other words, the induced homomorphism,

φ : Tot•(C•,•) −→ Tot•(C̄•,•) is a quasi-isomorphism.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 relies on the bounds from Theorem 1.1, and on the
following theorem that appears in [19].

Theorem 4.1. Let X and Y be two semi-algebraic sets and f : X → Y a semi-
algebraic continuous surjection such that f is closed. Then for any integer n, we
have

(4.1) bn(Y ) ≤
∑

i+j=n

bj(W i
f (X)),

where W i
f (X) denotes the (i+ 1)-fold fibered product of X over f :

W i
f (X) = {(x̄0, . . . , x̄i) ∈ Xi+1 | f(x̄0) = · · · = f(x̄i)}.

This theorem follows from the existence of a spectral sequence Ei,j
r converging

to H∗(Y ) and such that Ei,j
1

∼= Hj(W i
f (X)). Since, in any spectral sequence, the

dimensions of the terms Ei,j
r are decreasing when i and j are fixed and r increases,

we obtain using the definition (3.1) of convergence:

bn(Y ) =
∑

i+j=n

dim
(
Ei,j
∞
)
≤
∑

i+j=n

dim
(
Ei,j

1

)
,

yielding inequality (4.1).
The spectral sequence Ei,j

r , known as cohomological descent, originated with
the work of Deligne [17, 32], in the framework of sheaf cohomology. In [19], the
sequence is obtained as the spectral sequence associated to the filtration of an
infinite dimensional topological object, the join space, constructed from f . For the
purposes of Algorithm 2, we will give a different construction of this sequence (see
Section 5).
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Proof of Theorem 1.2: Since S is compact, the semi-algebraic continuous surjection
π : S → π(S) is closed: applying Theorem 4.1 to π, inequality (4.1) yields for each
n with 0 ≤ n ≤ q,

(4.2) bn(π(S)) ≤
∑

i+j=n

bj(W i
π(S)).

Notice thatW i
π(S) = {(x̄0, . . . , x̄i, y) | Ph(x̄t, y) ≥ 0, 1 ≤ h ≤ `, 0 ≤ t ≤ i}. Thus,

each W i
π(S) ⊂ R(i+1)k+m is defined by `(i+1) quadratic inequalities. Applying the

bound in Theorem 1.1 we get that,

(4.3) bj(W i
π(S)) ≤ ((i+ 1)k +m)O(`(i+1)).

Using inequalities (4.2) and (4.3) and the fact that q ≤ k, we get that,

q∑
i=0

bi(π(S)) ≤ (k +m)O(q`),

which proves the theorem. �

5. Cohomological Descent

This section is devoted a new construction of the cohomological descent spectral
sequence (already discussed in Section 4). In Theorem 5.6, we obtain this sequence
as the spectral sequence associated to a double complex associated to the fibered
powers of X, rather than through the filtration of the join space. Convergence to
the cohomology of the target space occurs when the map f : X → Y is locally split
(see definition below). By deformation, we are able to extend the result to our case
of interest: the projection of a compact semi-algebraic set (Corollary 5.8).

We will use this construction for Algorithm 2.

Definition 5.1. A continuous surjection f : X → Y is called locally split if there
exists an open covering U of Y such that for all U ∈ U , there exists a continuous
section σ : U → X of f , i.e. σ is a continuous map such that f(σ(y)) = y for all
y ∈ U .

In particular, if X is an open semi-algebraic set and f : X → Y is a projection,
the map f is obviously locally split. This specific case is what we will use in
Algorithm 2, as we will reduce the projection of compact semi-algebraic sets to
projections of open semi-algebraic sets (see Proposition 5.7) in order to apply the
spectral sequence.

Recall that for any semi-algebraic surjection f : X → Y , we denoted by W p
f (X)

the (p+ 1)-fold fibered power of X over f ,

W p
f (X) = {(x̄0, . . . , x̄p) ∈ Xp+1 | f(x̄0) = · · · = f(x̄p)}.

The map f induces for each p ≥ 0, a map from W p
f (X) to Y , sending (x̄0, . . . , x̄p)

to the common value f(x̄0) = · · · = f(x̄p), and abusing notations a little we will
denote this map by f as well.
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5.1. Singular (co-)homology. We recall here the basic definitions related to sin-
gular (co-)homology theory directing the reader to [23] for details.

For any semi-algebraic set X, let C•(X) denote the complex of singular chains
of X with boundary map denoted by ∂.

Recall that C•(X) is defined as follows: For m ≥ 0, a singular m-simplex s is a
continuous map, s : ∆m → X, where ∆m is the standard m-dimensional simplex
defined by,

∆m = {(t0, . . . , tm) | ti ≥ 0,
m∑

i=0

ti = 1}.

Cm(X) is the vector space spanned by all singular m-simplices with boundary maps
defined as follows. As usual we first define the face maps

fm,i : ∆m → ∆m+1,

by fm,i((t0, . . . , tm)) = (t0, . . . , ti−1, 0, ti+1, . . . , tm+1).
For a singular m-simplex s we define

(5.1) ∂s =
m∑

i=0

(−1)is ◦ fm−1,i.

and extend ∂ to Cm(X) by linearity. We will denote by C•(X) the dual complex
and by d the corresponding co-boundary map. More precisely, given φ ∈ Cm(X),
and a singular (m+ 1)-simplex s of X, we have

(5.2) dφ(s) =
m+1∑
i=0

(−1)iφ(s ◦ fm,i).

If f : X → Y is a continuous map, then it naturally induces a homomorphism
f∗ : C•(X) → C•(Y ) by defining, for each singular m-simplex s : ∆m → X,
f∗(s) = s ◦ f : ∆m → Y , which is a singular m-simplex of Y . We will denote
by f∗ : C•(Y ) → C•(X) the dual homomorphism. More generally, suppose that
s = (s0, . . . , sp) : ∆m → W p

f (X) is a singular m-simplex of W p
f (X). Notice that

each component, si, 0 ≤ i ≤ p are themselves singular m-simplices of X and that
f∗(s0) = . . . = f∗(sp) are equal as singular m-simplices of Y. We will denote their
common image by f∗(s).

We will require the notion of small simplices subordinate to an open covering
of a topological space (see [23]). Assuming that f : X → Y is locally split, let U
be an open covering of Y on which local continuous sections exist. We denote by
V the open covering of X given by the inverse images of elements of U , i.e. V =
{f−1(U) | U ∈ U}. We let CU• (Y ) be the subcomplex of C•(Y ) spanned by those
singular simplices of Y whose images are contained in some element of the cover
U . Similarly, we let CV• (X) be the subcomplex of C•(X) spanned by the simplices
of X with image in V, and more generally, for any integer p, CV• (W p

f (X)) denotes
the subcomplex of C•(W

p
f (X)) spanned by simplices with image contained in V p+1

for some V ∈ V. The corresponding dual cochain complexes will be denoted by
C•U (Y ) and C•V(W p

f (X)) respectively. We will henceforth call any singular simplex
of CU• (Y ) and any singular simplex of CV• (W p

f (X)) admissible simplices.
The inclusion homomorphism, ι• : CU• (Y ) ↪→ C•(Y ) induces a dual homomor-

phism, ι• : C•(Y ) → C•U (Y ). We also have corresponding induced homomorhisms,
ι• : C•(W p

f (X)) → C•V(W p
f (X)) for each p ≥ 0.
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Proposition 5.2. The homomorphism ι• : C•(Y ) → C•U (Y ) (resp. C•(W p
f (X)) →

C•V(W p
f (X)) for each p ≥ 0) is a chain homotopy equivalence. In particular, we have

H∗(C•U (Y )) ∼= H∗(C•(Y )) ∼= H∗(Y ) and H∗(C•V(W p
f (X))) ∼= H∗(C•(W p

f (X))) ∼=
H∗(W p

f (X)).

Proof. This follows from a similar result for homology, see Proposition 2.21 in [23].
�

5.2. A long exact sequence. For each p ≥ 0, we now define a homomorphism,

δp : C•(W p
f (X)) −→ C•(W p+1

f (X))

as follows: for each i, 0 ≤ i ≤ p, define πp,i : W p
f (X) →W p−1

f (X) by,

πp,i(x0, . . . , xp) = (x0, . . . , x̂i, . . . , xp)

(πp,i drops the i-th coordinate).
We will denote by (πp,i)∗ the induced map on C•(W

p
f (X)) → C•(W

p−1
f (X)) and

let π∗p,i : C•(W p−1
f (X)) → C•(W p

f (X)) denote the dual map. For φ ∈ C•(W p
f (X)),

we define δp φ by,

(5.3) δp φ =
p+1∑
i=0

(−1)iπ∗p+1,i φ.

Note that for any open covering V of X, the map δp induces by restriction a map
C•V(W p

f (X)) → C•V(W p+1
f (X)) which we will still denote by δp.

The following proposition is analogous to the exactness of the generalized Mayer-
Vietoris sequence (cf. Lemma 1 in [6]).

Proposition 5.3. Let f : X → Y be a continuous, locally split surjection, where X
and Y are semi-algebraic subsets of Rn and Rm respectively. Let U denote an open
covering of Y in which continuous sections of f can be defined on every U ∈ U ,
and V denote the open covering of X obtained by inverse image of U under f . The
following sequence is exact.

0 −→ C•U (Y )
f∗−→ C•V(W 0

f (X)) δ0

−→ C•V(W 1
f (X)) δ1

−→ · · ·

· · · δp−1

−→ C•V(W p
f (X)) δp

−→ C•V(W p+1
f (X)) δp+1

−→ · · ·

Proof. We will start by treating separately the first two positions in the sequence,
then prove exactness for p ≥ 1.

(A) f∗ : C•U (Y ) → C•V(X) is injective.

Let U ∈ U and let s be a simplex whose image is contained in U . If σ is
a continuous section of f defined on U , the simplex t = σ∗(s) is in CV• (X),
and verifies f∗(t) = s. Hence, f∗ : CV• (X) → CU• (Y ) is surjective, so f∗ is
injective.

(B) f∗(C•U (Y )) = ker δ0.

Let φ ∈ Cm
V (X). Any simplex s ∈ CVm(W 1

f (X)) is a pair (s0, s1) of
simplices in CVm(X) verifying f∗(s0) = f∗(s1). We then have δ0φ(s) =
φ(s1)− φ(s0). If φ = f∗ψ for some ψ ∈ Cm

U (Y ), we have for any s,

δ0φ(s) = f∗ψ(s1)− f∗ψ(s0) = ψ(f∗(s1))− ψ(f∗(s0)) = 0,
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since we must have f∗(s0) = f∗(s1). Thus, we have f∗(C•U (Y )) ⊂ ker δ0.

Conversely, if φ is such that δ0φ = 0, this means that for any pair (s0, s1)
of simplices in CVm(X) verifying f∗(s0) = f∗(s1), we have φ(s0) = φ(s1).
Since we just proved in part (A) that f∗ : CV• (X) → CU• (Y ) is surjective,
any element t ∈ CUm(Y ) is of the form t = f∗(s) for some s ∈ CVm(X).
Thus, we can define ψ ∈ Cm

U (Y ) by ψ(t) = φ(s), and the condition δ0φ = 0
ensures that ψ is well defined since its value does not depend on the choice
of s in the representation t = f∗(s). This yields the reverse inclusion, and
hence exactness at p = 0.

(C) δp+1 ◦ δp = 0:
From the definitions of the maps π∗p+1,i, π

∗
p+2,j we have that for 0 ≤ i ≤

p+ 1, 0 ≤ j ≤ p+ 2,

(5.4) π∗p+2,j ◦ π∗p+1,i(φ) = π∗p+2,i+1 ◦ π∗p+1,j(φ) if j < i.

Let φ ∈ Cm
V (W p

f (X)). Now from the definitions of δp and δp+1 we have
that,

δp+1 ◦ δp(φ) = δp+1

(
p+1∑
i=0

(−1)iπ∗p+1,i(φ)

)
;

=
p+1∑
i=0

(−1)iδp+1(π∗p+1,i(φ));

=
p+1∑
i=0

p+2∑
j=0

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ);

=
p+1∑
i=0

 ∑
0≤j<i

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ) +
∑

i≤j≤p+2

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ)

 ;

=
∑
i≤j

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ) +
∑
i>j

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ)).

Now using Equation (5.4), the previous line becomes

=
∑
i≤j

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ) +
∑
i>j

(−1)i+jπ∗p+2,i+1 ◦ π∗p+1,j(φ)).

Interchanging i and j in the second summand of the previous line, we get

=
∑
i≤j

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ) +
∑
i<j

(−1)i+jπ∗p+2,j+1 ◦ π∗p+1,i(φ)).

Finally, replacing j + 1 by j in the second summand above, we obtain

=
∑
i≤j

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ) +
∑

i<j−1

(−1)i+j−1π∗p+2,j ◦ π∗p+1,i(φ));
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and isolating the terms corresponding to j = i and j = i + 1 in the first
sum gives

= (−1)2iπ∗p+2,i ◦ π∗p+1,i(φ) + (−1)2i+1π∗p+2,i ◦ π∗p+1,i+1(φ)

+
∑

i<j−1

(−1)i+jπ∗p+2,j ◦ π∗p+1,i(φ) +
∑

i<j−1

(−1)i+j−1π∗p+2,j ◦ π∗p+1,i(φ));

= 0;

(since, again, by Equation (5.4), we have π∗p+2,i ◦π∗p+1,i+1 = π∗p+2,i ◦π∗p+1,i).
(D) Im(δp) ⊃ Ker(δp+1):

Let φ ∈ Ker(δp+1). In other words, for each admissible singular m-simplex
s = (s0, . . . , sp+1) : ∆m →W p+2

f (X)

(5.5)
p+2∑
i=0

(−1)iφ((s0, . . . , ŝi, . . . , sp+2)) = 0.

For each admissible singularm-simplex s of Y let s∗ denote denote a fixed
admissible singular m-simplex of X such that f∗(s∗) = s. Such a choice
is possible since, as we proved in part (A), f∗ is surjective onto CU• (Y ).
Let ψ ∈ Cm

V (W p
f (X)) be defined as follows. For an admissible singular

m-simplex t = (t0, . . . , tp) of W p
f (X) we define

ψ(t) = φ(f∗(t), t0, . . . , tp).

Now for an admissible singular m simplex t = (t0, . . . , tp+1) of W p+1
f ,

with

δpψ(t) =
p+1∑
i=0

(−1)iπ∗p+1,iψ(t)

=
p+1∑
i=0

(−1)iψ((t0, . . . , t̂i, . . . , tp+1))

=
p+1∑
i=0

(−1)iφ((f∗(t), t0, . . . , t̂i, . . . , tp+1))

Now let s denote the admissible singular m-simplex of W p+2
f (X) defined

by s = (f∗(t), t0, . . . , t̂i, . . . , tp+1). Now applying Equation (5.5), we get

p+2∑
i=0

(−1)iφ((s0, . . . , ŝi, . . . , sp+2)) = 0.

Separating the first term from the rest we obtain,

φ((t0, . . . , tp+1) =
p+1∑
i=0

(−1)iφ((f∗(t), t0, . . . , t̂i, . . . , tp+1)) = δpψ(t).

This finally proves the exactness of the sequence. �
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5.3. The descent double complex. Now, letD•,•(X) denote the double complex
defined by, Dp,q(X) = Cq(W p

f (X)) with vertical and horizontal homomorphisms
given by d̃q = (−1)pdq and δ respectively, where d is the singular coboundary
operator (5.2) and δ is the map defined in (5.3). Also, let Dp,q(X) = 0 if p < 0 or
q < 0.

...
...

...xd̃ xd̃ xd̃
0 −→ C3(W 0

f (X)) δ−→ C3(W 1
f (X)) δ−→ C3(W 2

f (X)) −→xd̃ xd̃ xd̃
0 −→ C2(W 0

f (X)) δ−→ C2(W 1
f (X)) δ−→ C2(W 2

f (X)) −→xd̃ xd̃ xd̃
0 −→ C1(W 0

f (X)) δ−→ C1(W 1
f (X)) δ−→ C1(W 2

f (X)) −→xd xd xd
0 −→ C0(W 0

f (X)) δ−→ C0(W 1
f (X)) δ−→ C0(W 2

f (X)) −→xd xd xd
0 0 0

Lemma 5.4. The families of maps d̃ and δ make D•,• into a double complex.

Proof. We need to check that d̃2 = δ2 = d̃δ + δd̃ = 0. We know that d̃2 = d2 = 0
since C•(W p

f (X)) is a cochain complex for all p, and we proved that δ2 = 0 in
Proposition 5.3.

Now, suppose that φ ∈ Cq(W p
f (X)) and let s = (s0, . . . , sp+1) be an admissible

singular (q + 1)-simplex of W p+1
f (X). Then,

d̃(δφ)(s) = d̃

(
p+1∑
i=0

(−1)iφ((s0, . . . , ŝi, . . . , sp+1))

)
;

= (−1)p

q+1∑
j=0

p+1∑
i=0

(−1)i+jφ(s0 ◦ fq,j , . . . , ̂si ◦ fq,j , . . . , sp+1 ◦ fq,j).

We also have

δ(d̃φ)(s) = δ

(−1)p+1

q+1∑
j=0

(−1)jφ(s0 ◦ fq,j , . . . , sp+1 ◦ fq,j)

 ;

= (−1)p+1

q+1∑
j=0

p+1∑
i=0

(−1)i+jφ(s0 ◦ fq,j , . . . , ̂si ◦ fq,j , . . . , sp+1 ◦ fq,j).

Thus, it follows that d̃δ + δd̃ = 0, so D•,• is indeed a double complex. �

If f : X → Y is locally split, and if V is the corresponding open covering of
X defined in Section 5.1, the double complex D•,• induces by restriction a double
complex D•,•

V , where Dp,q
V = Cq

V(W p
f (X)) when p ≥ 0 and q ≥ 0 and D•,•

V = 0
otherwise.
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The initial terms of the two spectral sequences associated with D•,•
V (cf. Sec-

tion 3.3) are as follows. The first terms of the spectral sequence ′Ei,j
∗ are ′E1 =

Hδ(D
•,•
V (X)), ′E2 = Hd̃Hδ(D

•,•
V (X)). By the exactness of the sequence in Propo-

sition 5.3, we have that the spectral sequence ′E
i,j
∗ degenerates at the ′E2 term as

shown below.

′E1 =

...
...

...
...

...xd x0
x0

x0
x0

C3
V(Y ) 0 0 0 0 · · ·xd x0

x0
x0

x0
C2
V(Y ) 0 0 0 0 · · ·xd x0

x0
x0

x0
C1
V(Y ) 0 0 0 0 · · ·xd x0

x0
x0

x0
C0
V(Y ) 0 0 0 0 · · ·

and, by Proposition 5.2,

′E2 =

...
...

...
...

...
...

H3(Y ) 0 0 0 0 0 · · ·

H2(Y ) 0 0 0 0 0 · · ·

H1(Y ) 0 0 0 0 0 · · ·

H0(Y ) 0 0 0 0 0 · · ·

The degeneration of this sequence at ′E2 shows that

H∗(Tot•(D•,•
V (X))) ∼= H∗(Y ).

The initial term ′′E1 of the second spectral sequence is given by,

′′E1 =

...
...

...

H3(W 0
f (X)) δ−→ H3(W 1

f (X)) δ−→ H3(W 2
f (X)) −→

H2(W 0
f (X)) δ−→ H2(W 1

f (X)) δ−→ H2(W 2
f (X)) −→

H1(W 0
f (X)) δ−→ H1(W 1

f (X)) δ−→ H1(W 2
f (X)) −→

H0(W 0
f (X)) δ−→ H0(W 1

f (X)) δ−→ H0(W 2
f (X)) −→
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Since this spectral sequence also converges to H∗(Tot•(D•,•
V )(X)), we have the

following proposition.

Proposition 5.5.

H∗(Tot•(D•,•
V )(X)) ∼= H∗(Y ).

Proposition 5.5 now implies,

Theorem 5.6. For any continuous semi-algebraic surjection f : X → Y , where
X and Y are open semi-algebraic subsets of Rn and Rm respectively (or, more
generally, for any locally split continuous surjection f), the spectral sequence as-
sociated to the double complex D•,•(X) with E1 = Hd(D•,•(X)) converges to
H∗(C•(Y )) ∼= H∗(Y ). In particular,

(A) Ei,j
1 = Hj(W i

f (X)), and
(B) E∞ ∼= H∗(Tot•(D•,•(X))) ∼= H∗(Y ).

Proof. By Proposition 5.2, we have that the component-wise homomorphisms, ι•,
induces a homomorphism of double complexes,

ι•,• : D•,• → D•,•
V ,

which in turn induces an isomorphism between the E1 terms of the correspond-
ing spectral sequences. Hence, by Theorem 3.1 we have that, H∗(Tot•(D•,•

V )) ∼=
H∗(Tot•(D•,•)). The Theorem now follows from Proposition 5.5. �

5.4. Truncation of the double complex. If we denote byD•,•
q (X) the truncated

complex defined by,

Di,j
q (X) = Di,j(X), if 0 ≤ i+ j ≤ q + 1,

= 0, otherwise,

then it is clear that,

(5.6) Hi(Y ) ∼= Hi(Tot•(D•,•
q (X))), for 0 ≤ i ≤ q.

Now suppose that X ⊂ Rk+m is a compact semi-algebraic set defined by the
inequalities, P1 ≥ 0, . . . , P` ≥ 0. Let π denote the projection map, π : Rk+m → Rm.
Let ε > 0 and let X̃ ⊂ Rk+m be the set defined by P1 + ε > 0, . . . , P` + ε > 0.

Proposition 5.7. (A) For ε > 0 sufficiently small, we have

H∗(W p
π (X̃)) ∼= H∗(W p

π (X)), for all p ≥ 0,

and H∗(π(X̃)) ∼= H∗(π(X)).

(B) The map, π|X̃ is a locally split semi-algebraic surjection onto its image.

Proof. When ε > 0 is small, the sets X and X̃ are homotopy equivalent and so are
the sets π(X) and π(X̃) and the fibered products W p

π (X̃) and W p
π (X) for all p ≥ 0

(see [4]). The first part of the proposition follows from the homotopy invariance
property of singular cohomology groups. The second part of the proposition is clear
once we note that X̃ is an open subset of Rk+m: projections of open sets always
admit local continuous sections. �

We can combine Theorem 5.6 and Proposition 5.7 to construct, from the pro-
jection of a compact basic semi-algebraic set, a double complex giving rise to a
cohomological descent spectral sequence.
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Corollary 5.8. Let X ⊂ Rk+m be a compact semi-algebraic set defined by P1 ≥
0, . . . , P` ≥ 0 and π : Rk+m → Rm the projection onto the last m co-ordinates. The
spectral sequence associated to the double complex D•,•(X) with E1 = Hd(D•,•(X))
converges to H∗(C•(π(X))) ∼= H∗(π(X)). In particular,

(A) Ei,j
1 = Hj(W i

f (X)), and
(B) E∞ ∼= H∗(Tot•(D•,•(X))) ∼= H∗(π(X)).

Remark 5.9. Note that it is not obvious how to prove directly an exact sequence
at the level of singular (or even simplicial) cochains for the projection of a compact
set, as we do in Proposition 5.3 in the locally-split setting. One difficulty is the fact
that semi-algebraic maps are not, in general, triangulable.

Now let X be a compact semi-algebraic set defined by a constant number of
quadratic inequalities and f a projection map. We cannot hope to compute even
the truncated complex D•,•

q (X) since these are defined in terms of singular chain
complexes which are infinite-dimensional. We overcome this problem by computing
another double complex D•,•q (X), such that there exists a homomorphism of double
complexes, ψ : D•,•q (X) −→ D•,•

q (X), which induces an isomorphism between the
′E1 terms of the spectral sequences associated to the double complexes D•,•

q (X)
and D•,•q (X). This implies, by virtue of Theorem 3.1, that the cohomology groups
of the associated total complexes are isomorphic, that is,

H∗(Tot•(D•,•
q (X))) ∼= H∗(Tot•(D•,•q (X))).

The construction of the double complex D•,•q (X) is described in Section 7.

6. Algorithmic Preliminaries

We now recall an algorithm described in [7], where the following theorem is
proved.

Theorem 6.1. There exists an algorithm, which takes as input a family of poly-
nomials {P1, . . . , Ps} ⊂ R[X1 . . . , Xk], with deg(Pi) ≤ 2, and a number ` ≤ k, and
outputs a complex D•,•` . The complex Tot•(D•,•` ) is quasi-isomorphic to C`

•(S), the
truncated singular chain complex of S, where

S =
⋂

P∈P
{x ∈ Rk | P (x) ≤ 0}.

Moreover, given a subset P ′ ⊂ P, with

S′ =
⋂

P∈P′

{x ∈ Rk | P (x) ≤ 0}.

the algorithm outputs both complexes D•,•` and D′•,•` (corresponding to the sets
S and S′ respectively) along with the matrices defining a homomorphism ΦP,P′ ,
such that Φ∗P,P′ : H∗(Tot•(D•,•` )) ∼= H∗(S) → H∗(S′) ∼= H∗(Tot•(D′•,•` )) is the
homomorphism induced by the inclusion i : S ↪→ S′. The complexity of the algorithm
is
∑`+2

i=0

(
s
i

)
k2O(min(`,s))

.

For completeness, we formally state the input and output of the algorithm men-
tioned in Theorem 6.1.

We first introduce some notations which will be used to describe the input and
output of the algorithm. Let Q = {Q1, . . . , Qs} ⊂ R[X1, . . . , Xk] be a family of
polynomials with deg(Qi) ≤ 2, 1 ≤ i ≤ s. For each subset J ⊂ {1, . . . , s}, we let
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SJ denote the semi-algebraic set defined by {Qj ≥ 0 | j ∈ J}. Notice that for each
pair I ⊂ J ⊂ {1, . . . , s}, we have an inclusion SJ ⊂ SI .

Algorithm 1 (Build Complex).
Input: A family of polynomials Q = {Q1, . . . , Qs} ⊂ R[X1, . . . , Xk] with deg(Qi) ≤
2, for 1 ≤ i ≤ s.

Output:
(A) For each subset J ⊂ {1, . . . , s}, a description of a complex F •J , consisting

of a basis for each term of the complex and matrices (in this basis) for the
differentials, and

(B) for each pair I ⊂ J ⊂ {1, . . . , s}, a homomorphism, φI,J : F •I −→ F •J .
The complexes, F •J and the homomorphisms φI,J satisfy the following.

(A) For each J ⊂ {1, . . . , s},

(6.1) H∗(F •J ) ∼= H∗(SJ).

(B) For each pair I ⊂ J ⊂ {1, . . . , s}, the following diagram commutes.

H∗(F •I )
(φI,J)∗- H∗(F •J )

H∗(SI)

∼=
6

r∗ - H∗(SJ)

∼=
6

Here, (φI,J)∗ is the homomorphism induced by φI,J , the vertical homo-
morphisms are the isomorphisms from (6.1), and r∗ is the homomorphism
induced by restriction.

Complexity: The complexity of the algorithm is k2O(s)
. �

For the purposes of this paper, we need to slightly modify Algorithm 1 in order
to be able to handle permutations of the co-ordinates. More precisely, suppose that
σ ∈ Sk is a given permutation of the co-ordinates, and for any I ⊂ {1, . . . , s},
let SI,σ = {(xσ(1), . . . , xσ(k)) | (x1, . . . , xk) ∈ SI}. Let F •I,σ denote the complex
computed by the algorithm corresponding to the set SI,σ. It is easy to modify Algo-
rithm 1 slightly without changing the complexity estimate, such that for any fixed
σ, the algorithm outputs, complexes F •I , F

•
I,σ as well as the matrices corresponding

to the induced isomorphisms, φ•σ : F •I → F •I,σ. We assume this implicitly in the
description of Algorithm 2 in the next section.

7. Algorithm for projections

Let S ⊂ Rk+m be a basic semi-algebraic set defined by

P1 ≥ 0, . . . , P` ≥ 0, Pi ∈ R[X1, . . . , Xk, Y1, . . . , Ym],

with deg(Pi) ≤ 2, 1 ≤ i ≤ `. Let π : Rk+m → Rm be the projection onto the last
m coordinates.

The algorithm will compute a double complex, D•,•q (S), such that Tot•(D•,•q (S))
is quasi-isomorphic to the complex Tot•(D•,•

q (S)). The double complex, D•,•q (S) is
defined as follows.



ON PROJECTIONS OF SEMI-ALGEBRAIC SETS 19

We introduce k(q+2) variables, which we denote byXi,j , 1 ≤ i ≤ k, 0 ≤ j ≤ q+1.
For each j, 0 ≤ j ≤ q + 1, we denote by, Pi,j the polynomial

Pi(X1,j , . . . , Xk,j , Y1, . . . , Ym)

(substituting X1,j , . . . , Xk,j in place of X1, . . . , Xk in the polynomial Pi). We
consider each Pi,j to be an element of R[X1,0, . . . , Xk,q+1, Y1, . . . , Ym]. For each
p, 0 ≤ p ≤ q + 1, we denote by Sp ⊂ Rk(q+2)+m the semi-algebraic set defined by,

P1,0 ≥ 0, . . . , P`,0 ≥ 0, . . . , P1,p ≥ 0, . . . , P`,p ≥ 0.

Note that, for each p, 0 < p ≤ q + 1, and each j, 0 ≤ j ≤ p we have a natural
map, πp,j : Sp → Sp−1 given by,

πp,j(x̄0, . . . , x̄p, . . . , x̄q+1, ȳ) = (x̄0, . . . , x̄p, . . . , x̄j , . . . , x̄q+1, ȳ).

Note that in the definition above, each x̄i ∈ Rk and πp,j exchanges the coordinates
x̄j and x̄p.

We are now in a position to define D•,•q . We follow the notations introduced in
Section 6. Let Q = {Q1, . . . , Q`(q+2)} = {P1,0, . . . , P`,q+1}. For 0 ≤ j ≤ q + 1, we
let Lj = {1, . . . , (j + 1)`} ⊂ {1, . . . , (q + 2)`}.

Di,j
q (X) = F j

Li
, 0 ≤ i+ j ≤ q + 1,

= 0, otherwise,
The vertical homomorphisms, d, in the complex D•,•q are those induced from the

complexes F •Li
or zero. The horizontal homomorphisms, δj : F j

Li
−→ F j

Li+1
are

defined as follows.
For each h, 0 ≤ h ≤ i + 1, Algorithm 1 produces a homomorphism, φi+1,h :

F j
Li
−→ F j

Li+1
, corresponding to the map πi+1,h (see remark after Algorithm 1).

The homomorphism δ is then defined by, δ =
i+1∑
h=0

(−1)hφi+1,h.We have the following

proposition.

Proposition 7.1. The complex Tot•(D•,•q (S)) is quasi-isomorphic to the complex
Tot•(D•,•

q (S)).

Proof. It follows immediately from Theorem 6.1 that the columns of the complexes
D•,•q (S) andD•,•

q (S) are quasi-isomorphic. Moreover, it is easy to see that the quasi-
isomorphisms induce an isomorphism between the ′′E1 term of their associated
spectral sequences. Now by Theorem 3.1 this implies that Tot•(D•,•q (S)) is quasi-
isomorphic to the complex Tot•(D•,•

q (S)). �

Algorithm 2 (Computing the first q Betti Numbers).
Input: A S ⊂ Rk+m be a basic semi-algebraic set defined by

P1 ≥ 0, . . . , P` ≥ 0,

with Pi ∈ R[X1, . . . , Xk, Y1, . . . , Ym], deg(Pi) ≤ 2, 1 ≤ i ≤ `.
Output: b0(π(S)), . . . , bq(π(S)), where π : Rk+m → Rm be the projection onto the
last m coordinates.

Procedure:
Step 1: Using Algorithm 1 compute the truncated complex D•,•q (S).
Step 2: Compute using linear algebra, the dimensions of Hi(Tot•(D•,•q )), 0 ≤ i ≤ q.

Step 3: For each i, 0 ≤ i ≤ q, output, bi(π(S)) = dim(Hi(Tot•(D•,•q ))).
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Complexity Analysis: The calls to Algorithm 1 has input consisting of (q + 1)`
polynomials in qk + m variables. Using the complexity bound of Algorithm 1 we
see that the complexity of Algorithm 2 is bounded by (k +m)2

O(q`)
. �

Proof of Correctness: The correctness of the algorithm is a consequence of Propo-
sition 7.1 and Theorem 3.1. �

8. Conclusion and Open Problems

For any fixed q and `, we have proved a polynomial bound on the sum of the
first q Betti numbers of the projection of a bounded, basic closed semi-algebraic
set defined by ` quadratic inequalities. We have also described a polynomial time
algorithm to compute the first q Betti numbers of the image of such a projection.

Since it is not known whether quantifier elimination can be performed efficiently
for sets defined by a fixed number of quadratic inequalities, many questions are left
open.

Our bounds become progressively worse as q increases, becoming exponential
in the dimension as q approaches k. However, we do not have any examples (of
projections of semi-algebraic sets defined by quadratic inequalities) where the higher
Betti numbers behave exponentially in the dimension. This leaves open the problem
of either constructing such examples, or removing the dependence on q from our
bounds.

Another interesting open problem is to improve the complexity of Algorithm 2,
from (k +m)2

O(q`)
to (k +m)O(q`). Note that this would imply an algorithm with

complexity kO(q`) for computing the first q Betti numbers of a semi-algebraic set
defined by ` quadratic inequalities in Rk. The best known algorithm for computing
all the Betti numbers of such sets has complexity k2O(`)

[7]. The only topological
invariants of such sets that we currently know how to compute in time kO(`) are
testing for emptiness [2, 21] and the Euler-Poincaré characteristic [9].
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