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Abstract. Let R be a real closed field, and D ⊂ R an ordered domain. We

describe an algorithm that given as input a polynomial P ∈ D[X1, . . . , Xk],

and a finite set, A = {p1, . . . , pm}, of points contained in V = Zer(P,Rk) de-

scribed by real univariate representations, computes a roadmap of V containing
A. The complexity of the algorithm, measured by the number of arithmetic

operations in D is bounded by
(∑m

i=1 D
O(log2(k))
i + 1

)
(klog(k)d)O(k log2(k)),

where d = deg(P ), and Di is the degree of the real univariate representa-

tion describing the point pi. The best previous algorithm for this problem

had complexity card(A)O(1)dO(k3/2) [3], where it is assumed that the degrees

of the polynomials appearing in the representations of the points in A are
bounded by dO(k). As an application of our result we prove that for any

real algebraic subset V of Rk defined by a polynomial of degree d, any con-

nected component C of V contained in the unit ball, and any two points of
C, there exist a semi-algebraic path connecting them in C, of length at most

(klog(k)d)O(k log(k)), consisting of at most (klog(k)d)O(k log(k)) curve segments

of degrees bounded by (klog(k)d)O(k log(k)). While it was known previously,
by a result of D’Acunto and Kurdyka [7], that there always exists a path of

length (O(d))k−1 connecting two such points, there was no upper bound on

the complexity of such a path.
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1. Introduction

Let R be a fixed real closed field and D ⊂ R an ordered domain. We will
denote by C the algebraic closure of R. We consider in this paper the algorithmic
problem of, given a polynomial P ∈ D[X1, . . . , Xk], determining the number of

semi-algebraically connected components of the set, Zer(P,Rk), of zeros of P in

Rk. Moreover, given two points x, y ∈ Zer(P,Rk), described by real univariate
representations (see below for precise definition), we would like to decide if x, y

belong to the same semi-algebraically connected component of Zer(P,Rk), and if

so, to compute a semi-algebraic path with image contained in Zer(P,Rk), connecting
them. We measure the complexity of an algorithm by the number of arithmetic
operations performed in the ring D.

The problem of designing an efficient algorithm for solving the problem de-
scribed in the previous paragraph is very well studied in algorithmic semi-algebraic
geometry. It follows from Collins’ algorithm [6] for computing cylindrical algebraic

decomposition [6] that this problem can be solved with complexity d2O(k)

, where
d = deg(P ) [20]. Notice that this complexity is doubly exponential in k. Singly
exponential algorithms for solving this problem were introduced by Canny in [5],
and successively completed and refined in [22], [12], [13], [14],[10],[11],[1], the best

complexity bound being dO(k2) [1]. However, these results remained unsatisfactory
from the complexity point of view for the following reason. It is a classical result
due to Olĕınik and Petrovskĭı [17], Thom [21] and Milnor[16] that the number of

semi-algebraically connected components of a real algebraic variety in Rk defined
by polynomials of degree at most d (in fact, the sum of all the Betti numbers of the
variety) is bounded by d(2d− 1)k−1 = O(d)k. Indeed, the Morse-theoretic proof of
this fact had inspired the so called “critical point” method, that is at the base of
many algorithms in semi-algebraic geometry. The best algorithms using the critical
point method often have complexity dO(k) when applied to real algebraic varieties in
Rk defined by polynomials of degree d. It is the case for testing emptiness, comput-
ing at least one point in every connected component, optimizing a polynomial and
computing the Euler-Poincaré characteristic (see for example, [2]). In contrast, for
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counting the number of semi-algebraically connected components and computing

semi-algebraic paths, the best complexity bound remained dO(k2).
All known singly exponential algorithms for deciding connectivity of a semi-

algebraic set S rely on computing a certain one dimensional semi-algebraic subset,
which is referred to as a roadmap of S. The definition of a roadmap of an arbitrary
semi-algebraic set S (not just a real variety) is as follows.

Definition 1.1. A roadmap for S is a semi-algebraic set M of dimension at most
one contained in S such that M satisfies the following conditions:

• RM1 For every semi-algebraically connected component D of S, D ∩M is
non-empty and semi-algebraically connected.
• RM2 For every x ∈ R and for every semi-algebraically connected component
D′ of Sx = S ∩π−1

1 ({x}), D′ ∩M 6= ∅, where π1 : Rk → R is the projection
on the first co-ordinate.

Once roadmaps are computed with singly exponential complexity, questions
about connectivity are reduced to the same questions in a finite graph, and can be
answered with complexity no greater than polynomial in the size of the roadmap
itself.

All known algorithms for computing roadmaps follow a certain paradigm which
can be roughly described as follows. Given a semi-algebraic set V ⊂ Rk (might
be assumed to satisfy certain additional properties, such as being a bounded, non-
singular hypersurface), one defines

(1) a certain semi-algebraic subset V 0 ⊂ V , with dimension of V 0 bounded by
p < k,

(2) a finite subset of points of N ⊂ Rp.

The set V 0 and the finite set N are not arbitrary but must satisfy certain intricate
conditions. A crucial mathematical result is then proved : for any semi-algebraically
connected component C of V , C ∩ (V 0 ∪ VN ) is non-empty and semi-algebraically

connected, where VN = V ∩ π−1
[1,p](N ), with π[1,p] : Rk → Rp the projection on the

first p co-ordinates (see, for example, Proposition 15.7 in [2] for the special case
when p = 1, Theorem 14 in [8], Proposition 3 in [3], or Proposition 3.4 of the
current paper).

The actual algorithm then proceeds by reducing the problem of computing a
roadmap of V to computing roadmaps of V 0 and of the fibers VN , each such
roadmap containing a well chosen set of points including the intersection of V 0

and the fibers VN . The roadmaps of fibers are then computed using a recursive call
to the same algorithm and the remaining problem is to compute a roadmap of V 0.

In the classical algorithm (see, for example, Chapter 15, [2]), p = 1, and thus V 0

has dimension at most one, and is already a roadmap of itself. The complexity of
this algorithm for computing the roadmap of an algebraic set V ⊂ Rk, defined by

a polynomial of degree d in k variables, is dO(k2) . The exponent O(k2) remained
a very difficult obstacle to overcome for many years, and the first progress was
reported only very recently.

A fully general deterministic Baby-step Giant-step algorithm with complexity

dO(k3/2) for computing the roadmap of an algebraic set V ⊂ Rk, defined by a
polynomial of degree d in k variables, is given in [3]. Its recursive scheme is similar

to the one introduced in [8] where a probabilistic algorithm of complexity dO(k3/2)
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for computing roadmaps of smooth bounded hypersurfaces of degree d in k variables
is given. In [3], the parameter p is chosen to be ≈

√
k, the roadmaps of the fibers

are computed recursively using the same algorithm, while that of V 0 is computed
using the classical algorithm. The main reason for having such an unbalanced
approach, and not using recursion to compute a roadmap of V 0 as well, is that the
good properties of V under which the mathematical connectivity result is proved,
are not inherited by V 0. This difficulty is avoided by making a call to the classical
roadmap for V 0. The classical roadmap algorithm can be modified so that its
complexity is dO(pk) for special algebraic sets of dimension at most p. Having an
unbalanced approach where the dimension p of V 0 is much smaller (roughly p =

√
k)

compared to the dimension of the various fibers (roughly k −
√
k), the complexity

of the algorithm in [3] can be bounded by dO(
√
kk).

It is reasonable to hope that a more balanced algorithm in which p ≈ k/2, and
where the roadmaps of both V 0 and the VN are computed recursively using the
same algorithm, by a divide-and-conquer method, can compute a roadmap with a

complexity dÕ(k) where we denote by Õ(k) any function of k of the form k logO(1)(k).
We prove the following theorem which is the main result of this paper (definitions

of real univariate representations are given in Subsection 7.2).

Theorem 1.2. Let R be a real closed field and D ⊂ R an ordered domain. The
following holds.

• There exists an algorithm that takes as input:
(1) a polynomial P ∈ D[X1, . . . , Xk], with deg(P ) ≤ d;
(2) a finite set, A, of real univariate representations whose associated set

of points, A = {p1, . . . , pm}, is contained in V = Zer(P,Rk), and such
that the degree of the real univariate representation representing pi is
bounded by Di for 1 ≤ i ≤ m;

and computes a roadmap of V containing A. The complexity of the algo-
rithm is bounded by(

1 +

m∑
i=1

D
O(log2(k))
i

)
(klog(k)d)O(k log2(k)).

The size of the output is bounded by (card(A) + 1)(klog(k)d)O(k log(k)), while
the degrees of the polynomials appearing in the descriptions of the curve
segments and points in the output are bounded by

( max
1≤i≤m

Di)
O(log(k))(klog(k)d)O(k log(k)).

• There exists an algorithm that takes as input a polynomial P ∈ D[X1, . . . , Xk],
with deg(P ) ≤ d, and computes the number of semi-algebraically connected

components of V = Zer(P,Rk), with complexity bounded by

(klog(k)d)O(k log2(k)).

• There exists an algorithm that takes as input:
(1) a polynomial P ∈ D[X1, . . . , Xk], with deg(P ) ≤ d;
(2) two real univariate representations whose associated points are con-

tained in V = Zer(P,Rk), and whose degrees are bounded by D1 and
D2 respectively;
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and decides whether the two points belong to the same semi-algebraically
connected component of V , and if so computes a description of a semi-
algebraic path connecting them with image contained in V . The complexity
of the algorithm is bounded by

(D
O(log2(k))
1 +D

O(log2(k))
2 + 1)(klog(k)d)O(k log2(k)).

The size of the output as well as the degrees of the polynomials appearing in
the descriptions of the curve segments and points in the output are bounded
by

max(1, D1, D2)O(log(k))(klog(k)d)O(k log(k)).

In fact we prove the following more technical result.
We need the following definition.

Definition 1.3. A semi-algebraic set S ⊂ Rk is strongly of dimension ≤ ` if for
every y ∈ R`, Sy = {x ∈ S | π[1,`](x) = y} is finite (possibly empty), where π[1,`]

denotes the projection to the first ` coordinates. (Note that the notion of being
strongly of dimension ≤ ` is not invariant under arbitrary change of coordinates.
However, if a semi-algebraic set S ⊂ Rk is strongly of dimension ≤ `, then any
semi-algebraic subset of S is strongly of dimension ≤ `.)

Theorem 1.4. Let R be a real closed field and D ⊂ R an ordered domain. Then
the following holds. There exists an algorithm that takes as input:

(1) a polynomial P ∈ D[X1, . . . , Xk], with deg(P ) ≤ d such that V = Zer(P,Rk)
is bounded and strongly of dimension ≤ k′,

(2) a finite set, A, of real univariate representations whose associated set of
points, A = {p1, . . . , pm}, is contained in V , and such that the degree of
the real univariate representation representing pi is bounded by Di for 1 ≤
i ≤ m;

and computes a roadmap of V containing A. The complexity of the algorithm is
bounded by

(1 +

m∑
i=1

D
O(log2(k′))
i )(klog(k′)d)O(k log2(k′)).

The size of the output is bounded by (card(A) + 1)(klog(k′)d)O(k log(k′)), while the
degrees of the polynomials appearing in the descriptions of the curve segments and
points in the output are bounded by

( max
1≤i≤m

Di)
O(log(k′))(klog(k′)d)O(k log(k′)).

The bounds on the complexity of the roadmap given in Theorem 1.2 give an
upper bound on the length of a semi-algebraic curve required to connect two points
in the same connected component of a real algebraic variety in Rk. In [7], the
authors proved that the geodesic diameter of any connected component C of a real
algebraic variety in Rk defined by a polynomial of degree d and contained inside the
unit ball in Rk, is bounded by (O(d))k−1. This result guarantees the existence of a
semi-algebraic path connecting any two points in C of length bounded by (O(d))k−1.
Unfortunately, the complexity of this path (namely, the number and degrees of the
polynomials needed to define it) is not uniformly bounded as a function of k and
d. We obtain a path of length bounded by (klog(k)d)O(k log(k)), but moreover with
uniformly bounded complexity. We have the following theorem.
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Theorem 1.5. Let V ⊂ Rk be a real algebraic variety defined by a polynomial of
degree at most d, and let C be a connected component of V contained in the unit ball
centered at the origin. Then, any two points x, y ∈ C, can be connected inside C
by a semi-algebraic path of length at most (klog(k)d)O(k log(k)) consisting of at most
(klog(k)d)O(k log(k)) curve segments of degrees bounded by (klog(k)d)O(k log(k)).

Note that the algebraic case dealt with in this paper is usually the main building
block in designing roadmap algorithms for more general semi-algebraic sets (see for
example Chapter 16 in [2]). We believe that with extra effort, the improvement in
the algebraic case reported here could lead to a corresponding improvement in the
general semi-algebraic setting.

We prove Theorem 1.2 by giving a divide-and-conquer algorithm for computing
a roadmap based on two recursive calls to subvarieties whose dimensions are at
most half the dimension on the given variety V (see Algorithms 6 and 9 in Section
7 below).

Such a divide-and-conquer roadmap algorithm would be quite simple if it was the
case that the sub-varieties of V obtained by iterating the following two operations
in any order:

(1) taking the sub-variety consisting of the set of critical points of G, for some
polynomial G ∈ D[X1, . . . , Xk], restricted to the fibers, Vy = V ∩π−1({y}),
where π is a projection map to a subset of the coordinates (see Definition
2.3 below for a precise definition of critical points of G restricted to the
fibers of V );

(2) fixing a subset of coordinates (i.e., taking fibers of V );

had good properties, e.g. the number of critical points of G remains finite as the
parameters vary.

Suppose for simplicity that k − 1 is a power of 2. Then, the following simple
algorithm for constructing a roadmap would work, Namely, in the very first step
consider the projection map, π, to the first p/2 coordinates, where p = dim(V ) =

k−1. For every y ∈ Rp/2, let Vy = V ∩π−1({y}) be the corresponding fiber and let
V 0
y ⊂ Vy be the set of critical points of G restricted to Vy and V 0 = ∪

y∈Rp/2V 0
y . Let

M⊂ V be the set of G-critical points of V , andM0 the (assumed finite) G-critical
points of V 0. Let N = π(M∪M0). It can be proved that a roadmap of V can be
obtained by taking the union of

• a roadmap of V 0 containing V 0
N ,

• and roadmaps of Vy, containing the points of V 0 above †, for y ∈ N .

Both V 0 and the Vy , y ∈ N , are of dimension p/2. If p/2 = 1, then the roadmaps
of V 0 and the Vy, y ∈ N coincide with themselves. Otherwise, these roadmaps can
then be computed by recursive calls to the same algorithm.

The description given above, that we are using as a guide, is flawed in a fun-
damental way. We know of no way to ensure that all the intermediate varieties
that occur in the course of the algorithm have good properties even if the original
variety V has them.

In order to get around this difficulty we use perturbation techniques, in the
spirit of several other prior work on computing roadmaps. The main difficulty is
to ensure that good properties are preserved for the variety V 0 as we go down in
the recursion.
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In the divide-and-conquer scheme pursued in this paper, it is imperative, for
complexity reasons, that V 0 and the fibers Vy have the same dimension (namely,
1
2 dim(V )). So we cannot resort to the classical roadmap algorithm for V 0 any more

and we need to ensure good properties for V 0 (which is no more an hypersurface
even if V is) as well.

While the general principle – that of making perturbations to reach an ideal
situation – is similar to that used in [3] for the Baby-step Giant-step algorithm for
computing roadmaps, there are many new ideas involved which we list below.

We start the construction with an algebraic hypersurface V , defined as the zero
set of one single polynomial P .

(1) We make a deformation P̃ of P using an infinitesimal, and consider the

algebraic set Ṽ defined by P̃ with coefficients in a new field R̃ consisting of
algebraic Puiseux series (with coefficients in R) in this infinitesimal.

(2) Instead of considering critical points of the projection map on to a fixed
coordinate, we consider critical points of a well chosen fixed polynomial G.
This is done to ensure more genericity. Geometrically, we sweep using the
level surfaces of the polynomial G.

(3) For every y ∈ R̃
p/2

, let Ṽ 0
y ⊂ Ṽy be the set of critical points of G restricted

to Ṽy and Ṽ 0 =
⋃
y∈ ˜R

p/2 Ṽ 0
y . The closed semi-algebraic set Ṽ 0 is naturally

described as the projection of some variety involving extra variables. This
causes a problem, since we need an explicit description of Ṽ 0 in order to
be able to make a recursive call. We are able to express Ṽ 0 as the union
of several pieces (charts), each described as a basic constructible set of the
form ∧

P∈P
(P = 0) ∧ (Q 6= 0) .

(4) The preceding decomposition of Ṽ 0 into open charts is not very easy to
use, so we modify the description using instead closed sets (by shrinking
slightly the constructible sets). We are able to cover (an approximation of)

Ṽ 0 by basic semi-algebraic sets of the form∧
P∈P

(P = 0) ∧ (Q ≥ 0).

(5) This necessitates that in our recursive calls we accept as inputs not just
varieties, but basic semi-algebraic sets of a certain special form having only
a few inequalities in their definitions.

(6) The Morse-theoretical connectivity results needed to prove the correctness
of the new algorithms have to be extended to take into account the two
new features mentioned above. The first new feature is that instead of con-
sidering projection map to a fixed coordinate, we are using the polynomial
G as the “Morse function”. Secondly, instead of varieties we need to deal
with more general semi-algebraic sets. We define a new variant of the no-
tion of “pseudo-critical values” introduced in [2] which is applicable to the
semi-algebraic case and which takes into account the polynomial G, and
prove the required Morse theoretical lemmas in this new setting.

(7) The covering mentioned in (4) above means that we are replacing each semi-
algebraic set, by several basic semi-algebraic sets, the union of whose limits



8 BASU AND ROY

co-incides with the given set. In order that the union of the limits of the
roadmaps computed for each of the new sets gives a roadmap of the original
one, we need to make sure that the roadmaps of the new sets contain certain
carefully chosen points. Very roughly speaking these points will correspond
to a finite number of pairs of closest points realizing the locally minimal
distance between any two semi-algebraically connected components of the
new sets.

(8) The construction involves a perturbation using four infinitesimals at each
level of the recursion. Since, there will be at most O(log(k′)) levels, at
the end we will be doing computations in a ring with O(log(k′)) infinites-
imals. At the end of the algorithm we will need to compute descriptions
of the limits of the semi-algebraic curves computed in the previous steps
of the algorithm. We show that these limits can be computed within the
claimed complexity bound. For this the fact that we have only O(log(k′))
infinitesimals, and not more, is crucial.

The rest of the paper is organized as follows. In Section 2, we state some basic
results of Morse theory for higher co-dimensional non-singular varieties, including
definitions of critical points on basic semi-algebraic sets and their properties.

In Section 3, we prove the connectivity results that we will require. We introduce
a set of axioms (to be satisfied by a basic semi-algebraic set S and certain subsets of
S) and prove an abstract connectivity result (Proposition 3.4) which forms the basis
of the roadmap algorithm in this paper. The main differences between Proposition
3.4 and a similar result in [3, Proposition 3] are that Proposition 3.4 applies to
basic semi-algebraic sets (not just to algebraic hypersurfaces), and that there is an
auxiliary polynomial G which plays the role of the X1-co-ordinate in [3].

In Section 5, we discuss certain specific infinitesimal deformations that we will
use in order to ensure that the properties defined in Section 3 hold. In Section 4,
we explain a deformation technique to reach general position and prove that the set
of G-critical points is finite for a certain well chosen polynomial G. The techniques
used in this section are adapted from [15]. In Section 4.2, we define a new notion
of pseudo-critical values for semi-algebraic sets with respect to a given polynomial
G and state their connectivity properties, generalizing to this new context results
from [2]. In Section 5, we discuss how the deformations are used to ensure the
connectivity properties defined in Section 3.

Section 6 is devoted to a description of the set of G-critical points using minors
of certain Jacobian matrices and the properties of the set of G-critical points.

Section 7 is devoted to the description of the Divide and Conquer Roadmap Al-
gorithm. We first define the tree that is computed, explain how it gives a roadmap,
and finally describe the Divide and Conquer Algorithm first for the bounded case
(Algorithm 8), and then in general (Algorithm 9).

In the Annex (Section 8), we include certain technical proofs of propositions on
critical and pseudo-critical values stated in Section 2.2 and Section 4.2 and used in
the paper.

2. Critical points of algebraic and basic semi-algebraic sets

In this section we define critical points of a polynomial first on an algebraic set
and then on a basic semi-algebraic set and discuss their properties.
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2.1. Critical points of algebraic sets.

Definition 2.1. Let G ∈ R[X1, . . . , Xk] and P = {P1, . . . , Pm} ⊂ R[X1, . . . , Xk]
be a finite family of polynomials.

We say that x ∈ Zer(P,Rk) is a G-critical point of Zer(P,Rk), if there exists
λ = (λ0, · · · , λm) ∈ Rm+1 satisfying the system of equations CritEq(P, G)

Pj = 0, j = 1, . . . ,m,
m∑
j=1

λj
∂Pj
∂Xi

− λ0
∂G

∂Xi
= 0, i = 1, . . . , k,(1)

m∑
j=0

λ2
j − 1 = 0.

The set Crit(P, G) ⊂ Rk is the set of G-critical points of Zer(P,Rk), i.e., the

projection on Rk of Zer
(

CritEq(P, G),Rk+m+1
)

. Note that geometrically, in the

case the polynomials P define a non-singular complete intersection, Crit(P, G) is

the set of points x ∈ Zer(P,Rk), such that the tangent space at x of Zer(P,Rk) is

orthogonal to grad(G)(x). In case Zer(P,Rk) in singular, then the set of G-critical

points includes the set of singular points of Zer(P,Rk), which is clear from (1).

2.2. Critical points of basic semi-algebraic sets.

Notation 2.2. Given two finite families of polynomials P,Q ⊂ R[X1, . . . , Xk], we
denote by Bas(P,Q) the basic semi-algebraic set defined by

Bas(P,Q) =

x ∈ Rk |
∧
P∈P

P (x) = 0 ∧
∧
Q∈Q

Q(x) ≥ 0

 .

Definition 2.3. Let G ∈ R[X1, . . . , Xk]. We define Crit(P,Q, G), the set of G-
critical points of Bas(P,Q), by

Crit(P,Q, G) = Bas(P,Q)
⋂( ⋃

Q′⊂Q
Crit(P ∪Q′, G)

)
.

Definition 2.4. We say that the pair P,Q is in general position with respect
to G ∈ R[X1, . . . , Xk] if Zer(P,Rk) is bounded, and for any subset Q′ ⊂ Q,
Crit(P ∪Q′, G) ⊂ Rk is empty or finite.

Remark 2.5. Note that in this case Zer(P,Rk) has only a finite number of singular

points; moreover if card(P) = k, Zer(P,Rk) is finite (possibly empty).

The properties of G-critical points used later in the paper are now given in the
following two Morse-theoretic lemmas. The proofs, which are slight variants of the
classical proofs, are included in the Annex (Section 8).

Notation 2.6. Let T ⊂ Rk, G a function Rk −→ R, and suppose that a ∈ R. We
denote

TG=a = {x ∈ T | G(x) = a},
TG≤a = {x ∈ T | G(x) ≤ a},
TG<a = {x ∈ T | G(x) < a}.
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Let P,Q ⊂ R[X1, . . . , Xk], S = Bas(P,Q), S bounded, and M = Crit(P,Q, G).

Lemma 2.7. Suppose that b 6∈ D = G(M). Let C be a semi-algebraically connected
component of SG≤b. If a < b and (a, b]∩D is empty, then CG≤a is semi-algebraically
connected.

Now assume that P,Q are in general position with respect to G (cf. Definition
2.4).

Lemma 2.8. Let C be a semi-algebraically connected component of SG≤b, such
that CG=b is not empty.

(1) If dim(C) = 0, C is a point contained in M.
(2) If dim(C) 6= 0, then CG<b is non-empty. Let B1, . . . , Br be the semi-

algebraically connected components of CG<b. Then,
(a) for each i, 1 ≤ i ≤ r, Bi ∩M 6= ∅;
(b) if there exist i, j, 1 ≤ i < j ≤ r such that Bi ∩Bj 6= ∅, then Bi ∩Bj ⊂
M;

(c) ∪ri=1Bi = C, and hence ∪ri=1Bi is semi-algebraically connected.

3. Axiomatics for connectivity

In this subsection we identify a set of properties, to be satisfied by a basic
semi-algebraic set Bas(P,Q), a polynomial G, and certain finite subsets of points
contained in Bas(P,Q), and prove a key connectivity result (Proposition 3.4 below)
for such a situation, which plays a key role in our recursive algorithm later. In
Section 5 we will explain how to use a perturbation technique to reach the ideal
situation described here.

Notation 3.1. Let π[1,`] be the projection map from Rk to R` forgetting the last

k − ` coordinates. For every T ⊂ Rk and A ⊂ R`, we denote TA = T ∩ π−1
[1,`](A).

For w ∈ R`, we denote Tw = T ∩ π−1
[1,`]({w}).

Definition 3.2. Let 1 ≤ ` < k, G ∈ R[X1, . . . , Xk], and let P,Q ⊂ R[X1, . . . , Xk]
be in general position with respect to G. Let S = Bas(P,Q), and suppose that S
is bounded.

We say that a tuple (S,M,`, S0,D0,M0) is special if it satisfies the following
Properties 1, 2, 3, and 4.

(1) M = Crit(P,Q, G) is the finite set of critical points of G on S.
(2) S0 ⊂ S is a semi-algebraic set strongly of dimension ≤ ` such that for every

w ∈ R`, S0
w meets every semi-algebraically connected component of Sw,

and for each semi-algebraically connected component C of Sw, S0
w contains

a minimizer of G over C.
(3) D0 ⊂ R is a finite set of values satisfying for every interval [a, b] ⊂ R and

c ∈ [a, b], with {c} ⊃ D0∩ [a, b], if D is a semi-algebraically connected com-
ponent of S0

a≤G≤b, then DG=c is a semi-algebraically connected component

of S0
G=c.

(4) M0 ⊂ S0 is a finite set of points satisfying the following properties:
(a) G(M0)=D0,
(b) M0 meets every semi-algebraically connected component of S0

G=a for
all a ∈ D0.
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Definition 3.3. For a semi-algebraic subset S ⊂ T , we say that S has good
connectivity property with respect to T , if the intersection of S with every semi-
algebraically connected component of T is non-empty and semi-algebraically con-
nected.

With the definition introduced above we have the following key result which
generalizes Proposition 3 in [3] (see also Theorem 14 in [8]).

Proposition 3.4. Let (S,M, `,S0,D0,M0) be a special tuple. Then, for every
finite N ⊃ π[1,`](M ∪M0), the semi-algebraic set S0 ∪ SN has good connectivity
property with respect to S.

In the proof of Proposition 3.4 we will use the following notation.

Notation 3.5. If S ⊂ Rk is semi-algebraic set and x ∈ S, then we denote by
Cc(x, S) the semi-algebraically connected component of S containing x.

Notation 3.6. Given a real closed field R and a variable ε, we denote by R〈ε〉 the
real closed field of algebraic Puiseux series (see [2]). In the ordered field R〈ε〉, ε is
positive and infinitesimal, i.e., smaller than any positive element of R. We denote
by limε the mapping which sends a bounded Puiseux series to its constant term.

Notation 3.7. If R′ is a real closed extension of a real closed field R, and S ⊂ Rk

is a semi-algebraic set defined by a first-order formula with coefficients in R, then
we will denote by Ext

(
S,R′

)
⊂ R′k the semi-algebraic subset of R′k defined by the

same formula. It is well-known that Ext
(
S,R′

)
does not depend on the choice of

the formula defining S (see [2] for example).

Proof of Proposition 3.4. Let S1 = Sπ[1,`](M∪M0). We are going to prove that S0 ∪
S1 has good connectivity property with respect to S, which implies the proposition.

For a in R, we say that property GCP(a) holds if (S0 ∪ S1)G≤a has good con-
nectivity property with respect to S.

We prove that for all a in R, GCP(a) holds. Since S is assumed to be bounded,
the proposition follows immediately from this claim, since it is clear that the propo-
sition follows from GCP(a) for any a ≥ maxx∈S G(x).

The proof uses two intermediate results:

Step 1 : For every a ∈ D∪D0, and for every b ∈ R with (a, b]∩ (D ∪D′) = ∅,
GCP(a) implies GCP(b).

Step 2 : For every b ∈ D ∪ D′, if GCP(a) holds for all a < b, then GCP(b)
holds.

The combination of Step 1 and Step 2 implies by an easy induction that the
property GCP(a) holds for all a in R, since for a < minx∈S(G(x)), the property
GCP(a) holds vacuously. So the proposition follows from Step 1 and Step 2 .

We now prove the two steps.

Step 1 We suppose that a ∈ D ∪ D′ and GCP(a) holds, take b ∈ R, a < b with
(a, b] ∩ (D ∪D′) = ∅, and prove that GCP(b) holds. Let C be a semi-
algebraically connected component of SG≤b. We have to prove that C ∩
(S0 ∪ S1) is semi-algebraically connected.

Since (a, b] ∩ (D ∪D′) = ∅, it follows that Ma<G≤b = ∅, and it follows
from Lemma 2.7 that CG≤a is a semi-algebraically connected component
of SG≤a. Now, using property GCP(a), we see that CG≤a ∩ (S0 ∪ S1) is
non-empty and semi-algebraically connected.
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Let x ∈ C ∩ (S0 ∪ S1). We prove that x can be semi-algebraically
connected to a point in CG≤a∩S0 by a semi-algebraic path in C∩(S0∪S1),
which is enough to prove that C∩(S0∪S1) is semi-algebraically connected.

There are three cases to consider.
Case 1: x ∈ S1. In this case, consider Cc(x, Sπ[1,`](x)) = Cc(x, S1

π[1,`](x)).

Then, by Definition 3.2, Part (2), there exists x′ ∈ Cc(x, Sπ[1,q](x)) ∩ S0

such that x′ is a minimizer of G over Cc(x, Sπ[1,`](x)) i.e.,

G(x′) = min
x′′∈Cc(x,Sπ[1,`](x))

G(x′′).

In particular, x′ ∈ Cc(x, S0
G≤b) ⊂ C. Connecting x to x′ by a semi-algebraic

path inside Cc(x, S1
π[1,`](x)) we reduce either to Case 2 or Case 3 below.

Case 2: x ∈ S0, G(x) ≤ a. In this case there is nothing to prove.
Case 3: x ∈ S0, G(x) > a. By Definition 3.2, Part (3) applied to

Cc(x, S0
a≤G≤b) we have that a ∈ G(Cc(x, S0

a≤G≤b)) and Cc(x, S0
a≤G≤b)G=a

is non-empty. Hence, there exists a semi-algebraic path connecting x to a
point in Cc(x;S0

a≤G≤b)G=a inside Cc(x, S0
a≤G≤b). Since Cc(x, S0

a≤G≤b) ⊂
S0 and Cc(x, S0

a≤G≤b) ⊂ C, it follows that Cc(x, S0
a≤G≤b) ⊂ C ∩S0 and we

are done.
This finishes the proof of Step 1 .

Step 2 We suppose that b ∈ D ∪ D′, and GCP(a) holds for all a < b, and prove
that GCP(b) holds.

Let C be a semi-algebraically connected component of SG≤b.
If dim(C) = 0, C is a point belonging to M⊂ (S0 ∪ S1) by Lemma 2.8.

So C ∩ (S0 ∪ S1) is semi-algebraically connected.
Hence, we can assume that dim(C) > 0. If CG=b = ∅ there is nothing

to prove. Suppose that CG=b is non-empty, so that CG<b is non-empty by
Lemma 2.8.

Our aim is to prove that C ∩ (S0 ∪ S1) is semi-algebraically connected.
We do this in two steps. We prove the following statements:

(a) : if B is a semi-algebraically connected component of CG<b, then
B ∩ (S0 ∪ S1) is non-empty and semi-algebraically connected, and

(b) : using (a) C ∩ (S0 ∪ S1) is semi-algebraically connected.
Proof of (a) . We prove that if B is a semi-algebraically connected com-
ponent of VG<b, then B ∩ (S0 ∪ S1) is non-empty and semi-algebraically
connected.

Since B contains a point ofM it follows that B∩ (S0∪S1) is not empty.
Note that if B ∩ (S0 ∪ S1) = B ∩ (S0 ∪ S1), then there exists a with

max({G(x) | x ∈ B ∩ (S0 ∪ S1)}) < a < b,

such that B ∩ (S0 ∪ S1) = (B ∩ (S0 ∪ S1))G≤a, and using Lemma 2.7,
BG≤a is semi-algebraically connected. So B∩(S0∪S1) is semi-algebraically
connected since GCP(a) holds.

We now suppose that (B \ B) ∩ (S0 ∪ S1) is non-empty. Taking x ∈
(B \ B) ∩ (S0 ∪ S1), we are going to show that x can be connected to a
point z in B ∩ S0 by a semi-algebraic path γ inside B ∩ (S0 ∪ S1). Notice
that G(x) = b.
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We first prove that we can assume without loss of generality that x ∈
S0. Otherwise, since x ∈ S0 ∪ S1, we must have that x ∈ Sw with w =
π[1,`](x), and Sw ⊂ S1. Let A = Cc(x, Sw ∩ B). We now prove that

A ∩ S0
w 6= ∅. Using the curve section lemma, choose a semi-algebraic path

γ : [0, ε]→ Ext(B,R 〈ε〉) such that γ(0) = x, limε γ(ε) = x and γ((0, ε]) ⊂
Ext(B,R 〈ε〉). Let wε = π[1,`](γ(ε)) and

Aε = Cc(γ(ε),Ext(B,R 〈ε〉)wε).
Note that x ∈ limεAε ⊂ A.

By the Tarski-Seidenberg transfer principle [2], Ext(B,R 〈ε〉) is a semi-
algebraically connected component of Ext(SG<a,R 〈ε〉) which implies that
Aε is a semi-algebraically connected component of Ext(S,R 〈ε〉)wε . By

Definition 3.2, Part (2), and the Tarski-Seidenberg transfer principle,

Ext(S0,R 〈ε〉)wε ∩Aε 6= ∅.

Then, since Ext(S0,R 〈ε〉)wε ∩Aε is bounded over R,

lim
ε

(Ext(S0,R 〈ε〉)wε ∩Aε)

is a non-empty subset of S0
w ∩A.

Now connect x to a point in x′ ∈ S0
w by a semi-algebraic path whose

image is contained in A ⊂ Bw ⊂ (B \ B) ∩ (S0 ∪ S1) such that x′ is a
minimizer of G on A. If G(x′) < b, take z = x′. Otherwise, replacing x by
x′ if necessary we can assume that x ∈ S0 as announced.

There are four cases – namely,
(1) x ∈M∪M0;
(2) x 6∈ M ∪M0 and Cc(x, S0

G=b)B;

(3) x 6∈ M ∪M0, Cc(x, S0
G=b) ⊂ B and b ∈ D0;

(4) x 6∈ M ∪M0, Cc(x, S0
G=b) ⊂ B and b 6∈ D0;

that we consider now.
(1) x ∈M∪M0:

Define w = π[1,`](x), and note that Sy ⊂ (S0 ∪ S1). Since x ∈ B,

and B is bounded, w ∈ π[1,`](B) = π[1,`](B). Now let ε > 0 be an
infinitesimal. By applying the curve selection lemma to the set B and
x ∈ B, we obtain that there exists xε ∈ Ext (B,R〈ε〉) with limε xε = x,
G(xε) < G(x) and x ∈ limε Ext(S,R〈ε〉)wε , where wε = π[1,`] (xε). By
Definition 3.2, Part (2), and the Tarski-Seidenberg transfer principle,
we have that Ext(S0,R〈ε〉)wε is non-empty, and contains a minimizer
of G over Cc

(
xε,Ext (S,R〈ε〉)wε

)
. Let

x′ε ∈ Ext(S0,R〈ε〉)wε ∩ Cc(xε,Ext(B,R 〈ε〉)wε)

be such a minimizer and let x′ = limε x
′
ε. Notice that G (xε) <

G(x). Since limε xε = x and limε Cc(xε,Ext(B,R 〈ε〉)wε) is semi-
algebraically connected,

lim
ε

Cc(xε,Ext(B,R 〈ε〉)wε) ⊂ Cc(x,Bw).

Now choose a semi-algebraic path γ1 connecting x to x′ inside Cc(x,Bw)
(and hence inside S0 ∪ S1 since Cc(x,Bw) ⊂ Sw ⊂ S0 ∪ S1), and a
semi-algebraic path γ2(ε) joining x′ to x′ε inside Ext(S0,R〈ε〉). The
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concatenation of γ1, γ2(ε) gives a semi-algebraic path γ having the re-
quired property, after replacing ε in γ2(ε) by a small enough positive
element of t ∈ R. Now take z = γ2(t).

(2) x 6∈ M ∪M0 and Cc(x, S0
G=b)B:

There exists x′ ∈ Cc(x, S0
G=b), x

′ 6∈ B and a semi-algebraic path γ :

[0, 1]→ Cc(x, S0
G=b), with γ(0) = x, γ(1) = x′. Since x′ 6∈ B, it follows

from Lemma 2.8 (2) that for t1 = max{0 ≤ t < 1 | γ(t) ∈ B},
γ(t1) ∈ M. We can now connect x to a point in z ∈ B ∩ S0 by a
semi-algebraic path inside B ∩ (S0 ∪ S1) using what has been already
proved in Case (1) above.

(3) x 6∈ M ∪M0, Cc(x, S0
G=b) ⊂ B and b ∈ D0:

Since b ∈ D0, by Definition 3.2, Part (4b) there exists x′ ∈ Cc(x, S0
G=b)∩

M0. Thus, there exists a semi-algebraic path connecting x to x′ ∈M0

with image contained in B ∩ (S0 ∪ S1). We can now connect x′ to a
point in z ∈ B∩S0 by a semi-algebraic path inside B∩ (S0∪S1) using
what has been already proved in Case (1) above.

(4) x 6∈ M ∪M0, Cc(x, S0
G=b) ⊂ B and b 6∈ D0:

Since b 6∈ D0, for all a < b such that [a, b]∩D0 = ∅, Cc(x, S0
a≤G≤b)G=b =

Cc(x, S0
G=b) and Cc(x, S0

a≤G≤b)G=a 6= ∅ by Definition 3.2, Part (3).

Let x′ ∈ Cc(x, S0
a≤G≤b)G=a. We can choose a semi-algebraic path

γ : [0, 1]→ Cc(x, S0
a≤G≤b) with γ(0) = x, γ(1) = x′. Let t1 = max{0 ≤

t < 1 | γ(t) ∈ S0
G=b}. Then, either γ(t1) ∈ M and we can con-

nect γ(t1) to a point in B ∩ (S0 ∪ S1) by a semi-algebraic path inside
B ∩ (S0 ∪ S1) using Case (1); otherwise, by Lemma 2.8 (2b), for all
small enough r > 0, Bk(γ(t1), r) ∩ CG<b is non-empty and contained
in B. Then, there exists t2 ∈ (t1, 1] such that z = γ(t2) ∈ B ∩ S0, and
the semi-algebraic path γ|[0,t2] gives us the required path in this case.

Taking x and x′ in B ∩ (S0 ∪S1), they can be connected to points z and z′

in B ∩ S0 by semi-algebraic paths γ and γ′ inside B ∩ (S0 ∪ S1) such that,
without loss of generality, G(z) = G(z′) = a. Using GCP(a), we conclude
that GCP(b) holds.
Proof of (b) . We have to prove that C ∩ (S0 ∪ S1) is semi-algebraically
connected.

Let x and x′ be in C ∩ (S0 ∪S1). We prove that it is possible to connect
them by a semi-algebraic path inside C ∩ (S0 ∪ S1).

Since we suppose that dim(C) > 0, CG<b is non-empty by Lemma 2.8
(2c). Using Lemma 2.8 (2c), let Bi (resp. Bj) be a semi-algebraically

connected component of C<b such that x ∈ Bi (resp. x′ ∈ Bj).
If i = j, x and x′ both lie in Bi ∩ (S0 ∪ S1) which is semi-algebraically

connected by (a). Hence, they can be connected by a semi-algebraically
connected path in Bi ∩ (S0 ∪ S1) ⊂ C ∩ (S0 ∪ S1).

So let us suppose that i 6= j. Note that:
– by Lemma 2.8 (2a), Bi ∩M and Bj ∩M are not empty,

– by (a) Bi∩(S0∪S1) and Bj∩(S0∪S1) are semi-algebraically connected,
– by definition of S0 ∪ S1, M⊂ S0 ∪ S1.
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Then, one can connect x (resp. x′) to a point in Bi ∩M (resp. Bj ∩M),

so that one can suppose without loss of generality that x ∈ Bi ∩M and
x′ ∈ Bj ∩M.

Let γ : [0, 1] → C be a semi-algebraic path that connects x to x′, and
let I = γ−1(C ∩M) and H = [0, 1] \ I.

Since M is finite, we can assume without loss of generality that I is a
finite set of points, and H is a union of a finite number of open intervals.

Since γ(I) ⊂ M ⊂ S0 ∪ S1, it suffices to prove that if t and t′ are
the end points of an interval in H, then γ(t) and γ(t′) are connected by a
semi-algebraic path inside C ∩ (S0 ∪ S1).

Notice that γ((t, t′))∩M = ∅, so that γ(t) and γ(t′) belong to the same
B` by Lemma 2.8 (2b) . Hence, γ(t), γ(t′) both belong to B` ∩ (S0 ∪ S1),
and we know that B` ∩ (S0 ∪ S1) is semi-algebraically connected by (a) .
Consequently, γ(t) and γ(t′) can be connected by a semi-algebraic path in
B` ∩ (S0 ∪ S1) ⊂ C ∩ (S0 ∪ S1).

�

4. Good rank property

In this section, we introduce matrices having the “good rank property” and
derive two geometric consequences of this property which will be important for us
later.

Notation 4.1. Let m ≥ 0, B = (bi,j)0≤i≤m,1≤j≤k ∈ R(m+1)×k, such that every
j × j sub-matrix of B with 1 ≤ j ≤ m+ 1, has rank j. We say that the matrix B
has good rank property .

4.1. A deformation of several equations to general position. Our first ap-
plication of matrices having good rank property is to use such a matrix to define
a deformation of a finite set of polynomials with the property of being in general
position which is what we describe now (see Proposition 4.4 below). We discuss
first how to deform a given system of equation, following an idea introduced in
[15], so that the number of critical points of a certain well chosen polynomial G is
guaranteed to be finite.

Notation 4.2. Let Q ∈ R[X1, . . . , Xk], b = (b0, b1, . . . , bk) ∈ Rk+1, and d ≥ 0. Let
ζ be a new variable. We denote

Def(Q, ζ, b, d) = (1− ζ)Q2 − ζ(b0 + b1X
d
1 + · · ·+ bkX

d
k ).(2)

In the special case when b = (1, . . . , 1), and d = 2 deg(Q)+2, we denote

Def(Q, ζ) = Def(Q, ζ, b, d).(3)

Notation 4.3. Let m ≥ 0, B = (bi,j)0≤i≤m,0≤j≤k ∈ R(m+1)×(k+1), a matrix having
good rank property and b0 = (1, 2, . . . , k). For i = 0, . . . ,m, let bi = (bi,0, . . . , bi,k)
denote the i-th row of B.

Let P = {P1, . . . , Pm} ⊂ R[X1, . . . , Xk], and ζ̄ = (ζ1, . . . , ζm) new variables.
For any d ≥ 0, we denote by Def(P, ζ̄, B, d) the polynomials

(4) Def(P1, ζ1, b1, d), . . . ,Def(Pm, ζm, bm, d),
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and denote

Gd = b0,0 +

k∑
j=1

b0,jX
d
j .(5)

The following proposition and its proof are similar to results in [15]. We include
it here for the sake of completeness.

Proposition 4.4. Suppose that B = (bi,j)0≤i≤m,0≤j≤k ∈ R(m+1)×k has good rank

property. Let 0 ≤ ` ≤ k, and d > 2 max1≤i≤m deg(Pi). Then, for each w ∈ R`,
and ζ̄ = (ζ1, . . . , ζm) ∈ (R \ {0})m, Def(P, ζ̄, B, d)(w, ·) is in general position with
respect to Gd(w, ·).

Proof. Fix w ∈ R`, and ζ̄ ∈ (R \ {0})m. We prove that Crit
(
Def(P, ζ̄, B, d)(w, ·), G

)
is finite (possibly empty).

Consider the following system of bi-homogeneous equations defining a sub-variety
W ⊂ Pk−`C × PmC:

(Def(Pi, ζi, bi, d)(w, ·))h = 0, i = 1, . . . ,m,
m∑
i=1

λi
∂ (Def(Pi, ζi, bi, d)(w, ·))h

∂Xj
= λ0

∂Gd(w, ·)h

∂Xj
, j = `+ 1, · · · , k.(6)

Let π : Pk−`C × PmC −→ PmC be the projection map to the second factor.

It follows from the definition of Crit
(
Def(P, ζ̄, B, d)(w, ·), Gd

)
that this set is

contained in the real affine part of π(W ), and thus in order to prove that

Crit
(
Def(P, ζ̄, B, d)(y, ·), Gd

)
is finite (possibly empty), it suffices to show that the complex projective variety
π(W ) is a finite number of points (possibly empty). So, we prove that the projective
variety π(W ) ⊂ PmC has an empty intersection with the hyperplane at infinity

defined by X0 = 0.
Substituting, X0 = 0 in the system (6), we get,

ζi(bi,`+1X
d
`+1 + · · ·+ bi,kX

d
k ) = 0, i = 1, . . . ,m,(7)

d

(
m∑
i=1

ζiλibi,j − λ0b0,j

)
Xd−1
j = 0, j = `+ 1, · · · , k.(8)

There are two cases to consider.

Case 1: m ≥ k − `: In this case, since the matrix of coefficients in the first
set of equations  b1,`+1 · · b1,k

· · · ·
bm,`+1 · · bm,k


has rank k − ` which follows from the given property of the matrix B, we
get that X`+1 = · · · = Xk = 0, which is impossible.

Case 2: m < k − `: Consider the second set of equations involving the La-
grangian variables λ0, . . . , λm. Since, the matrix B has the property that
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every (m + 1) × (m + 1) sub-matrix has rank (m + 1), we have for every
choice J ⊂ [`+ 1, k], card(J) = m+ 1, the system of equations

p∑
i=1

ζiλibi,j − λ0b0,j = 0, j ∈ J

has an empty solution in PmC, and hence at least k − m − ` amongst the

variables X`+1, . . . , Xk must be equal to 0. Suppose that Xm+`+1 = · · · =
Xk = 0. Now, from the property that the all m×m sub-matrices of B have
full rank we obtain that the only solution to system (7) with Xm+`+1 =
· · · = Xk = 0, is the one with X`+1 = · · · = Xk = 0, which is impossible.

This proves that in both cases the projective variety π(W ) ⊂ PmC has an empty

intersection with the hyperplane at infinity defined by X0 = 0, and hence π(W ) is
a finite number of points which finishes the proof. �

4.2. (B,G)-pseudo-critical values. We now describe a second application of ma-
trices with the good rank property. Given a finite family of polynomials P =

{P1, . . . , Ps} ⊂ R[X1, . . . , Xk], a matrix B = (bi,j)1≤i≤s,0≤j≤k ∈ Rs×(k+1) having
good rank property (see Notation 4.3), and a polynomial G ∈ R[X1, . . . , Xk], we
define a finite set D(P, B,G) ⊂ R which we call the (B,G)-pseudo-critical values
of the family P.

These (B,G)-pseudo-critical values are used to ensure good connectivity prop-
erties in the case of basic closed semi-algebraic sets.

Definition 4.5. Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], B = (bi,j)1≤i≤s,0≤j≤k ∈
Rs×(k+1) a matrix having good rank property (see Notation 4.3), and let G ∈
R[X1, . . . , Xk]. We denote for 1 ≤ i ≤ s,

Hi = bi,0 +

k∑
j=1

bi,jX
d
j ,

where d is the least even number greater than maxP∈P deg(P ). For I ⊂ [1, s], and
σ ∈ {−1, 1}I , we denote

P̃I,σ,B = {Pi + γσ(i)Hi | i ∈ I}.
We say that c ∈ R, is a (B,G)-pseudo-critical value of P, if there exists I ⊂ [1, s]
with card(I) ≤ k, σ ∈ {−1, 1}I , (x, λ) ∈ R〈γ〉k × R〈γ〉(card(I)+1) bounded over R,
such that

c = lim
γ
G(x),

and (x, λ) ∈ Zer
(

CritEq(P̃I,σ,B , G),R〈γ〉k+card(I)+1
)

(see Definition 2.1, (1)). We

denote set of all (B,G)-pseudo-critical values of P by D(P, B,G).

The property of (B,G)-pseudo-critical values used in the paper is the following
result. Its proof is postponed to the Annex (Section 8).

Proposition 4.6. Let P,Q ⊂ R[X1, . . . , Xk], B = (bi,j)1≤i≤card(P)+card(Q),0≤j≤k ∈
R(card(P)+card(Q))×(k+1), a matrix having good rank property, and G ∈ R[X1, . . . , Xk],
where d is the least even number greater than maxP∈P deg(P ). Suppose that S =
Bas(P,Q) is bounded. Then,

(1) the set D = D(P ∪Q, B,G) is finite;
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(2) for any interval [a, b] ⊂ R and c ∈ [a, b], with {c} ⊃ D ∩ [a, b], if D is a
semi-algebraically connected component of Sa≤G≤b, then DG=c is a semi-
algebraically connected component of SG=c.

5. Deformation to the special case

Our aim in this section is to associate to a basic semi-algebraic set S = Bas(P,Q)

a deformation S̃ of S, and a special tuple (S̃,M̃, `, S̃0,D0,M0) (cf. Definition 3.2).

Notation 5.1. We fix for the remainder of this section:

(1) p ∈ N, 1 ≤ p ≤ k;
(2) two finite sets of polynomials P ⊂ R[X1, . . . , Xk], Q = {Q1, . . . , Qq} ⊂

R[X1, . . . , Xk];
(3) d = maxP∈P∪Q deg(P );

(4) G = G2d+2=1 +
∑k
i=1 iX

2d+2
i .

5.1. Deformation of Bas(P,Q) to Bas(P̃, Q̃).

Notation 5.2. Let HN,k = (hij)0≤i≤N,0≤j≤k, be an (N + 1)× (k+ 1) matrix with
integer entries defined by hi,j = ji+1 and for each i, 0 ≤ i ≤ N, 0 ≤ j ≤ k.

Notice that the matrix HN,k has good rank property (see Notation 4.1), since
every submatrix of HN,k is a generalized Vandermonde matrix (see for example
[18], page 43).

Notation 5.3. Given a finite list of variables ζ = (ζ1, . . . , ζt), we denote by R〈ζ〉 =
R〈ζ1, . . . , ζt〉 the field R〈ζ1〉 · · · 〈ζt〉 and for any ξ ∈ R〈ζ1, . . . , ζt〉 bounded over
R〈ζ1, . . . , ζi〉, i < t, we denote by limζi+1(ξ) the element (limζi+1 ◦ · · · ◦ limζt)(ξ)
of R〈ζ1, . . . , ζi〉. For an element f =

∑
α cαζ

α ∈ D[ζ1, . . . , ζt], we will denote by
oζ(f) = α0 ∈ Nt, such that ζα0 is the largest element of supp(f) = {ζα | cα 6= 0} in
the unique ordering of the real closed field R〈ζ〉. For α, β ∈ Nt, we denote α ≥ β,
if ζα ≥ ζβ .

We now define families P̃ and Q̃ such that Bas(P̃, Q̃) is a deformation of Bas(P,Q).

Notation 5.4. Let

Hi = hi,0 +
k∑
j=1

hijX
2d+2
j ,

where d = maxP∈P∪Q deg(P ), and the hij ’s are the entries in the matrix Hk−p+q,k,
and let

P ?1 = (1− ζ)
∑
P∈P

P 2 + ζ(X2d+2
p+1 + . . .+X2d+2

k +X2
p+1 + . . .+X2

k),

Pi =
∂P1

∂Xp+i
, 2 ≤ i ≤ k − p,

P? = {P ?1 , . . . , P ?k−p}.
For 1 ≤ i ≤ k − p, let

P̃i = (1− ε)P ?i − εHi,

and for 1 ≤ j ≤ q, let
Q̃j = (1− δ)Qj + δHk−p+j .

Finally, define
P̃ = {P̃1, . . . , P̃k−p},
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Q̃ = {Q̃1, . . . , Q̃q}.

Proposition 5.5. Suppose that Bas(P,Q) is bounded, and that for each y ∈
Rp, Zer(P,Rk)y is a finite number of points (possibly empty). Let Bas(P̃, Q̃) ⊂
R〈ζ, ε, δ〉k. Then,

Bas(P,Q) = lim
ζ

(Bas(P̃, Q̃)).

Proof. It is clear that limζ(Bas(P̃, Q̃)) ⊂ Bas(P,Q). We now prove that Bas(P,Q) ⊂
limζ(Bas(P̃, Q̃)). Let x = (y, z) ∈ Bas(P,Q), where y ∈ Rp and z ∈ Rk−p. For

each (of the finitely many) z ∈ Rk−p such that x = (y, z) ∈ Bas(P,Q), there
exists a bounded semi-algebraically connected component Cz of the non-singular
hypersurface Zer(P ?1 (y, ·),R〈ζ〉k−p) such that limζ(Cz) = z.

Now, the system P?(y, ·) has only simple zeros in R〈ζ〉k−p (see [2], Proposition
12.44) and contains the non-empty set of Xp+1-extremal points of Cz. Let z′ ∈
R〈ζ〉k−p be an Xp+1-extremal point of Cz. Then, since z′ is a simple zero of the

system P?(y, ·), there must exist z′′ ∈ Zer(P̃,R〈ζ, ε, δ〉k−p) such that limε(z
′′) = z′.

Moreover, it is clear that x′′ = (y, z′′) ∈ Bas(P̃, Q̃), and that limζ(x
′′) = x, which

finishes the proof. �

5.2. General position and definition of M̃. Suppose now that Zer(P,Rk) is

strongly of dimension ≤ p, and let S = Bas(P,Q) ⊂ Rk. Let

S̃ = Bas(P̃, Q̃) ⊂ R〈ζ, ε, δ〉k

following Notation 5.4.

Proposition 5.6. For every ` ≤ p and for every w ∈ R〈ζ, ε, δ〉`, P̃(w,−), Q̃(w,−)
is in general position with respect to G(w,−).

Proof. Follows from Definition 2.4 and Proposition 4.4 noting that ε, δ 6= 0 in
R〈ζ, ε, δ〉. �

Corollary 5.7. The set M̃ = Cr(P̃, Q̃, G) is finite.

Corollary 5.8. Zer(P,Rk), and Bas(P̃, Q̃) are strongly of dimension ≤ p.

Proof. Applying Proposition 5.6 with ` = p, and noting that card(P) = k − p, we

get that for every w ∈ R〈ζ, ε, δ〉p, Zer(P̃,R〈ζ, ε, δ〉k)w is finite (possibly empty)

by Remark 2.5. It then follows from Definition 1.3 that, Zer(P̃,R〈ζ, ε, δ〉k) is

strongly of dimension ≤ p. The same then holds for Bas(P̃, Q̃), since Bas(P̃, Q̃) ⊂
Zer(P̃,R〈ζ, ε, δ〉k). �

5.3. Definition of Ã. Since we have replaced Bas(P,Q) by Bas(P̃, Q̃), we need
to associate to any given finite set of points A ⊂ Bas(P,Q), a corresponding finite

set of points Ã ⊂ Bas(P̃, Q̃) whose limits contain A, and which moreover ensures
certain connectivity properties (see Proposition 5.13).

In our constructions we will often require to choose a finite subset of a given
semi-algebraic set S which meets every semi-algebraically connected component of
S. Since the relevant connectivity properties of the constructions will not depend
on how these points are chosen it is convenient to have the following notation. Later
in the descriptions of our algorithms we will specify precisely how these points are
chosen.
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Notation 5.9. For any closed and bounded semi-algebraic subset S ⊂ Rk, we
denote by Samp(S) some finite subset of S which meets every semi-algebraically
connected component of S.

Notation 5.10. We associate to two closed and bounded semi-algebraic sets S1, S2 ⊂
Rk a finite set of points MinDist(S1, S2) ⊂ S1 defined as follows. Let M be the

set of local minimizers of the polynomial function F (X,Y ) =
∑k
i=1(Xi − Yi)2 on

the set S1 × S2 and let π1, π2 : Rk ×Rk −→ Rk be the projections on the first and
second components respectively. Let

MinDi(S1, S2) = π1(Samp(M)) ∪ π2(Samp(M))

using Notation 5.9.

Proposition 5.11. Let T ⊂ R〈ζ〉k be a closed semi-algebraic set bounded over R,
and x ∈ limζ(T ). Then, MinDi(T, {x}) 6= ∅, and x ∈ limζ(MinDi(T, {x})).

Proof. Let C be the semi-algebraically connected component of limζ(T ) containing
x. Then, there exists semi-algebraically connected components C1, . . . , Cm of T ,
such that C =

⋃m
i=1 limζ(Ci). Hence, there exists i, 1 ≤ i ≤ m, such that x ∈

limζ(Ci). Since, Ci is bounded over R, the subset Mi,x ⊂ Ci of points which
achieve the minimum distance from x to Ci is non-empty. Every semi-algebraically
connected component of Mi,x is a semi-algebraically connected component of the
set Mx ⊂ T of points which achieve the minimum distance from x to T . Hence,
Mi,x contains one point, x̃, which is included in MinDi(T, {x}). It is now clear that
MinDi(T, {x}) 6= ∅, and that x = limζ(x̃) ∈ limζ(MinDi(T, {x}) 6= ∅). �

Proposition 5.12. Let T1, T2 ⊂ R〈ζ〉k be closed semi-algebraic sets bounded over

R. Then, for every C̃, D̃ semi-algebraically connected components of T1 and T2

respectively, such that limζ(C̃) ∩ limζ(D̃) is non-empty, limζ(C̃ ∩MinDi(T1, T2)) ∩
limζ(D̃∩MinDi(T1, T2)) is non-empty, and meets every semi-algebraically connected

component of limζ(C̃) ∩ limζ(D̃).

Proof. Let M denote the semi-algebraic subset of R〈ζ〉k × R〈ζ〉k consisting of the

local minimizers of the polynomial function F (X,Y ) =
∑k
i=1(Xi−Yi)2 on T1×T2.

Also, note that the function F is proportional to the square of the distance to the
diagonal ∆ ⊂ R〈ζ〉k × R〈ζ〉k.

Let B be a semi-algebraically connected component of limζ(C̃) ∩ limζ(D̃). No-

tice that (B × B) ∩∆ is a semi-algebraically connected component of (limζ(C̃) ×
limζ(D̃))∩∆. Let (ũ0, ṽ0) ∈ C̃× D̃ such that limζ(ũ0) = limζ(ṽ0) ∈ B. Notice that
limζ(F (ũ0, ṽ0)) = F (limζ(ũ0), limζ(ṽ0)) = 0, and hence F (ũ0, ṽ0) is infinitesimally
small. Let

U = {(ũ, ṽ) ∈ C̃ × D̃ | F (ũ, ṽ) < F (ũ0, ṽ0)}.

Since the image under limζ of a bounded, semi-algebraically connected set is semi-
algebraically connected (see Proposition 12.43 in [2]), for any semi-algebraically
connected component V of U , limζ(V ) is either contained in (B × B) ∩∆ or dis-
joint from (B × B) ∩ ∆. Denote by U ′ the union of semi-algebraically connected

components V of U such that limζ(V ) ⊂ (B ×B) ∩∆, and denote by U ′ ⊂ C̃ × D̃
the closure of U ′. If U ′ is empty then (ũ0, ṽ0) is a local minimizer of F on C̃ × D̃
and we are done. Otherwise, the minimum of F on U ′ is strictly smaller than
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F (ũ0, ṽ0), and it must be realized at a point of U ′, since F (ũ, ṽ) = F (ũ0, ṽ0) for all
(ũ, ṽ) ∈ U ′ \ U ′, and we are done. �

We now let A ⊂ S be a fixed finite set of points contained in S.
Let (using Notation 5.10)

Ã = MinDi(S̃,A) ∪MinDi(S̃, S̃).

Proposition 5.13. The finite set Ã ⊂ S̃ has the following properties.

(1) limζ(Ã) ⊃ A;

(2) for every pair of semi-algebraically connected components C̃, D̃ of S̃ such

that limζ(C̃) ∩ limζ(D̃) is non-empty, limζ(C̃ ∩ Ã) ∩ limζ(D̃ ∩ Ã) is non-

empty, and meets every semi-algebraically connected component of limζ(C̃)∩
limζ(D̃);

(3) Ã meets every semi-algebraically connected component of S̃.

Proof. Part (1) follows from Proposition 5.11 after observing that MinDist(S̃, Ã) =⋃
x∈AMinDi(S̃, {x}) (see Notation 5.10), and the fact that Ã contains MinDist(S̃,A).

Part (2) follows directly from Proposition 5.12 with T1 = T2 = S̃ and the fact

that Ã contains MinDi(S̃, S̃).

Part (3) is a special case of Part (2), with T1 = T2 = S̃, and C̃ = D̃. �

Corollary 5.14. Let x, x′ ∈ S̃ such that limζ(x
′) ∈ Cc(limζ(x), S). Then, there

exist elements x̃0 = x, . . . , x̃2n+1 = x′ of S̃ such that

(1) for all i = 1, . . . , n, limζt(x̃2i−1) = limζ(x̃2i),

(2) for all i = 0, . . . , n, x̃2i+1 ∈ Cc(x̃2i, S̃),

(3) for all i = 1, . . . , 2n, x̃i ∈ Ã.

Proof. Follows clearly from Part (2) of Proposition 5.13. �

5.4. Definition of S̃0. We want to consider G-critical points parametrized by R`.

Notation 5.15. Let G ∈ R[X1, . . . , Xk] and P = {P1, . . . , Pm} ⊂ R[X1, . . . , Xk]
be a finite family of polynomials.

Let 0 ≤ ` ≤ k and consider the system of equations CritEq`(P, G)

Pj = 0, j = 1, . . . ,m,
m∑
j=1

λj
∂Pj
∂Xi

− λ0
∂G

∂Xi
= 0, i = `+ 1, . . . , k,

m∑
j=0

λ2
j − 1 = 0.

The set Crit`(P, G) ⊂ Rk is the projection to Rk of

Zer
(

CritEq`(P, G),Rk × Rmax(m,k)+1
)
.

Note that for every w ∈ R`,

Crit`(P, G)w = Crit(P(w, ·), G(w, ·)).

We now fix `, 1 ≤ ` < p.
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Notation 5.16. Let Q̃′ ⊂ Q̃. Define

S̃0(Q̃′) = Cr`(P̃ ∪ Q̃′, G) ∩ S̃,

S̃0 =
⋃
Q̃′⊂Q̃

S̃0(Q̃′).

Proposition 5.17. For each w ∈ R〈ζ, ε, δ〉`:
(1) S̃0

w is a finite set;

(2) S̃0
w meets every semi-algebraically connected component of S̃w, and contains

for every semi-algebraically connected component C of S̃w a minimizer of
G over C.

Proof. Part (1) is immediate from Proposition 5.6.
Part (2) follows from the fact that for each semi-algebraically connected compo-

nent C of S̃w, there exists some Q̃′ such that the minimizer of G over C is a local

minimizer x ∈
(

Zer(P̃ ∪ Q̃′,R〈ζ, ε, δ〉)
)
w

of G over
(

Zer(P̃ ∪ Q̃′,R〈ζ, ε, δ〉)
)
w

, and

then x clearly belongs to Cr`(P̃ ∪ Q̃′, G) ∩ S̃. Since, S̃w is closed and bounded,

every semi-algebraically connected component C of S̃w must contain a minimizer
of G over C, and hence S̃0

w meets every semi-algebraically connected component of

S̃w. �

5.5. Definition of D0, M0.

Notation 5.18. Let

S̃ = Bas(P̃, Q̃),

F =
∏
Q̃′⊂Q̃

F (Q̃′),

where

F (Q̃′) =
∑

P∈CrEq`(P̃∪Q̃′,G)

P 2.

We denote (see Definition 4.5)

D0 = D({F} ∪ Q̃,Hcard(Q)+1,2k−p+card(Q)+1, G)(9)

considering the polynomials in {F} ∪ Q̃ as elements of

R [ζ, ε, δ] [X1, . . . , Xk, λ0, . . . , λk−p+card(Q)].

Let M0 = Samp
(⋃

c∈D0 S̃G=c

)
be a finite set of points meeting every semi-

algebraically connected component of
⋃
c∈D0 S̃G=c.

Lemma 5.19. The sets D0 and M0 have the following properties:

(1) for every interval [a, b] ⊂ R〈ζ, ε, δ〉 and c ∈ [a, b], with {c} ⊃ D0 ∩ [a, b], if

D is a semi-algebraically connected component of (S̃0)a≤G≤b, then DG=c is

a semi-algebraically connected component of (S̃0)G=c;

(2) M0 meets every semi-algebraically connected component of (S̃0)G=a for all
a ∈ D0.
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Proof. Part (1): notice that D0 is the finite set of (B,G)-pseudo-critical values

of the family {F} ∪ Q̃, for the matrix B = Hcard(Q)+1,2k−p+card(Q)+1 which has
the good rank property. Hence, using Part (2) of Proposition 4.6 we have that
for every interval [a, b] ⊂ R〈ζ, ε, δ〉 and c ∈ [a, b], with {c} ⊃ D0 ∩ [a, b], if D is

a semi-algebraically connected component of (Bas({F}, Q̃))a≤G≤b, then DG=c is a

semi-algebraically connected component of (Bas({F}, Q̃))G=c.

To finish the proof of Part (1) observe that S̃0 is the image of Bas({F}, Q̃) ⊂
R〈ζ, ε, δ〉k × R〈ζ, ε, δ〉k−p+card(Q)+1 under projection to R〈ζ, ε, δ〉k, and the fibers
of this projection are intersections of linear subspaces with the unit sphere in
R〈ζ, ε, δ〉k−p+card(Q)+1, and the polynomial G is independent of the λ’s. Hence,

the semi-algebraically connected components of (S̃0)a≤G≤b and (S̃0)G=c, are in

correspondence with those of (Bas({F}, Q̃))a≤G≤b and (Bas({F}, Q̃))G=c respec-
tively.

Part (2) is clear from the definition of M0. �

Remark 5.20. Note that the elements of D0 are the (B,G)-pseudo-critical values of

the family {F}∪Q̃, for the matrix B = Hcard(Q)+1,2k−p+card(Q)+1, and thus satisfy
the properties of Proposition 4.6 with respect to the level sets of the polynomial G
restricted to Bas({F}, Q̃) ⊂ R〈ζ, ε, δ〉k×R〈ζ, ε, δ〉k−p+card(Q)+1. Part (1) of Lemma

5.19 implies that the same properties also hold for S̃0 with respect to the values
D0 (recall that S̃0 is defined in Notation 5.16 as the projection of Bas({F}, Q̃) to
R〈ζ, ε, δ〉k).

5.6. Definition of N , S̃1, and B. We will use the two following propositions which
use the definitions given above.

Proposition 5.21. The tuple (S̃,M̃, `, S̃0,D0,M0) is special (cf. Definition 3.2).

Proof. Follows from Lemma 5.19 and Definition 3.2. �

We denote N = π[1,`](M̃ ∪ M0 ∪ Ã), S̃1 = S̃N and B = (S̃0)N . Note that

S̃0 ∩ S̃1 = B.

Proposition 5.22. The semi-algebraic set S̃0 ∪ S̃1 has good connectivity property

with respect to S̃.

Proof. Follows from Proposition 5.21 and Proposition 3.4. �

6. Critical points and minors

In the previous section, S̃0 is described as the image of a projection applied
to the basic semi-algebraic set Bas({F}, Q̃) (see Remark 5.20). This means that

we cannot hope to compute a roadmap of S̃0 by a divide-and-conquer algorithm
directly since the input to such an algorithm should be a basic semi-algebraic set.
In this section, we give an alternative description of S̃0 (see Proposition 6.4 below)
as a (limit of) union of basic semi-algebraic sets which allows us to get past this
problem.

6.1. Description of critical points. In the case when P = {P1, . . . , Pm}, m <
k, is in general position with respect to G ∈ R[X1, . . . , Xk], we can describe

Crit(P, G) ⊂ Rk as follows.
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Define the Jacobian matrix

Jac =


∂G
∂X1

∂P1

∂X1
· · · ∂Pm

∂X1

...
...

...
∂G
∂Xk

∂P1

∂Xk
· · · ∂Pm

∂Xk


whose rows are indexed by [1, k] and columns by [0,m].

For J ⊂ [1, k] and J ′ ⊂ [0,m], let Jac(J, J ′) the matrix obtained from Jac by
extracting the rows numbered by elements of J , and the columns numbered by
elements of J ′.

We use the following convenient notation in what follows. For any finite set
X, and any integer r ≥ 0, we will denote by

(
X
r

)
the set of all subsets of X of

cardinality r.

For each 0 ≤ r ≤ m, and each J ∈
(

[1,k]
r

)
, J ′ ∈

(
[0,m]
r

)
, let

jac(J, J ′) = det(Jac(J, J ′)).

For every i ∈ [1, k] \ J , and i′ ∈ [0,m] \ J ′, let

Eq(J, J ′) = P ∪
⋃

i∈[1,k]\J,i′∈[0,m]\J′
jac(J ∪ {i}, J ′ ∪ {i′}),

and

Cons(J, J ′) =
{
x ∈ Zer

(
Eq(J, J ′),R〈ζ, ε, δ〉k

)
| jac(J, J ′)(x) 6= 0

}
.

Proposition 6.1. If P = {P1, . . . , Pm} is in general position with respect to G ∈
R[X1, . . . , Xk], the finite variety Crit(P, G) is the union of the various

Cons(J, J ′), 0 ≤ r ≤ m,J ∈
(

[1, k]

r

)
, J ′ ∈

(
[0,m]

r

)
.

Proof. We first prove that Crit(P, G) is contained in the union of the various

Cons(J, J ′), 0 ≤ r ≤ m,J ∈
(

[1,k]
r

)
, J ′ ∈

(
[0,m]
r

)
. It follows from Definition 2.1

that each x ∈ Crit(P, G) is contained in the projection to Rk of the set of solutions
to the system of equations, CritEq(P, G) (cf. (1)).

Substituting, X = x in the above system, we obtain the following system of
homogeneous linear equations in λ = (λ0, . . . , λm).

λ0
∂G

∂Xi
(x) +

m∑
j=1

λj
∂Pj
∂Xi

(x) = 0, i = 1, . . . , k.(10)

Let the rank of the matrix of coefficients of the above system be rx. Then, rx ≤ m,
since there must exist a λ = (λ0, . . . , λm) satisfying (10) and λ 6= (0, . . . , 0) since it
has to satisfy also the equation

m∑
j=0

λ2
j − 1 = 0.

Then there exists J ⊂
(

[1,k]
rx

)
, J ′ ⊂

(
[0,m]
rx

)
such that the rx × rx sub-matrix of

the matrix of coefficients with rows indexed by J and columns indexed by J ′ has
full rank and hence jac(J, J ′)(x) 6= 0. Then, clearly for every i ∈ [1, k] \ J , and
i′ ∈ [0,m] \ J ′,

jac(J ∪ {i}, J ′ ∪ {i′})(x) = 0.



DIVIDE AND CONQUER ROADMAP FOR ALGEBRAIC SETS 25

Hence, x ∈ Cons(J, J ′) using the definition of the set Cons(J, J ′). This completes
the proof that Crit(P, G) is contained in union of the various Cons(J, J ′), 0 ≤ r ≤
m,J ∈

(
[1,k]
r

)
, J ′ ∈

(
[0,m]
r

)
.

To prove the reverse inclusion fix, r, 0 ≤ r ≤ m, J ∈
(

[1,k]
r

)
, J ′ ∈

(
[0,m]
r

)
, and

let x ∈ Cons(J, J ′). Then, jac(J, J ′)(x) 6= 0, and for each i ∈ [1, k] \ J , and
i′ ∈ [0,m] \ J ′, jac(J ∪ {j}, J ′ ∪ {i′})(x) = 0. We now show that there exists
λ = (λ0, . . . , λm) such that (x, λ) satisfy the system of equations (1). It follows
from Cramer’s rule that for each i ∈ J , the equation

λ0
∂G

∂Xi
(x) +

m∑
j=1

λj
∂Pj
∂Xi

(x) = 0,

is satisfied after making the substitution

λj = −
∑

j′∈J′\{j}

jac(J, J ′ \ {j} ∪ {j′})(x)

jac(J, J ′)(x)
λj′ ,(11)

for each j ∈ J ′.
Moreover, substituting the expressions in (11) in the equations indexed by i ∈

[1, k] \ J in (1), clearing the denominator jac(J, J ′)(x), we have that the coefficient
of λi′ for i′ ∈ [0,m]\J ′ equals jac(J ∪{i}, J ′∪{i′})(x), and hence equal to 0. Thus,
the equations indexed by i ∈ [1, k] \ J in (1) are satisfied as well. Finally since,
r ≤ m < m+ 1, we can assume, that there exists λ = (λ0, . . . , λm) ∈ R〈ζ, ε, δ〉m+1

with not all coordinates equal to 0, such that (x, λ) satisfy all but the last equation
in (1), and it follows that there exists λ such that (x, λ) satisfy (1), and hence
x ∈ Crit(P, G). This proves the reverse inclusion. �

6.2. Description of S̃0 using minors.

Notation 6.2. Following Notation 5.1 and Notation 5.4:

(1) Let ` < p ≤ k, Q̃′ ⊂ Q̃ and P̃ ∪ Q̃′ = {F1, . . . , Fm}.
(2) Define the matrix

Jac(`, Q̃′) =


∂G

∂X`+1

∂F1

∂X`+1
· · · ∂Fm

∂X`+1

...
...

...
∂G
∂Xk

∂F1

∂Xk
· · · ∂Fm

∂Xk


whose rows are indexed by [`+ 1, k] and columns by [0,m].

For each α = (Q̃′, r, J, J ′) with Q̃′ ⊂ Q̃, 0 ≤ r ≤ m, J ∈
(

[`+1,k]
r

)
, J ′ ∈(

[0,m]
r

)
denote by

jac(α) = det(Jac(`, Q̃′)(J, J ′)).
Moreover, for each i ∈ [`+ 1, k] \ J , i′ ∈ [0,m] \ J ′, let

jac(α, i, i′) = det(Jac(`, Q̃′)(J ∪ {i}, J ′ ∪ {i′})).
Let

P0(α) = P̃ ∪ Q̃′ ∪
⋃

i∈[`+1,k]\J,i′∈[0,m]\J′
{jac(α, i, i′)},(12)

Q0(α) = Q̃ ∪ {jac(α)2 − γ}(13)

where γ is a new variable.
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(3) Define

S0(α) = Bas(P0(α),Q0(α)) ⊂ R〈ζ, ε, δ, γ〉k.

Notation 6.3. Fixing P̃, Q̃, ` with 0 ≤ ` < p ≤ k, we denote by I(P̃, Q̃, `) the set

of quadruples α = (Q̃′, r, J, J ′) with Q̃′ ⊂ Q̃, 0 ≤ r ≤ m, J ∈
(

[`+1,k]
r

)
, J ′ ∈

(
[0,m]
r

)
.

Proposition 6.4.

S̃0 = limγ

(⋃
α∈I(P̃,Q̃,`) S

0(α)
)
.

Proof. We first prove that

S̃0 =
⋃

α∈I(P̃,Q̃,`)

{x ∈ Bas(P0(α), Q̃) | jac(α)(x) 6= 0}.(14)

Using Notation 5.16, notice that for each Q̃′ ⊂ Q̃, S̃0(Q̃′) is the set of G-critical

points of Zer(P̃ ∪ Q̃′(w, ·),R〈ζ, ε, δ〉k) contained in S̃, as w varies over R〈ζ, ε, δ〉`,
and S̃0 =

⋃
Q̃′⊂Q̃ S̃

0(Q̃′). It follows from Proposition 6.1 that for each Q̃′ ⊂ Q̃,

S̃0(Q̃′) = {x ∈ Bas(P0(α), Q̃) | jac(α)(x) 6= 0},(15)

and this proves (14).

Noticing that all the sets {x ∈ Bas(P0(α), Q̃) | jac(α)(x) 6= 0} ⊂ R〈ζ, ε, δ〉k are
bounded, it follows from the definition of S0(α) that

lim
γ
S0(α) = {x ∈ Bas(P0(α), Q̃) | jac(α)(x) 6= 0},(16)

using [2] Proposition 11.56.

Also, since S̃0 is closed it follows from (15) that

S̃0 =
⋃

α∈I(P̃,Q̃,`)

{x ∈ Bas(P0(α), Q̃) | jac(α)(x) 6= 0}.

The proposition now follows from (16). �

Remark 6.5. Note that if the description of S does not involve any inequality, this
is the first time that an inequality appears in the construction.

6.2.1. Definition of A(α). Since we have covered S̃0 by the (limit of the) union of
the S0(α), we need to choose a finite set of points ensuring connectivity properties.

Notation 6.6. For each α ∈ I(P̃, Q̃, `), we denote (using Notation 5.10)

A(α) = MinDi(S0(α),B) ∪

 ⋃
β∈I(P̃,Q̃,`)

MinDi(S0(α), S0(β))

 .

We have the following property of the finite sets A(α), α ∈ I(P̃, Q̃, `).

Proposition 6.7. For every α, β in I(P̃, Q̃, `) the following are true.

(1)
⋃
α∈I(P̃,Q̃,`) limγ(A(α)) ⊃ B.

(2) For C and D semi-algebraically connected components (not necessarily dis-
tinct) of S0(α) and S0(β) such that limγ(C)∩limγ(D) is non-empty, limγ(C∩
A(α)) ∩ limγ(D ∩ A(β)) is non-empty, and meets every semi-algebraically
connected component of limγ(C) ∩ limγ(D).
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(3) A(α) meets every semi-algebraically connected component of S0(α).

Proof. Part (1) follows from Proposition 5.11.
Part (2) follows from Proposition 5.12.
Part (3) is a special case of Part (2). �

7. Divide and conquer algorithm

7.1. Description of the tree Tree(V,A), and its associated roadmap. We
first describe the tree which is going to be constructed in the algorithm, using the
definitions in the two former sections. We then prove that the (limits of the) union
of the leaves of the tree give a roadmap.

Since new infinitesimals will be added at each level of the tree, we need the
following notation.

Notation 7.1. We consider an ordered domain D contained in a real closed field
R. We denote by Dt the polynomial ring D[η] and we denote by Rt the real closed
field R〈η〉 where η = (η1, . . . , ηt) and ηi = (ζi, εi, δi, γi). By convention R0 = R and
D0 = D.

7.1.1. Description of the tree Tree(V,A). We start with a bounded real algebraic

variety V = Zer(P,Rk), strongly of dimension ≤ k′ (assumed to be a power of
2 for simplicity), and suppose that A ⊂ V is a finite set of points meeting every
semi-algebraically connected component of V . The algorithm constructs a rooted
tree, which we denote by Tree(V,A).

More precisely, the root, r, of Tree(V,A) has level 0, contains the empty string
s(r), the real algebraic variety Bas(r) = V , and the finite set of points A(r) = A. A
node n of the tree Tree(V,A) at level t 6= 0 contains a string s(n) ∈ {0, 1}t, a basic

semi-algebraic set Bas(n) = {w(n)} × Bas(P(n),Q(n)) ⊂ Rk
t , such that Bas(n) is

strongly of dimension ≤ k′/2t, w(n) ∈ R
Fix(n)
t , defining

Fix(n) =

t∑
i=1

s(n)ik
′/2i,

and a finite number of points A(n) ⊂ Bas(n) meeting every semi-algebraically
connected components of Bas(n). A node n of the tree Tree(V,A) of level t 6= 0 is
either a left child, if the last bit of s(n) is 0, or a right child if the last bit of s(n)
is 1.

If the level of the node n is < log(k′), we construct the left children and right

children of n as follows. We replace Bas(n) by a semi-algebraic set B̃as(n) =

{w(n)} × Bas(P̃(n), Q̃(n)) ⊂ Rk
t (see Notation 5.4) such that

(1) limζt(B̃as(n)) = Bas(n) (using Proposition 5.5), and

(2) B̃as(n) is strongly of dimension ≤ k′/2t (using Corollary 5.8).

We define semi-algebraic subsets B̃as(n)0, B̃as(n)1 of B̃as(n), with B̃as(n)1 strongly
of dimension ≤ k′/2t+1, by the method described in Section 5, with p = k′/2t,
` = p/2 = k′/2t+1.
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We define N (n), Ã(n), and B(n) as in Section 5. For every w ∈ N (n) we have a
right child m of the node n, with

s(m) = s(n)1,

w(m) = (w(n), w),

Bas(m) = Ext
(

B̃as(n)w(m),Rt

)
,

A(m) = (Ã(n) ∪ B(n))w(m).(17)

Recall that B̃as(n)0 ⊂ Rt〈ζt+1, εt+1, δt+1〉k is defined as an image of a certain
semi-algebraic set under a projection along Lagrangian variables. We are able
to identify (by the method of Section 6.2, using Notation 6.3) a finite family

(Bas(n)0(α))α∈I(n) (with I(n) = I(P̃(n), Q̃(n), k′/2t+1) of basic semi-algebraic sub-

sets of Ext
(

B̃as(n)0,Rt+1

)
, with each

Bas(n)0(α) := {w(n)} × Bas(P0(α),Q0(α)) ⊂ Rk
t+1,

such that ⋃
α∈I(n)

lim
γt+1

(Bas(n)0(α)) = B̃as(n)0

using Proposition 6.4.
For each α ∈ I(n) we include a left child node n(α), with

s(n(α)) = s(n)0,

w(n(α)) = w(n),

Bas(n(α)) = Bas(n)0(α),

A(n(α)) = A(α) (using the definition in Section 6.2.1).

If the level of the node n is log(k′), then n is a leaf of Tree(V,A). Note that the
basic semi-algebraic set Bas(n) contained in a leaf n is strongly of dimension ≤ 1.

Definition 7.2. We denote by Leav(V,A) the set of leaf nodes of Tree(V,A). When
n is a node in Tree(V,A), we denote by

(1) Leav(n) the set of leaves of the subtree of Tree(V,A) rooted at n,
(2) Leav1(n) the set of leaves l of the subtree of Tree(V,A) rooted at n with

s(l) consisting of s(n) followed only by 1,
(3) Leav0(n) the set of leaves l of the subtree of Tree(V,A) rooted at n with

s(l) consisting of s(n) followed only by 0.

Note that for every node n of level t of Tree(V,A) we have

(18) A(n) ⊂
⋃

l∈Leav1(n)

lim
ζt+1

(A(l)),

(19) B(n) ⊂
⋃

l∈Leav1(n)

lim
γt+1

(A(l)).

A useful fact is the following.

Proposition 7.3. Suppose that A1,A2 are finite subsets of V , and A = A1 ∪ A2.
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Then, ⋃
l∈Leav(V,A1)∪Leav(V,A2)

Bas(l) =
⋃

l∈Leav(V,A)

Bas(l).

Proof. We prove by induction on the level t the two following statements.

(1) For each node m of Tree(V,A1) (respectively Tree(V,A∈)) with level(m) =
t, there exists a node m′ of Tree(V,A) with level t such that

(w(m′), s(m′), P̃(m′), Q̃(m′)) = (w(m), s(m), P̃(m), Q̃(m)),(20)

A(m′) ⊃ A(m).

(2) For each node m of Tree(V,A) with level(m) = t, either there exists a node
m1 of Tree(V,A1) with level t such that

(w(m1), s(m1), P̃(m1), Q̃(m1)) = (w(m), s(m), P̃(m), Q̃(m)),(21)

A(m1) = A(m),

or there exists a node m2 of Tree(V,A∈) with level t such that

(w(m2), s(m2), P̃(m2), Q̃(m2)) = (w(m), s(m), P̃(m), Q̃(m)),(22)

A(m2) = A(m),

or there exists a node m1 of Tree(V,A1) and a node m2 of Tree(V,A2), both
with level t such that

(w(m1), s(m1), P̃(m1), Q̃(m1)) = (w(m2), s(m2), P̃(m2), Q̃(m2))(23)

= (w(m), s(m), P̃(m), Q̃(m)),

A(m1) ∪ A(m2) = A(m).

The base case is when t = 0, and in this case the claim is obviously true. We now
prove the inductive step from t− 1 to t.

(1) Suppose that the node m is a child of n. Since, level(n) = t−1, by induction
hypothesis there exists a node n′ in Tree(V,A) with level t− 1 such that

(w(n′), s(n′), P̃(n′), Q̃(n′)) = (w(n), s(n), P̃(n), Q̃(n)),

A(n′) ⊃ A(n).

The existence of a child m′ of the node n′ satisfying (20) is now clear
from the definition of Tree(V,A) (following the description given in Section
7.1.1). This completes the induction in this case.

(2) Suppose again that the node m is a child of n. Since, level(n) = t − 1, by
induction hypothesis there exists either a node n1 of Tree(V,A1) with level
t− 1 such that

(w(n1), s(n1), P̃(n1), Q̃(n1)) = (w(n), s(n), P̃(n), Q̃(n)),(24)

A(n1) = A(n),

or there exists a node n2 of Tree(V,A2) with level t− 1 such that

(w(n2), s(n2), P̃(n2), Q̃(n2)) = (w(n), s(n), P̃(n), Q̃(n)),(25)

A(n2) = A(n),
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or there exists a node n1 of Tree(V,A1) and a node n2 of Tree(V,A2) both
with level t− 1 such that

(w(n1), s(n1), P̃(n1), Q̃(n1)) = (w(n2), s(n2), P̃(n2), Q̃(n2))

= (w(n), s(n), P̃(n), Q̃(n)),(26)

A(n1) ∪ A(n2) = A(n).

It follows from the description of Tree(V,A1) given in Section 7.1.1 that(21)
implies that there exists a child m1 of the node n1 satisfying (24). Similarly,
it is clear that (22) implies that there exists a child m2 of the node n2

satisfying (25). Now suppose that (23) hold. If m is a left child of n, then
clearly there exists a child m1 of the node n1, and a child m2 of the node
n2 satisfying (26). If m is a right child of n, then there are several cases.
(a) Case w(m) ∈ π[1,Fix(m)](A(n1)∩A(n2)): In this case there exists a child

m1 of the node n1, and a child m2 of the node n2 satisfying (23).
(b) Case w(m) ∈ π[1,Fix(m)](A(n1)\A(n1)∩A(n2)): In this case there exists

a child m1 of the node n1 satisfying (21).
(c) Case w(m) ∈ π[1,Fix(m)](A(n2)\A(n1)∩A(n2)): In this case there exists

a child m2 of the node n2 satisfying (22).
This completes the induction in this case.

The proposition follows by applying the result proved above to the leaf nodes of
the trees Tree(V,A1), Tree(V,A2) and Tree(V,A). �

7.1.2. Roadmap associated to Tree(V,A). We now prove that the union of the (lim-
its of the) sets contained in the leaves of Tree(V,A) form a roadmap. Most of this
section is devoted to the proof of the following theorem, which is the key result
needed to prove the correctness of our algorithms.

Theorem 7.4. The semi-algebraic set

DCRM(V,A) :=
⋃

l∈Leav(V,A)

lim
ζ1

(Bas(l))

contains A, and is a roadmap of V .

Theorem 7.4 will follow from the following more general proposition.

Proposition 7.5. Let n be a node in Tree(V,A) of level t. Then, the semi-algebraic
set

DCRM(Bas(n),A(n)) :=
⋃

l∈Leav(n)

lim
ζt+1

(Bas(l))

contains A(n), and is a roadmap of Bas(n).

Several intermediate results will be used in the proof of Proposition 7.5 and
Theorem 7.4.

The following relation defined on elements of {0, 1}t will be used to define a
notion of “neighbor” amongst the leaf nodes of Tree(V,A) which in turn will be
used to prove the existence of connecting paths in the roadmap of V defined by
Tree(V,A) having some extra structure.

Definition 7.6. We define a symmetric and reflexive relation Nt on elements of
{0, 1}t by induction on t as follows.

(1) If t = 1, 0N11.
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Figure 1. Tree of leaves

(2) For all s, s′ ∈ {0, 1}t, sNts′ implies that 0sNt+10s′, and 1sNt+11s.
(3) Finally, 01t−1Nt1

t for all t ≥ 1.

Remark 7.7. The relation Nt defined in Definition 7.6 induces the structure of a
tree on the set {0, 1}t. This tree in the case t = 4 is displayed in Figure 1. The
edges in the tree correspond to pairs of elements s, t ∈ {0, 1}4, with sN4t.

The following proposition which uses the relation defined in Definition 7.6 above
will be used to prove the existence of connecting paths in the roadmap. These
connecting paths will have a certain special structure – and this structure will be
defined using the relation defined in Definition 7.6.

Proposition 7.8. Let n be a node of Tree(V,A) with level(n) = t, l, l′ ∈ Leav(n),
and x ∈ A(l), x′ ∈ A(l′), such that limζt+1

(x) ∈ Cc(limζt+1
(x′),Bas(n)). Then,

there exist l = l0, . . . , lN = l′ ∈ Leav(n), and for each i, 0 ≤ i ≤ N , x2i, x2i+1 ∈
A(li) such that

(1) x0 = x, x2N+1 = x′;
(2) for all i = 1, . . . , N, limζt+1

(x2i−1) = limζt+1
(x2i);

(3) for all i = 0, . . . , N , x2i+1 ∈ Cc(x2i,Bas(li));
(4) for all i = 0, . . . , N − 1, s(li)Nlog(k′)s(li+1).

The proof of Proposition 7.8 will use the following lemma.

Lemma 7.9. Let m1,m2 be two distinct children of a node n of Tree(V,A) with
level(n) = t, and for i = 1, 2, let Bi be a semi-algebraically connected component
of Bas(mi). Suppose that limγt+1

(B1) ∩ limγt+1
(B2) 6= ∅. Then, there exists l1 ∈

Leav(m1), l2 ∈ Leav(m2), and x1 ∈ A(l1), x2 ∈ A(l2), such that

lim
ζt+1

(x1) = lim
ζt+1

(x2),

lim
ζt+2

(xi) ∈ Bi, for i = 1, 2,

and
s(l1)Nlog(k′)s(l2).

Proof. There are four cases to consider.

(1) m1 is a left child and m2 a right child of n. Let m1 = n(α) for some

α ∈ I(n). Since B(n) = B̃as(n)0∩ B̃as(n)1, and limγt+1
(B2)∩ limγt+1

(B1) 6=
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∅, there exists a point x ∈ limγt+1
(B2) ∩ limγt+1

(B1) ⊂ B(n). Moreover
x ∈ limγt+1(A(α) ∩ B1) by definition of A(α) (see Notation 50), since

B(n) = B̃as(n)0 ∩ B̃as(n)1 is finite. Moreover x ∈ B(n)∩ limγt+1
(B2) ⊂

B(n)∩ limγt+1
(Bas(m2)) ⊂ limγt+1

(A(m2)) using (17).
Using (19), there exist for i = 1, 2, li ∈ Leav(mi), and xi ∈ A(li), with

limγt+1(xi) = x. Then, limζt+1(xi) = limζt+1(x), and limζt+2(xi) ∈ Bi and

(27) s(li) = s(mi)1 · · · 1.

Since in this case, s(m1) = s(n)0, and s(m2) = s(n)1, it follows from Defi-
nition 7.6 and (27) that s(l1)Nlog(k′)s(l2).

(2) m1 is a right child and m2 a left child of n. This case is similar to the one
above with the roles of m1 and m2 reversed.

(3) Both m1,m2 are right children of n. In this case, Bas(m1) ∩ Bas(m2) = ∅,
and hence limγt+1

(Bas(m1)) ∩ limγt+1
(Bas(m2)) = ∅, since the descriptions

of Bas(m1) and Bas(m2) do not depend on γt+1. Thus, there is nothing to
prove in this case.

(4) Both m1,m2 are left children of n. In this case there exists α1, α2 ∈ I(n),
such that for i = 1, 2, mi = n(αi). In this case there exists for i = 1, 2,
x′i ∈ A(αi), such that limγt+1

(x′1) = limγt+1
(x′2) ∈ limγt+1

(B1)∩limγt+1
(B2)

(using Proposition 6.7). Moreover, using (18), there exists for i = 1, 2,
li ∈ Leav1(mi), and xi ∈ A(li), such that x′i = limζt+2

(xi). Notice that, for
i = 1, 2, s(li) = s(mi)1 · · · 1. It is now easy to check that s(l1) = s(l2), and
that the tuple (x1, l1, x2, l2) then satisfies the required properties.

�

Proof of Proposition 7.8. The proof of the proposition is by induction on t = level(n).
The base case is when n is a leaf node, in which case the statement clearly holds.
Otherwise, suppose that the proposition is true for all nodes having level greater
than t.

Using Corollary 5.14, we can assume without loss of generality that

lim
γt+1

(x) ∈ Cc(lim
γt+1

(x′), B̃as(n)).

Since by Proposition 5.22, B̃as(n)0∪B̃as(n)1 has good connectivity property with

respect to B̃as(n), and since⋃
l child of n

lim
γt+1

(A(l)) ⊂ B̃as(n)0 ∪ B̃as(n)1,

it follows that limγt+1(x′) ∈ Cc(limγt+1(x), B̃as(n)0 ∪ B̃as(n)1). So there exists a
sequence m = m0, . . . ,mn = m′ of children of n, for each i, 0 ≤ i ≤ n, a semi-
algebraically connected component Bi of Bas(mi), with

B0 = Cc(lim
ζt+2

(x),Bas(m0)), Bn = Cc(lim
ζt+2

(x′),Bas(mn)),

and for each i, 0 ≤ i ≤ n− 1, limγt+1(Bi) ∩ limγt+1(Bi+1) 6= ∅.
Applying Lemma 7.9 we have that for each i, 0 ≤ i ≤ n, there exists l2i, l2i+1 ∈

Leav(mi), and for each j, 1 ≤ j ≤ 2n, x̄j ∈ A(lj), such that, for each i, 0 ≤ i ≤ n−1,

lim
ζt+1

(x̄2i+1) = lim
ζt+1

(x̄2i+2),
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lim
ζt+2

(x̄2i), lim
ζt+2

(x̄2i+1) ∈ Bi,

and

(28) s(li)Nlog(k′)s(li+1).

Let also

x̄0 = x,

x̄2n+1 = x′,

l0 = l,

l2n+1 = l′.

We now apply the induction hypothesis to each of the pairs x̄2i, x̄2i+1, 0 ≤ i ≤ n,
and use (28) to complete the induction. �

Proposition 7.10. Let n be a node of the tree Tree(V,A), with level(n) = t,
and Leav(n) be the set of leaves of the sub-tree of Tree(V,A) rooted at n. For
any two leaves l and l′ in Leav(n) and any two points x ∈ limζt+1

(Bas(l)), x′ ∈
limζt+1

(Bas(l′)), such that x′ ∈ Cc(x,Bas(n)), there exists a semi-algebraic path Γ
connecting x to x′, such that:

(1) Γ is a concatenation of semi-algebraic paths Γ0, . . . ,Γm, where each Γi ⊂
limζt+1(Bas(li)), for some li ∈ Leav(n);

(2) for each i, 0 ≤ i ≤ m− 1, s(li)Nlog(k′)s(li+1).

Proof. Immediate consequence of Proposition 7.8. �

The following two propositions will be used in the proof of Proposition 7.5.

Proposition 7.11. Let n be a node of the tree Tree(V,A), with level(n) = t, and
let Leav0(n) be the set of leaves m of the subtree of Tree(V,A) rooted at n, such that
s(m) contains no 1 to the right of s(n). Then, the semi-algebraic set

L =
⋃

m∈Leav0(n)

lim
ζt+1

(Bas(m))

is such that for all x ∈ Rt, L(w(n),x) meets every semi-algebraically connected com-
ponent of Bas(n)(w(n),x).

Proof. The proof is by induction on t = level(n). If n is a leaf node with |s(n)| =
0, then Leav0(n) = {n} and there is nothing to prove. Now assume that the
proposition is true for all n′, with level(n′) > t.

Note that the left children of n are precisely those children m of n with s(m) =
(s(n), 0), and these are in 1-1 correspondence with α ∈ I(n). Denote by n(α) the
left child of n corresponding to α ∈ I(n) .

We denote (with a slight abuse of notation) Ext
(

B̃as(n)0,Rt+1

)
by B̃as(n)0 and

Ext
(

B̃as(n),Rt+1

)
by B̃as(n), and make the following claims.

1. For each w ∈ R`
t+1, where ` = k′/2t+1, B̃as(n)0

(w(n),w) meets every semi-

algebraically connected component of B̃as(n)(w(n),w) (Proposition 5.17). It follows

immediately (since ` ≥ 1) that for each x′ ∈ Rt+1, B̃as(n)0
(w(n),x′) meets every

semi-algebraically connected component of B̃as(n)(w(n),x′).
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2. Also, limζt+1
(B̃as(n)) = Bas(n) ⊂ Rk

t (Proposition 5.5). It follows that for
any x ∈ Rt, and C a semi-algebraically connected component of Bas(n)(w(n),x),
there exists x′ ∈ Rt+1 with limζt+1(x′) = x, and a semi-algebraically connected

component D of B̃as(n)(w(n),x′) such that limζt+1
(D) ⊂ C.

3. Using Claim 1. there exists a semi-algebraically connected component D0 of

B̃as(n)0
(w(n),x′) which is contained in D.

Now since,

B̃as(n)0 =
⋃

α∈I(n)

lim
γt+1

Bas(n(α))

there exists a left child n(α) of n and a semi-algebraically connected component
Dn(α) of Bas(n(α)) such that limγt+1(Dn(α)) ⊂ D0.

Noting that being the left child of n, level(n(α)) > level(n), and noting that the
fact s(n(α)) = s(n)0 implies that Fix(n(α)) = Fix(n), we can apply the induction
hypothesis to obtain that L′(w(n),x′) meets Dn(α), where

L′ =
⋃

m∈Leav0(n(α))

lim
ζt+2

(Bas(m)).

Now limζt+1
(L′) ⊂ L, which implies that limζt+1

(L′(w(n),x′)) ⊂ L(w(n),x). Moreover,

L′(w(n),x) ∩ Dn(α) 6= ∅, limγt+1
(Dn(α)) ⊂ D0 ⊂ D, and limζt+1

(D) ⊂ C. Together

they imply that L(w(n),x) ∩ C 6= ∅. �

Corollary 7.12. DCRM(Bas(n),A(n)) meets every semi-algebraically connected
component of Bas(n).

We are now ready for the proof of Proposition 7.5, and as an immediate conse-
quence Theorem 7.4.

Proof of Proposition 7.5. The fact that A(n) is contained in the set

DCRM(Bas(n),A(n)) =
⋃

l∈Leav(n)

lim
ζt+1

(Bas(l))

follows from (18). The roadmap property RM1 follows from Proposition 7.10 and
Corollary 7.12. The property RM2 follows from Proposition 7.11. �

Proof of Theorem 7.4. Follows immediately from Proposition 7.5, setting n = r,
and observing that A = A(r) by construction, and that Fix(r) = 0. �

7.2. Preliminary definitions and algorithms. In this subsection we introduce
certain notation, definitions and algorithms that will be used in Algorithm 5 (Di-
vide) in the next subsection. Recall that in the description of the tree Tree(V,A),
at each node n of Tree(V,A), some coordinates have been fixed and the basic semi-
algebraic set Bas(n) is contained in the fiber over the point w(n) consisting of the
fixed coordinates. We now explain how we represent algebraically the points that
fix the fibers in our construction, and also the necessary algorithms to compute
these points. We refer the reader to [2] for any missing detail.

A root of a univariate polynomials is going to be described by a Thom encoding.

Notation 7.13. Let P be a univariate polynomial of degree p in D[X]. We denote

by Der(P ) the list P, P ′, . . . , P (p). Let P ∈ D[X] and σ ∈ {0, 1,−1}Der(P ) a sign
condition on the set Der(P ) of derivatives of P . The Thom encoding of a root x of
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P in R is equal to σ if the sign condition taken by the set Der(P ) at x coincides
with σ. Note that two different roots of P have different Thom encodings (see [2]
Proposition 2.28).

Because we need to fix successively blocks of coordinates of decreasing size,
triangular Thom encodings appear naturally.

Definition 7.14. A triangular system of polynomials with variables T = (T1, . . . , Tt)
is a tuple T =(F1, . . . , Ft) where

Fi ∈ D[T1, . . . , Ti], 1 ≤ i ≤ t,
such that Zer(T ,Rt) is finite. A triangular Thom encoding specifying

θ = (θ1, . . . , θt) ∈ Rt

is a pair (T , τ) where T is a triangular system of polynomials, and τ = τ1, . . . , τt is
a list of Thom encodings, such that τi is the Thom encoding of the real root θi of
Fi(θ1, · · · , θi−1, Ti), for i = 1, . . . , t.

Moreover, we need to describe points in the corresponding fibers, which is done
using real univariate representations.

Definition 7.15. A k-real univariate representation u over a triangular Thom
encoding T , τ specifying θ ∈ Rt is of the form

u = (f(T,U), σ, F (T,U)),

where f(T,U), F (T,U) = (f0(T,U), . . . , fk(T,U)) is a k+2-tuple of polynomials in
D[T,U ], such that f(θ, U) and f0(θ, U) are co-prime, and σ is the Thom encoding
of a real root x of f(θ, U). The point associated to u is the point(

f1(θ, x)

f0(θ, x)
, . . . ,

fk(θ, x)

f0(θ, x)

)
∈ Rk.

For 1 ≤ p ≤ k, we call the real univariate representation u≤p = (f(T,U), σ, F≤p(T,U))
where F≤p(T,U) = (f0(T,U), . . . , fp(T,U)), over the initial real triangular Thom
encoding T , τ to be the projection of u to the first p coordinates. Geometrically
this corresponds to forgetting the last k − p coordinates of the associated point.

We now give a few auxiliary algorithms. The first one computes the limit of
a Thom Encoding and is used in the determination of the (B,G)-pseudo-critical
values needed in our construction.

In the following algorithm ε = (ε1, . . . , εt) is a tuple of infinitesimals.

Algorithm 1. [Limit of a Thom Encoding]

• Input: a Thom encoding (fε, σε) , fε ∈ D [ε, U ], representing xε ∈ Rt〈ε〉
bounded over R.
• Output: a Thom encoding (f,σ) , f ∈ D[U ], representing

x = lim
ε1

(xε̄) ∈ R.

• Complexity and degree bounds: If D1 (resp. D2) is a bound on the
degree of fε with respect to U (resp. ε) the number of arithmetic opera-

tions in D is bounded by D
O(1)
1 D

O(t)
2 . Moreover, the degrees in U of the

polynomials appearing in the output are still bounded by D1.
• Procedure:
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• Step 1. Replace fε by ε−oε(fε)fε (see Notation 5.3). Denote by f(T ) the
polynomial obtained by substituting successively εt by 0, and then εt−1 by
0, and so on, and finally ε1 by 0, in fε.
• Step 2. Compute the set Σ of Thom encodings of roots of f(T ) using

Algorithm 10.11 (Sign Determination) from [2].
• Step 3. Identify the Thom encoding σ using Algorithm 10.13 (Univariate

Sign Determination) from [2], by checking whether a ball of infinitesimal
radius δ (1 � δ � ε > 0) around the point x represented by the real
univariate representation f, σ contains xε.

Proof of correctness. Follows immediately from the correctness of Algorithm 10.11
(Sign Determination) and Algorithm 10.13 (Univariate Sign Determination) in [2].

�

Proof of complexity and degree bounds. Follows from the complexity of Algorithm
10.11 (Sign Determination) and Algorithm 10.13 (Univariate Sign Determination)
in [2]. The fact that the degree in U of the polynomials in the output are bounded
by D1 is clear. �

Remark 7.16. Our algorithms use several algorithms from [2] such as Algorithm
12.16 (Bounded Algebraic Sampling), Algorithm 14.9 (Global Optimization), Algo-
rithm 15.2 (Curve Segments), and Algorithm 11.19 (Restricted Elimination) with
one important modification. Each of these algorithms described in [2] has an as-
sociated structure which is an ordered domain in which all computations (i.e.,
arithmetic operations and sign evaluations) take place. In the calls to these algo-
rithms in this paper, this ordered domain will be of the form Dt[θ], where θ ∈ Rm

t

is specified by a triangular Thom encoding (T , τ) and involves 4t infinitesimals
(see Notation 7.1). Each element of Dt[θ] is represented by some polynomial in
Dt[T ] = D[η, T1, . . . , Tm] and arithmetic operations are performed as ordinary poly-
nomial arithmetic in the ring Dt[T ]. For the evaluation of the sign of an element
in Dt[θ] represented by a polynomial f ∈ Dt[T ] we also use an algorithm from [2],
namely Algorithm 12.10 (Triangular Sign Determination) with input f, T , τ .

Suppose that the degree of the output (and of the intermediate computations)
of a particular algorithm in [2] is bounded by some function f(d, k, s) of the degrees
d, the number of variables k, and the number of polynomials s. If d′, k′, s′ is a
bound on the degrees, number of variables and number of the input polynomials
(considered as polynomials with coefficients in Dt[θ]) in a call to that algorithm in
this paper, then the degree bound of the output (and intermediate computations)
is f(d′, k′, s′) in the ring Dt[θ].

But we want to evaluate the complexity in the ring D. Denoting by N a bound
on the degrees in T, η of the input polynomials, we have the following :

• the degrees in T, η of the output (and of the intermediate computations)
are bounded by O(Nf(d′, k′, s′)),

• if the complexity of a particular algorithm in [2] is bounded by some func-
tion F (d, k, s), then the number of arithmetic operations and sign evalu-
ations in Dt[θ] of the call to that algorithm in this paper is bounded by
F (d′, k′, s′) , while the cost of the call to that algorithm in this paper, i.e.,
the number of arithmetic operations and sign evaluations in D, is bounded
by NO(m+t)F (d′, k′, s′).
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These statements do not follow immediately from the complexity results on the
algorithms given in [2]. It is necessary to inspect the algorithms in [2] carefully,
noticing that they are all based on linear algebra subroutines and determinant
computations.

We now describe an algorithm for computing the (B,G)-pseudo-critical values
of a family of polynomials (cf. Definition 4.5), using Notation 7.1.

Algorithm 2. [(B,G)-pseudo-critical values over a Triangular Thom Encoding]

• Input:
(1) a triangular Thom encoding (T , τ) with T ⊂ Dt[T ], fixing a point

θ ∈ Rm, m ≤ t;
(2) a family of polynomials P = {P1, . . . , Ps} ⊂ Dt[T,X1, . . . , Xk], such

that Zer(P(θ, ·),Rk) is bounded;

(3) a matrix B = (bi,j)1≤i≤s,0≤j≤k ∈ Ns×(k+1)
>0 having good rank property;

(4) a polynomial G ∈ Dt[X1, . . . , Xk].
• Output: a set of Thom encodings (f, σ) over (T , τ) specifying a finite

subset of R containing the (B,G)-pseudo-critical values of Zer(P(θ, ·),Rk
t ).

• Complexity and degree bounds: skDO(t+m)dO(k) arithmetic operations
in D, where D is a bound on the degree of T with respect to T, η, and d
is a bound on the degrees of the polynomials in P and of G. The degrees
in T, η of the polynomials appearing in the Thom encodings over (T ,τ)
output are bounded by O(d)kD, while the degree in the new variable U is
bounded by O(d)k.
• Procedure:
• Step 1. For each I ⊂ [1, s] with card(I) ≤ k, σ ∈ {−1, 1}I , com-

pute using Algorithm 12.16 (Bounded Algebraic Sampling) from [2] with

ring Dt[θ, γ] and input CritEq(P̃I,B , G) (see Definition 4.5 for the defini-

tion of P̃I,B) a set of real univariate representations over (T , τ) with as-
sociated points meeting every semi-algebraically connected component of

Zer
(

CritEq(P̃I,B , G) ∪ {G− Z},Rt〈γ〉k+card(I)+2
)

.

• Step 2. For each real univariate representation

(f, g0, g1, . . . , gk, gλ0
, . . . , gλcard(I)

, gZ), σ

over (T , τ) output in the previous step, where

f, g0, g1, . . . , gk, gλ0
, . . . , gλcard(I)

, gZ ∈ Dt[T, γ, U ],

eliminating U from the equations

f(T,U), Zg0(T,U)− gZ(T,U)

obtain a Thom encoding (A(T, γ, Z), α) over (T ,τ) describing a point a ∈
Rt〈γ〉.

• Step 3. Compute a Thom encoding describing limγ(a) using Algorithm 1
(Limit of a Thom Encoding).

• Step 4. Output the set of all real univariate representations computed in
Step 3.

Proof of correctness. The correctness of Algorithm 2 is a consequence of the cor-
rectness of Algorithm 12.16 (Bounded Algebraic Sampling) and Algorithm 12.14
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(Limit of bounded points) from [2] given the definition of (B,G)-pseudo-critical
values (see Definition 4.5). �

Proof of complexity and degree bounds. It follows from the complexity of Algorithm
12.16 (Bounded Algebraic Sampling) and Algorithm 12.14 (Limits of bounded
points) from [2] and from Remark 7.16, that the complexity is bounded by

skDO(m+t)dO(k).

Moreover, it follows from the complexity analysis of Algorithm 12.16 (Bounded
Algebraic Sampling) from [2], and that of Algorithm 1 (Limit of a Thom Encoding),
that the degrees in T, η of the polynomials appearing in the Thom encodings over
(T ,τ) output is bounded by O(d)kD, and the degree in U is bounded by O(d)k. �

As mentioned earlier, we will need to compute certain well chosen finite sets
of points which correspond to points that minimize locally the distance between
pairs of semi-algebraically connected components of some basic semi-algebraic set
described in the input. For technical reasons, we need such an algorithm in two
different versions. In the first algorithm (Algorithm 3) the input is a basic semi-
algebraic set and a point, while in the second algorithm (Algorithm 4) the input is
a pair of basic semi-algebraic sets.

We use again Notation 7.1.

Algorithm 3. [Closest Point over a Triangular Thom Encoding]

• Input: A triangular Thom encoding (T , τ), T ⊂ Dt[T ], fixing a point
θ ∈ Rm, finite subsets P,Q ⊂ Dt[T,X1, . . . , Xk] with Bas(P(θ, ·),Q(θ, ·))
bounded, and a real univariate representation u = (g, σ,G) over (T , τ) with
associated point x.
• Output: A finite set of real univariate representations over (T , τ) with

associated points MinDi(Bas(P(θ, ·),Q(θ, ·)), {x}).
• Complexity and degree bounds: Let card(Q) ≤ t, degX(P,Q) ≤ d,

degη,T (T ) ≤ D, degη,T,U (u) ≤ D, and degη,T (P,Q) ≤ dD. Then the

number of arithmetic operations in D is bounded by dO(k)DO(m+t). The
degrees in T, η of the polynomials appearing in the Thom encodings over
(T ,τ) output are bounded by O(d)kD, while the degree in the new variable
U is bounded by O(d)k.

• Procedure:
• Step 1. Let S ⊂ Rk × Rk be the semi-algebraic sets defined by

S := Bas(P(θ, ·),Q(θ, ·))× {x},

where, with G = (g0, . . . , gk), the point x associated to u is defined by

k∑
i=1

(g0(T,U)Yi − gi(T,U))2.

• Step 2. Let F =
∑

1≤i≤k(Xi − Yi)2. Apply Algorithm 14.9 (Global Op-

timization) from [2] with ring D[θ, θg], where (θ, θg) is associated to the
triangular Thom encoding ((T , g), (τ, σ)), and the pair (S, F ) as input, and
project the set of real univariate representations over ((T , g), (τ, σ)) that
are output, to the first k coordinates.
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• Step 3. For each univariate representation w = (h(T,U, V ), σh, H(T,U, V ))
output in Step 2, use Algorithm 12.16 (Bounded Algebraic Sampling) from
[2] with ring D[θ] and the polynomials {g, h} to obtain a set of real uni-
variate representations v = (e(T, T ′), σe, E = (e0,eU , eV )). Substitute the
rational functions eU

e0
, eVe0 for U, V in the real univariate representation w,

and output the resulting real univariate representation over (T , τ).

Proof of correctness. The correctness of Algorithm 3 is a consequence of the cor-
rectness of Algorithm 14.9 (Global Optimization), and of Algorithm 12.16 (Bounded
Algebraic Sampling) from [2]. The degree bounds follow from the complexity anal-
ysis of the above algorithms. �

Proof of complexity and degree bounds. It follows from the complexity analysis of
Algorithm 14.9 (Global Optimization) from [2], and Remark 7.16, that the com-
plexity of Step 2 is bounded by dO(k)DO(m+t). Moreover, the degrees in η, T, U, V
of the polynomials appearing in the real univariate representation w are bounded
by DdO(k). The cardinality of the set of real univariate representations output is
bounded by 2tdO(k). It follows from the complexity of Algorithm 12.16 (Bounded
Algebraic Sampling) from [2] and Remark 7.16 that the degrees in η, T, T ′ of the
e, E are bounded by DO(1)dO(k), and that the complexity of Step 3 is bounded by
dO(k)DO(t). �

Algorithm 4. [Closest Pairs over a Triangular Thom Encoding]

• Input: a triangular Thom encoding (T , τ),T ⊂ Dt[T ], fixing a point
θ ∈ Rm

t and finite subsets P1,Q1,P2,Q2 ⊂ Dt[T,X1, . . . , Xk] such that
Bas(P1(θ, ·),Q1(θ, ·)) and Bas(P2(θ, ·),Q2(θ, ·)) are bounded.
• Output: A finite set of real univariate representations over (T , τ) with

associated points

MinDi(Bas(P1(θ, ·),Q1(θ, ·)),Bas(P2(θ, ·),Q2(θ, ·))).
• Complexity and degree bounds: Suppose that

(1) card(Q1), card(Q2) ≤ t,
(2) degX(P1,Q1,P2,Q2) ≤ d,
(3) degη,T (T ) ≤ D,
(4) and degη,T (P1,Q1,P2,Q2) ≤ dD.

Then the number of arithmetic operations in D is bounded by dO(k)DO(m+t).
The degrees in T, η of the polynomials appearing in the Thom encodings
over (T ,τ) output are bounded by O(d)kD, while the degree in the new
variable U is bounded by O(d)k.
• Procedure:
• Step 1. Let S ⊂ Rk × Rk be the semi-algebraic sets defined by

S = Bas(P1(θ, ·),Q1(θ, ·))× Bas(P2(θ, ·),Q2(θ, ·)).
• Step 2. Let F =

∑
1≤i≤k(Xi − Yi)2. Apply Algorithm 14.9 (Global Opti-

mization) from [2] to the pair (S, F ) with ring Dt[θ] and project the output
set of real univariate representations over (T , τ) to the first k-coordinates
as well as to the last k-coordinates.

Proof of correctness. The correctness of Algorithm 4 is a consequence of the cor-
rectness of Algorithm 14.9 (Global Optimization) from [2]. �
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Proof of complexity and degree bounds. It follows from the complexity of Algorithm
14.9 (Global Optimization) from [2] and Remark 7.16 that the complexity of Step
2 is bounded by dO(k)DO(m+t). The degree bounds follow from the complexity
analysis of the Algorithm 14.9 (Global Optimization) from [2]. �

7.3. The Divide algorithm. We now describe Algorithm 5 (Divide) which will
be used later to create the left and right children of a node of the tree, Tree(V,A),
described in Section 7.1.1 above.

Algorithm 5. [Divide]

• Input: A tuple (s, (T , τ),P,Q, A) satisfying the following.
(1) s ∈ {0, 1}t.
(2) (T , τ) is a triangular Thom encoding fixing θ ∈ R

|fix(s)|
t , where T

is a triangular system with variables Tfix(s) = (Ti1 , . . . , Ti|fix(s)|), ij ∈
fix(s) = {i | si = 1}.

(3) P ⊂ Dt[Tfix(s), XFix(s)+1, . . . , Xk] is a finite set of polynomials, where

Fix(s) =
∑t
i=1 sik

′/2i, and Q ⊂ Dt[Tfix(s), XFix(s)+1, . . . , Xk] is a set
of t− card(fix(s)) polynomials, defining a semi-algebraic set

Bas(P(θ, ·),Q(θ, ·)) ⊂ R
k−Fix(s)
t

(cf. Notation 7.1).
(4) A is a finite set of real univariate representations over T , with as-

sociated points A ⊂ S = Bas(P(θ, ·),Q(θ, ·)), meeting every semi-
algebraically connected component of S.

(5) Zer(P(θ, ·),Rk−Fix(s)
t ) is strongly of dimension ≤ p = k′/2t, if t 6= 0.

More precisely, for every z ∈ Rp
t , Zer(P(θ, ·),Rk−Fix(s)

t )z is a finite set
(possibly empty).

• Output:
A tuple (P̃, Q̃, Ã, N,B, (P0(α),Q0(α), A(α))α∈I(P̃,Q̃,p/2)) where:

(1) P̃ ⊂ Dt [ζt+1, εt+1] [Tfix(s), XFix(s)+1, . . . Xk], is a finite set of polyno-

mials with card(P̃) = k − Fix(s)− p.
(2) Q̃ ⊂ Dt [ζt+1, εt+1, δt+1] [Tfix(s), XXFix(s)+1

, . . . Xk] is a finite set of poly-

nomials with card(Q̃) = card(Q) = t− card(fix(s)).

(3) Ã is a set of real univariate representations over (T , τ) whose set of

associated points is Ã ⊂ S̃ = Bas(P̃(θ, ·), Q̃(θ, ·)).
(4) N is a set of real univariate representations, u = (h, σ,H), over (T , τ)

with associated points N ⊂ R
p/2
t+1(and new variable Tt+1).

(5) B =
⋃
u∈N B(u), where for each u = (h, σ,H) ∈ N output in (4), B(u)

is a set of real univariate representations over ((T , h), (τ, σ)) describing

θ′ = (θ, xσ) ∈ R
Fix(s)+1
t whose set of associated points is B(u) ⊂

Bas(P̃u(θ′, ·), Q̃u(θ′, ·)). We denote the set of associated points of B
by B.

(6) For every α ∈ I(P̃, Q̃, p/2) (see Notation 6.3),

P0(α),Q0(α) ⊂ Dt+1[Tfix(s), XFix(s)+1, . . . Xk]

are finite subsets with card(Q0(α)) = card(Q)+1, and A(α) is a set of
real univariate representations over T , whose set of associated points
is A(α) ⊂ S0(α) = Bas(P0(α)(θ, ·),Q0(α)(θ, ·)).
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The tuple (P̃, Q̃, Ã, N,B, (P0(α),Q0(α), A(α))α∈I(P̃,Q̃,p/2)) satisfies the fol-

lowing properties. Let

S̃0 = lim
γt+1

(∪α∈I(P̃,Q̃,p/2)S
0(α)),

S̃1 = S̃N .

(1) limζt(S̃) = S.

(2) S̃0 ∪ S̃1 has good connectivity properties with respect to S̃.

(3) S̃0 and S̃N are both strongly of dimension ≤ p/2.

(4) Ã = MinDi(S̃,A) ∪MinDi(S̃, S̃), N ⊃ π[Fix(s)+1,Fix(s)+p/2](Ã).

(5) B = S̃0 ∩ S̃1.

(6) A(α) = MinDi(S0(α),B) ∪
(⋃

β∈I(P̃,Q̃,`) MinDi(S0(α), S0(β))
)

.

(7) For every α ∈ I, A(α) ⊂ S0(α) meets every semi-algebraically con-
nected component of S0(α), and for every α, β in I, and C (resp.
D) semi-algebraically connected component of S0(α) (resp. S0(β))
such that limγt+1(C) ∩ limγt+1(D) is non-empty, limγt+1(C ∩ A(α)) ∩
limγt+1(D ∩ A(β)) is non-empty, and meets every semi-algebraically
connected component of limγt+1

(C) ∩ limγt+1
(D).

• Complexity and degree bounds: In order to simplify the complex-
ity analysis, we are going to make the following assumptions which are
going to be satisfied for each call to this algorithm in Algorithm 6 (Di-
vide and Conquer Roadmap Algorithm for Bounded Algebraic Sets). Let
the triangular system T in the input be T = (F1, . . . , F|fix(s)|), where
for each h, 1 ≤ h ≤ card(fix(s)), Fh ∈ Dt[Ti1 , . . . , Tih ]. Also denote
η = (ζ1, ε1, δ1, γ1 · · · , ζt, εt, δt, γt) and ηt+1 = (ζt+1, εt+1, δt+1, γt+1) (as in
Notation 7.1). Let c > 0 be a constant. We assume that:
(1) degX(P,Q) ≤ (2k)td;
(2) degTfix(s)

(P,Q), degη(P,Q), degTfix(s)
(Fh), degη(Fh) are all bounded

by Dt((2k)td)ckt;
(3) The degrees in η, Tfix(s) of the polynomials (belonging to Dt[Tfix(s), Tt+1])

appearing in the univariate representations A are bounded by

Dt((2k)td)ckt,

while the degrees in Tt+1 are bounded by D.
With the above assumption on the input parameters, the output tuple
(P̃, Q̃,Ã,N,B,(P0(α),Q0(α), A(α))α∈I(P̃,Q̃,p/2)) satisfies the following, for

c large enough.
(1)

degX(P̃, Q̃) ≤ 2(2k)td,

degTfix(s)
(P̃, Q̃), ≤ 2Dt((2k)td)ckt,

degη(P̃, Q̃) ≤ 2Dt((2k)td)ckt,

degηt+1
(P̃, Q̃) = 1.



42 BASU AND ROY

(2)

degX(P0(α),Q0(α)) ≤ (2k)tdk,

degTfix(s)
(P0(α),Q0(α)) ≤ Dt+1((2k)t+1d)ck(t+1),

degη(P0(α),Q0(α)) ≤ Dt+1((2k)t+1d)ck(t+1).

(3) The univariate representations in Ã,N,B,A(α) have degrees in the
new variable Tt+1, as well as in ηt+1, bounded by D((2k)t+1d)ck, and
have degrees at most Dt+1((2k)t+1d)ck(t+1) in the variables η, Tfix(s).

The cardinalities of the sets Ã,N,B,A(α) are all bounded by (card(A)+
1)((2k)t+1d)ck.

The complexity of the algorithm is bounded by

(card(A) + 1)DO(t2)(ktd)O(t2).

• Procedure:
• Step 1. Define P̃ and Q̃ as in Notation 5.4.
• Step 2. Compute M̃ as follows. For each subset Q̃′ ⊂ Q̃ and P̃ ∪ Q̃′ =
{F1, . . . , Fm}, compute, using Algorithm 12.16 (Bounded Algebraic Sam-
pling) from [2] in the ring Dt[θ], a finite set of real univariate representa-

tions, M̃(Q̃′) over (T , τ) whose associated points are the real solutions to
the system

CritEqp/2(P̃(θ, ·) ∪ Q̃′(θ, ·), G)

and projecting the real univariate representations to the first k coordinates.
Let

M̃ =
⋃
Q̃′⊂Q̃

M̃(Q̃′).

Note that the associated set of points, M̃ of M̃ , is the finite set of critical
points of G on Bas(P̃(θ, ·), Q̃(θ, ·)).
• Step 3. Compute a set, D0, of Thom encodings over (T , τ) as follows.

Let
F =

∏
Q̃′⊂Q̃

F (Q̃′),

where
F (Q̃′) =

∑
P∈CrEq`(P̃∪Q̃′,G)

P 2.

Compute using Algorithm 2 ((B,G)-pseudo-critical values over a Trian-
gular Thom Encoding), a set, D0, of Thom encodings over (T , τ), whose
set of associated values, D0, contain the (B,G)-pseudo-critical values of the

set {F (θ, ·)} ∪ Q̃(θ, ·), with B = Hcard(Q)+1,k−Fix(s)+card(P̃)+card(Q̃)+2 (see

Notation 5.2).
• Step 4. Compute M0 as follows. For each (h, τh) ∈ D0, use Algorithm

12.16 (Bounded Algebraic Sampling) from [2] in the ring Dt[θ
′] (where θ′

is specified by T ∪ {h(Tfix(s), U)}, (τ, τh)) with input the set of polynomials

P̃ ∪Q̃∪{G−U}, to obtain real univariate representations (f, σf , F ), where
f ∈ Dt+1[Tfix(s), U, V ]. Use Algorithm 12.16 (Bounded Algebraic Sampling)
from [2] in the ring Dt[θ] again with input {h, f} to obtain a real univari-
ate representation u = (e, τe, E) over (T , τ) with e ∈ Dt+1[Tfix(s), Tt+1].
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Substitute the rational functions, in E corresponding to U, V into the poly-
nomials in F to obtain Fu. Output the resulting set of real univariate
representations (e, τe, Fu) over (T , τ).

• Step 5. Compute N as follows. First compute Ã by applying Algorithm 3
(Closest Point over a Triangular Thom Encoding) with input ((T , τ), (P̃, Q̃), u)
for each u ∈ A and Algorithm 4 (Closest Pairs over a Triangular Thom

Encoding) with input ((T , τ), (P̃, Q̃), (P̃, Q̃)). Keeping the first p/2 coor-
dinates of these real univariate representations, obtain a set of real uni-
variate representations, N , over (T , τ), with associated set of points N =

π[Fix(s)+1,Fix(s)+p/2](M̃∪M0 ∪ Ã) (identifying those which are equal). For
each w ∈ N , with corresponding real univariate representation (f, σ, F ), let
(Tw, τw) denote the real triangular Thom encoding ((T , f), (τ, σ)).
• Step 6. Compute B as follows. For each univariate representation u =

(e, τe, E) ∈ N , substitute the rational functions in u, for the block of vari-

ables XFix(s)+1, . . . , XFix(s)+p/2, in the polynomials F ,Q̃ to obtain Fu, Q̃u.
Now apply Algorithm 12.16 (Bounded Algebraic Sampling) from [2] in the
ring Dt[θ

′′] (where θ′′ is specified by ((T , e), (τ, τe))) with input the poly-

nomials Fu, Q̃u, and project to the co-ordinates XFix(s)+p/2+1, . . . , Xk to
obtain B(u).

• Step 7. For every α = (Q̃′, r, J, J ′) ∈ I(P̃, Q̃, p/2), compute

P0(α) := P̃ ∪ Q̃′ ∪
⋃

i∈[Fix(s)+p/2+1,k]\fix(s)

{jac(α, i)},

Q0(α) := Q̃ ∪ {jac(α, i)2 − γ}.

(see Notation 6.2).

• Step 8. Compute A(α) by applying for each β ∈ I(P̃, Q̃, p/2), Algorithm
3 (Closest Point over a Triangular Thom Encoding) with input

((T , τ),P0(α),Q0(α), u)

for each u ∈ B computed in Step 6, and Algorithm 4 (Closest Pairs over a
Triangular Thom Encoding) with input

((T , τ),P0(α),Q0(α),P0(β),Q0(β)).

Proof of correctness. The correctness of the algorithm follows from the correctness
of the various algorithms called inside the algorithm, and Propositions 5.5, 5.11,
5.12, 5.21, and 6.1. �

Proof of complexity and degree bounds. We first prove that the bounds stated in
(1), (2), and (3) are true.

1. It is clear from Step 1 and Notation 5.4, that the degrees of the polynomials in
P̃ (respectively, Q̃) are at most twice the degrees of the polynomials in P (respec-

tively, Q). It follows from the assumptions on the input that degX(P̃),degX(Q̃) ≤
2(2k)td, and degTfix(s)

(P̃),degTfix(s)
(Q̃),degη(P̃),degη(Q̃) ≤ 2Dt((2k)td)ckt. It also

follows from Notation 5.4, that degηt+1
(P̃),degηt+1

(Q̃) = 1. This proves Part (1)
of the complexity estimate of the output.

2. Part (2) is an easy consequence of the degree bounds on P̃ and Q̃ proved
above in (1), and the definitions of P0(α) and Q0(α).
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3. We now bound the degrees of the univariate representations in M̃ ,D0,M0, Ã, N .
They have degrees in the new variable, as well as in ηt+1, bounded by ((2k)t+1d)ck,
and have degrees at most Dt((2k)t+1d)ck(t+1) in the variables Tfix(s), η.

i. The univariate representations in M̃ are obtained by applying Algorithm 12.16
(Bounded Algebraic Sampling) from [2] to the set of equations in CritEqp/2(P̃ ∪
Q̃′, G), for each subset Q̃′ ⊂ Q̃, and then projecting the real univariate repre-
sentations to the first k coordinates. The number of variables (including the
Lagrangian variables λi’s) is at most 2k. The degrees in X of the polynomials

in CritEq`(P̃ ∪ Q̃′, G) are bounded by the degrees in X of the polynomials in

P̃ and Q̃ which are at most 2(2k)td (using the bounds in (1)), and the degrees
in the Lagrangian variables are all equal to 1. The degrees in Tfix(s) and η in

CritEqp/2(P̃ ∪ Q̃′, G) are bounded by their degrees in P̃ and Q̃ which are at most

2Dt((2k)td)ckt (using the bounds in (1)). Finally, the degrees in ηt+1 of the poly-

nomials in CritEqp/2(P̃ ∪ Q̃′, G) are at most 1. Now using the complexity analysis

of Algorithm 12.16 (Bounded Algebraic Sampling) from [2], we get the following
bounds.

• The degrees in the new variable Tt+1 and the new infinitesimals ηt+1 are
bounded by

(2(2k)td)2c1k,

where c1 > 0 is a constant; choosing c to be sufficiently large compared to
c1,

(2(2k)td)2c1k ≤ ((2k)t+1d)ck.

• The degrees in Tfix(s) and η, are bounded by

2Dt+1((2k)td)ckt(2(2k)td)2c1k ≤ Dt+1((2k)t+1d)ck(t+1),

given the choice of c.

ii. The real Thom encodings, u ∈ D0 over T , are computed using Algorithm 2
((B,G)-pseudo-critical values over a Triangular Thom Encoding), with the polyno-
mial

(29) F =
∏
Q̃′⊂Q̃

F (Q̃′),

as input, where

F (Q̃′) =
∑

P∈CrEq`(P̃∪Q̃′,G)

P 2.

The number of polynomials, F (Q̃′), appearing in the product in (29) is bounded by

2card(Q̃) ≤ 2t ≤ k. Using the facts noted about the degrees in the various variables
of the polynomials in P̃,Q̃ we obtain that the degree in X of F is bounded by
2t+1(2k)td. The degrees in the Lagrangian variables are bounded by 2t. The
degrees in the variables Tfix(s), and η are bounded by 2t+1Dt((2k)td)ckt . Finally,
the degree in ηt+1 in F is at most 2t. The number of variables is at most 2k.

Using the complexity analysis of Algorithm 2 ((B,G)-pseudo-critical values over
a Triangular Thom Encoding) we get the following bounds.
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• The degree in the new variable U is bounded by

(2t+1(2k)td)2c2k

where c2 > 0 is a constant, while the degree in ηt+1 is bounded by

2t(2t+1(2k)td)2c2k;

choosing c to be sufficiently large compared to c2, and noting that 2t ≤ k,

2t(2t+1(2k)td)2c2k ≤ ((2k)t+1d)ck.

• The degrees in Tfix(s) and η are bounded by

2t+1Dt((2k)td)ckt(2t+1(2k)td)2c2k ≤ Dt+1((2k)t+1d)ck(t+1),

given the choice of c.

iii. In Step 4 (computation of M0), the degrees of the polynomials in the real
univariate representation (f, σf , F ) computed are bounded as follows.

• The degrees in the new variable V and ηt+1 are bounded by

(2(2k)td)c1(k+1)

using the complexity of Algorithm 12.16 (Bounded Algebraic Sampling)
from [2].
• The degrees in Tfix(s), and η are bounded by

2Dt((2k)td)ckt(2(2k)td)c1(k+1).

Using again the complexity analysis of Algorithm 12.16 (Bounded Algebraic Sam-
pling) from [2] we obtain that the degrees of the polynomials in u in the various
variables are bounded as follows.

• The degrees in the new variable Tt+1 and in ηt+1 are bounded by

(max(2 · 2t(2t+1(2k)td)2c2k, 2(2(2k)td)c1(k+1)))2c1 ≤ ((2k)t+1d)ck

using the complexity of Algorithm 12.16 (Bounded Algebraic Sampling)
from [2] and the degree bounds in U and V of the polynomials D0 and f ,
and choosing c sufficiently large.

• The degrees in Tfix(s) and η are bounded by the maximum of the degrees

in Tfix(s), and η in the polynomials D0 and f multiplied by ((2k)t+1d)ck.
It follows that these degrees are bounded by

Dt((2k)t+1d)ck(t+1).

iv. Using the complexity of Algorithm 4 (Closest Pairs over a Triangular Thom
Encoding), and Algorithm 3 (Closest Point over a Triangular Thom Encoding)

and the degree estimates of P̃ and Q̃ and of the univariate representations in A,
we obtain that the degrees in the univariate representations in Ã are bounded as
follows.

• The degrees in the new variable Tt+1 and ηt+1 are bounded by

D(2(2k)td)2c1k,

where c1 > 0 is a constant; and given the choice of c, we have that

(2(2k)td)2c1k ≤ ((2k)t+1d)ck.
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• The degrees in Tfix(s), and η, are bounded by

2Dt+1((2k)td)ckt(2(2k)td)2c1k ≤ Dt+1((2k)t+1d)ck(t+1),

given the choice of c.
• Finally, the cardinality of Ã is bounded by (card(A) + 1)((2k)t+1d)ck using

the complexity analysis of Algorithm 4 (Closest Pairs over a Triangular
Thom Encoding) and Algorithm 3 (Closest Point over a Triangular Thom
Encoding).

Together, (i),(ii) (iii) and (iv) above imply that the univariate representations in

M̃ ,D0,M0, Ã, N have degrees in the new variable, as well as in Tt+1, ηt+1, bounded
by D((2k)t+1d)ck, and have degrees at most Dt+1((2k)t+1d)ck(t+1) in Tfix(s), η.

Moreover, the cardinalities of M̃ , D0,M0 are bounded by ((2k)t+1d)ck (taking
into account that the number of polynomials in the call to Algorithm 2 ((B,G)-
pseudo-critical values over a Triangular Thom Encoding) in Step 3 is bounded by

t+ 1). The cardinalities of Ã,N are bounded by (card(A) + 1)((2k)t+1d)ck.
Using the bound on the degrees of F and the univariate representations in N ob-

tained above, and the degree estimates of the output of Algorithm 12.16 (Bounded
Algebraic Sampling) in [2], we get that the degrees of the polynomials appearing
in B in the new variable are bounded by

(2(2k)td)2c1k ≤ ((2k)t+1d)ck,

while the degrees in Tfix(s), η are bounded by

Dt+1((2k)t+1d)ck(t+1)(2(2k)td)(2(2k)td)2c1k ≤ Dt+1((2k)t+1d)ck(t+1).

Finally, the degrees in Tt+1, ηt+1 are bounded by

D(2(2k)td)2c1k(2(2k)td)2c1k ≤ D((2k)t+1d)ck.

The cardinality of B is bounded by (card(A) + 1)((2k)t+1d)ck.
The degree estimates, as well as the estimates on the cardinality of A(α) are

now a consequence of the bounds on the degrees of P0(α), Q0(α) and B, and
the cardinality of B proved above, and the complexity of Algorithm 4 (Closest
Pairs over a Triangular Thom encoding), and Algorithm 3 (Closest Point over a
Triangular Thom encoding)). This proves Part (3) of the complexity of the output.

It follows from the complexity estimates of the algorithms used in various steps of
Algorithm 5, namely Algorithm 12.16 (Bounded Algebraic Sampling) in [2], Algo-
rithm 14.9 (Global Optimization) in [2], Algorithm 2 ((B,G)-pseudo-critical values
over a Triangular Thom Encoding), Algorithm 4 (Closest Pairs over a Triangular
Thom Encoding), and Algorithm 3 (Closest Point over a Triangular Thom En-
coding)), and Remark 7.16, as well as the degree estimates proved above, that the

complexity of the whole algorithm is bounded by (card(A)+1)DO(t2)(ktd)O(t2k). �

Remark 7.17. Notice that we never reduce any intermediate polynomial obtained
in the computation, modulo T , and that (T , τ) is used only if the sign of an element
of Dt[θ], represented by a polynomial, is required. As a result the degrees in the
T ’s and also in the infinitesimals occurring in T , grow. We analyzed this growth
carefully in the complexity analysis of Algorithm 5 (Divide). This is a point of
difference between the algorithm presented in the current paper, and that in [3]. In
the Baby-step Giant-step algorithm presented in [3] a process of pseudo-reduction
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was necessary since the degree growth in T would have spoiled the overall complex-
ity of the algorithm. This phenomenon does not occur here because the number
of different blocks of variables (and hence the size of the triangular systems) in

the algorithm of this paper is much smaller (O(log(k))) compared to O(
√
k) in the

Baby-step Giant-step algorithm) and hence we can tolerate the growth in degree
in the current paper without resorting to reducing in each step. This is fortunate,
since pseudo-reduction is not anymore an option for us, as the growth in the de-
grees in the various infinitesimals in this divide-and-conquer approach would reach

dO(k2), and will be unacceptably large.

7.4. Computation of the tree Tree(V,A). In this subsection we describe an
algorithm computing the tree Tree(V,A), using in a recursive way Algorithm 5
(Divide) and analyze the complexity of this algorithm.

The description of the algorithm will use the following notation.

Notation 7.18. A node n of level t = level(n) is a tuple

(s(n), T (n),W (n),P(n),Q(n), A(n)),

where

(1) s(n) ∈ {0, 1}t;
(2) T (n), τ(n),W (n) is a block triangular system fixing a point θ(n) ∈ R

card(fix(n))
t ,

and w(n) ∈ R
Fix(n)
t , where

fix(n) = {i | s(n)i = 1},

Fix(n) =

t∑
i=1

s(n)ik
′/2i;

(3) P(n) ⊂ Rt[Tfix(n), XFix(n)+1, . . . , Xk];
(4) Q(n) ⊂ Rt[Tfix(n), XFix(n)+1, . . . , Xk], card(Q(n)) = t− card(fix(n));
(5) A(n) is a set of real univariate representations over T (n), with associated

points A(n) ⊂ Bas(P(n)(θ(n), ·),Q(n)(θ(n), ·)).

Algorithm 6. [Computation of the tree Tree(V,A)]

• Input: A polynomial P ∈ D[X1, . . . , Xk], such that V = Zer(P,Rk) is
bounded and strongly of dimension ≤ k′, and a set A of real univariate
representations with associated set of points A ⊂ Zer(P,Rk).
• Output: the tree Tree(V,A).
• Complexity and degree bounds: Let d = deg(P ) and suppose that the

degrees of the polynomials appearing in the real univariate representations
in A are bounded by D. The complexity is bounded by

(card(A) + 1)DO(log2(k′))(klog(k′)d)O(k log2(k′).

For each leaf node n of the tree Tree(V,A) output by the algorithm, the
degrees in TFix(n), as well as in the variables η’s, of the polynomials in T (n),
as well as those in P(n) and Q(n), are all bounded by

Dlog(k′)+1(klog(k′)d)O(k log(k′)).

The degrees in XFix(n)+1, . . . , Xk of P(n) and Q(n) are bounded by

(O(k))log(k′)d.
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• Procedure:
• Step 1. Initialize r to be the node with

(1) s(r) := ();
(2) T (r), τ(r),W (r) is empty;
(3) P(r) := {P};
(4) Q(r) := ∅;
(5) A(r) := A.

Initialize the set Nodes := {r}.
• Step 2. Repeat until level(n) = log(k′) for all n ∈ Nodes;

– Select n ∈ Nodes, such that level(n) < log(k′).
– Remove n from Nodes.
– Call Algorithm 5 (Divide) with input (s(n), T (n), τ(n),P(n),Q(n), A(n)).

∗ For each α output by Algorithm 5 (Divide) add a node m to
Nodes with
(1) s(m) := (s(n), 0);
(2) (T (m), τ(m)) := (T (n), τ(n)); W (m) := W (n);
(3) P(m) := P0(α) ⊂ Rt+1[Tfix(m), XFix(m)+1, . . . , Xk];

(4) Q(m) := Q0(α) ⊂ Rt+1[Tfix(m), XFix(m)+1, . . . , Xk];
(5) A(m) := A(α).

∗ For each real univariate representation uw = (fw, Fw), τ , in N ,
representing a point w ∈ N , with fw,, Fw ⊂ Dt[Tfix(n), Tt+1],
output by the algorithm, add a node m to Nodes with
(1) s(m) := (s(n), 1);
(2) (T (m), τ(m)) := (T (n), fw), (τ(n), τ); W (m) := (W (n), uw);
(3) P(m) := P(n)w ⊂ Rt[Tfix(m), XFix(m)+1, . . . , Xk];
(4) Q(m) := Q(n)w ⊂ Rt[Tfix(m), XFix(m)+1, . . . , Xk];

(5) A(m) := Ã(n)w ∪B(n)w.

∗ Denote by A(m) (respectively, B(m), Ã(m)) the set of points as-

sociated to A(m) (respectively, B(m), Ã(m)).

Proof of correctness. The correctness of the algorithm follows from Theorem 7.4
and the correctness of Algorithm 5. �

Proof of complexity and degree bounds. We first observe that for each call to Al-
gorithm 5 (Divide) in Algorithm 6 the input satisfies the estimates used in the
complexity analysis of Algorithm 5 (Divide). This is obvious when Algorithm 5
(Divide) is called with n = r, and in the other cases it follows inductively from the
bound on the degrees proved in the complexity analysis of Algorithm 5 (Divide).

Using the complexity analysis of Algorithm 5 (Divide) the number of right chil-
dren of any node n of level t in the tree created by the algorithm is bounded by the
cardinality of N(n), which in turn is bounded by (card(A(n))+1)((2k)t+1d)ck. The
number of left children of n is bounded by k × card(I(P(n),Q(n), k′/2level(n))) =
O(1)k. Thus, the total number of children of a node n of level t is bounded by
(card(A(n)) + 1)((2k)t+1d)ck.
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Now let m,m′ be two distinct right children of n. Then, clearly A(m)∩A(m′) = ∅,
and using the complexity analysis of Algorithm 5 (Divide) we have∑

m right child of n

card(A(m)) ≤ card(B(n)) + card(Ã(n))

≤ 2(card(A(n)) + 1)((2k)t+1d)ck.

Moreover, for each left child m of n, card(A(m)) ≤ card(A(n))((2k)t+1d)ck again
using the complexity analysis of Algorithm 5 (Divide). But since there are only
O(1)k left children of n we obtain that∑

m child of n

(card(A(m)) + 1) ≤ 3(card(A(n)) + 1)((2k)t+1d)ck,

≤ (card(A(n)) + 1)((2k)t+1d)c
′k.(30)

for some c′ > 0.
We now prove by induction on t, with base case t = 0, that∑

level(n)=t

(card(A(n)) + 1) ≤ (card(A) + 1)((2k)t+1d)c
′′k(t+1).(31)

for some c′′ > 0.
For the base case,

card(A(r)) + 1 ≤ (card(A) + 1)(2kd)c
′′k.

For the inductive step (from t− 1 to t) we have∑
level(m)=t

(card(A(m)) + 1) =
∑

level(n)=t−1

∑
m child of n

(card(A(m)) + 1)

≤
∑

level(n)=t−1

(card(A(n)) + 1)((2k)td)c
′k(using (30))

≤ (card(A) + 1)((2k)td)c
′′kt((2k)td)c

′k

(using the induction hypothesis)

≤ (card(A) + 1)((2k)t+1d)c
′′k(t+1),

taking c′′ large compared to c′.
Using the complexity analysis of Algorithm 5 (Divide) and (31), we now obtain

that the total cost of the calls to Algorithm 5 (Divide) for all nodes of the tree at
level t is bounded by

(card(A) + 1)((2k)t+1d)c
′′k(t+1)DO(t2)(ktd)O(t2k) = (card(A) + 1)DO(t2)(ktd)O(t2k).

Since the tree has depth log(k′) the total cost of the calls to Algorithm 5 (Divide)
is bounded by

(card(A) + 1)DO(log2(k′))(klog(k′)d)O(k log2(k′)).

From the complexity analysis of Algorithm 5 (Divide) we also get that for each
n ∈ Leav, the degrees in TFix(n), ad the variables η’s, of the polynomials in T (n),
as well as those in P(n) and Q(n), are all bounded by

Dlog(k′)+1(klog(k′)d)O(k log(k′)).

The degrees in XFix(n)+1, . . . , Xk of P(n) and Q(n) are bounded by O(k)log(k′)d. �
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Remark 7.19. Note that in the above analysis of the degrees in the variables T ’s
and the infinitesimals η’s of the polynomials in P(n),Q(n) depend on s(n). It is
instructive to work out the actual bound on the degrees in the following three cases
(in the special case where A = ∅):
1. s(n) = 0t: In this case, the polynomials in P(n),Q(n) do not have any T ′s in
them, and the degrees in η is bounded by O(k)td. It is not difficult to see that the
complexity of Algorithm 5 (Divide) at such a node is bounded by dO(k)kO(kt) =

dO(k)kO(k log(k′)).
2. s(n) = 1t: In this case, the degrees of the polynomials in P(n),Q(n) in T ’s and

η’s are bounded by O(d)k
′/2t−1

. As a consequence, it is not difficult to see that the

complexity of Algorithm 5 (Divide) at such a node is bounded by dO(k)kO(k log(k′)).
If these were the only types of nodes in the tree computed by Algorithm 6 then

we would obtain an algorithm with complexity dO(k log(k′))kO(k log2(k′)). In fact the
complexity is worse and this is caused by paths in the tree which are away from the
extreme left and right ones. For example consider a node n with level t, and with
s(n) = 0101 . . .. The polynomials in P(n),Q(n) will depend on T2, T4, . . . while
since Free(m) ≥ k

2 for each node m along the path from the root to n, the degrees

in each of the T2i can only be bounded by (kid)O(ki), and is thus (ktd)O(kt) in
the worst case. As a result the complexity of the call to Algorithm 5 (Divide) at

the node n can only be bounded by (klog(k′)d)O(k log2(k′)), and this dominates the
complexity of all calls to Algorithm 5 (Divide) in Algorithm 6.

7.5. Divide and Conquer Roadmap. We are going to construct the roadmap
of V from the tree Tree(V,A), by taking limits of the basic semi-algebraic sets
associated to the leaves, which are strongly of dimension ≤ 1. Theorem 7.4 then
guarantees the correctness of the algorithm. Thus, we need to know how to compute
limits of points and curve segments, and this what we explain below.

In the following ε = (ε1, . . . , εt) is a tuple of infinitesimals.

Algorithm 7. [Limit of a Bounded Point]

• Input:
(1) A Thom encoding (fε, σε) , fε ∈ D [ε, U ], representing xε ∈ R〈ε〉

bounded over R.
(2) A real univariate representation (gε, τε, Gε) over (fε, σε), where gε, Gε ⊂

D[ε, U, V ], representing a point zε ∈ R〈ε〉p bounded over R.
• Output: a real univariate representation (g, τ,G) representing

z = lim
ε1

(zε̄) ∈ Rp.

• Complexity and degree bounds: If D is a bound on the degrees of the
polynomials in fε, gε and Gε with respect to U, V and ε, then the degrees
of the polynomials appearing in the output are bounded by DO(1), and the
number of arithmetic operations in D is bounded by pO(1)DO(t).
• Procedure:
• Step 1. Using Algorithm 12.16 (Bounded Algebraic Sampling) from [2]

in the ring D [ε] with input {fε, gε} obtain a set of univariate representa-
tion u = (hε, H = (h0, hU , hV )). For each such u, substitute the rational
function hU

h0
for U in fε and its derivatives with respect to U . Similarly,

substitute the rational functions hU
h0
, hVh0

for U, V in gε and its derivatives

with respect to V to obtain fε,u, gε,u and Der (fε)u,Der (gε)u.
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• Step 2. Using Algorithm 10.13 (Univariate Sign Determination) from [2]
with input hε, Der (hε) and Der (fε)u,Der (gε)u, determine a real univari-
ate representation u = (hε, τ

′
ε, E = (h0, hU , hV )) whose associated point is

(uε, vε) where uε is associated to the Thom encoding (fε, σε) and vε is asso-
ciated to the Thom encoding (gε, τε) over (fε, σε). Substitute the rational
functions hU

h0
, hVh0

for U, V in Gε, to obtain Gε,u and replace (gε, τε, Gε) by

the new real univariate representation (e, τe, Gε,u), where e ∈ D [ε,T ].

• Step 3. Replace (see Notation 5.3) gε by ε−oε(gε)gε. Denote by g(T ) the
polynomial obtained by substituting successively εt by 0, and then εt−1

by 0, and so on, and finally ε1 by 0, in gε. Similarly denote by G(T ) the
polynomials obtained by substituting successively εt by 0, and then εt−1

by 0, and so on, and finally ε1 by 0, in Gε.
• Step 4. Compute the set Σ of Thom encodings of roots of g(T ) using

Algorithm 10.13 (Univariate Sign Determination) from [2]. Denoting by µσ
the multiplicity of the root of g(T ) with Thom encoding σ, define Gσ as
the (µσ − 1)-st derivative of G with respect to T .
• Step 5. Identify the Thom encoding σ and Gσ representing z using Algo-

rithm 11.13 (Univariate Sign Determination) from [2], by checking whether
a ball of infinitesimal radius δ (1 � δ � ε > 0) around the point z repre-
sented by the real univariate representation g, σ,Gσ contains zε.

Proof of correctness. The correctness of the algorithm follows from the correctness
of Algorithm 12.16 (Bounded Algebraic Sampling) and Algorithm 10.13 (Univariate
Sign Determination) from [2]. �

Proof of complexity and degree bounds. Using the complexity analysis of Algorithm
12.16 (Bounded Algebraic Sampling) from [2] the number of arithmetic operations
in the ring D [ε] is bounded by pO(1)DO(1). The degrees in T, ε of the polynomials in
H, as well as fε,u, gε,u, are also bounded by DO(1). From the complexity analysis of
Algorithm 10.13 (Univariate Sign Determination) from [2], the number of arithmetic
operations in D [ε] in Step 2 is bounded by DO(1). It also follows that the number
of arithmetic operations in D of these two steps is bounded by DO(t). From the
bound on the degrees in ε it follows that the complexity of Step 3 is bounded by
pO(1)DO(t). Since the degrees do not increase in Step 3, it follows again from the
complexity analysis of Algorithm 10.13 (Univariate Sign Determination) from [2]
that the number of arithmetic operations in D in Steps 4 and 5 is bounded by
pO(1)DO(t). Thus, the total complexity is bounded by pO(1)DO(t), and the degrees
of the polynomials appearing in the output are bounded by DO(1). �

Definition 7.20. Let (g1, τ1), (g2, τ2) be Thom encodings above a Thom encoding
(h, σ). We denote by z ∈ R the point specified by (h, σ), and by (z, a), (z, b) the
points specified by (g1, τ1) and (g2, τ2).

A curve segment representation(u, ρ) on (g1, τ1), (g2, τ2) over (h, σ) is:

• a parametrized univariate representation with parameters (X≤i), i.e.,

u = (f(Z,X,U), f0(Z,X,U), f1(Z,X,U), . . . , fk(Z,X,U)) ⊂ D[Z,X,U ],

• a sign condition ρ on Der(f) such that for every x ∈ (a, b) there exists a
real root u(x) of f(z, x, U) with Thom encoding ρ and f0(z, x, u(x)) 6= 0.
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The curve segment associated to u, ρ is the semi-algebraic function υ which maps a
point x of (a, b) to the point of Rk defined by

υ(x) =

(
x,
f1(z, x, u(x))

f0(z, x, u(x))
, . . . ,

fk(z, x, u(x))

f0(z, x, u(x))

)
.

It is a continuous injective semi-algebraic function.

In the following algorithms we will need to compute descriptions of the limits of
certain curve segments. These limits are computed using a slight modification of
Algorithm (Limit of a Curve) from [3].

Algorithm 8. [Divide and Conquer Roadmap Algorithm for Bounded Algebraic
Sets]

• Input: A polynomial P ∈ D[X1, . . . , Xk] such that Zer(P,Rk) is bounded,
and a set A = {u1, . . . , um} of real univariate representations with associ-

ated set of points A ⊂ Zer(P,Rk).

• Output: A roadmap, DCRM(Zer(P,Rk),A), of Zer(P,Rk) containing A.
• Complexity and degree bounds: Let d = deg(P ) and suppose that the

degrees of the polynomials appearing in the real univariate representation in
A with associated point pi be bounded by Di. The complexity is bounded
by (

1 +

m∑
i=1

D
O(log2(k′))
i

)
(klog(k′)d)O(k log(k′)2 .

Moreover, the degrees of the polynomials appearing in the descriptions of
the curve segments and points in the output are bounded by

( max
1≤i≤k

Di)
O(log(k′))(klog(k′)d)O(k log(k′)).

• Procedure:
• Step 1. For each i, 1 ≤ i ≤ m, call Algorithm 6 with input P and {ui}, and

denote by Leav the collection of the leaves of Tree(V, {ui}), i = 1, . . . ,m.
• Step 2. Define

Γ :=
⋃

n∈Leav

Bas(n)).

Compute limζ1(Γ) as follows.
(1) For each n ∈ Leav, let

F (n) :=
∑

f∈T (n)

f2 ∈ Dlog(k′)[Tfix(n)].

(2) Compute using Algorithm 12.16 (Bounded Algebraic Sampling) from
[2] in the ring Dlog(k′)[θ(n)] and F (n) as input, and compute a real
univariate representation un = (hn, σn,Hn) whose associated point

w(n) ∈ R
Fix(n)
log(k′).

(3) For every Q′ ⊂ Q(n), apply Algorithm 15.2 (Curve Segments) from [2]
with input the Thom encoding (hn, σn,) specifying cn ∈ Rlog(k′) and
the polynomial

G(n) =
∑

g∈P(n)un∪Q′un

g2 ∈ Dlog(k′)[U,XFix(n)+1, . . . , Xk].
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with parameter XFix(n)+1 to obtain a set, Γn, of curve segments with

associated sets contained in {w(n)}×R
k−Fix(n)
log(k′) . Subdivide the interval

of definition of each curve segment into pieces above which the sign
of Q(n) remains fixed on the curve segment, and retain only those
contained Bas(P(n),Q(n)) using Algorithm 11.19 (Restricted Elimi-
nation) from [2].

(4) Now apply Algorithm (Limit of a Curve) from [3] to the curve seg-
ments output in Step 3, with the following modifications : we use
Algorithm 7 (Limit of a Bounded Point) instead of the corresponding
algorithm in [3] and replace the various instances of substituting ε by
0 by substituting successively ηt by 0, and then ηt−1 by 0, and so on,
and finally η1 by 0.

Proof of correctness. Follows from the correctness of Algorithm 6, Algorithm 7,
Algorithm (Limit of a Curve) from [3], and Proposition 7.3. �

Proof of complexity and degree bounds. The complexity of Step 1 is(
1 +

m∑
i=1

D
O(log2(k′))
i

)
(klog(k′)d)O(k log2(k′))

by the complexity of Algorithm 6. Now using the complexity analysis of Algorithm
12.16 (Bounded Algebraic Sampling) from [2], as well as those of Algorithm 15.2
(Curve Segments) from [2], and Algorithm 11.19 (Restricted Elimination) from [2],
the number of arithmetic operations in D[η] in Steps 2(i), 2(ii), and 2(iii) is bounded
by (

1 +

m∑
i=1

D
O(log(k′))
i

)
(klog(k′)d)O(k log(k′)).

So using the fact that the degrees in η are bounded byD
O(log(k′))
i (klog(k′)d)O(k log(k′))

in the complexity analysis of Algorithm 6, the number of arithmetic operations in
D is bounded by (

1 +

m∑
i=1

D
O(log2(k′))
i

)
(klog(k′)d)O(k log2(k′)).

Note also that the degrees (in the parameters as well as in η) of the polyno-
mials used to describe the curve segments output in Step 2(iii) are bounded by

D
O(log(k′))
i (klog(k′)d)O(k log(k′)). Finally using the complexity analysis of Algorithm

(Limit of a Curve) from [3], as well as that of Algorithm 7 (Limit of a Bounded
Point), we get that the complexity of Step 2(iv) is bounded by(

1 +

m∑
i=1

D
O(log2(k′))
i

)
(klog(k′)d)O(k log2(k′))

as well. Thus, the total complexity is bounded by(
1 +

m∑
i=1

D
O(log2(k′))
i

)
(klog(k′)d)O(k log2(k′)).

Moreover, it follows from above and the complexity of Algorithm (Limit of a Curve)
from [3], and Algorithm 7 (Limit of a Bounded Point), that the degrees of the
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polynomials appearing in the descriptions of the curve segments and points in the
output are bounded by (max1≤i≤kDi)

O(log(k′))(klog(k′)d)O(k log(k′)). �

We are now in a position to describe a divide-and-conquer algorithm for comput-
ing a roadmap of a general (i.e., possibly unbounded) algebraic set. The procedure
of passing from the bounded case to the unbounded one is the same as that used
in [1] as well as in [3]. We include it here for the sake of completeness.

We first need a notation.

Notation 7.21. Let F ∈ D[X] be given by F = apX
p + · · ·+ aqX

q. We denote

c(P ) =

 p∑
i=q

∣∣∣ aiaq ∣∣∣
−1

.

Algorithm 9. [Divide and Conquer Roadmap Algorithm for General Algebraic
Sets]

• Input: A polynomial P ∈ D[X1, . . . , Xk] such that Zer(P,Rk) is bounded
and strongly of dimension ≤ k′, and a set A = {u1, . . . , um} of real univari-

ate representations with associated set of points A ⊂ Zer(P,Rk).

• Output: A roadmap, DCRM(Zer(P,Rk),A), of Zer(P,Rk) containing A.
• Complexity and degree bounds: Let d = deg(P ), and suppose that the

degrees of the polynomials appearing in the real univariate representation in
A with associated point pi are bounded by Di. The complexity is bounded
by (

1 +

m∑
i=1

D
O(log2(k′))
i

)
(klog(k′)d)O(k log(k′)2 .

The degrees of the polynomials appearing in the descriptions of the curve
segments and points in the output are bounded by

( max
1≤i≤k

Di)
O(log(k′))(klog(k′)d)O(k log(k′)).

• Procedure:
• Step 1. Introduce new variables Xk+1 and ε and replace P by the polyno-

mial

Pε = P 2 +

(
ε2

(
k+1∑
i=1

X2
i

)
− 1

)2

.

• Step 2. Replace A by Aε, the set of real univariate representations repre-
senting the elements Aε of Zer(Pε,R〈ε〉k) above the points represented by
A using Algorithm 12.16 (Bounded Algebraic Sampling) [2].

• Step 3. Call Algorithm 8 (Divide and Conquer Roadmap Algorithm for
Bounded Algebraic Sets) with input Pε, A, performing arithmetic opera-
tions in the domain D [ε]. The algorithm outputs a roadmap

DCRM
(
Zer(Pε,R〈ε〉k+1),Aε

)
composed of points and curves whose description involves ε.

• Step 4. Denote by L the set of polynomials in D [ε] whose signs have been
determined in the preceding computation and take

a = min
F∈L

c(F )
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using Notation 7.21.
Replace ε by a in the polynomial Pε to get a polynomial Pa. Replace

ε by a in the output roadmap to obtain a roadmap which when projected
to Rk gives a roadmap of Zer(P,Rk) ∩ B̄k

(
0, 1

a

)
, (where B̄k(x, r) is the

k-dimensional closed ball of center x and radius r) containing the finite set
of points A.
• Step 5. In order to extend the roadmap outside B̄k

(
0, 1

a

)
collect all the

points (y1, . . . , yk, yk+1) ∈ R〈ε〉k+1 in the roadmap

DCRM(Zer(Pε,R〈ε〉k+1),Aε)
which satisfies ε2(y2

1 +· · ·+y2
k+1) = 1. Each such point is described by a real

univariate representation involving ε. Add to the roadmap the curve seg-
ment obtained by first forgetting the last coordinate and then treating ε as a
parameter which varies over (0, a] to get a roadmap DCRM(Zer(P,Rk),A).

Proof of correctness. The correctness follows from the correctness of Algorithm 8
(Divide and Conquer Roadmap Algorithm for Bounded Algebraic Sets), taking into
account that a bounded algebraic set is always strongly of dimension ≤ k − 1. �

Proof of complexity and degree bounds. It is clear that the complexity is dominated
by that of the third step. The degree bounds on the polynomials in the output follow
from those of Algorithm 8 (Divide and Conquer Roadmap Algorithm for Bounded
Algebraic Sets). �

7.6. Proofs of Theorem 1.4, Theorem 1.2 and Theorem 1.5.

Proof of Theorem 1.4. Clear from the the proofs of correctness, complexity and de-
gree bounds of Algorithm 8 (Divide and Conquer Roadmap Algorithm for Bounded
Algebraic Sets). �

Proof of Theorem 1.2. Clear from the proofs of correctness, complexity and degree
bounds of Algorithm 9 (Divide and Conquer Roadmap Algorithm for General Al-
gebraic Sets). �

Proof of Theorem 1.5. Using Theorem 1.2, we have that x, y can be connected by
a semi-algebraic path, consisting of at most (klog(k)d)O(k log(k)) curve segments,
and each curve segment has degree bounded by (klog(k)d)O(k log(k)). It is clear
that a curve segment of degree bounded by D meets a generic hyperplane in at
most O(D2) points. It now follows immediately from the Cauchy-Crofton formula
[19] that the length of each curve segment appearing in the path is bounded by
(klog(k)d)O(k log(k)), and finally that the total length of the path is also bounded by
(klog(k)d)O(k log(k)). �

8. Annex : Auxiliary proofs

The main purpose of this Annex is to prove Lemma 2.7, Lemma 2.8 and Propo-
sition 4.6 which were stated earlier in the paper. We first proof an auxiliary propo-
sition that will be needed in the proofs of Lemma 2.8 and Proposition 4.6.

Proposition 8.1. Let P,Q ⊂ R[X1, . . . , Xk] be a finite set of polynomials and let
G ∈ R[X1, . . . , Xk]. Suppose that [a, b] ⊂ R is such that G(Crit(P,Q, G))∩ (a, b) is
empty. Let S = Bas(P,Q) be bounded. Then, for any c ∈ (a, b) the semi-algebraic
set Sa<G<b is homeomorphic to SG=c×(a, b) by a fiber preserving homeomorphism.
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In particular, for each semi-algebraically connected component C of Sa<G<b, CG=c

is non-empty and semi-algebraically connected.

Proof. The condition that G(Crit(P,Q, G)) ∩ [a, b] is empty implies that Sa<G<b
is a Whitney-stratified set with strata Zer(P ∪ Q′,Rk)a<G<b ∩ S, Q′ ⊂ Q, where
the dimension of Zer(P ∪Q′,Rk)a<G<b is equal to k− (card(P ∪Q′) if non-empty.
The proposition now follows from a basic result in stratified Morse theory (see for
example, Theorem SMT Part A in [9]). �

8.1. Proof of properties of G-critical values.

Proof of Lemma 2.7. Let x and y be two points of CG≤a and γ : [0, 1] → C be a
semi-algebraic path connecting x to y inside C. We want to prove that there is a
semi-algebraic path connecting x to y inside CG≤a.

If Im(γ) ⊂ CG≤a there is nothing to prove. If Im(γ) 6⊂ CG≤a,

∃c ∈ R,∀a < d < c, Im(γ) ∩ SG=d 6= ∅.

Let ε be a positive infinitesimal. Then

Ext(γ([0, 1]),R〈ε〉) ∩ Ext (S,R〈ε〉)G=a+ε 6= ∅

using [2, Proposition 3.17].
Since

{u ∈ [0, 1] ⊂ R〈ε〉 | Ext(γ,R 〈ε〉) (u) ∈ Ext (S,R〈ε〉)G<a+ε}

and

{u ∈ [0, 1] ⊂ R〈ε〉 | Ext(γ,R 〈ε〉) (u) ∈ Ext (S,R〈ε〉)[a+ε≤G≤b]}

are semi-algebraic subsets of [0, 1] ⊂ R〈ε〉 there exists by [2, Corollary 2.79] a
finite partition P of [0, 1] ⊂ R〈ε〉 such that for each open interval (u, v) of P,
Ext(γ,R 〈ε〉) (u, v) is either contained in

Ext (S,R〈ε〉)G<a+ε ,

or in

Ext (S,R〈ε〉)[a+ε≤G≤b] ,

with γ(u) and γ(v) in CG=a+ε.
If Ext(γ,R 〈ε〉) (u, v) is contained in Ext (S,R〈ε〉)[a+ ε ≤ G ≤ b], we can replace γ

by a semi-algebraic path γ′[a,b] connecting γ(u) to γ(v) inside CG<a+ε. Note that

there is no critical point of G in Ext (S,R〈ε〉)[a+ε≤G≤b] by [2, Proposition 3.17].

By Proposition 8.1, if D is a semi-algebraically connected component of

Ext(S,R 〈ε〉)a+ε≤G≤b ,

DG=a+ε is a semi-algebraically connected component of Ext(S,R 〈ε〉)G=a+ε.
Construct a semi-algebraic path γ′ from x to x′ inside CG≤a+ε, obtained by

concatenating pieces of γ inside Ext (S,R〈ε〉)G<a+ε and the paths γ′(u,v) connecting

γ(u) to γ(v) for (u, v) such that Ext(γ,R 〈ε〉) (u, v) ⊂ Ext (S,R〈ε〉)a+ε≤G≤b. Note

that such a semi-algebraically connected path γ′ is closed and bounded. Applying
[2, Proposition 12.43], limε(γ

′([0, 1])) is semi-algebraically connected, contains x
and x′ and is contained in limε(CG≤a+ε) = CG≤a. This is enough to prove the
lemma. �
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Proof of Lemma 2.8. We are going to prove the lemma assuming R = R. The
general case follows from a standard transfer argument that we omit.

Part (1) follows immediately from Proposition 8.1. We now prove Part (2).
Since M is finite, there is a point x ∈ CG=b which is not a critical point of G on
S. Let Px = {P ∈ P ∪ Q | P (x) = 0}. Then, since x is not a G-critical point of

Zer(Px,Rk), it follows that TxZer(Px,Rk) is not tangent to the level surface of G
defined by G = b, and hence for ε > 0 infinitesimal, Bk (x, ε)G<b∩TxZer(Px,R〈ε〉k)
is not empty (where Bk(x, r) is the k-dimensional open ball of center x and radius r),
and hence Bk (x, ε)G<b ∩ Zer(Px,R〈ε〉k) is not empty either. Let y ∈ Bk (x, ε)G<b∩
Zer(Px,R〈ε〉k). Then, since limε y = x and y ∈ Zer(Px,R〈ε〉k), we have that for
each polynomial P ∈ P ∪Q, P (x) and P (y) have the same signs, and hence y ∈ S.
Moreover, since S is closed and limε y = x ∈ C, we have that y ∈ Ext (C,R〈ε〉).
Now using the transfer principle it follows CG<b is non-empty.

Parts (2a) and (2b) are immediate consequences of Proposition 8.1.
We prove (2c). Clearly, ∪ri=1Bi ⊂ C. Suppose that x ∈ A = C \ ∪ri=1Bi. For

r > 0 and small enough, Bk(x, r)∩CG<b = ∅ . Note that G(b) = b, since otherwise
x belongs to CG<b, and thus to one of the Bi’s.

Applying Proposition 8.1, we deduce from the fact that Bk(x, r) ∩ CG<b =

Bk(x, r)G<b ∩ C = ∅ that x is a G-critical point of Zer(Px,Rk). In other words
x ∈M. But since by assumptionM is finite, this implies that A is a finite set and
is thus closed. Since C is semi-algebraically connected and ∪ri=1Bi is closed and
non-empty, A must be empty. �

8.2. Proof of properties of (B,G)-pseudo-critical values.

Proof of Proposition 4.6. We are going to prove the proposition assuming R = R.
The general case follows from a standard transfer argument that we omit. Let
F = {F1, . . . , Fs}, where P = {F1, . . . , Fm},Q = {Fm+1, . . . , Fs}.

(1) It follows from the good rank property of the matrix B and Proposition 4.4

that for any I ⊂ [1, s], σ ∈ {−1, 1}I , the algebraic sets Zer(F̃I,σ,B ,R〈γ〉k)
have at most isolated singularities. It now follows by the semi-algebraic
Sard’s theorem [4], that the set of critical values of G restricted to the

various Zer(F̃I,σ,B ,R〈γ〉k) is a finite set. This proves that the set D(P ∪
Q, B,G) is finite.

(2) Let

F̃ =

m⋃
i=1

{±Fi + γHi} ∪
s⋃

i=m+1

{Fi + γHi}

and S̃ = Bas(∅, F̃) ⊂ R〈γ〉k.Clearly, Ext (S,R〈γ〉) ⊂ S̃, and since S is
bounded, there exists a unique semi-algebraically connected component,
D̃ of S̃a≤G≤b, such that D̃ is bounded over R, Ext (D,R〈γ〉) ⊂ D̃, and

limγ D̃ = D. It is also clear from the definition of S̃ and the fact that

c ∈ R, that Ext (DG=c,R〈γ〉) ⊂ D̃G=c, and DG=c = limγ(D̃G=c). Since,

D̃ is bounded over R, in order to prove that DG=c is non-empty and
semi-algebraically connected, it suffices to prove (using Proposition 12.43

in [2]) that D̃G=c is non-empty and semi-algebraically connected. Since,

limγ(Crit(F̃I,σ,B , G))∩ [a, b]\{c} is empty for all I ⊂ [1, s] and σ ∈ {−1, 1}I ,
it follows that for all I ⊂ [1, s] and σ ∈ {−1, 1}I , (Crit(F̃I,σ,B , G)) ∩ [a, b]
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belong to the interval [c − δ, c + δ] (respectively, [a, a + δ] if c = a, and
[b− δ, b] if c = b), where δ > 0 is a new infinitesimal.

We claim that Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ in case c 6= a, b (respectively,

Ext(D̃,R〈γ, δ〉)a≤G≤a+δ if c = a, and Ext
(
D̃,R〈γ, δ〉

)
b−δ≤G≤b

if c = b) is

non-empty and semi-algebraically connected. We prove the statement only
in case c 6= a, b; the proof in the other two cases being very similar.

Let x, y be any two points in Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ.
We show that there exists a semi-algebraic path connecting x to y lying

within Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ. Since, D̃ itself is semi-algebraically con-

nected, there exists a semi-algebraic path, γ : [0, 1] → Ext(D̃,R〈γ, δ〉),
with γ(0) = x, γ(1) = y, and γ(t) ∈ Ext(D̃,R〈γ, δ〉), 0 ≤ t ≤ 1. If

γ(t) ∈ Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ for all t ∈ [0, 1], we are done. Otherwise,
the semi-algebraic path γ is the union of a finite number of closed connected
pieces γi lying either in Ext(D̃,R〈γ, δ〉)a≤G≤c−δ, Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ,
or Ext(D̃,R〈γ, δ〉)c+δ≤G≤b.

By Lemma 2.7 the semi-algebraically connected components of

Ext(D̃,R〈γ, δ〉)G=c−δ

(resp. Ext(D̃,R〈γ, δ〉)G=c+δ ) are in 1-1 correspondence with the semi-
algebraically connected components of

Ext(D̃,R〈γ, δ〉)a≤G≤c−δ

(resp. Ext(D̃,R〈γ, δ〉)c+δ≤G≤b) containing them. In particular, notice that
since D is non-empty being a semi-algebraically connected component of
the semi-algebraic set Sa≤G≤b, D̃ is also non-empty, and hence at least one
of the sets

Ext(D̃,R〈γ, δ〉)a≤G≤c−δ,

Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ,

Ext(D̃,R〈γ, δ〉)c+δ≤G≤b
is not empty. Thus, Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ 6= ∅. But, since

lim
γ

(
Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ

)
= Dc,

this proves that Dc is not empty.
We can now replace using Proposition 8.1 each of the γi lying in

Ext(D̃,R〈γ, δ〉)a≤G≤c−δ

(resp. Ext(D̃,R〈γ, δ〉)c+δ≤G≤b) with endpoints in Ext(D̃,R〈γ, δ〉)G=c−δ
(resp. Ext(D̃,R〈γ, δ〉)G=c+δ) by another segment with the same endpoints

but lying completely in Ext(D̃,R〈γ, δ〉)G=c−δ (resp. Ext(D̃,R〈γ, δ〉)G=c+δ).
We thus obtain a new semi-algebraic path γ′ connecting x to y and lying in-
side Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ. This proves that Ext(D̃,R〈γ, δ〉)c−δ≤G≤c+δ
is semi-algebraically connected and hence so is D̃c = limδ D̃c−δ≤G≤c+δ (by
Proposition 12.43 in [2]).

�
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posantes connexes d’un ensemble semi-algébrique en temps simplement exponentiel. C. R.

Acad. Sci. Paris Sér. I Math., 311(13):879–882, 1990. 2
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