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Semi-algebraic Sets

• Subsets of Rk defined by a formula involving a finite

number of polynomial equalities and inequalities.

• A basic semi-algebraic set is one defined by a conjunction

of weak inequalities of the form P ≥ 0.

• They arise as configurations spaces (in robotic motion

planning, molecular chemistry etc.), CAD models and

many other applications in computational geometry.
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Complexity of Semi-algebraic Sets

Uniform bounds on the number of connected

components, Betti numbers etc., in terms of the degrees

and number of polynomials used to describe them.

Parameters of complexity:

Number of polynomials : n (controls the combinatorial

complexity)

Degree bound : d (controls the algebraic complexity)

Dimension of the ambient space : k
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Classical Result on the Topology of
Semi-algebraic Sets

Theorem 1. (Oleinik and Petrovsky, Thom, Milnor) Let S ⊂ Rk be

the set defined by the conjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi) ≤ d, 1 ≤ i ≤ n. Then,∑
i

βi(S) = nd(2nd− 1)k−1 = O(nd)k.
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Tightness

The above bound is actually quite tight. Example: Let

Pi = L2
i,1 · · ·L2

i,bd/2c − ε,

where the Lij’s are generic linear polynomials and ε > 0 and

sufficiently small. The set S defined by P1 ≥ 0, . . . , Pn ≥ 0 has

Ω(nd)k connected components and hence β0(S) = Ω(nd)k.
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What about the higher Betti Numbers ?

• Cannot construct examples such that βi(S) = Ω(nd)k for i > 0.

• The technique used for proving the above result does not help:

Replace the semi-algebraic set S by another set bounded by

a smooth algebraic hypersurface of degree nd having the same

homotopy type as S.

Then bound the Betti numbers of this hypersurface using Morse

theory and the Bezout bound on the number of solutions of a

system of polynomial equations.
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Connected

component  of  S

Z(Q  )t
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Graded Bounds

Theorem 2. (B, 2001) Let S ⊂ Rk be the set defined by the

conjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi) ≤ d, 1 ≤ i ≤ n.

contained in a variety Z(Q) of real dimension k′, and deg(Q) ≤ d.

Then,

βi(S) ≤
(

n

k′ − i

)
(2d)k.
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The case of the union

Theorem 3. (B, 2001) Let S ⊂ Rk be the set defined by the

disjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi) ≤ d, 1 ≤ i ≤ n. Then,

βi(S) ≤
(

n

i + 1

)
(2d)k.
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Sets defined by Quadratic Inequalities

Theorem 4. (B, 2001) Let ` be any fixed number and let S ⊂
Rk be defined by P1 ≥ 0, . . . , Pn ≥ 0 with deg(Pi) ≤ 2. Then,

βk−`(S) ≤
(
n
`

)
kO(`).
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Sets defined by Quadratic Inequalities

Theorem 4. (B, 2001) Let ` be any fixed number and let S ⊂
Rk be defined by P1 ≥ 0, . . . , Pn ≥ 0 with deg(Pi) ≤ 2. Then,

βk−`(S) ≤
(
n
`

)
kO(`).

This bound is polynomial.

Notice that the lowest Betti numbers of S better not be

polynomially bounded. Example:

S defined by X1(X1 − 1) ≥ 0, . . . , Xk(Xk − 1) ≥ 0. Clearly,

β0(S) = 2k.
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Betti Numbers of Sign Patterns I

• Let Q and P be finite subsets of R[X1, . . . , Xk]. A sign condition

on P is an element of {0, 1,−1}P.

• Let bi(σ) denote the i-th Betti number of the realization of σ, and

let bi(Q,P) =
∑

σ bi(σ).
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Betti Numbers of Sign Patterns II

• Let bi(d, k, k′, n) be the maximum of bi(Q,P) over all Q,P where

Q and P are finite subsets of of R[X1, . . . , Xk], whose elements

have degree at most d, #(P) = n and the algebraic set Z(Q) has

dimension k′.
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Betti Numbers of Sign Patterns II

• Let bi(d, k, k′, n) be the maximum of bi(Q,P) over all Q,P where

Q and P are finite subsets of of R[X1, . . . , Xk], whose elements

have degree at most d, #(P) = n and the algebraic set Z(Q) has

dimension k′.

• Previously known (B, Pollack, Roy (1995))

b0(d, k, k′, n) =
(

4n

k′

)
d(2d− 1)k−1 =

(
n

k′

)
O(d)k.
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Betti Numbers of Sign Patterns III

Theorem 5. (B, Pollack,Roy, 2002)

bi(d, k, k′, n) ≤
∑

0≤j≤k′−i

(
n

j

)
4jd(2d− 1)k−1 =

(
n

k′ − i

)
O(d)k.
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Betti Numbers of Sign Patterns III

Theorem 5. (B, Pollack,Roy, 2002)

bi(d, k, k′, n) ≤
∑

0≤j≤k′−i

(
n

j

)
4jd(2d− 1)k−1 =

(
n

k′ − i

)
O(d)k.

Applications ?
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Generalized Mayer-Vietoris Exact Sequence

• Let A1, . . . , An be subcomplexes of a finite simplicial complex A

such that A = A1∪· · ·∪An. Let Ci(A) denote the R-vector space

of i co-chains of A, and C∗(A) = ⊕iC
i(A).

• We will denote by Aα0,...,αp the subcomplex Aα0 ∩ · · · ∩Aαp.

• The following sequence of homomorphisms is exact.

0 −→ C
∗
(A)

r−→
∏
α0

C
∗
(Aα0)

δ−→
∏

α0<α1

C
∗
(Aα0,α1)

· · · δ−→
∏

α0<···<αp

C
∗
(Aα0,...,αp) · · · δ−→

∏
α0<···<αp+1

C
∗
(Aα0,...,αp+1) · · ·

δ−→ · · ·



15

Mayer-Vietoris Double Complex I

We now consider the following bigraded double complex Mp,q, with

a total differential D = δ + (−1)pd, where

Mp,q =
∏

α0,...,αp

Cq(Aα0,...,αp).

and ...
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...
...

...xd

xd

xd

0 −→
∏

α0
C3(Aα0)

δ−→
∏

α0<α1
C3(Aα0,α1)

δ−→
∏

α0<α1<α2
C3(Aα0,α1,α2) −→xd

xd

xd

0 −→
∏

α0
C2(Aα0)

δ−→
∏

α0<α1
C2(Aα0,α1)

δ−→
∏

α0<α1<α2
C2(Aα0,α1,α2) −→xd

xd

xd

0 −→
∏

α0
C1(Aα0)

δ−→
∏

α0<α1
C1(Aα0,α1)

δ−→
∏

α0<α1<α2
C1(Aα0,α1,α2) −→xd

xd

xd

0 −→
∏

α0
C0(Aα0)

δ−→
∏

α0<α1
C0(Aα0,α1)

δ−→
∏

α0<α1<α2
C0(Aα0,α1,α2) −→xd

xd

xd

0 0 0
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Double Complex
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The Associated Total Complex
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Spectral Sequence

• A sequence of vector spaces progressively approximating the

homology of the total complex. More precisely,
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Spectral Sequence

• A sequence of vector spaces progressively approximating the

homology of the total complex. More precisely,

• a sequence of bi-graded vector spaces and differentials (Er, dr :
Ep,q

r → Ep+r,q−r+1
r ),

• Er+1 = H(Er, dr),

• E∞ = H∗(Associated Total Complex).
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Spectral Sequence

p

q

d1

d2

d3

p + q = i+1p + q = i

Figure 1: The differentials dr in the spectral sequence

(Er, dr)
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Two Spectral Sequences

• There are two spectral sequences associated with Mp,q both

converging to H∗
D(M). The first terms of these are:
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Two Spectral Sequences

• There are two spectral sequences associated with Mp,q both

converging to H∗
D(M). The first terms of these are:

•

E1 = Hδ(M), E2 = HdHδ(M)

•

E′
1 = Hd(M), E′

2 = HδHd(M)
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.

E1 =

... ... ...

C3(A) 0 0

C2(A) 0 0

C1(A) 0 0

C0(A) 0 0
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E2 =

... ... ...

H3(A) 0 0

H2(A) 0 0

H1(A) 0 0

H0(A) 0 0

The degeneration of this sequence at E2 shows that

H∗
D(M) ∼= H∗(A).
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E′
1 =

... ... ...∏
α0

H3(Aα0)
∏

α0<α1
H3(Aα0,α1)

∏
α0<α1<α2

H3(Aα0,α1,α2)∏
α0

H2(Aα0)
∏

α0<α1
H2(Aα0,α1)

∏
α0<α1<α2

H2(Aα0,α1,α2)∏
α0

H1(Aα0)
∏

α0<α1
H1(Aα0,α1)

∏
α0<α1<α2

H1(Aα0,α1,α2)∏
α0

H0(Aα0)
∏

α0<α1
H0(Aα0,α1)

∏
α0<α1<α2

H0(Aα0,α1,α2)
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Lemma 1

Lemma 6. Let A be a finite simplicial complex and A1, . . . , An

subcomplexes of A such that A = A1 ∪ · · · ∪ An. Suppose that

for every `, 0 ≤ ` ≤ i, and for every (` + 1) tuple Aα0, . . . , Aα`
,

βi−`(Aα0,...,α`
) ≤ M . Then, βi(A) ≤

∑
0≤`≤i

(
n

`+1

)
M .
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Lemma 2

Lemma 7. Let P1, . . . , Pl ∈ R[X1, . . . , Xk], deg(Pi) ≤ d, and l ≤
k. Let S be the set defined by the conjunction of the inequalities

Pi ≥ 0. Assume that S is bounded. Then,
∑

i βi(S) = (2d)k.

Theorem 3 follows.

Theorem 2 follows by a dual argument.

Theorem 4 follows using a result of Barvinok (1995).
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Arrangements in Computational Geometry

An arrangement in Rk is a collection of n objects in Rk each of

constant description complexity.

• Arrangements of lines in the plane, or more generally hyperplanes

in Rk.

• Arrangements of balls or simplices in Rk.

• Arrangements of semi-algebraic objects in Rk, each defined by a

fixed number of polynomials of constant degree.
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Arrangements of lines in the R2
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Arrangement of circles in R2
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Arrangement of tori in R3



32

Computing the Betti Numbers: Previous Work



32

Computing the Betti Numbers: Previous Work

• Schwartz and Sharir, in their seminal papers on the Piano Mover’s

Problem (Motion Planning).



32

Computing the Betti Numbers: Previous Work

• Schwartz and Sharir, in their seminal papers on the Piano Mover’s

Problem (Motion Planning).

• Computing the Betti numbers of arrangements of balls by

Edelsbrunner et al (Molecular Biology).



32

Computing the Betti Numbers: Previous Work

• Schwartz and Sharir, in their seminal papers on the Piano Mover’s

Problem (Motion Planning).

• Computing the Betti numbers of arrangements of balls by

Edelsbrunner et al (Molecular Biology).

• Computing the Betti numbers of triangulated manifolds

(Edelsbrunner, Dey, Guha et al).



33

Complexity of Algorithms



33

Complexity of Algorithms

• In computational geometry it is customary to study the

combinatorial complexity of algorithms. The algebraic complexity

(dependence on the degree) is considered to be a constant.



33

Complexity of Algorithms

• In computational geometry it is customary to study the

combinatorial complexity of algorithms. The algebraic complexity

(dependence on the degree) is considered to be a constant.

• We only count the number of algebraic operations and ignore the

cost of doing linear algebra.
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Two Approaches

Global
vs

Local
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First Approach (Global): Using
Triangulations

Semi−algebraic

homeomorphism
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Triangulation via Cylindrical Algebraic Decomposition
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Computing Betti Numbers using Global
Triangulations

• Compact semi-algebraic sets are finitely triangulable.

• First triangulate the arrangement using Cylindrical algebraic

decomposition and then compute the Betti numbers of the

corresponding simplicial complex.

• But ... CAD produces O(n2k
) simplices in the worst case.
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Second Approach (Local): Using the Nerve
Complex

• If the sets have the special property that all their non-empty

intersections are contractible we can use the nerve lemma (Leray,

Folkman).

• The homology groups of the union are then isomorphic to the

homology groups of a combinatorially defined complex called the

nerve complex.
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The Nerve Complex

Figure 2: The nerve complex of a union of disks
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Computing the Betti Numbers via the
Nerve Complex (local algorithm)

• The nerve complex has n vertices, one vertex for each set in the

union, and a simplex for each non-empty intersection among the

sets.
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Computing the Betti Numbers via the
Nerve Complex (local algorithm)

• The nerve complex has n vertices, one vertex for each set in the

union, and a simplex for each non-empty intersection among the

sets.

• Thus, the (`+1)-skeleton of the nerve complex can be computed by

testing for non-emptiness of each of the possible
∑

1≤j≤`+2

(
n
j

)
=

O(n`+2) at most (` + 2)-ary intersections among the n given sets.
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What if the sets are not special ?

• If the sets are such that the topology of the “small” intersections

are controlled, then

• we can use the Leray spectral sequence as a substitute for the nerve

lemma.

• The algorithmic version gives the first efficient algorithm for

computing the Betti numbers, without the double-exponential

complexity entailed in CAD.
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Main Result

Theorem 8. Let S1, . . . , Sn ⊂ Rk be compact semi-algebraic sets

of constant description complexity and let S = ∪1≤i≤nSi, and 0 ≤
` ≤ k− 1. Then, there is an algorithm to compute β0(S), . . . , β`(S),
whose complexity is O(n`+2).
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The Algorithm

• Compute the spectral sequence (E′
r, dr) of the Mayer-Vietoris

double complex.

• In order to compute β`, we only need to compute upto E′
`+2.But

the punchline is that:

• In order to compute the differentials dr, 1 ≤ r ≤ `+1, it suffices to

have independent triangulations of the different unions taken upto

` + 2 at a time.
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• For instance, it should be intuitively clear that in order to compute

β0(∪iSi) it suffices to triangulate pairs.
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• To what extent does topological simplicity aid algorithms in

computational geometry ?


