Applications of algebraic geometry and model theory in incidence combinatorics

Workshop on Algebraic Methods in Discrete and Computational Geometry CG Week, Portland State University, Jun 21, 2019

Saugata Basu

Department of Mathematics
Purdue University

June 21, 2019

Ricky in Purdue, Dec 2011

Outline

(1) Some history

(2) Semi-algebraic case

- Bounds on Betti numbers: methods
- Method of effective triangulation
- Critical point method
- Method coming from complex algebraic geometry

(3) More general structures

Outline

(1) Some history
(2) Semi-algebraic case

- Bounds on Betti numbers: methods
- Method of effective triangulation
- Critical point method
- Method coming from complex algebraic geometry

(3) More general structures

Outline

(1) Some history
(2) Semi-algebraic case

- Bounds on Betti numbers: methods
- Method of effective triangulation
- Critical point method
- Method coming from complex algebraic geometry
(3) More general structures

Some papers from the initial years ...

- Goodman, Jacob E.(1-CCNY); Pollack, Richard(1-NY-X), "There are asymptotically far fewer polytopes than we thought." Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 127-129.
that of counting the number of isomorphism classes of labelled simplicial polytopes which is converted in turn to the problem of finding the number of connected components of a particular set. Then a result of J. Milnor [Proc. Amer. Math. Soc. 15 (1964), 275-280; MR0161339] finishes the proof..."

Some papers from the initial years ...

- Goodman, Jacob E.(1-CCNY); Pollack, Richard(1-NY-X), "There are asymptotically far fewer polytopes than we thought." Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 127-129.
that of counting the number of isomorphism classes of labelled simplicial polytopes which is converted in turn to the problem of finding the number of connected components of a particular set. Then a result of J. Milnor [Proc. Amer. Math. Soc. 15 (1964), 275-280; MR0161339] finishes the proof..."

Some papers from the initial years ...

- Goodman, Jacob E.(1-CCNY); Pollack, Richard(1-NY-X), "There are asymptotically far fewer polytopes than we thought." Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 127-129.
" ... The proof for the upper bound involves converting the problem to that of counting the number of isomorphism classes of labelled simplicial polytopes which is converted in turn to the problem of finding the number of connected components of a particular set. Then a result of J. Milnor [Proc. Amer. Math. Soc. 15 (1964), 275-280; MR0161339] finishes the proof..."
- Pollack, Richard(1-NY-X); Roy, Marie-Françoise(F-RENNB-IM) "On the number of cells defined by a set of polynomials." C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 6, 573-577.

Some papers from the initial years (cont) ...

- Goodman, J. E.(1-CCNY); Pollack, R.(1-NY-X); Wenger, R.(1-OHS) "On the connected components of the space of line transversals to a family of convex sets." Discrete Comput. Geom. 13 (1995), no. 3-4, 469-476.
- Basu, Saugata(1-NY-X); Pollack, Richard(1-NY-X); Roy, Marie-Françoise(F-RENNB-IM) "On the number of cells defined by a family of polynomials on a variety." Mathematika 43 (1996), no. 1, 120-126

Some papers from the initial years (cont) ...

- Goodman, J. E.(1-CCNY); Pollack, R.(1-NY-X); Wenger, R.(1-OHS) "On the connected components of the space of line transversals to a family of convex sets." Discrete Comput. Geom. 13 (1995), no. 3-4, 469-476.
- Basu, Saugata(1-NY-X); Pollack, Richard(1-NY-X); Roy, Marie-Françoise(F-RENNB-IM) "On the number of cells defined by a family of polynomials on a variety." Mathematika 43 (1996), no. 1, 120-126.

On the number of "cells" ...

Theorem (B., Pollack, Roy (1996))
Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a finite set with $\operatorname{deg}(P) \leq d, P \in \mathcal{P}$ and
$V \subset \mathrm{R}^{k}$ be an algebraic set, and suppose that V is cut out by polynomials also of degree bounded by d. Then, the number of connected components of the realizations of all realizable sign conditions of \mathcal{P} on V is bounded by

$$
s^{\operatorname{dim}_{R}(V)}(O(d))^{k}
$$

where $\operatorname{card}(\mathcal{P})=s$.
As a consequence

On the number of "cells" ...

Theorem (B., Pollack, Roy (1996))
Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a finite set with $\operatorname{deg}(P) \leq d, P \in \mathcal{P}$ and
$V \subset \mathrm{R}^{k}$ be an algebraic set, and suppose that V is cut out by polynomials also of degree bounded by d. Then, the number of connected components of the realizations of all realizable sign conditions of \mathcal{P} on V is bounded by

$$
s^{\operatorname{dim}_{R}(V)}(O(d))^{k}
$$

where $\operatorname{card}(\mathcal{P})=s$.
As a consequence

On the number of "cells" ...

Theorem (B., Pollack, Roy (1996))
Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a finite set with $\operatorname{deg}(P) \leq d, P \in \mathcal{P}$ and
$V \subset \mathrm{R}^{k}$ be an algebraic set, and suppose that V is cut out by polynomials also of degree bounded by d. Then, the number of connected components of the realizations of all realizable sign conditions of \mathcal{P} on V is bounded by

$$
s^{\operatorname{dim}_{R}(V)}(O(d))^{k}
$$

where $\operatorname{card}(\mathcal{P})=s$.
As a consequence ...
Corollary
The VC co-density of the family of real algebraic sets defined by a polynomials of degree d on V is bounded by $\operatorname{dim}_{R}(V)$.

Generalizations ...

(1) Higher Betti numbers.General (not just locally closed) semi-algebraic sets.
(3) Better bounds for other families semi-algebraic sets - for example, symmetric ones, defined by randomly chosen polynomials etc.
(9) More refined dependence on the degrees of the polynomials.
(0) Dependence on the "geometric" degree of V rather than on the degrees of polynomials cutting it out.
(0) More general structures rather than that of real semi-algebraic sets. For example, o-minimal structures, more generally arbitrary NIP structures where $\operatorname{dim} V$ makes sense.

Generalizations ...

(1) Higher Betti numbers.
(2) General (not just locally closed) semi-algebraic sets.
(3) Better bounds for other families semi-algebraic sets - for example, symmetric ones, defined by randomly chosen polynomials etc.
(9) More refined dependence on the degrees of the polynomials.
(3) Dependence on the "geometric" degree of V rather than on the degrees of polynomials cutting it out.
(0) More general structures rather than that of real semi-algebraic sets. For example, o-minimal structures, more generally arbitrary NIP structures where $\operatorname{dim} V$ makes sense.

Generalizations ...

(1) Higher Betti numbers.
(2) General (not just locally closed) semi-algebraic sets.
(3) Better bounds for other families semi-algebraic sets - for example, symmetric ones, defined by randomly chosen polynomials etc.
(9) More refined dependence on the degrees of the polynomials.
© degrees of polynomials cutting it out
(0) More general structures rather than that of real semi-algebraic sets. For example, o-minimal structures, more generally arbitrary NIP structures where $\operatorname{dim} V$ makes sense.

Generalizations ...

(1) Higher Betti numbers.
(2) General (not just locally closed) semi-algebraic sets.
(3) Better bounds for other families semi-algebraic sets - for example, symmetric ones, defined by randomly chosen polynomials etc.
(9) More refined dependence on the degrees of the polynomials.
© Dependence on the "geometric" degree of V rather than on the degrees of polynomials cutting it out.
(0) More general structures rather than that of real semi-algebraic sets. For example, o-minimal structures, more generally arbitrary NIP structures where $\operatorname{dim} V$ makes sense.

Generalizations ...

(1) Higher Betti numbers.
(2) General (not just locally closed) semi-algebraic sets.
(3) Better bounds for other families semi-algebraic sets - for example, symmetric ones, defined by randomly chosen polynomials etc.
(9) More refined dependence on the degrees of the polynomials.
(3) Dependence on the "geometric" degree of V rather than on the degrees of polynomials cutting it out.
© More general structures rather than that of real semi-algebraic sets For example, o-minimal structures, more generally arbitrary NIP structures where $\operatorname{dim} V$ makes sense.

Generalizations ...

(1) Higher Betti numbers.
(2) General (not just locally closed) semi-algebraic sets.
(3) Better bounds for other families semi-algebraic sets - for example, symmetric ones, defined by randomly chosen polynomials etc.
(9) More refined dependence on the degrees of the polynomials.
(3) Dependence on the "geometric" degree of V rather than on the degrees of polynomials cutting it out.
(0) More general structures rather than that of real semi-algebraic sets. For example, o-minimal structures, more generally arbitrary NIP structures where $\operatorname{dim} V$ makes sense.

Fixing some notation

- Throughout, R will denote a real closed field and $C=R[i]$ the algebraic closure of R .
- Given $P \in R\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}
- Given a finite set $P \subset R\left[X_{1}, \ldots, X_{k}\right]$, a subset $S \subset R^{k}$ is \mathcal{P}-semi-algebraic if S is the realization of a Boolean formula with atoms $P=0, P>0$ or $P<0$ with $P \in \mathcal{P}$ (we will call such a formula a quantifier-free \mathcal{P}-formula).
- We call a semi-algebraic set a \mathcal{P}-closed semi-algebraic set if it is defined by a Boolean formula with no negations with atoms $P=0$, $P \geq 0$, or $P \leq 0$ with $P \in \mathcal{P}$.
- For any semi-algebraic set S, we will denote

$$
b(S, \mathbb{F})=\sum b_{i}(S, \mathbb{F})
$$

Fixing some notation

- Throughout, R will denote a real closed field and $C=R[i]$ the algebraic closure of R .
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given a finite set $\mathcal{P} \subset R\left[X_{1}, \ldots, X_{k}\right]$, a subset $S \subset \mathrm{R}^{k}$ is \mathcal{P}-semi-algebraic if S is the realization of a Boolean formula with atoms $P=0, P>0$ or $P<0$ with $P \in \mathcal{P}$ (we will call such a formula a quantifier-free \mathcal{P}-formula)
- We call a semi-algebraic set a \mathcal{P}-closed semi-algebraic set if it is defined by a Boolean formula with no negations with atoms $P=0$, $P \geq 0$, or $P \leq 0$ with $P \in \mathcal{P}$.
- For any semi-algebraic set S, we will denote

Fixing some notation

- Throughout, R will denote a real closed field and $C=R[i]$ the algebraic closure of R .
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given a finite set $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, a subset $S \subset \mathrm{R}^{k}$ is \mathcal{P}-semi-algebraic if S is the realization of a Boolean formula with atoms $P=0, P>0$ or $P<0$ with $P \in \mathcal{P}$ (we will call such a formula a quantifier-free \mathcal{P}-formula).
- For any semi-algebraic set S, we will denote

Fixing some notation

- Throughout, R will denote a real closed field and $C=R[i]$ the algebraic closure of R .
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given a finite set $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, a subset $S \subset \mathrm{R}^{k}$ is \mathcal{P}-semi-algebraic if S is the realization of a Boolean formula with atoms $P=0, P>0$ or $P<0$ with $P \in \mathcal{P}$ (we will call such a formula a quantifier-free \mathcal{P}-formula).
- We call a semi-algebraic set a \mathcal{P}-closed semi-algebraic set if it is defined by a Boolean formula with no negations with atoms $P=0$, $P \geq 0$, or $P \leq 0$ with $P \in \mathcal{P}$.
- For any semi-algebraic set S, we will denote

Fixing some notation

- Throughout, R will denote a real closed field and $C=R[i]$ the algebraic closure of R .
- Given $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ we denote by $\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ the set of zeros of P in R^{k}.
- Given a finite set $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, a subset $S \subset \mathrm{R}^{k}$ is \mathcal{P}-semi-algebraic if S is the realization of a Boolean formula with atoms $P=0, P>0$ or $P<0$ with $P \in \mathcal{P}$ (we will call such a formula a quantifier-free \mathcal{P}-formula).
- We call a semi-algebraic set a \mathcal{P}-closed semi-algebraic set if it is defined by a Boolean formula with no negations with atoms $P=0$, $P \geq 0$, or $P \leq 0$ with $P \in \mathcal{P}$.
- For any semi-algebraic set S, we will denote

$$
b(S, \mathbb{F})=\sum_{i} b_{i}(S, \mathbb{F})
$$

Fixing notation (cont)

We will usually denote:

- k the dimension of the ambient space.
- $s=\operatorname{card}(P)$.
- $d=\max _{P \in \mathcal{P}} \operatorname{deg}(P)$.

Fixing notation (cont)

We will usually denote:

- k the dimension of the ambient space.
- $s=\operatorname{card}(\mathcal{P})$.
- $d=\max _{P \in \mathcal{P}} \operatorname{deg}(P)$.

Fixing notation (cont)

We will usually denote:

- k the dimension of the ambient space.
- $s=\operatorname{card}(\mathcal{P})$.
- $d=\max _{P \in \mathcal{P}} \operatorname{deg}(P)$.

Upper bounds on Betti numbers: using effective triangulation

- Upper bounds on the Betti numbers of semi-algebraic sets follow from results on effective triangulation of semi-algebraic sets.
- Effective triangulation in turn uses cylindrical algebraic decomposition - Collins (1976), Wüthrich (1976)
- This yields bounds that are doubly exponential in k. That is,

Open problems:

- Prove or disprove the existence of a semi-algebraic triangulation or stratification of semi-algebraic sets with single exponential complexity.
- Corresponding algorithmic question

Upper bounds on Betti numbers: using effective triangulation

- Upper bounds on the Betti numbers of semi-algebraic sets follow from results on effective triangulation of semi-algebraic sets.
- Effective triangulation in turn uses cylindrical algebraic decomposition - Collins (1976), Wüthrich (1976).

Open problems:

- Prove or disprove the existence of a semi-algebraic triangulation or stratification of semi-algebraic sets with single exponential complexity.
- Corresnonding aloorithmic question

Upper bounds on Betti numbers: using effective triangulation

- Upper bounds on the Betti numbers of semi-algebraic sets follow from results on effective triangulation of semi-algebraic sets.
- Effective triangulation in turn uses cylindrical algebraic decomposition - Collins (1976), Wüthrich (1976).
- This yields bounds that are doubly exponential in k. That is,

$$
b(S, \mathbb{F}) \leq(s d)^{2^{O(k)}}
$$

Open problems:

- Prove or disprove the existence of a semi-algebraic triangulation or stratification of semi-algebraic sets with single exponential complexity.
- Corresnonding aloorithmic question

Upper bounds on Betti numbers: using effective triangulation

- Upper bounds on the Betti numbers of semi-algebraic sets follow from results on effective triangulation of semi-algebraic sets.
- Effective triangulation in turn uses cylindrical algebraic decomposition - Collins (1976), Wüthrich (1976).
- This yields bounds that are doubly exponential in k. That is,

$$
b(S, \mathbb{F}) \leq(s d)^{2^{O(k)}}
$$

Open problems:

- Prove or disprove the existence of a semi-algebraic triangulation or stratification of semi-algebraic sets with single exponential complexity.

Upper bounds on Betti numbers: using effective triangulation

- Upper bounds on the Betti numbers of semi-algebraic sets follow from results on effective triangulation of semi-algebraic sets.
- Effective triangulation in turn uses cylindrical algebraic decomposition - Collins (1976), Wüthrich (1976).
- This yields bounds that are doubly exponential in k. That is,

$$
b(S, \mathbb{F}) \leq(s d)^{2^{O(k)}}
$$

Open problems:

- Prove or disprove the existence of a semi-algebraic triangulation or stratification of semi-algebraic sets with single exponential complexity.
- Corresponding algorithmic question.

Upper bounds on Betti numbers: using the critical point method/Morse theory

- Main idea was to use make a perturbation to reduce to the compact, non-singular, situation and then use Morse theory in order to bound the Betti numbers by the number of critical points of some affine function restricted to the hypersurface. The number of critical point is bounded by Bezout's theorem.

Upper bounds on Betti numbers: using the critical point method/Morse theory

- Main idea was to use make a perturbation to reduce to the compact, non-singular, situation and then use Morse theory in order to bound the Betti numbers by the number of critical points of some affine function restricted to the hypersurface. The number of critical point is bounded by Bezout's theorem.
- In this way one obtains (Oleĭnik-Petrovskiĭ (1949), Thom, Milnor $(1960 \mathrm{~s})) b\left(\operatorname{Zer}\left(\mathcal{P}, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Generalized to more general semi-algebraic sets - (to P-closed s.a. sets by B.(1999),

Upper bounds on Betti numbers: using the critical point method/Morse theory

- Main idea was to use make a perturbation to reduce to the compact, non-singular, situation and then use Morse theory in order to bound the Betti numbers by the number of critical points of some affine function restricted to the hypersurface. The number of critical point is bounded by Bezout's theorem.
- In this way one obtains (Oleĭnik-Petrovskiï (1949), Thom, Milnor $(1960 \mathrm{~s})) b\left(\operatorname{Zer}\left(\mathcal{P}, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Generalized to more general semi-algebraic sets - (to \mathcal{P}-closed s.a. sets by B.(1999),

Upper bounds on Betti numbers: using the critical point method/Morse theory

- Main idea was to use make a perturbation to reduce to the compact, non-singular, situation and then use Morse theory in order to bound the Betti numbers by the number of critical points of some affine function restricted to the hypersurface. The number of critical point is bounded by Bezout's theorem.
- In this way one obtains (Oleĭnik-Petrovskiï (1949), Thom, Milnor $(1960 \mathrm{~s})) b\left(\operatorname{Zer}\left(\mathcal{P}, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Generalized to more general semi-algebraic sets - (to \mathcal{P}-closed s.a. sets by B.(1999),

Upper bounds on Betti numbers: using the critical point method/Morse theory

- Main idea was to use make a perturbation to reduce to the compact, non-singular, situation and then use Morse theory in order to bound the Betti numbers by the number of critical points of some affine function restricted to the hypersurface. The number of critical point is bounded by Bezout's theorem.
- In this way one obtains (Oleĭnik-Petrovskiĭ (1949), Thom, Milnor $(1960 \mathrm{~s})) b\left(\operatorname{Zer}\left(\mathcal{P}, \mathrm{R}^{k}\right), \mathbb{F}\right) \leq d(2 d-1)^{k-1}$.
- Generalized to more general semi-algebraic sets - (to \mathcal{P}-closed s.a. sets by B.(1999), and then to arbitrary \mathcal{P}-s.a. sets Gabrielov-Vorobjov (2005)).
- Generalization uses additional techniques such as generalized Mayer-Vietoris inequalities, homotopic approximations by compact sets (Gabrielov-Vorobjov) etc.

Upper bounds via critical points (cont).

For completeness ...

Upper bounds via critical points (cont).

For completeness ...
Theorem (B.(1999), B.,Pollack,Roy(2005))
Let S be a \mathcal{P}-closed semi-algebraic set $S \subset \mathrm{R}^{k}$, with $s=\operatorname{card}(\mathcal{P})$, and $d=\max _{P \in \mathcal{P}} \operatorname{deg}(P)$, and V a real algebraic set also defined by a polynomial of degree at most d. Then,

$$
\begin{aligned}
b(S \cap V, \mathbb{F}) & \leq \sum_{i=0}^{\operatorname{dim}_{\mathrm{R}}(V)} \sum_{j=0}^{\operatorname{dim}_{\mathrm{R}}(V)-i}\binom{s+1}{j} 6^{j} d(2 d-1)^{k-1} \\
& =s^{\operatorname{dim}_{R}(V)}(O(d))^{k} .
\end{aligned}
$$

Upper bounds on Betti numbers: using complex geometry

- Suppose that $V(\mathrm{C}) \subset \mathbb{P}^{k}(\mathrm{C})$ is a non-singular complete intersection defined by polynomials of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{\ell}, \ell \leq k$. $V(\mathrm{C})$ is of complex dimension $k-\ell$, and real dimension $2(k-\ell)$.
The cohomology of $V(\mathrm{C})$ is concentrated in dimension $k-\ell$, and
there is a formula for $b(V(\mathrm{C}), \mathbb{Z})$ - namely:

Upper bounds on Betti numbers: using complex geometry

- Suppose that $V(\mathrm{C}) \subset \mathbb{P}^{k}(\mathrm{C})$ is a non-singular complete intersection defined by polynomials of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{\ell}, \ell \leq k$.
- $V(\mathrm{C})$ is of complex dimension $k-\ell$, and real dimension $2(k-\ell)$. The cohomology of $V(\mathrm{C})$ is concentrated in dimension $k-\ell$, and there is a formula for $b(V(C), \mathbb{Z})$ - namely:

where $\delta(V)$ is the least degree such that V is cut out by polynomials of at most that degree and $h_{j}(\cdots)$ is the j-th complete homogeneous

Upper bounds on Betti numbers: using complex geometry

- Suppose that $V(\mathrm{C}) \subset \mathbb{P}^{k}(\mathrm{C})$ is a non-singular complete intersection defined by polynomials of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{\ell}, \ell \leq k$.
- $V(\mathrm{C})$ is of complex dimension $k-\ell$, and real dimension $2(k-\ell)$. The cohomology of $V(\mathrm{C})$ is concentrated in dimension $k-\ell$, and there is a formula for $b(V(C), \mathbb{Z})$ - namely:

where $\delta(V)$ is the least degree such that V is cut out by polynomials of at most that degree and $h_{j}(\cdots)$ is the j-th complete homogeneous

Upper bounds on Betti numbers: using complex geometry

- Suppose that $V(\mathrm{C}) \subset \mathbb{P}^{k}(\mathrm{C})$ is a non-singular complete intersection defined by polynomials of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{\ell}, \ell \leq k$.
- $V(\mathrm{C})$ is of complex dimension $k-\ell$, and real dimension $2(k-\ell)$. The cohomology of $V(\mathrm{C})$ is concentrated in dimension $k-\ell$, and there is a formula for $b(V(\mathbb{C}), \mathbb{Z})$ - namely:

$$
\begin{aligned}
b(V(\mathrm{C}), \mathbb{Z})= & \left(1+(-1)^{k-\ell+1}\right) \cdot(k-\ell+1)+ \\
& d_{1} \cdot d_{2} \cdots d_{\ell} \cdot\left(\sum_{i=0}^{k-\ell}(-1)^{i}\binom{k+1}{i} h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right)
\end{aligned}
$$

where $\delta(V)$ is the least degree such that V is cut out by polynomials

Upper bounds on Betti numbers: using complex geometry

- Suppose that $V(\mathrm{C}) \subset \mathbb{P}^{k}(\mathrm{C})$ is a non-singular complete intersection defined by polynomials of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{\ell}, \ell \leq k$.
- $V(\mathrm{C})$ is of complex dimension $k-\ell$, and real dimension $2(k-\ell)$. The cohomology of $V(\mathrm{C})$ is concentrated in dimension $k-\ell$, and there is a formula for $b(V(\mathbb{C}), \mathbb{Z})$ - namely:

$$
\begin{aligned}
b(V(\mathrm{C}), \mathbb{Z})= & \left(1+(-1)^{k-\ell+1}\right) \cdot(k-\ell+1)+ \\
& d_{1} \cdot d_{2} \cdots d_{\ell} \cdot\left(\sum_{i=0}^{k-\ell}(-1)^{i}\binom{k+1}{i} h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \\
= & \left(d_{1} \cdots d_{\ell}\right) d_{\ell}^{k-\ell}+O(1)^{k} \text { lower order terms }
\end{aligned}
$$

Upper bounds on Betti numbers: using complex geometry

- Suppose that $V(\mathrm{C}) \subset \mathbb{P}^{k}(\mathrm{C})$ is a non-singular complete intersection defined by polynomials of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{\ell}, \ell \leq k$.
- $V(\mathrm{C})$ is of complex dimension $k-\ell$, and real dimension $2(k-\ell)$. The cohomology of $V(\mathrm{C})$ is concentrated in dimension $k-\ell$, and there is a formula for $b(V(\mathbb{C}), \mathbb{Z})$ - namely:

$$
\begin{aligned}
b(V(\mathrm{C}), \mathbb{Z})= & \left(1+(-1)^{k-\ell+1}\right) \cdot(k-\ell+1)+ \\
& d_{1} \cdot d_{2} \cdots d_{\ell} \cdot\left(\sum_{i=0}^{k-\ell}(-1)^{i}\binom{k+1}{i} h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \\
= & \left(d_{1} \cdots d_{\ell}\right) d_{\ell}^{k-\ell}+O(1)^{k} \text { lower order terms } \\
\leq & O(1)^{k} \operatorname{deg}(V) \cdot d_{\ell}^{k-\ell}
\end{aligned}
$$

Upper bounds on Betti numbers: using complex geometry

- Suppose that $V(\mathrm{C}) \subset \mathbb{P}^{k}(\mathrm{C})$ is a non-singular complete intersection defined by polynomials of degree $d_{1} \leq d_{2} \leq \cdots \leq d_{\ell}, \ell \leq k$.
- $V(\mathrm{C})$ is of complex dimension $k-\ell$, and real dimension $2(k-\ell)$. The cohomology of $V(\mathrm{C})$ is concentrated in dimension $k-\ell$, and there is a formula for $b(V(\mathrm{C}), \mathbb{Z})$ - namely:

$$
\begin{aligned}
b(V(\mathrm{C}), \mathbb{Z})= & \left(1+(-1)^{k-\ell+1}\right) \cdot(k-\ell+1)+ \\
& d_{1} \cdot d_{2} \cdots d_{\ell} \cdot\left(\sum_{i=0}^{k-\ell}(-1)^{i}\binom{k+1}{i} h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \\
= & \left(d_{1} \cdots d_{\ell}\right) d_{\ell}^{k-\ell}+O(1)^{k} \text { lower order terms } \\
\leq & O(1)^{k} \operatorname{deg}(V) \cdot d_{\ell}^{k-\ell} \\
= & O(1)^{k} \operatorname{deg}(V) \delta(V)^{\operatorname{dim}(V)},
\end{aligned}
$$

where $\delta(V)$ is the least degree such that V is cut out by polynomials of at most that degree and $h_{j}(\cdots)$ is the j-th complete homogeneous symmetric nolvnomial

Consequence for real non-singular complete intersections

- Since the cohomology of V is torsion free, $b(V(\mathbb{C}), \mathbb{Z})=b\left(V(\mathbb{C}), \mathbb{Z}_{2}\right)$.
- If V is defined by real polynomials, then using the fact that $V(\mathrm{C})$ admits an involution (complex conjugation), the sum of the \mathbb{Z}_{2}-Betti numbers of the fixed points of this involution, i.e. $V(\mathrm{R})$, is bounded by $b\left(V(C), \mathbb{Z}_{2}\right)$ (Smith inequality)
- So we obtain:

- Note that the cohomology of $V(\mathrm{R})$ is not necessarily concentrated in any one dimension, and there will be many possible topological types for $V(R)$ unlike for $V(C)$

Consequence for real non-singular complete intersections

- Since the cohomology of V is torsion free, $b(V(\mathrm{C}), \mathbb{Z})=b\left(V(\mathrm{C}), \mathbb{Z}_{2}\right)$.
- If V is defined by real polynomials, then using the fact that $V(\mathrm{C})$ admits an involution (complex conjugation), the sum of the \mathbb{Z}_{2}-Betti numbers of the fixed points of this involution, i.e. $V(\mathrm{R})$, is bounded by $b\left(V(\mathbb{C}), \mathbb{Z}_{2}\right)$ (Smith inequality).
- Note that the cohomology of $V(R)$ is not necessarily concentrated in any one dimension, and there will be many possible topological types

Consequence for real non-singular complete intersections

- Since the cohomology of V is torsion free, $b(V(\mathrm{C}), \mathbb{Z})=b\left(V(\mathrm{C}), \mathbb{Z}_{2}\right)$.
- If V is defined by real polynomials, then using the fact that $V(\mathrm{C})$ admits an involution (complex conjugation), the sum of the \mathbb{Z}_{2}-Betti numbers of the fixed points of this involution, i.e. $V(\mathrm{R})$, is bounded by $b\left(V(\mathbb{C}), \mathbb{Z}_{2}\right)$ (Smith inequality).
- So we obtain:

$$
\begin{aligned}
b\left(V(\mathrm{R}), \mathbb{Z}_{2}\right) & \leq b\left(V(\mathrm{C}), \mathbb{Z}_{2}\right) \\
& =O(1)^{k}\left(d_{1} \cdots d_{\ell}\right) d_{\ell}^{k-\ell} \\
& \leq O(1)^{k} \operatorname{deg}(V) \delta(V)^{\operatorname{dim}(V)} .
\end{aligned}
$$

Consequence for real non-singular complete intersections

- Since the cohomology of V is torsion free, $b(V(\mathrm{C}), \mathbb{Z})=b\left(V(\mathrm{C}), \mathbb{Z}_{2}\right)$.
- If V is defined by real polynomials, then using the fact that $V(\mathrm{C})$ admits an involution (complex conjugation), the sum of the \mathbb{Z}_{2}-Betti numbers of the fixed points of this involution, i.e. $V(\mathrm{R})$, is bounded by $b\left(V(\mathbb{C}), \mathbb{Z}_{2}\right)$ (Smith inequality).
- So we obtain:

$$
\begin{aligned}
b\left(V(\mathrm{R}), \mathbb{Z}_{2}\right) & \leq b\left(V(\mathrm{C}), \mathbb{Z}_{2}\right) \\
& =O(1)^{k}\left(d_{1} \cdots d_{\ell}\right) d_{\ell}^{k-\ell} \\
& \leq O(1)^{k} \operatorname{deg}(V) \delta(V)^{\operatorname{dim}(V)} .
\end{aligned}
$$

- Note that the cohomology of $V(\mathrm{R})$ is not necessarily concentrated in any one dimension, and there will be many possible topological types for $V(\mathrm{R})$ unlike for $V(\mathrm{C})$.

Why is the complete intersection assumption necessary?

- The Betti numbers of $V(\mathrm{C})$ can be deduced from the Euler characteristic of $V(\mathrm{C})$.
- The Euler characteristic of $V(\mathrm{C})$ equals the degree of the top Chern class of the tangent bundle of $V(\mathrm{C})$
- The total Chern class of TV can be computed using the exact sequence

and the facts:

Why is the complete intersection assumption necessary?

- The Betti numbers of $V(\mathrm{C})$ can be deduced from the Euler characteristic of $V(\mathrm{C})$.
- The Euler characteristic of $V(\mathrm{C})$ equals the degree of the top Chern class of the tangent bundle of $V(\mathrm{C})$.
- The total Chern class of TV can be computed using the exact sequence

and the facts:

Why is the complete intersection assumption necessary?

- The Betti numbers of $V(\mathrm{C})$ can be deduced from the Euler characteristic of $V(\mathrm{C})$.
- The Euler characteristic of $V(\mathrm{C})$ equals the degree of the top Chern class of the tangent bundle of $V(\mathrm{C})$.
- The total Chern class of TV can be computed using the exact sequence

$$
\left.0 \rightarrow T V \rightarrow T \mathbb{P}^{k}\right|_{V} \rightarrow N_{V / \mathbb{P}^{k}} \rightarrow 0
$$

and the facts:

Why is the complete intersection assumption necessary?

- The Betti numbers of $V(\mathrm{C})$ can be deduced from the Euler characteristic of $V(\mathrm{C})$.
- The Euler characteristic of $V(\mathrm{C})$ equals the degree of the top Chern class of the tangent bundle of $V(\mathrm{C})$.
- The total Chern class of TV can be computed using the exact sequence

$$
\left.0 \rightarrow T V \rightarrow T \mathbb{P}^{k}\right|_{V} \rightarrow N_{V / \mathbb{P}^{k}} \rightarrow 0
$$

and the facts:

Why is the complete intersection assumption necessary?

- The Betti numbers of $V(\mathrm{C})$ can be deduced from the Euler characteristic of $V(\mathrm{C})$.
- The Euler characteristic of $V(\mathrm{C})$ equals the degree of the top Chern class of the tangent bundle of $V(\mathrm{C})$.
- The total Chern class of TV can be computed using the exact sequence

$$
\left.0 \rightarrow T V \rightarrow T \mathbb{P}^{k}\right|_{V} \rightarrow N_{V / \mathbb{P}^{k}} \rightarrow 0
$$

and the facts:

$$
c\left(T \mathbb{P}^{k}\right)=\left(1+\zeta_{V}\right)^{k+1}
$$

where ζ_{V} is the restriction of the cohomology class of the hyperplane

Why is the complete intersection assumption necessary ?

- The Betti numbers of $V(\mathrm{C})$ can be deduced from the Euler characteristic of $V(\mathrm{C})$.
- The Euler characteristic of $V(\mathrm{C})$ equals the degree of the top Chern class of the tangent bundle of $V(\mathrm{C})$.
- The total Chern class of TV can be computed using the exact sequence

$$
\left.0 \rightarrow T V \rightarrow T \mathbb{P}^{k}\right|_{V} \rightarrow N_{V / \mathbb{P}^{k}} \rightarrow 0
$$

and the facts:

$$
\begin{aligned}
c\left(T \mathbb{P}^{k}\right) & =\left(1+\zeta_{V}\right)^{k+1}, \\
c\left(N_{V / \mathbb{P}^{k}}\right) & =\prod_{i=1}^{\ell}\left(1+d_{i} \zeta_{V}\right)
\end{aligned}
$$

where ζ_{V} is the restriction of the cohomology class of the hyperplane divisor of \mathbb{P}^{k} to V.

Why is complete intersection necessary (cont.) ?

This gives

from which we can read off the top degree part of $c(T V)$ (namely $\left.c_{k-\ell}(T V)\right)$ by collecting the coeffcient of $\zeta_{V}^{k-\ell}$. We get

Why is complete intersection necessary (cont.) ?

This gives

$$
\begin{aligned}
c(T V) & =\frac{\left(1+\zeta_{V}\right)^{k+1}}{\prod_{i=1}^{\ell}\left(1+d_{i} \zeta_{V}\right)} \\
& =\left(1+(k+1) \zeta_{V}+\cdots\right)\left(\left(1-d_{1} \zeta_{V}+\cdots\right) \cdots\left(1-d_{\ell} \zeta_{V}+\cdots\right)\right)
\end{aligned}
$$

from which we can read off the top degree part of $c(T V)$ (namely $\left.c_{k-\ell}(T V)\right)$ by collecting the coeffcient of $\zeta_{V}^{k-\ell}$. We get

Why is complete intersection necessary (cont.) ?

This gives

$$
\begin{aligned}
c(T V) & =\frac{\left(1+\zeta_{V}\right)^{k+1}}{\prod_{i=1}^{\ell}\left(1+d_{i} \zeta_{V}\right)} \\
& =\left(1+(k+1) \zeta_{V}+\cdots\right)\left(\left(1-d_{1} \zeta_{V}+\cdots\right) \cdots\left(1-d_{\ell} \zeta_{V}+\cdots\right)\right),
\end{aligned}
$$

from which we can read off the top degree part of $c(T V)$ (namely $\left.c_{k-\ell}(T V)\right)$ by collecting the coeffcient of $\zeta_{V}^{k-\ell}$. We get

$$
c_{k-\ell}(T V)=\left(\sum_{i=0}^{k-\ell}(-1)^{k-\ell-i} \cdot\binom{k+1}{i} \cdot h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \cdot \zeta_{V}^{k-\ell}
$$

Why is complete intersection necessary (cont.) ?

This gives

$$
\begin{aligned}
c(T V) & =\frac{\left(1+\zeta_{V}\right)^{k+1}}{\prod_{i=1}^{\ell}\left(1+d_{i} \zeta_{V}\right)} \\
& =\left(1+(k+1) \zeta_{V}+\cdots\right)\left(\left(1-d_{1} \zeta_{V}+\cdots\right) \cdots\left(1-d_{\ell} \zeta_{V}+\cdots\right)\right)
\end{aligned}
$$

from which we can read off the top degree part of $c(T V)$ (namely $\left.c_{k-\ell}(T V)\right)$ by collecting the coeffcient of $\zeta_{V}^{k-\ell}$. We get

$$
\begin{aligned}
& c_{k-\ell}(T V)=\left(\sum_{i=0}^{k-\ell}(-1)^{k-\ell-i} \cdot\binom{k+1}{i} \cdot h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \cdot \zeta_{V}^{k-\ell} \\
& \chi(V)=\operatorname{deg} c_{k-\ell}(T V) \\
& \quad=\left(\sum_{i=0}^{k-\ell}(-1)^{k-\ell-i} \cdot\binom{k+1}{i} \cdot h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \cdot \operatorname{deg}(V) .
\end{aligned}
$$

Why is complete intersection necessary (cont.) ?

This gives

$$
\begin{aligned}
c(T V) & =\frac{\left(1+\zeta_{V}\right)^{k+1}}{\prod_{i=1}^{\ell}\left(1+d_{i} \zeta_{V}\right)} \\
& =\left(1+(k+1) \zeta_{V}+\cdots\right)\left(\left(1-d_{1} \zeta_{V}+\cdots\right) \cdots\left(1-d_{\ell} \zeta_{V}+\cdots\right)\right)
\end{aligned}
$$

from which we can read off the top degree part of $c(T V)$ (namely $\left.c_{k-\ell}(T V)\right)$ by collecting the coeffcient of $\zeta_{V}^{k-\ell}$. We get

$$
\begin{aligned}
& c_{k-\ell}(T V)=\left(\sum_{i=0}^{k-\ell}(-1)^{k-\ell-i} \cdot\binom{k+1}{i} \cdot h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \cdot \zeta_{V}^{k-\ell} \\
& \chi(V)=\operatorname{deg} c_{k-\ell}(T V) \\
& \quad=\left(\sum_{i=0}^{k-\ell}(-1)^{k-\ell-i} \cdot\binom{k+1}{i} \cdot h_{k-\ell-i}\left(d_{1}, \ldots, d_{\ell}\right)\right) \cdot \operatorname{deg}(V) .
\end{aligned}
$$

Bounding the number of connected components on a variety

 The situation of interest in "iterated" polynomial partitioning ...
Bounding the number of connected components on a variety

The situation of interest in "iterated" polynomial partitioning ...

Bounding the number of connected components on a variety

The situation of interest in "iterated" polynomial partitioning ...
Theorem (Simplified version of Barone-B. (2016))
Let $V(\mathrm{R}) \subset \mathrm{R}^{k}$ be a complete intersection variety and let $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}(P) \geq \delta(V)$. Then,

$$
b_{0}\left(V(\mathrm{R})-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right) \leq O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)} .
$$

Bounding the number of connected components on a variety

The situation of interest in "iterated" polynomial partitioning ...
Theorem (Simplified version of Barone-B. (2016))
Let $V(\mathrm{R}) \subset \mathrm{R}^{k}$ be a complete intersection variety and let $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}(P) \geq \delta(V)$. Then,

$$
b_{0}\left(V(\mathrm{R})-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right) \leq O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)} .
$$

Bounding the number of connected components on a variety

The situation of interest in "iterated" polynomial partitioning ...
Theorem (Simplified version of Barone-B. (2016))
Let $V(\mathrm{R}) \subset \mathrm{R}^{k}$ be a complete intersection variety and let $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}(P) \geq \delta(V)$. Then,

$$
b_{0}\left(V(\mathrm{R})-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right) \leq O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)} .
$$

"Heuristic but incorrect proof".
Perturb the polynomials defining V, as well as P, infinitesimally to go to the non-singular situation without losing any connected component. Then use formula for the Betti numbers + Smith inequality + Mayer-Vietoris + local conical structure ...
order not to lose connected components

Bounding the number of connected components on a variety

The situation of interest in "iterated" polynomial partitioning ...
Theorem (Simplified version of Barone-B. (2016))
Let $V(\mathrm{R}) \subset \mathrm{R}^{k}$ be a complete intersection variety and let $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}(P) \geq \delta(V)$. Then,

$$
b_{0}\left(V(\mathrm{R})-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right) \leq O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)} .
$$

"Heuristic but incorrect proof".
Perturb the polynomials defining V, as well as P, infinitesimally to go to the non-singular situation without losing any connected component. Then use formula for the Betti numbers + Smith inequality + Mayer-Vietoris + local conical structure ...
order not to lose connected components

Bounding the number of connected components on a variety

The situation of interest in "iterated" polynomial partitioning ...
Theorem (Simplified version of Barone-B. (2016))
Let $V(\mathrm{R}) \subset \mathrm{R}^{k}$ be a complete intersection variety and let $P \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}(P) \geq \delta(V)$. Then,

$$
b_{0}\left(V(\mathrm{R})-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right) \leq O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)} .
$$

"Heuristic but incorrect proof".
Perturb the polynomials defining V, as well as P, infinitesimally to go to the non-singular situation without losing any connected component. Then use formula for the Betti numbers + Smith inequality + Mayer-Vietoris + local conical structure ... But the perturbation has to be carefully done in order not to lose connected components ...

Bounding the number of connected components on a variety (cont.)

With a more careful choice of a perturbation scheme one obtains:

Bounding the number of connected components on a variety (cont.)

With a more careful choice of a perturbation scheme one obtains:
Theorem (Real analogue of Bezout bound, Barone-B. (2013))

Suppose that

For $1 \leq i \leq \ell$, let $\operatorname{dim}_{R}\left(\operatorname{Zer}\left(\left\{Q_{1}, \ldots, Q_{i}\right\}, R^{k}\right)\right) \leq k_{i}$ and let $k_{0}=k$. Then,

Bounding the number of connected components on a variety (cont.)

With a more careful choice of a perturbation scheme one obtains:
Theorem (Real analogue of Bezout bound, Barone-B. (2013))

Suppose that

For $1 \leq i \leq \ell$, let $\operatorname{dim}_{R}\left(\operatorname{Zer}\left(\left\{Q_{1}, \ldots, Q_{i}\right\}, R^{k}\right)\right) \leq k_{i}$ and let $k_{0}=k$. Then,

Bounding the number of connected components on a variety (cont.)

With a more careful choice of a perturbation scheme one obtains:
Theorem (Real analogue of Bezout bound, Barone-B. (2013))
Let $Q_{1}, \ldots, Q_{\ell} \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}\left(Q_{i}\right)=d_{i}$; Suppose that

Bounding the number of connected components on a variety (cont.)

With a more careful choice of a perturbation scheme one obtains:
Theorem (Real analogue of Bezout bound, Barone-B. (2013))
Let $Q_{1}, \ldots, Q_{\ell} \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}\left(Q_{i}\right)=d_{i}$;
Suppose that

$$
2 \leq d_{1} \leq d_{2} \leq \frac{1}{k+1} d_{3} \leq \frac{1}{(k+1)^{2}} d_{4} \leq \cdots \leq \frac{1}{(k+1)^{\ell-2}} d_{\ell} .
$$

For $1 \leq i \leq \ell$, let $\operatorname{dim}_{R}\left(\operatorname{Zer}\left(\left\{Q_{1}, \ldots, Q_{i}\right\}, R^{k}\right)\right) \leq k_{i}$ and let $k_{0}=k$. Then,

Bounding the number of connected components on a variety (cont.)

With a more careful choice of a perturbation scheme one obtains:
Theorem (Real analogue of Bezout bound, Barone-B. (2013))
Let $Q_{1}, \ldots, Q_{\ell} \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}\left(Q_{i}\right)=d_{i}$;
Suppose that

$$
2 \leq d_{1} \leq d_{2} \leq \frac{1}{k+1} d_{3} \leq \frac{1}{(k+1)^{2}} d_{4} \leq \cdots \leq \frac{1}{(k+1)^{\ell-2}} d_{\ell} .
$$

For $1 \leq i \leq \ell$, let $\operatorname{dim}_{R}\left(\operatorname{Zer}\left(\left\{Q_{1}, \ldots, Q_{i}\right\}, R^{k}\right)\right) \leq k_{i}$ and let $k_{0}=k$. Then,

Bounding the number of connected components on a variety (cont.)

With a more careful choice of a perturbation scheme one obtains:
Theorem (Real analogue of Bezout bound, Barone-B. (2013))
Let $Q_{1}, \ldots, Q_{\ell} \in \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}\left(Q_{i}\right)=d_{i}$;
Suppose that

$$
2 \leq d_{1} \leq d_{2} \leq \frac{1}{k+1} d_{3} \leq \frac{1}{(k+1)^{2}} d_{4} \leq \cdots \leq \frac{1}{(k+1)^{\ell-2}} d_{\ell}
$$

For $1 \leq i \leq \ell$, let $\operatorname{dim}_{R}\left(\operatorname{Zer}\left(\left\{Q_{1}, \ldots, Q_{i}\right\}, \mathrm{R}^{k}\right)\right) \leq k_{i}$ and let $k_{0}=k$. Then,

$$
b_{0}\left(\operatorname{Zer}\left(\left\{Q_{1}, \ldots, Q_{\ell}\right\}, R^{k}\right), \mathbb{Z}_{2}\right) \leq O(1)^{\ell} O(k)^{2 k}\left(\prod_{1 \leq j<\ell} d_{j}^{k_{j-1}-k_{j}}\right) d_{\ell}^{k_{\ell-1}}
$$

Bounding the number of connected components on a variety (cont.)

- However, this is often not enough.
- One would like to have a bound solely in terms of $\operatorname{deg}(V)$ dropping the complete intersection assumption.
- Recent work of M. Walsh (2019) seems to achieve that (though with a caveat)
- He obtains a bound of $O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)}$ on the "number of connected components of $\mathrm{R}^{k}-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ which has a non-empty intersection with $V^{\prime \prime}$. This is a priori smaller than $b_{0}\left(V-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right)$ (for example if $\left.\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)=\emptyset\right)$.
- Open problems: What about "refined" bounds on the sum of all the Betti numbers ?

Bounding the number of connected components on a variety (cont.)

- However, this is often not enough.
- One would like to have a bound solely in terms of $\operatorname{deg}(V)$ dropping the complete intersection assumption.
- Recent work of M. Walsh (2019) seems to achieve that (though with a

Bounding the number of connected components on a variety (cont.)

- However, this is often not enough.
- One would like to have a bound solely in terms of $\operatorname{deg}(V)$ dropping the complete intersection assumption.
- Recent work of M. Walsh (2019) seems to achieve that (though with a caveat).

Bounding the number of connected components on a variety (cont.)

- However, this is often not enough.
- One would like to have a bound solely in terms of $\operatorname{deg}(V)$ dropping the complete intersection assumption.
- Recent work of M. Walsh (2019) seems to achieve that (though with a caveat).
- He obtains a bound of $O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)}$ on the "number of connected components of $\mathrm{R}^{k}-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ which has a non-empty intersection with $V^{\prime \prime}$. This is a priori smaller than $b_{0}\left(V-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right.$) (for example if $\left.\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)=\emptyset\right)$.

Betti numbers

Bounding the number of connected components on a variety (cont.)

- However, this is often not enough.
- One would like to have a bound solely in terms of $\operatorname{deg}(V)$ dropping the complete intersection assumption.
- Recent work of M. Walsh (2019) seems to achieve that (though with a caveat).
- He obtains a bound of $O_{k}(1) \operatorname{deg}(V) \operatorname{deg}(P)^{\operatorname{dim}(V)}$ on the "number of connected components of $\mathrm{R}^{k}-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)$ which has a non-empty intersection with $V^{\prime \prime}$. This is a priori smaller than $b_{0}\left(V-\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)\right)$ (for example if $\left.\operatorname{Zer}\left(P, \mathrm{R}^{k}\right)=\emptyset\right)$.
- Open problems: What about "refined" bounds on the sum of all the Betti numbers ?

In more general structures

- Model theory meets discrete geometry ...
- The following statement makes sense in any "structure" having a reasonable notion of "dimension"
- Let A, B be "definable" sets with $\operatorname{dim}(A), \operatorname{dim}(B) \leq 2$, and $V \subset A \times B$ a definable subset. Then, one of the following two alternatives must hold.
- The above statement is a Theorem for "o-minimal structures" (B.-Raz 2018), and more generally for all "distal structures" (Chernikov-Galvin-Starchenko (2018)).

In more general structures ...

- Model theory meets discrete geometry ...
- The following statement makes sense in any "structure" having a reasonable notion of "dimension".

- The above statement is a Theorem for "o-minimal structures" (B.-Raz 2018), and more generally for all "distal structures" (Chernikov-Galvin-Starchenko (2018)).

In more general structures ...

- Model theory meets discrete geometry ...
- The following statement makes sense in any "structure" having a reasonable notion of "dimension".
- Let A, B be "definable" sets with $\operatorname{dim}(A), \operatorname{dim}(B) \leq 2$, and $V \subset A \times B$ a definable subset. Then, one of the following two alternatives must hold.
(2) there exists $c=c(V)>0$ such that for every finite subsets $P \subset A, Q \subset B$,
- The above statement is a Theorem for "o-minimal structures" (B.-Raz 2018), and more generally for all "distal structures" (Chernikov-Galvin-Starchenko (2018)).

In more general structures ...

- Model theory meets discrete geometry ...
- The following statement makes sense in any "structure" having a reasonable notion of "dimension".
- Let A, B be "definable" sets with $\operatorname{dim}(A), \operatorname{dim}(B) \leq 2$, and $V \subset A \times B$ a definable subset. Then, one of the following two alternatives must hold.
(1) There exists definable subsets $\alpha \subset A, \beta \subset B, \operatorname{dim}(\alpha), \operatorname{dim}(\beta) \geq 1$, such that $\alpha \times \beta \subset V$, or
(2) there exists $c=c(V)>0$ such that for every finite subsets $P \subset A, Q \subset B$,

In more general structures ...

- Model theory meets discrete geometry ...
- The following statement makes sense in any "structure" having a reasonable notion of "dimension".
- Let A, B be "definable" sets with $\operatorname{dim}(A), \operatorname{dim}(B) \leq 2$, and $V \subset A \times B$ a definable subset. Then, one of the following two alternatives must hold.
(1) There exists definable subsets $\alpha \subset A, \beta \subset B, \operatorname{dim}(\alpha), \operatorname{dim}(\beta) \geq 1$, such that $\alpha \times \beta \subset V$, or
(2) there exists $c=c(V)>0$ such that for every finite subsets $P \subset A, Q \subset B$,

$$
|V \cap P \times Q| \leq c\left(|P|^{2 / 3}|Q|^{2 / 3}+|P|+|Q|\right)
$$

In more general structures ...

- Model theory meets discrete geometry ...
- The following statement makes sense in any "structure" having a reasonable notion of "dimension".
- Let A, B be "definable" sets with $\operatorname{dim}(A), \operatorname{dim}(B) \leq 2$, and $V \subset A \times B$ a definable subset. Then, one of the following two alternatives must hold.
(1) There exists definable subsets $\alpha \subset A, \beta \subset B, \operatorname{dim}(\alpha), \operatorname{dim}(\beta) \geq 1$, such that $\alpha \times \beta \subset V$, or
(2) there exists $c=c(V)>0$ such that for every finite subsets $P \subset A, Q \subset B$,

$$
|V \cap P \times Q| \leq c\left(|P|^{2 / 3}|Q|^{2 / 3}+|P|+|Q|\right) .
$$

- The above statement is a Theorem for "o-minimal structures" (B.-Raz 2018), and more generally for all "distal structures" (Chernikov-Galvin-Starchenko (2018)).

Generalization of Oleinnik-Petrovskiĭ type bounds to the "o-minimal" case

Theorem (B. 2010)
Let V, W and $X \subset V \times W$ be definable sets (in an o-minimal expansion of $(\mathrm{R},+, \cdot,<)$). Then, there exists a constant $C=C(X)>0$ such that for all $s, \bar{w} \in W^{s}$, and $i, 0 \leq i \leq \operatorname{dim}(V)$,

where

Generalization of Oleinnik-Petrovskiĭ type bounds to the "o-minimal" case

Theorem (B. 2010)
Let V, W and $X \subset V \times W$ be definable sets (in an o-minimal expansion of $(\mathrm{R},+, \cdot,<)$). Then, there exists a constant $C=C(X)>0$ such that for all $s, \bar{w} \in W^{s}$, and $i, 0 \leq i \leq \operatorname{dim}(V)$,

where

Generalization of Oleĭnik-Petrovskiĭ type bounds to the "o-minimal" case

Theorem (B. 2010)
Let V, W and $X \subset V \times W$ be definable sets (in an o-minimal expansion of $(\mathrm{R},+, \cdot,<)$). Then, there exists a constant $C=C(X)>0$ such that for all $s, \bar{w} \in W^{s}$, and $i, 0 \leq i \leq \operatorname{dim}(V)$,

$$
\sum_{E\{0,1\}[1, s]} b_{i}\left(V_{\sigma}\right) \leq C s^{\operatorname{dim}(V)-i}
$$

where

$$
V_{\sigma}=\bigcap_{i, \sigma(i)=1} X_{w_{i}} \cap \bigcap_{i, \sigma(i)=0}\left(V-X_{w_{i}}\right),
$$

and $X_{w}=X \cap \pi_{W}^{-1}(w)$ for all $w \in W$.

Generalization of Oleñik-Petrovskiĭ type bounds to the "o-minimal" case (cont).

The special case for $i=0$ yields:

The main fact used in the proof is just that all definable subsets of V have vanishing cohomology in dimensions greater than $\operatorname{dim}(V)$.

Generalization of Oleinnik-Petrovskiĭ type bounds to the "o-minimal" case (cont).

"Proof".

Mayer-Vietoris inequalities + local contractibility of definable sets + finiteness of topological types amongst the fibers of any fixed definable map.

The special case for $i=0$ yields:

The main fact used in the proof is just that all definable subsets of V have vanishing cohomology in dimensions greater than $\operatorname{dim}(V)$

Generalization of Oleinnik-Petrovskiĭ type bounds to the "o-minimal" case (cont).

"Proof".

Mayer-Vietoris inequalities + local contractibility of definable sets + finiteness of topological types amongst the fibers of any fixed definable map.

The special case for $i=0$ yields:

The main fact used in the proof is just that all definable subsets of V have vanishing cohomology in dimensions greater than $\operatorname{dim}(V)$

Generalization of Oleĭnik-Petrovskiĭ type bounds to the "o-minimal" case (cont).

"Proof".
Mayer-Vietoris inequalities + local contractibility of definable sets + finiteness of topological types amongst the fibers of any fixed definable map.

The special case for $i=0$ yields:
Corollary
VC co-density of the family $\left(X_{w}\right)_{w \in W}$ is at most $\operatorname{dim}(V)$.
The main fact used in the proof is just that all definable subsets of V have vanishing cohomology in dimensions greater than $\operatorname{dim}(V)$.

Generalization of Oleĭnik-Petrovskiĭ type bounds to the "o-minimal" case (cont).

"Proof".
Mayer-Vietoris inequalities + local contractibility of definable sets + finiteness of topological types amongst the fibers of any fixed definable map.

The special case for $i=0$ yields:
Corollary
VC co-density of the family $\left(X_{w}\right)_{w \in W}$ is at most $\operatorname{dim}(V)$.
The main fact used in the proof is just that all definable subsets of V have vanishing cohomology in dimensions greater than $\operatorname{dim}(V)$.

Generalization of Olěnik-Petrovskiĭ type bounds to the "o-minimal" case (cont).

"Proof".

Mayer-Vietoris inequalities + local contractibility of definable sets + finiteness of topological types amongst the fibers of any fixed definable map.

The special case for $i=0$ yields:
Corollary
$V C$ co-density of the family $\left(X_{w}\right)_{w \in W}$ is at most $\operatorname{dim}(V)$.
The main fact used in the proof is just that all definable subsets of V have vanishing cohomology in dimensions greater than $\operatorname{dim}(V)$.

VC co-density bounds in other NIP structures

- One class of NIP theories that has been extensively studied is that of Algebraically Closed Valued Fields - ACF with a non-archimedean valuation, such as $\mathbb{C}((t))$.
- Definable subsets are given by (two-sorted) formulas with atoms of the
form $|F| \leq \lambda \cdot|G|$, where $|\cdot|$ denotes the valuation, F, G usual
polynomials with coefficients in the field, and λ in the value group
written multiplicatively.
- Upper bounds on the VC co-density of definable families having
studied extensively by model theorists who obtained a bound of
2 dim($V)-1$ (using the same notation from the previous frame)
[Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko(2016)].
- Using deep recent results of Hrushovski-Loeser on the tame
topological properties of "spaces of stably dominated types" - we can apply the same cohomological technique as in the o-minimal case and improve their bound to the optimal possible, namely $\operatorname{dim}(V)$ (joint

VC co-density bounds in other NIP structures

- One class of NIP theories that has been extensively studied is that of Algebraically Closed Valued Fields - ACF with a non-archimedean valuation, such as $\mathbb{C}((t))$.
- Definable subsets are given by (two-sorted) formulas with atoms of the form $|F| \leq \lambda \cdot|G|$, where $|\cdot|$ denotes the valuation, F, G usual polynomials with coefficients in the field, and λ in the value group written multiplicatively.

VC co-density bounds in other NIP structures

- One class of NIP theories that has been extensively studied is that of Algebraically Closed Valued Fields - ACF with a non-archimedean valuation, such as $\mathbb{C}((t))$.
- Definable subsets are given by (two-sorted) formulas with atoms of the form $|F| \leq \lambda \cdot|G|$, where $|\cdot|$ denotes the valuation, F, G usual polynomials with coefficients in the field, and λ in the value group written multiplicatively.
- Upper bounds on the VC co-density of definable families having studied extensively by model theorists who obtained a bound of $2 \operatorname{dim}(V)-1$ (using the same notation from the previous frame) [Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko(2016)].
topological properties of "spaces of stably dominated types" - we can apply the same cohomological technique as in the o-minimal case and improve their bound to the optimal possible, namely dim(V) (joint

VC co-density bounds in other NIP structures

- One class of NIP theories that has been extensively studied is that of Algebraically Closed Valued Fields - ACF with a non-archimedean valuation, such as $\mathbb{C}((t))$.
- Definable subsets are given by (two-sorted) formulas with atoms of the form $|F| \leq \lambda \cdot|G|$, where $|\cdot|$ denotes the valuation, F, G usual polynomials with coefficients in the field, and λ in the value group written multiplicatively.
- Upper bounds on the VC co-density of definable families having studied extensively by model theorists who obtained a bound of $2 \operatorname{dim}(V)-1$ (using the same notation from the previous frame) [Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko(2016)].
- Using deep recent results of Hrushovski-Loeser on the tame topological properties of "spaces of stably dominated types" - we can apply the same cohomological technique as in the o-minimal case and improve their bound to the optimal possible, namely $\operatorname{dim}(V)$ (joint work with D. Patel (2019)).

Thank you.

