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Some history

Some papers from the initial years ...

Goodman, Jacob E.(1-CCNY); Pollack, Richard(1-NY-X), "There are
asymptotically far fewer polytopes than we thought." Bull. Amer.
Math. Soc. (N.S.) 14 (1986), no. 1, 127-129.
" ... The proof for the upper bound involves converting the problem to
that of counting the number of isomorphism classes of labelled
simplicial polytopes which is converted in turn to the problem of
finding the number of connected components of a particular set. Then
a result of J. Milnor [Proc. Amer. Math. Soc. 15 (1964), 275–280;
MR0161339] finishes the proof..."
Pollack, Richard(1-NY-X); Roy, Marie-Françoise(F-RENNB-IM) "On
the number of cells defined by a set of polynomials." C. R. Acad. Sci.
Paris Sér. I Math. 316 (1993), no. 6, 573-577.
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Some history

Some papers from the initial years (cont) ...

Goodman, J. E.(1-CCNY); Pollack, R.(1-NY-X); Wenger, R.(1-OHS)
"On the connected components of the space of line transversals to a
family of convex sets." Discrete Comput. Geom. 13 (1995), no. 3-4,
469-476.
Basu, Saugata(1-NY-X); Pollack, Richard(1-NY-X); Roy,
Marie-Françoise(F-RENNB-IM) "On the number of cells defined by a
family of polynomials on a variety." Mathematika 43 (1996), no. 1,
120-126.
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Some history

On the number of "cells" ...

Theorem (B., Pollack, Roy (1996))

Let P � R[X1; : : : ;Xk ] be a finite set with deg(P) � d ;P 2 P and
V � Rk be an algebraic set, and suppose that V is cut out by polynomials
also of degree bounded by d . Then, the number of connected components
of the realizations of all realizable sign conditions of P on V is bounded by

sdimR(V )(O(d))k ;

where card(P) = s .

As a consequence ...

Corollary
The VC co-density of the family of real algebraic sets defined by a
polynomials of degree d on V is bounded by dimR(V ).
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Some history

Generalizations ...

1 Higher Betti numbers.
2 General (not just locally closed) semi-algebraic sets.
3 Better bounds for other families semi-algebraic sets – for example,

symmetric ones, defined by randomly chosen polynomials etc.
4 More refined dependence on the degrees of the polynomials.
5 Dependence on the "geometric" degree of V rather than on the

degrees of polynomials cutting it out.
6 More general structures rather than that of real semi-algebraic sets.

For example, o-minimal structures, more generally arbitrary NIP
structures where dimV makes sense.
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Semi-algebraic case

Fixing some notation

Throughout, R will denote a real closed field and C = R[i ] the
algebraic closure of R.
Given P 2 R[X1; : : : ;Xk ] we denote by Zer(P ;Rk ) the set of zeros of
P in Rk .
Given a finite set P � R[X1; : : : ;Xk ], a subset S � Rk is
P-semi-algebraic if S is the realization of a Boolean formula with
atoms P = 0, P > 0 or P < 0 with P 2 P (we will call such a
formula a quantifier-free P-formula).
We call a semi-algebraic set a P-closed semi-algebraic set if it is
defined by a Boolean formula with no negations with atoms P = 0,
P � 0, or P � 0 with P 2 P.
For any semi-algebraic set S , we will denote

b(S ;F) =
X
i

bi (S ;F):
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Semi-algebraic case

Fixing notation (cont)

We will usually denote:
k the dimension of the ambient space.
s = card(P).
d = maxP2P deg(P).
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Semi-algebraic case Bounds on Betti numbers: methods

Upper bounds on Betti numbers: using effective
triangulation

Upper bounds on the Betti numbers of semi-algebraic sets follow from
results on effective triangulation of semi-algebraic sets.
Effective triangulation in turn uses cylindrical algebraic decomposition
– Collins (1976), Wüthrich (1976).
This yields bounds that are doubly exponential in k . That is,

b(S ;F) � (sd)2
O(k)

:

Open problems:
Prove or disprove the existence of a semi-algebraic triangulation or
stratification of semi-algebraic sets with single exponential complexity.
Corresponding algorithmic question.
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Semi-algebraic case Bounds on Betti numbers: methods

Upper bounds on Betti numbers: using the critical point
method/Morse theory

Main idea was to use make a perturbation to reduce to the compact,
non-singular, situation and then use Morse theory in order to bound
the Betti numbers by the number of critical points of some affine
function restricted to the hypersurface. The number of critical point is
bounded by Bezout’s theorem.
In this way one obtains (Olĕınik-Petrovskĭı (1949), Thom, Milnor
(1960s)) b(Zer(P;Rk );F) � d(2d � 1)k�1.
Generalized to more general semi-algebraic sets – ( to P-closed s.a.
sets by B.(1999), and then to arbitrary P-s.a. sets Gabrielov-Vorobjov
(2005)).
Generalization uses additional techniques such as generalized
Mayer-Vietoris inequalities, homotopic approximations by compact sets
(Gabrielov-Vorobjov) etc.
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Semi-algebraic case Bounds on Betti numbers: methods

Upper bounds via critical points (cont).

For completeness ...

Theorem (B.(1999), B.,Pollack,Roy(2005))

Let S be a P-closed semi-algebraic set S � Rk , with s = card(P), and
d = maxP2P deg(P), and V a real algebraic set also defined by a
polynomial of degree at most d . Then,

b(S \V ;F) �
dimR(V )X

i=0

dimR(V )�iX
j=0

 
s + 1

j

!
6jd(2d � 1)k�1

= sdimR(V )(O(d))k :
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Semi-algebraic case Bounds on Betti numbers: methods

Upper bounds on Betti numbers: using complex geometry

Suppose that V (C) � Pk (C) is a non-singular complete intersection
defined by polynomials of degree d1 � d2 � � � � � d`, ` � k .
V (C) is of complex dimension k � `, and real dimension 2(k � `).
The cohomology of V (C) is concentrated in dimension k � `, and
there is a formula for b(V (C);Z) – namely:

b(V (C);Z) = (1 + (�1)k�`+1) � (k � `+ 1) +

d1 � d2 � � � d` �

 k�X̀
i=0

(�1)i
 
k + 1

i

!
hk�`�i (d1; : : : ; d`)

!

= (d1 � � � d`)dk�`
` + O(1)k lower order terms

� O(1)k deg(V ) � dk�`
`

= O(1)k deg(V )�(V )dim(V );

where �(V ) is the least degree such that V is cut out by polynomials
of at most that degree and hj (� � � ) is the j -th complete homogeneous
symmetric polynomial.
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Semi-algebraic case Bounds on Betti numbers: methods

Upper bounds on Betti numbers: using complex geometry

Suppose that V (C) � Pk (C) is a non-singular complete intersection
defined by polynomials of degree d1 � d2 � � � � � d`, ` � k .
V (C) is of complex dimension k � `, and real dimension 2(k � `).
The cohomology of V (C) is concentrated in dimension k � `, and
there is a formula for b(V (C);Z) – namely:

b(V (C);Z) = (1 + (�1)k�`+1) � (k � `+ 1) +

d1 � d2 � � � d` �

 k�X̀
i=0

(�1)i
 
k + 1

i

!
hk�`�i (d1; : : : ; d`)

!

= (d1 � � � d`)dk�`
` + O(1)k lower order terms

� O(1)k deg(V ) � dk�`
`

= O(1)k deg(V )�(V )dim(V );

where �(V ) is the least degree such that V is cut out by polynomials
of at most that degree and hj (� � � ) is the j -th complete homogeneous
symmetric polynomial.
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Semi-algebraic case Bounds on Betti numbers: methods

Consequence for real non-singular complete intersections

Since the cohomology of V is torsion free,
b(V (C);Z) = b(V (C);Z2).
If V is defined by real polynomials, then using the fact that V (C)
admits an involution (complex conjugation), the sum of the Z2-Betti
numbers of the fixed points of this involution, i.e. V (R), is bounded
by b(V (C);Z2) (Smith inequality).
So we obtain:

b(V (R);Z2) � b(V (C);Z2)

= O(1)k (d1 � � � d`)dk�`
`

� O(1)k deg(V )�(V )dim(V ):

Note that the cohomology of V (R) is not necessarily concentrated in
any one dimension, and there will be many possible topological types
for V (R) unlike for V (C).
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Semi-algebraic case Bounds on Betti numbers: methods

Why is the complete intersection assumption necessary ?

The Betti numbers of V (C) can be deduced from the Euler
characteristic of V (C).
The Euler characteristic of V (C) equals the degree of the top Chern
class of the tangent bundle of V (C).
The total Chern class of TV can be computed using the exact
sequence

0 ! TV ! TPk jV ! NV =Pk ! 0;

and the facts:
c(TPk ) = (1 + �V )k+1;

c(NV =Pk ) =
Ỳ
i=1

(1 + di�V )

where �V is the restriction of the cohomology class of the hyperplane
divisor of Pk to V .
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Semi-algebraic case Bounds on Betti numbers: methods

Why is complete intersection necessary (cont.) ?

This gives

c(TV ) =
(1 + �V )k+1Q`
i=1(1 + di�V )

= (1 + (k + 1)�V + � � � ) ((1� d1�V + :::) � � � (1� d`�V + � � � )) ;

from which we can read off the top degree part of c(TV ) (namely
ck�`(TV )) by collecting the coeffcient of �k�`

V . We get

ck�`(TV ) =

 k�X̀
i=0

(�1)k�`�i �

 
k + 1

i

!
� hk�`�i (d1; : : : ; d`)

!
� �k�`

V

�(V ) = deg ck�`(TV )

=

 k�X̀
i=0

(�1)k�`�i �

 
k + 1

i

!
� hk�`�i (d1; : : : ; d`)

!
� deg(V ):

For the non-complete intersection we do not have an expression for the
Chern classes of the normal bundle of V .
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Semi-algebraic case Bounds on Betti numbers: methods

Bounding the number of connected components on a variety

The situation of interest in "iterated" polynomial partitioning ...

Theorem (Simplified version of Barone-B. (2016))

Let V (R) � Rk be a complete intersection variety and let
P 2 R[X1; : : : ;Xk ], with deg(P) � �(V ). Then,

b0(V (R)� Zer(P ;Rk )) � Ok (1)deg(V )deg(P)dim(V ):

"Heuristic but incorrect proof".
Perturb the polynomials defining V , as well as P , infinitesimally to go to
the non-singular situation without losing any connected component. Then
use formula for the Betti numbers + Smith inequality + Mayer-Vietoris +
local conical structure ... But the perturbation has to be carefully done in
order not to lose connected components ...
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Semi-algebraic case Bounds on Betti numbers: methods

Bounding the number of connected components on a variety
(cont.)

With a more careful choice of a perturbation scheme one obtains:

Theorem (Real analogue of Bezout bound, Barone-B. (2013))

Let Q1; : : : ;Q` 2 R[X1; : : : ;Xk ]with deg(Qi ) = di ;
Suppose that

2 � d1 � d2 �
1

k + 1
d3 �

1
(k + 1)2

d4 � � � � �
1

(k + 1)`�2d`:

For 1 � i � `, let dimR(Zer(fQ1; : : : ;Qig;Rk )) � ki and let k0 = k .
Then,

b0(Zer(fQ1; : : : ;Q`g;Rk );Z2) � O(1)`O(k)2k
0
@ Y

1�j<`

dkj�1�kj
j

1
A dk`�1

` :
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Semi-algebraic case Bounds on Betti numbers: methods

Bounding the number of connected components on a variety
(cont.)

However, this is often not enough.
One would like to have a bound solely in terms of deg(V ) dropping
the complete intersection assumption.
Recent work of M. Walsh (2019) seems to achieve that (though with a
caveat).
He obtains a bound of Ok (1)deg(V )deg(P)dim(V ) on the "number
of connected components of Rk � Zer(P ;Rk ) which has a non-empty
intersection with V ". This is a priori smaller than
b0(V � Zer(P ;Rk )) (for example if Zer(P ;Rk ) = ;).
Open problems: What about "refined" bounds on the sum of all the
Betti numbers ?
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More general structures

In more general structures ...

Model theory meets discrete geometry ...
The following statement makes sense in any "structure" having a
reasonable notion of "dimension".
Let A;B be "definable" sets with dim(A);dim(B) � 2, and
V � A�B a definable subset. Then, one of the following two
alternatives must hold.

1 There exists definable subsets � � A; � � B , dim(�);dim(�) � 1,
such that �� � � V , or

2 there exists c = c(V ) > 0 such that for every finite subsets
P � A;Q � B ,

jV \ P �Q j � c(jP j2=3jQ j2=3 + jP j+ jQ j):

The above statement is a Theorem for "o-minimal structures" (B.-Raz
2018), and more generally for all "distal structures"
(Chernikov-Galvin-Starchenko (2018)).
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More general structures

Generalization of Olĕınik-Petrovskĭı type bounds to the
"o-minimal" case

Theorem (B. 2010)

Let V ;W and X � V �W be definable sets (in an o-minimal expansion
of (R;+; �; <)). Then, there exists a constant C = C (X ) > 0 such that
for all s , �w 2 W s , and i ; 0 � i � dim(V ),X

�2f0;1g[1;s]
bi (V�) � Csdim(V )�i

where
V� =

\
i ;�(i)=1

Xwi \
\

i ;�(i)=0

(V �Xwi );

and Xw = X \ ��1
W (w) for all w 2 W .
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More general structures

Generalization of Olĕınik-Petrovskĭı type bounds to the
"o-minimal" case (cont).

"Proof".
Mayer-Vietoris inequalities + local contractibility of definable sets +
finiteness of topological types amongst the fibers of any fixed definable
map.

The special case for i = 0 yields:

Corollary

VC co-density of the family (Xw )w2W is at most dim(V ).

The main fact used in the proof is just that all definable subsets of V have
vanishing cohomology in dimensions greater than dim(V ).

Saugata Basu (Department of Mathematics Purdue University )Applications of algebraic geometry ... June 21, 2019 22 / 24



More general structures

Generalization of Olĕınik-Petrovskĭı type bounds to the
"o-minimal" case (cont).

"Proof".
Mayer-Vietoris inequalities + local contractibility of definable sets +
finiteness of topological types amongst the fibers of any fixed definable
map.

The special case for i = 0 yields:

Corollary

VC co-density of the family (Xw )w2W is at most dim(V ).

The main fact used in the proof is just that all definable subsets of V have
vanishing cohomology in dimensions greater than dim(V ).

Saugata Basu (Department of Mathematics Purdue University )Applications of algebraic geometry ... June 21, 2019 22 / 24



More general structures
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More general structures

VC co-density bounds in other NIP structures

One class of NIP theories that has been extensively studied is that of
Algebraically Closed Valued Fields – ACF with a non-archimedean
valuation, such as C((t)).
Definable subsets are given by (two-sorted) formulas with atoms of the
form jF j � � � jGj, where j � j denotes the valuation, F ;G usual
polynomials with coefficients in the field, and � in the value group
written multiplicatively.
Upper bounds on the VC co-density of definable families having
studied extensively by model theorists who obtained a bound of
2 dim(V )� 1 (using the same notation from the previous frame)
[Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko(2016)].
Using deep recent results of Hrushovski-Loeser on the tame
topological properties of "spaces of stably dominated types" – we can
apply the same cohomological technique as in the o-minimal case and
improve their bound to the optimal possible, namely dim(V ) (joint
work with D. Patel (2019)).
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Algebraically Closed Valued Fields – ACF with a non-archimedean
valuation, such as C((t)).
Definable subsets are given by (two-sorted) formulas with atoms of the
form jF j � � � jGj, where j � j denotes the valuation, F ;G usual
polynomials with coefficients in the field, and � in the value group
written multiplicatively.
Upper bounds on the VC co-density of definable families having
studied extensively by model theorists who obtained a bound of
2 dim(V )� 1 (using the same notation from the previous frame)
[Aschenbrenner-Dolich-Haskell-Macpherson-Starchenko(2016)].
Using deep recent results of Hrushovski-Loeser on the tame
topological properties of "spaces of stably dominated types" – we can
apply the same cohomological technique as in the o-minimal case and
improve their bound to the optimal possible, namely dim(V ) (joint
work with D. Patel (2019)).
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More general structures

Thank you.
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