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The Language of Arrangements

Let A = {S1, . . . , Sn}, with each Si belonging to some
“simple” class of sets.
For I ⊂ {1, . . . , n}, let A(I)denote the set⋂

i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj ,

and it is customary to call a connected component of A(I)
a cell of the arrangement A and we denote by C(A) the set
of all non-empty cells of the arrangement A.
The cardinality of C(A) is called the combinatorial
complexity of the arrangement A.
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What does “simple” mean ?

The class of sets usually considered in the study of
arrangements are sets with “bounded description
complexity”. This means that each set in the arrangement
is defined by a first order formula in the language of
ordered fields involving at most a constant number
polynomials whose degrees are also bounded by a
constant.
Additionally, there is often a requirement that the sets be in
“general position”. The precise definition of “general
position” varies with context, but often involves restrictions
such as: the sets in the arrangements are smooth
manifolds, intersecting transversally.
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The Language of Semi-algebraic Geometry

Let P ⊂ R[X1, . . . , Xk ] be a set of polynomials with degrees
bounded by d and #P = n.
For σ ∈ {0, 1,−1}P , we denote by
R(σ) = {x ∈ Rk | sign(P(x)) = σ(P),∀P ∈ P}, and
bi(σ) = bi(R(σ)).
(B-Pollack-Roy, 2005)

∑
σ∈{0,1,−1}P

bi(R(σ)) ≤
k−i∑
j=0

(
n
j

)
4jd(2d − 1)k−1 =nk−iO(d)k .
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Complexity of Semi-algebraic Sets

In the language of arrangements, the result in the previous
slide implies that the combinatorial complexity of an
arrangement of n algebraic hypersurfaces of fixed degree
in Rk is bounded by O(nk ) (d and k are to be considered
fixed).
Proof based on the Oleinik-Petrovsky-Thom-Milnor bound
on the Betti numbers of real algebraic varieties, along with
inequalities derived from the Mayer-Vietoris exact
sequence.
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Combinatorial Complexity

Notice that the bound in the previous page are products of
two quantities – one that depends only on n (and k ), and
another part which is independent of n. We refer to the first
part as the combinatorial part of the complexity, and the
latter as the algebraic part.
While understanding the algebraic part of the complexity is
a very important problem, in several applications, most
notably in discrete and computational geometry, it is the
combinatorial part of the complexity that is of interest (the
algebraic part is assumed to be bounded by a constant).
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Definition of O-minimal Structures

An o-minimal structure over a real closed field R is a sequence
S(R) = (Sn)n∈N.

1 All algebraic subsets of Rn are in Sn.
2 The class Sn is closed under complementation and finite

unions and intersections.
3 If A ∈ Sm and B ∈ Sn then A× B ∈ Sm+n.
4 If π : Rn+1 → Rn is the projection map on the first n

co-ordinates and A ∈ Sn+1, then π(A) ∈ Sn.
5 The elements of S1 are precisely finite unions of points and

intervals.
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Examples of O-minimal Structures I

Our first example of an o-minimal structure S(R), is the
o-minimal structure over a real closed field R where each
Sn is exactly the class of semi-algebraic subsets of Rn.
Let Sn be the images in Rn under the projection maps
Rn+k → Rn of sets of the form
{(x, y) ∈ Rn+k | P(x, y, ex, ey) = 0}, where P is a real
polynomial in 2(n + k) variables, and ex = (ex1 , . . . , exn)
and ey = (ey1 , . . . , eyk ). We will denote this o-minimal
structure over R by Sexp(R).
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Examples of O-minimal Structures II

Let Sn be the images in Rn under the projection maps
Rn+k → Rn of sets of the form
{(x, y) ∈ Rn+k | P(x, y) = 0}, where P is a restricted
analytic function in (n + k) variables.
(A restricted analytic function in N variables is an analytic
function defined on an open neighborhood of [0, 1]N

restricted to [0, 1]N (and extended by 0 outside)).
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Admissible Sets

Let S(R) be an o-minimal structure on a real closed field R
and let T ⊂ Rk+` be a fixed definable set.

T ⊂ Rk+`

Rk R`
zzttt

ttt
tπ1

$$JJJJJJJ
π2

We will call S of Rk to be a (T , π1, π2)-set if

S = Ty = π1(π
−1
2 (y) ∩ T )

for some y ∈ R`.
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Example I

Let S(R) = Ssa(R) and Let T ⊂ R2k+1 be the semi-algebraic set
defined by

T = {(x1, . . . , xk , a1, . . . , ak , b) | 〈a, x〉 − b = 0}

(where we denote a = (a1, . . . , ak ) and x = (x1, . . . , xk )), and
π1 and π2 are the projections onto the first k and last k + 1
co-ordinates respectively. A (T , π1, π2)-set is clearly a
hyperplane in Rk and vice versa.
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Example II

Let S(R) = Sexp(R) and

T = {(x, y1, . . . , ym, a1, . . . , am) | x, y1, . . . , ym ∈ Rk ,

a1, . . . , am ∈ R, x1, . . . , xk > 0,

m∑
i=0

aixyi = 0},

with π1 : Rk+m(k+1) → Rk and π2 : Rk+m(k+1) → Rm(k+1) be the
projections onto the first k and the last m(k + 1) co-ordinates
respectively. The (T , π1, π2)-sets in this example include
(amongst others) all semi-algebraic sets consisting of
intersections with the positive orthant of all real algebraic sets
defined by a polynomial having at most m monomials (different
sets of monomials are allowed to occur in different
polynomials).
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A-sets I

Let A = {S1, . . . , Sn}, such that each Si ⊂ Rk is a
(T , π1, π2)-set. For I ⊂ {1, . . . , n}, we let A(I) denote the set⋂

i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj , (1)

and we will call such a set to be a basic A-set. We will denote
by, C(A), the set of non-empty connected components of all
basic A-sets.
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A-sets II

We will call definable subsets S ⊂ Rk defined by a Boolean
formula whose atoms are of the form, x ∈ Si , 1 ≤ i ≤ n, a
A-set. An A-set is thus a union of basic A-sets.
In case T is closed and the Boolean formula contains no
negation we will call S an A-closed set.
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Bounds on Betti Numbers I

Theorem

Let S(R) be an o-minimal structure over a real closed field R
and let T ⊂ Rk+` be a closed definable set. Then, there exists a
constant C = C(T ) > 0 depending only on T , such that for any
(T , π1, π2)-family A = {S1, . . . , Sn} of subsets of Rk the
following holds. For every i , 0 ≤ i ≤ k,∑

D∈C(A)

bi(D) ≤ C · nk−i .

In particular, the combinatorial complexity of A, is at most
C · nk . The topological complexity of any m cells in the
arrangement A is bounded by m + C · nk−1.
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Lower dimensional

Theorem

Let S(R) be an o-minimal structure over a real closed field R
and let T ⊂ Rk+`, V ⊂ Rk be closed definable sets with
dim(V ) = k ′. Then, there exists a constant C = C(T , V ) > 0
depending only on T and V, such that for any (T , π1, π2)-family,
A = {S1, . . . , Sn}, of subsets of Rk , and for every i , 0 ≤ i ≤ k ′,∑

D∈C(A,V )

bi(D) ≤ C · nk ′−i .

In particular, the combinatorial complexity of A restricted to V ,
is bounded by C · nk ′ .
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Topological Complexity of A-sets

Theorem

Let S(R) be an o-minimal structure over a real closed field R,
and let T ⊂ Rk+` be a definable set. Then, there exists a
constant C = C(T , V ) > 0 such that for any (T , π1, π2)-family,
A with #A = n, and an A-set S ⊂ Rk ,∑

i≥0

bi(S) ≤ C · nk
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Topological Complexity of Projections

Theorem (Topological Complexity of Projections)

Let S(R) be an o-minimal structure, and let T ⊂ Rk+` be a
definable, closed and bounded set. Let k = k1 + k2 and let
π3 : Rk → Rk2 denote the projection map on the last k2
co-ordinates.
Then, there exists a constant C = C(T ) > 0 such that for any
(T , π1, π2)-family, A, with |A| = n, and an A-closed set S ⊂ Rk ,

k2∑
i=0

bi(π3(S)) ≤ C · n(k1+1)k2 .
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Definition of cdcd

A cdcd of Rk is a finite partition of Rk into definable sets (Ci)i∈I
(called the cells of the cdcd) satisfying the following properties.
If k = 1 then a cdcd of R is given by a finite set of points
a1 < · · · < aN and the cells of the cdcd are the singletons {ai}
as well as the open intervals, (∞, a1), (a1, a2), . . . , (aN ,∞).
If k > 1, then a cdcd of Rk is given by a cdcd, (C′

i )i∈I′ , of Rk−1

and for each i ∈ I′, a collection of cells, Ci defined by,

Ci = {φi(C′
i × Dj) | j ∈ Ji},
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Definition II

where
φi : C′

i × R → Rk

is a definable homemorphism satisfying π ◦ φ = π, (Dj)j∈Ji is a
cdcd of R, and π : Rk → Rk−1 is the projection map onto the
first k − 1 coordinates. The cdcd of Rk is then given by⋃

i∈I′
Ci .

Given a family of definable subsets A = {S1, . . . , Sn} of Rk , we
say that a cdcd is adapted to A, if each Si is a union of cells of
the given cdcd.
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Easier to understand with a picture ....
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Quantitative cylindrical definable cell decomposition I

Theorem (Quantitative cylindrical definable cell decomposition)

Let S(R) be an o-minimal structure over a real closed field R,
and let T ⊂ Rk+` be a closed definable set. Then, there exist
constants C1, C2 > 0 depending only on T , and definable sets,

{Ti}i∈I , Ti ⊂ Rk × R2(2k−1)·`,

depending only on T , with |I| ≤ C1, such that for any
(T , π1, π2)-family, A = {S1, . . . , Sn} with
Si = Tyi , yi ∈ R`, 1 ≤ i ≤ n, some sub-collection of the sets

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Quantitative cylindrical definable cell decomposition II

Theorem (Quantitative cylindrical definable cell decomposition)

π≤k
k+2(2k−1)·`

(
π>k

k+2(2k−1)·`
−1

(yi1 , . . . , yi2(2k−1)
) ∩ Ti

)
,

i ∈ I, 1 ≤ i1, . . . , i2(2k−1) ≤ n,

form a cdcd of Rk compatible with A. Moreover, the cdcd has
at most C2 · n2(2k−1) cells.
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Ramsey-type Theorem

Theorem

Let S(R) be an o-minimal structure over a real closed field R,
and let T ⊂ Rk+` be a definable set. Then, there exists a
constant 1 > ε = ε(T ) > 0 depending only on T , such that for
any (T , π1, π2)-family, A = {S1, . . . , Sn}, there exists two
subfamilies A1,A2 ⊂ A, with |A1|, |A2| ≥ εn, and either,

for all Si ∈ A1 and Sj ∈ A2, Si ∩ Sj 6= ∅, or
for all Si ∈ A1 and Sj ∈ A2, Si ∩ Sj = ∅.
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Unions of definable families

Suppose that T1, . . . , Tm ⊂ Rk+` are closed, definable sets,
π1 : Rk+` → Rk and π2 : Rk+` → R` the two projections.

Lemma

For any collection of (Ti , π1, π2) families Ai , 1 ≤ i ≤ m, the
family ∪1≤i≤mAi is a (T ′, π′1, π

′
2) family where,

T ′ =
m⋃

i=1

Ti × {ei} ⊂ Rk+`+m,

with ei the i-th standard basis vector in Rm, and
π′1 : Rk+`+m → Rk and π′2 : Rk+`+m → R`+m, the projections
onto the first k and the last ` + m coordinates respectively.
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Hardt’s Triviality Theorem

Theorem (Hardt, 1980)

Given any definable set S ⊂ Rk1+k2 , there exists a finite
partition of Rk2 into definable sets {Ti}i∈I such that S is
definably trivial over each Ti .

This means that for each i ∈ I and any point z ∈ Ti , the
pre-image π−1

S (Ti) is definably homeomorphic to π−1
S (z)× Ti by

a fiber preserving homeomorphism. In particular, for each i ∈ I,
all fibers π−1

S (z), z ∈ Ti are definably homeomorphic.
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Notation

Given closed definable sets X ⊂ V ⊂ Rk , and ε > 0, we denote

OT(X , V , ε) = {x ∈ V | dX (x) < ε},

CT(X , V , ε) = {x ∈ V | dX (x) ≤ ε},

BT(X , V , ε) = {x ∈ V | dX (x) = ε},

and finally for ε1 > ε2 > 0 we define

Ann(X , V , ε1, ε2) = {x ∈ V | ε2 < dX (x) < ε1},

Ann(X , V , ε1, ε2) = {x ∈ V | ε2 ≤ dX (x) ≤ ε1}.
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Key Proposition

Proposition

Let A = {S1, . . . , Sn} be a collection of closed definable
subsets of Rk and let V ⊂ Rk be a closed, and bounded
definable set. Then, for all sufficiently small 1 � ε1 � ε2 > 0
the following holds. For any connected component, C, of
A(I) ∩ V, I ⊂ [1 . . . n], there exists a connected component, D,
of the definable set, ⋂

1≤i≤n

Ann(Si , ε1, ε2)
c ∩ V

such that D is definably homotopy equivalent to C.
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Proof of Theorem on Topological Complexity

For 1 ≤ i ≤ n, let yi ∈ R` such that

Si = Tyi ,

and let
Ai(ε1, ε2) = Ann(Si , ε1, ε2)

c ∩ V .

Applying Mayer-Vietoris inequalities we have for 0 ≤ i ≤ k ′,

bi(
n⋂

j=1

Aj(ε1, ε2)) ≤ bk ′(V )+
k ′−i∑
j=1

∑
J⊂{1,...,n},#(J)=j

(
bi+j−1(AJ(ε1, ε2)) + bk ′(V )

)
,

where AJ(ε1, ε2) = ∪j∈JAj(ε1, ε2).
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Proof of Theorem on Topological Complexity (cont).

Notice that each Ann(Si , ε1, ε2)
c , 1 ≤ i ≤ n, is a

(Ann(T , ε1, ε2)
c , π1, π2)-set and moreover,

Ann(Si , ε1, ε2)
c = Tyi ∩ Ann(T , ε1, ε2)

c ; 1 ≤ i ≤ n.

For J ⊂ [1 . . . n], we denote

SJ(ε1, ε2) =
⋃
j∈J

Ann(Sj , ε1, ε2)
c .

There are only a finite number (depending on T ) of
topological types amongst SJ(ε1, ε2). Restricting all the
sets to V in the above argument, we obtain that there are
only finitely many (depending on T and V ) of topological
types amongst the sets AJ(ε1, ε2) = SJ(ε1, ε2) ∩ V .
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Proof of Theorem on topological complexity(cont).

Thus, there exists a constant C(T , V ) such that

C(T , V ) ≥ max
J⊂{1,...,n}

(
bi+j−1(AJ(ε1, ε2)) + bk ′(V )

)
+ bk ′(V ).

It follows from the previous Proposition that∑
D∈C(A,V )

bi(D) ≤ C · nk ′−i .
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Proof of Theorem for A-sets

Key proposition:

Proposition

Let A = {S1, . . . , Sn} be a collection of closed definable
subsets of Rk and let V ⊂ Rk be a closed, and bounded
definable set and let S be an (A, V )-closed set. Then, for all
sufficiently small 1 � ε1 � ε2 · · · � εn > 0,

b(S) ≤
∑

D∈C(B,V )

b(D),

where

B =
n⋃

i=1

{Si , BT(Si , εi), OT(Si , 2εi)
c}.
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Sketch of the proof of the Ramsey type Theorem

For each i , 1 ≤ i ≤ n, let

Ai = π≤`
2` (π>`

2`

−1
(yi) ∩ F ),

and G = {Ai | 1 ≤ i ≤ n}. Note that G is a
(R, π≤`

2` , π>`
2` )-family.

We now use the Clarkson-Shor random sampling
technique (using Theorem on cdcd instead of vertical
decomposition). Applying Theorem on quantitative cdcd to
some sub-family G0 ⊂ G of cardinality r , we get a
decomposition of R` into at most Cr2(2`−1) = rO(1)

definable cells, each of them defined by at most
2(2` − 1) = O(1) of the yi ’s.
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Fibers of a definable map

Let S ⊂ Rk1+k2 be a definable set, and let π : Rk1+k2 → Rk2

be the projection map on the last k2 co-ordinates. We
denote by πS = π|S.
For z ∈ Rk2 , let Sz = S ∩ π−1(z).
Question: How many “topological types” occur amongst
the Sz’s as z varies over Rk2 ?
As an application: how many topological types occur
amongst real or complex hypersurfaces defined by a
polynomial of degree d in k variables ?
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Definable map
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Complexity of the Hardt partition

Hardt’s theorem is a corollary of the existence of cylindrical
cell decompositions for definable sets.
This implies a double exponential (in k1k2) upper bound on
the cardinality of I.
Open problem: prove a single exponential upper bound on
the number of homeomorphism types of the fibres of πS.
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The Semi-algebraic Case

Theorem (B., Vorobjov, 2007)

Let P ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ], with deg(P) ≤ d for each
P ∈ P and #P = n, and let π : Rk1+k2 → Rk2 be the projection
map on the Y-cordinates. Then, for any fixed P-semi-algebraic
set S the number of different homotopy types of fibers
π−1(y) ∩ S, y ∈ π(S) is bounded by

(2k1nk2d)O(k1k2).

Open Problem: Can one prove a single exponential bound like
the one above on the number of homeomorphism types ?
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The o-minimal case

Let S(R) be an o-minimal structure over R, T ⊂ Rk1+k2+` a
closed definable set, and

π1 : Rk1+k2+` → Rk1+k2 ,

π2 : Rk1+k2+` → R`,

π3 : Rk1+k2 → Rk2

the projection maps as depicted below.

Rk1+k2+` Rk1+k2

R` Rk2

//
π1

��

π2

��

π3
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Bounding the number of homotopy types

Theorem (B. 2007)

For any collection A = {A1, . . . , An} of subsets of Rk1+k2 , and
z ∈ Rk2 , let Az denote the collection of subsets of Rk1 ,

{A1,z, . . . , An,z},

where Ai,z = Ai ∩ π−1
3 (z), 1 ≤ i ≤ n. Then, there exists a

constant C = C(T ) > 0, such that for any family
A = {A1, . . . , An} of definable sets, where each
Ai = π1(T ∩ π−1

2 (yi)), for some yi ∈ R`, and any fixed A-set S,
the number of homotopy types of the fibers
S ∩ π3−1(z), z ∈ Rk2 , is bounded by C · n(k1+3)k2 .
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Open problems

1 Try to prove all the known results on combinatorial
complexity of arrangements in the o-minimal setting. (Note
that we are not allowed to use “general position”
assumptions such as transversality etc., or other tricks
such as “linearization” which strongly depend on the
semi-algebraicity of the objects.)

2 Prove a singly exponential upper bound on the number of
homeomorphism types (not just homotopy types) of the
fibers of a definable map. This would be interesting in the
special cases of semi-algebraic or semi-Pfaffian sets.
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