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A quick primer of basic definitions and notation

Initially let k = Z/2Z = {0̄, 1̄}.
A language L is a set⋃

n>0

Ln, Ln ⊂ kn

(abusing notation a little we will identify L with the
sequence (Ln)n>0).
A language

L = (Ln)n>0 ∈ P

if there exists a Turing machine M that given x ∈ kn

decides whether x ∈ Ln or not in nO(1) time.
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Primer (cont.)

A language
L = (Ln)n>0 ∈ NP

if there exists a language L′ = (L′n)n>0 ∈ P such that

x ∈ Ln ⇐⇒ (∃ y ∈ km(n)) (y, x) ∈ L′m+n

where m(n) = nO(1) (such a y is usually called a
“certificate” or a “witness” for x).
A language

L = (Ln)n>0 ∈ coNP
if there exists a language L′ = (L′n)n>0 ∈ P such that

x ∈ Ln ⇐⇒
(
∀ y ∈ km(n)

)
(y, x) ∈ L′m+n

where m(n) = nO(1).
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Discrete Polynomial Time Hierarchy– A Quick
Reminder

A language
L = (Ln)n>0 ∈ Σω

if there exists a language L′ = (L′n)n>0 ∈ P such that

x ∈ Ln

m
(Q1y1 ∈ km1)(Q2y2 ∈ km2) . . . (Qωyω ∈ kmω)

(y1, . . . , yω, x) ∈ L′m+n

where m(n) = m1(n) + · · ·+ mω(n) = nO(1) and for 1 ≤ i ≤ ω,
Qi ∈ {∃,∀}, and Qj 6= Qj+1, 1 ≤ j < ω, Q1 = ∃.
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Reminder (cont.)

Similarly a language

L = (Ln)n>0 ∈ Πω

if there exists a language L′ = (L′n)n>0 ∈ P such that

x ∈ Ln

m
(Q1y1 ∈ km1)(Q2y2 ∈ km2) · · · (Qωyω ∈ kmω)

(y1, . . . , yω, x) ∈ L′m+n

where m(n) = m1(n) + · · ·+ mω(n) = nO(1) and for 1 ≤ i ≤ ω,
Qi ∈ {∃,∀}, and Qj 6= Qj+1, 1 ≤ j < ω, Q1 = ∀. Notice that

P = Σ0 = Π0,

NP = Σ1, coNP = Π1.
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The polynomial time hierarchy

Also, notice the inclusions

Σi ⊂ Πi+1,Σi ⊂ Σi+1

Πi ⊂ Σi+1,Πi ⊂ Πi+1

The polynomial time hierarchy is defined to be

PH def
=

⋃
ω≥0

(Σω ∪ Πω) =
⋃
ω≥0

Σω =
⋃
ω≥0

Πω.
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The Class #P

A sequence of functions

(fn : kn → N)n>0

is said to be in the class #P if there exists L = (Ln)n>0 ∈ P
such that for x ∈ kn

fn(x) = card(Lm+n,x), m = nO(1),

where Lm+n,x is the fibre π−1(x) ∩ Lm+n, and
π : km+n → kn the projection map on the last n
co-ordinates.
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Toda’s Theorem

Toda’s theorem is a seminal result in discrete complexity theory
and gives the following inclusion.

Theorem (Toda (1989))

PH ⊂ P#P

“illustrates the power of counting”
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Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourseleves to the cases k = C or R).
Setting k = Z/2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x ∈ kn, and at each step

1 either makes a ring computation zi ← zj ∗ z`;
2 or branches according to a test zj{=, 6=}0 in case k = C, or

the test zj{>,<,=}0 in case k = R;
3 or accepts/rejects.

A B-S-S TM accepts for every n a subset Sn ⊂ kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Complexity Classes

Complexity classes Pk , NPk , coNPk and more generally
PHk are defined as before (for k = C, R).
B-S-S developed a theory of NP-completeness.
In case, k = C the problem of determining if a system of
n + 1 polynomial equations in n variables has a common
zero in Cn is NPC-complete.
In case, k = R the problem of determining if a quartic
polynomial in n variables has a common zero in Rn is
NPR-complete.
It is unknown if PC = NPC (respectively, PR = NPR) just as
in the discrete case.
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Semi-algebraic sets

From now we assume k = R, and restrict ourselves to real
TM in the sense of B-S-S.
Such a machine accepts a sequence (Sn ⊂ Rn)n>0 where
each Sn is a semi-algebraic subset of Rn.
A semi-algebraic set, S ⊂ Rn, is a subset of Rn defined by
a Boolean formula whose atoms are polynomial equalities
and inequalities.
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Two classes of problems

The most important algorithmic problems studied in this area
fall into two broad sub-classes:

1 the problem of quantifier elimination, and its special cases
such as deciding a sentence in the first order theory of
reals, or deciding emptiness of semi-algebraic sets.

2 the problem of computing topological invariants of
semi-algebraic sets, such as the number of connected
components, Euler-Poincaré characteristic, and more
generally all the Betti numbers of semi-algebraic sets.
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Analogy with Toda’s Theorem

The classes PH and #P appearing in the two sides of the
inclusion in Toda’s Theorem can be identified with the two
broad classes of problems in algorithmic semi-algebraic
geometry;
the class PH with the problem of deciding sentences with a
fixed number of quantifier alternations;
the class #P with the problem of computing topological
invariants of semi-algebraic sets, namely their Betti
numbers, which generalizes the notion of cardinality for
finite sets;
it is thus quite natural to seek a real analogue of Toda’s
theorem.
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Real Analogue of #P

In order to define real analogues of counting complexity
classes of discrete complexity theory, it is necessary to
identify the proper notion of “counting” in the context of
semi-algebraic geometry.
Counting complexity classes over the reals have been
defined previously by Meer (2000) and studied extensively
by other authors Burgisser, Cucker et al (2006). These
authors used a straightforward generalization to
semi-algebraic sets of counting in the case of finite sets;
namely

f (S) = card(S) if card(S) <∞
= ∞ otherwise.
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An alternative definition

In our view this is not fully satisfactory, since the count
gives no information when the semi-algebraic set is infinite,
and most interesting semi-algebraic sets are infinite.
If one thinks of “counting” a semi-algebraic set S ⊂ Rk as
computing certain discrete invariants, then a natural
mathematical candidate is its sequence of Betti numbers,
b0(S), . . . , bk−1(S), or more succinctly
the Poincaré polynomial of S, namely

PS(T )
def
=

∑
i≥0

bi(S) T i .

In case card(S) <∞, we have that
b0(S) = PS(0) = card(S).
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Definition of #P†R

We call a sequence of functions

(fn : Rn → Z[T ])n>0

to be in class #P†R if there exists a polynomial time real Turing
machine M which tests membership in the semi-algebraic sets
(Sn ⊂ Rn)n>0 such that

fn(x) = PSm+n,x , m = nO(1)

for each x ∈ Rn, where Sm+n,x = Sm+n ∩ π−1(x) and
π : Rm+n → Rn is the projection on the last n coordinates.
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Real analogue of Toda’s theorem

It is now natural to formulate the following conjecture.

Conjecture

PHR ⊂ P#P†
R

For technical reasons we are unable to prove this without a
further compactness hypothesis on the left hand-side.
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The compact real polynomial hierarchy

We say that a sequence of semi-algebraic sets

(Sn ⊂ Sn)n>0 ∈ Σc
R,ω

with each Sn compact if there exists another sequence
(S′

n)n>0 ∈ PR such that

x ∈ Sn

if and only if
(Q1y1 ∈ Sm1)(Q2y2 ∈ Sm2) . . . (Qωyω ∈ Smω)

(y1, . . . , yω, x) ∈ S′
m+n

where m(n) = m1(n) + · · ·+ mω(n) = nO(1) and for 1 ≤ i ≤ ω,
Qi ∈ {∃,∀}, and Qj 6= Qj+1, 1 ≤ j < ω, Q1 = ∃ . The compact
class Πc

R,ω is defined analogously.
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The compact real polynomial hierarchy (cont.)

We define

PHc
R

def
=

⋃
ω≥0

(Σc
R,ω ∪ Πc

R,ω) =
⋃
ω≥0

Σc
R,ω =

⋃
ω≥0

c
R,ω.

Notice that the semi-algebraic sets belonging to any language
in PHc

R are all semi-algebraic compact (in fact closed
semi-algebraic subsets of spheres). Also, notice the inclusion

PHc
R ⊂ PHR.
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Main theorem

Theorem (B-Zell,2008)

PHc
R ⊂ P#P†

R
R .
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Remark about the compactness assumption

Even though the restriction to compact semi-algebraic sets
might appear to be only a technicality at first glance, this is
actually an important restriction.
For instance, it is a long-standing open question in real
complexity theory whether there exists an NPR-complete
problem which belongs to the class Σc

1 (the compact
version of the class NPR i.e. where the certificates are
constrained to come from a compact set).
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1 (the compact
version of the class NPR i.e. where the certificates are
constrained to come from a compact set).
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Summary of the Main Idea

Our main tool is a topological construction which given a
semi-algebraic set S ⊂ Rm+n, p ≥ 0, and πY : Rm+n → Rn

denoting the projection along (say) the Y-co-ordinates,
constructs efficiently a semi-algebraic set, Dp

Y(S), such
that

bi(πY(S)) = bi(D
p
Y(S)), 0 ≤ i < p.

Notice that even if there exists an efficient (i.e. polynomial
time) algorithm for checking membership in S, the same
need not be true for the image πY(S).
A second topological ingredient is Alexander-Lefshetz
duality which relates the Betti numbers of a compact
subset K of the sphere Sn with those of Sn − K .
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The case Σc
R,1

Consider a closed semi-algebraic set S ⊂ Sk × S` be
defined by a quantifier free formula φ(Y , X ) and let

πY : Sk × S` → Sk

be the projection map along the Y coordinates.
Then the formula Φ(X) = ∃ Y φ(X, Y) is satisfied by x ∈ Sk

if and only if b0(Sx) 6= 0, where Sx = S ∩ π−1
Y (x). Thus, the

problem of deciding the truth of Φ(x) is reduced to
computing a Betti number (the 0-th) of the fiber of S over x.
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The case Πc
R,1

Using the same notation as before we have that the
formula Ψ(X) = ∀ Y φ(X, Y) is satisfied by x ∈ Sk if and
only if b0(S` \ Sx) = 0 which is equivalent to b`(Sx) = 1 (by
Alexander duality).
Notice, that as before the problem of deciding the truth of
Ψ(x) is reduced to computing a Betti number (the `-th) of
the fiber of S over x.
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Slightly more non-trivial case: Πc
R,2

Let S ⊂ Sk × S` × Sm be a closed semi-algebraic set
defined by a quantifier-free formula φ(X, Y, Z) and let

πZ : Sk × S` × Sm → Sk × S`

be the projection map along the Z variables, and

πY : Sk × S` → Sk

be the projection map along the Y variables as before.
Consider the formula Φ(X) = ∀ Y∃ Z φ(X, Y, Z).
For x ∈ Sk , Φ(x) is true if and only if πZ(S)x = S`, which is
equivalent to b`(D`+1

Z (S)x) = 1.
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The case : Πc
R,2 (cont.)

Thus for any x ∈ Sk , the truth or falsity of Φ(x) is
determined by a certain Betti number of the fiber D`+1

Z (S)x

over x of a certain semi-algebraic set D`+1
Z (S) which can

be constructed efficiently in terms of the set S.
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In general ...

The idea behind the proof of the main theorem is a recursive
application of the above argument in case when the number of
quantifier alternations is larger (but still bounded by some
constant) while keeping track of the growth in the sizes of the
intermediate formulas and also the number of quantified
variables.
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Key Proposition

Suppose there exists a real Turing machine M, and a sequence
of formulas

Φn(X0, . . . , Xn, Y0, . . . , Ym−1) :=

(Q1Z1 ∈ Sk1) · · · (QωZω ∈ Skω)φn(X, Y, Z1, . . . , Zω),

having free variables (X, Y) = (X0, . . . , Xn, Y0, . . . , Ym−1), with

Q1, . . . , Qω ∈ {∃,∀}, Qi 6= Qi+1,

where φn a quantifier-free formula defining a closed
(respectively open) semi-algebraic subset of Sn, and such that
M tests membership in the semi-algebraic sets defined by φn in
polynomial time.
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Key Proposition (cont.)

Then, there exists a polynomial time real Turing machine M ′

which recognizes the semi-algebraic sets defined by a
sequence of quantifier-free first order formulas
(Θn(X, V0, . . . , VN))n>0 such that for each x ∈ Sn, where
Θn(x, V ) describes a closed (respectively open) semi-algebraic
subset Tn ⊂ SN , with N = nO(1), and polynomial-time
computable maps

Fn : Z[T ]≤N → Z[T ]≤m

such that
PR(Φn(x,Y)) = Fn(PR(Θn(x,V ))).

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Outline
Details

Outline

1 (Discrete) Polynomial Hierarchy

2 Blum-Shub-Smale Models of Computation

3 Algorithmic Semi-algebraic Geometry

4 Real Analogue of Toda’s Theorem

5 Proof
Outline
Details

Saugata Basu Polynomial Hierarchy, Betti Numbers and a real analogue of Toda’s Theorem



(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation

Algorithmic Semi-algebraic Geometry
Real Analogue of Toda’s Theorem

Proof

Outline
Details

Topological Join

The join J(X , Y ) of two topological spaces X and Y is defined
by

J(X , Y )
def
= X × Y ×∆1/ ∼,

where
(x , y , t0, t1) ∼ (x ′, y ′, t0, t1)

if t0 = 1, x = x ′ or t1 = 1, y = y ′.
Intuitively, J(X , Y ) is obtained by joining each point of X with
each point of Y by a unit interval.
Example:

J(Sm, Sn) ∼= Sm+n+1.
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Iterated joins

For p ≥ 0, the (p + 1)-fold join Jp(X ) of X is

Jp(X )
def
= X × · · · × X︸ ︷︷ ︸

(p+1) times

×∆p/ ∼,

where

(x0, . . . , xp, t0, . . . , tp) ∼ (x ′0, . . . , x ′p, t0, . . . , tp)

if for each i with ti 6= 0, xi = x ′i . It is easy to see that , Jp(S0), of
the zero dimensional sphere is homeomorphic to Sp.
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p-equivalence

We call a map f : A→ B between two topological spaces to be
a p-equivalence if the induced homomorphism

f∗ : Hi(A)→ Hi(B)

is an isomorphism for all 0 ≤ i < p, and an epimorphism for
i = p. Observe that Jp(S0) ∼= Sp is p-equivalent to a point. In
fact, this holds much more generally and we have that
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Connectivity Property of Join Spaces

Theorem

Let X be a compact semi-algebraic set. Then, the (p + 1)-fold
join Jp(X ) is p-equivalent to a point.
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Topological join over a map

Let f : A→ B be a map between topological spaces A and B.
For p ≥ 0 the (p + 1)-fold join Jp

f (A) of A over f is

Jp
f (A)

def
= A×B · · · ×B A︸ ︷︷ ︸

(p+1) times

×∆p/ ∼,

where

(x0, . . . , xp, t0, . . . , tp) ∼ (x ′0, . . . , x ′p, t0, . . . , tp)

if for each i with ti 6= 0, xi = x ′i .
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Property of fibered join

Theorem

Let f : A→ B be a semi-algebraic map that is a semi-algebraic
compact covering (i.e. for every semi-algebraic compact subset
L ⊂ f (A) there exsists a semi-algebraic compact subset K ⊂ A
with f (K ) = L). Then for every p ≥ 0, the map f induces a
p-equivalence

J(f ) : Jp
f (A)→ f (A).
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Key Lemma

Lemma

Let S ⊂ Sm × Sn be a compact semi-algebraic set and let π
denote the projection on the second sphere.
Then there exists a semi-algebraic set DY(S) which is
homotopy equivalent to Jn+1

π (S) and such that membership in
DY(S) can be checked in polynomial time if the same is true for
S itself.
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