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Throughout, R will denote a real closed field.

» Given P € R[Xj,..., Xk] we denote by Z(P,R¥) the set of

zeros of P in RX.

Given any semi-algebraic subset S ¢ R* we will denote by
bi(S,TF) = dimp(H'(S,F) (i.e. the dimension of the i-th
cohomology group of S with coefficients in F assumed to
be of characterisic 0), and we will denote by

b(S7 F) = Zizo bi(S7 F)

b(S,F) is an important measure of the “complexity” of a
semi-algebaric set S.

Upper bounds on Betti numbers of a semi-algebraic set
translate into lower bounds for the membership in that set
in cetain models of computations.

Knowing very tight bounds on certain Betti numbers (for
example, the 0-th Betti numbers) have become important
for solving some hard problems in discrete geometry (for
example, bounding incidences).
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results on effective triangulation of semi-algebraic sets
which in turn uses cylindrical algebraic decomposition.

» Singly exponential (in k) bounds: Long history — Oleinik
and Petrovskii (1949), Thom, Milnor (1960s) — for real
algebraic varieties and basic closed semi-algebraic sets.

» More precisely, if P € R[X, ..., Xk] with deg(P) < d, then
b(z(P,R¥),F) < d(2d — 1) 1.

» Main idea was to use Morse theory and counting critical
points.

» Generalized to more general semi-algebraic sets
(B-Pollack-Roy, Gabrielov-Vorobjov).

» Generalization uses additional tricks such as generalized

Mayer-Vietoris inequalities, homotopic approximations by
compact sets (Gabrielov-Vorobjov) etc.
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Vi = Z(Fi.a, R(£)").

bo(Vd7k,F) = bk_1(Vd7k,F) = dk, which is singly
exponential in k.

Notice moreover that each Fy x is a symmetric polynomial.

» Symmetric varieties defined by polynomials of bounded

degrees are “simple”. For example, for every fixed degree
d there is a polynomial-time algorithm to test whether such
a variety is empty (Timofte, Riener).

But clearly from the topological point of view they are not
so simple.

For fixed degree symmetric polynomials, the Betti numbers
of the quotient of the variety (by the symmetric group) are
polynomially bounded (B., Riener (2013)).

For example, bo(Vax/Sk,F) = (*197) = O(k)?.
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» A representation of G over a field F (assumed to be of
characteristic 0) is a homomorphism p : G — GL( V) for
some F-vector space V. It is usual to refer to the
representation p by V.

» A representation p : G — GL(V)is said to be irreducible iff
the only G-invariant subspaces are 0 and V.

» The set, Irred( G, IF), of (equivalence classes of) irreducible
representations of G over F, is finite.

» Every finite dimensional representation V of G admits a
canonical direct sum decomposition

V- D W
Welrred(G,F)

where Vyy =5 myW. The components Vi, are called the
isotypic components, and my, the multiplicity of the
irreducible W in V.

> Clearly, dimz(V) = >-werred(gr Mw dime(W).
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» A partition A of k (denoted A I k) is a tuple (A1, ..., ),
AM > >X>0with A\ +---+ X\ =K.

» We denote by Par(k) the set of partitions of k.

» We denote by Young(\) the Young diagram associated with
A

» For example, Young((4,2,1)) is given by

» For any two partitions
n= (,u1,,u2, .. .), A= ()\1 , Ao, .. ) S Par(k), we say that
pe A ifforeach i >0, g + -+ > A +---+ \. Thisis
a partial order (called the dominance order).



Dominance order on Par(6)

mim

Hn — B — oo

/\/\
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» Given partitions p, A = (A1, Ao, ..., ) F k, a semi-standard
tableau of shape 1 and content A is a Young diagram in
Young(x) with entries in the boxes which are
non-decreasing along rows and increasing along columns
—and for each j > 0, the number of /’s is equal to \;.

» For example,

1[1]2]

o=

is a semi-standard of shape (4,2,1) and content (3,3, 1).
» For A\, u - k, the Kostka number K(u, A) is the number of
semi-standard Young tableux of shape 1 and content .

» Fact: for all u, A - Kk, K(u, ) = K((k), ) =1, and
K(p, A) # 0iff > A
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The irreducible representations (also called Specht
modules) of & are in 1-1 correspondence with the set,
Par(k), of partitions of k.

Given a partition A = (\1,..., \p) € Par(\), we denote by

S* the corresponding Specl‘klt module.
1

> In particular, S = 1g,,S(") = signg, .
» The dimension of S* equals the number of standard of

Young tableau of shape \. lts also give by the hook length
formula below.

For a box b in the Young diagram, Young(\), of a partition
A, let hy denote the length of the the hook of bi.e. hy is the
number of boxes in Young(\) strictly to the right and below
b plus 1.

Hook length formula:

|
dime st =
HbGYoung(A) hb

dimz S® = dimz S = 1.
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» For \ + k, we will denote
M =Indg" (16,)

(the Young module of \). It is isomorphic to the
permutation representation of &, on the set of cosets in
& of the subgroup G,.

> Clearly, dimg M* = ().

» (Young’s theorem)

Mg, @D K A

we> A

» For example:
MK) = s(k) =g, e,

M =, P dimg(s")S* =6, F[Sk].
uk-k
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» Let a finite group G act on a topological space X.

» The action of G on X induces an action of G on the
cohomology group H*( X, F), making H*(X,F) into a
G-module.

» If card(G) is invertible in F (and so in particular, if F is a
field of characteristic 0) we have the isomorphisms

H*(X/G,F) = H5(X,F) = H*(X,F)C.

» In particular, if S R, is a symmetric semi-algebraic set,
H*(S,F) is a finite dimensional &,-module, and

HE, (S, F) = H*(S,F)®,
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> Let k

Fi =Y (Xi(Xi—1))% -,

i=1
Vi = Z(Fx, R¥).

HO(Vi, F) = € HO(Vk, F),
0<i<k
where for 0 </ < k, Vi ; is the &-orbit of the connected
component of Vj infinitesimally close (as a function of ¢) to
the point x' = (0,...,0,1,...,1), and HO(Vj,F) is an
1 —1
invariant subspace of HO( V, IF).
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Key example (cont).

» The isotropy subgroup of the point x' under the action of
Sk is 6 x 6_j, and orbit(x') is thus in 1-1
correspondence with the cosets of the subgroup &; x G_;.

» It now follows from the definition of Young’s module:

HO(Vi;,F) =, MUK ifi> k-

=, MK otherwise.



Key example (cont).
» It follows that for k odd,

HO(V/ﬁF) =6y @ (M)\@MA)

Ak
(<2

~s, D P 2K s

A=K > A
(N)<2

=1 @ @ZS“

A=K > A
(r)<2

=g, @ mo, ., S*,

ukk
f(p)<2

where for each p = (uq, u2) - K,
Mo, = 2(m —|k/2])
= 2/1,1 —k+1
= i —p2+1.
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» For k even:
HO(Vi,F) =s, MWZP g H (M oM
M-k
o(N)<2
M£(k/2,k/2)
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Key example (cont).

» For k even:
HO(Vi,F) =g, MEZRR (@ (M & M)
M-k
o(N)<2
M£(k/2,k/2)
~s, P mo,S”,
uEk
f(p)<2

where for each p = (uq, u2) - kK,
Mo, = 2(ur —k/2)+1
= py—p2+1.

» We deduce for all k,

Mo, = p1—p2+1
< k+1.
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Sk-equivariant Poincaré duality

What about H*~"(V,F) ?

Theorem

Let V c R¥ be a bounded smooth compact semi-algebraic
oriented hypersurface, which is stable under the standard
action of 5, onRX. Then, foreach p,0 < p < k — 1, there is a
Sk-module isomorphism

HP(V,F) = HP~'(V, F) @ sign,.

This implies in our example that

H (Vi F) = mo,SP.
u-k
Up)<2
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Key example (cont).

» For u = (uy, u2) F k, by the hook-length formula we have,

k! (1 — p2 +1)

dim S =
(1 + 1) po!

» Since HO( V4, F) =g, D= (1 2)-k Mo,,S* , and hence
dimg(HO(Vi, F) = 32, 1y o)k Mo, dime(S#) = 2K, we
obtain as a consequence the identity

2
K ZM _ ok

Py (1 + 1) po!

p1t+pa=k
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Previous Results

Theorem (B., Riener (2013))

Let P € R[Xq, ..., Xk], be non-negative polynomial of degree
bounded by d, and and such that V = Z(P,R¥) is invariant
under the action of S. Then,

b(V/&.F) < (K)*?(O(d))*"*.

Note that H*(V /&, IF) is isomorphic to the isotypic component
of H*(V, F) belonging to the trivial representation 1, , and
b(V /&, F) is its multiplicity.



More notation

» For any &-symmetric semi-algebraic subset S R, and
A F k, we denote
mi,)\(Sv F) - mult(S/\, Hi(87 F)))
m)\(Sa IE‘) = Z mi,)\(s7 IF)

i>0



New Results

Theorem (B., Riener (2014))

Let P € R[ Xy, ..., Xk] be a Sx-symmetric polynomial, with
deg(P) < d. Let V = Z(P,RX). Then, for all

= (p1, pg,...) =k, my(V,F) > 0 implies that

card({i | pj > 2d}) < 2d,card({j | ij > 2d}) < 2d.

Moreover, for .
m,(V,F) < kO g,



Pictorially

Figure : The shaded area contains all Young diagrams of partitions in
Par(k), while the darker area contains the Young diagrams of the
partitions which can possibly appear in the H*(V, F) for fixed d and
large k.
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» Note that by a famous result of Hardy and Ramanujan
(1918)

1 2k

4./3k

card(Par(K)) ~ e \/;, k — oo

which is exponential in k;
» whereas it follows from the last theorem that

card({p -k | m,(V,F) > 0})

is polynomially bounded in k (for fixed d).
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Proof Ingredients

» Degree principle.

» Equivariant Morse theory, equivariant Mayer-Vietoris
sequence.

» Some tableau combinatorics. Pieri’s rule.
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More results

Similar results bounding multiplicities in th eisotypic
decomposition of the cohomology modules of:

» More general actions of the symmetric group — permuting
blocks of size larger than one.

» Symmetric semi-algebraic sets.
» Symmetric complex varieties.
» Symmetric projective varieties.



Algorithmic conjecture

Conjecture

For any fixed d > 0, there is an algorithm that takes as input the
description of a symmetric semi-algebraic set S c R¥, defined
by a P-closed formula, where P is a set symmetric polynomials
of degrees bounded by d, and computes m; \(S, Q), for each

A F k with m; ,(S,Q) > 0, as well as all the Betti numbers
bi(S,Q), with complexity which is polynomial in card(P) and k.
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Representational stability question

> Let F € R[Xq, ..., X4]S% be a symmetric polynomial of
degree at most d, and let for k > d
Fi = gﬁd’k(F) € R[Xy,... ,Xk]Gk where
dak  R[Xi,. .., Xg]29 — R[Xq, ..., Xk]%* is the canonical
injection.

» Let (Vi = Z(Fy, Rk)kzd be the corresponding sequence of
symmetrc real varieties.

» Also, let = (u1, ..., 1e) F Ko be any fixed partition, and for
all k > kg + w1, let {u}x = (k — ko, p1, 2, - ., o) E K .

» Itis a consequence of the hook-length formula that

dimg(S,.)

dimgp (St = il

Pu(k),

where P,(T) is a monic polynomial having distinct integer
roots, and deg(P,) = |u|.



Question

For any fixed number p > 0 we pose the following question.

Question

Does there exist a polynomial Pr ,, ,(k) such that for all
sufficiently large k, mp 1,1, (Vk, ) = Pgp (k) ? Note that a
positive answer would imply that

dimp(S,)

‘,U“ PF,P,lt(k)PM(k)

dimF(Hp( Vk, ]F)){H}k =
is also given by a polynomial for all large enough k.
A stronger question is to ask for a bound on the degree of
Pe p..(k) as a function of d, ;. and p.
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Question

For any fixed number p > 0 we pose the following question.

Question

Does there exist a polynomial Pr ,, ,(k) such that for all
sufficiently large k, mp 1,1, (Vk, ) = Pgp (k) ? Note that a
positive answer would imply that

dimg(S,)

dimF(Hp(Vk, ]F)){H}k =

is also given by a polynomial for all large enough k.
A stronger question is to ask for a bound on the degree of
PE p..(k) as a function of d, ;. and p.

The conjecture holds in the “key example”.
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