Combinatorial and Topological Complexity in Computational Geometry

Saugata Basu School of Mathematics Georgia Institute of Technology.

1. Arrangement of n lines in \mathbb{R}^2 .

1. Arrangement of n lines in R^2 .

• Total combinatorial complexity : $O(n^2)$.

1. Arrangement of n lines in R^2 .

- Total combinatorial complexity : $O(n^2)$.
- Combinatorial complexity of a single cell : O(n).

1. Arrangement of n lines in R^2 .

- Total combinatorial complexity : $O(n^2)$.
- Combinatorial complexity of a single cell : O(n).

2. Arrangement of n hyperplanes in R^k .

- 1. Arrangement of n lines in R^2 .
 - Total combinatorial complexity : $O(n^2)$.
 - Combinatorial complexity of a single cell : O(n).
- 2. Arrangement of n hyperplanes in R^k .
 - Total combinatorial complexity : $O(n^k)$.

- 1. Arrangement of n lines in R^2 .
 - Total combinatorial complexity : $O(n^2)$.
 - Combinatorial complexity of a single cell : O(n).
- 2. Arrangement of n hyperplanes in R^k .
 - Total combinatorial complexity : $O(n^k)$.
 - Combinatorial complexity of a single cell : $O(n^{\lfloor \frac{k}{2} \rfloor})$. (Consequence of the Upper Bound Theorem).

- 1. Arrangement of n lines in R^2 .
 - Total combinatorial complexity : $O(n^2)$.
 - Combinatorial complexity of a single cell : O(n).
- 2. Arrangement of n hyperplanes in R^k .
 - Total combinatorial complexity : $O(n^k)$.
 - Combinatorial complexity of a single cell : $O(n^{\lfloor \frac{k}{2} \rfloor})$. (Consequence of the Upper Bound Theorem).

Arrangements of Surface Patches

• Each surface patch S_i is a closed semi-algebraic set of constant description size.

Arrangements of Surface Patches

- Each surface patch S_i is a closed semi-algebraic set of constant description size.
- A *cell* is a maximal connected subset of the intersection of a fixed (possibly empty) subset of surface patches that avoids all other surface patches.

Arrangements of Surface Patches

- Each surface patch S_i is a closed semi-algebraic set of constant description size.
- A *cell* is a maximal connected subset of the intersection of a fixed (possibly empty) subset of surface patches that avoids all other surface patches.
- The combinatorial complexity of an ℓ -dimensional cell C is the number of cells in the relative boundary of C.

1. For k = 2:

1. For k = 2:
•: Complexity of the whole arrangement : O(n²).

1. For k = 2:

•: Complexity of the whole arrangement : $O(n^2)$.

•: Complexity of a single cell : $O(n\alpha(n))$ (Guibas, Sifrony, Sharir).

1. For k = 2:

•: Complexity of the whole arrangement : $O(n^2)$.

•: Complexity of a single cell : $O(n\alpha(n))$ (Guibas, Sifrony, Sharir).

2. For k = 3:

1. For k = 2:

•: Complexity of the whole arrangement : $O(n^2)$.

•: Complexity of a single cell : $O(n\alpha(n))$ (Guibas, Sifrony, Sharir).

2. For k = 3:

•: Complexity of the whole arrangement : $O(n^3)$.

1. For k = 2:

•: Complexity of the whole arrangement : $O(n^2)$.

•: Complexity of a single cell : $O(n\alpha(n))$ (Guibas, Sifrony, Sharir).

2. For k = 3:

•: Complexity of the whole arrangement : $O(n^3)$.

•: Complexity of a single cell : $O(n^{2+\epsilon})$

3. Conjecture:

3. Conjecture: Combinatorial complexity of a single cell is bounded by $O(n^{k-1}\beta(n))$.

Topological Complexity of Semi-Algebraic Sets

Oleinik and Petrovsky (1949) Thom (1964) and Milnor (1965) proved that the sum of the Betti numbers of a semi-algebraic set $S \subset R^k$, defined by

 $P_1 \ge 0, \ldots, P_n \ge 0, deg(P_i) \le d, 1 \le i \le s,$

is bounded by $(O(nd))^k$.

What about a single connected component ?

• Oleinik-Petrovsky-Thom-Milnor technique does not give anything better.

What about a single connected component ?

- Oleinik-Petrovsky-Thom-Milnor technique does not give anything better.
- In analogy to the single cell results computational geometry, one might conjecture that the sum of the Betti numbers of a single connected component of a basic semi-algebraic set is bounded by $n^{k-1}O(d)^k$.

What about a single connected component ?

- Oleinik-Petrovsky-Thom-Milnor technique does not give anything better.
- In analogy to the single cell results computational geometry, one might conjecture that the sum of the Betti numbers of a single connected component of a basic semi-algebraic set is bounded by $n^{k-1}O(d)^k$.

- It is easy to construct a basic semi-algebraic set such that it has one connected component whose other Betti numbers sum to Ω(nd)^{k-1}.
- Let

$$P_i = (X_k^2 + L_{i,1}^2) \cdots (X_k^2 + L_{i,|d/2|}^2) - \epsilon,$$

where the $L_{ij} \in R[X_1, \ldots, X_{k-1}]$ are generic linear polynomials and $\epsilon > 0$ and sufficiently small. The set S defined by $P_1 \ge 0, \ldots, P_s \ge 0$ has one connected component with $\sum_i \beta_i(S) = \Omega(nd)^{k-1}$.

New Results

Theorem 1. (B98) Let $C_1, \ldots, C_m \subset \mathbb{R}^k$ be m different connected components of a basic semi-algebraic set defined by $P_1 \geq 0, \ldots, P_n \geq 0$, with the degrees of the polynomials P_i bounded by d. Then $\sum_{i,j} \beta_i(C_j)$ is bounded by $m + {n \choose k-1} O(d)^k$.

New Results

Theorem 2. (B98) Let C be a k-dimensional cell in an arrangement of n surface patches S_1, \ldots, S_n in \mathbb{R}^k . Then the combinatorial complexity of C is bounded by $O(n^{k-1+\epsilon})$ for every $\epsilon > 0$.

 Make perturbations to go to general position without destroying the homotopy type.

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.
- Sweep hyperplane in the X_1 direction and keep track of $C \cap (X_1 \leq x)$ (moving the wall).

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.
- Sweep hyperplane in the X_1 direction and keep track of $C \cap (X_1 \leq x)$ (moving the wall).
- Topological change occurs at the critical values of the projection map restricted to the various strata.

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.
- Sweep hyperplane in the X_1 direction and keep track of $C \cap (X_1 \leq x)$ (moving the wall).
- Topological change occurs at the critical values of the projection map restricted to the various strata.

• There are $\sum_{1 \le i \le k} {n \choose i}$ strata of dimension > 0. Thus, there are ${n \choose k-1}(O(d))^k$ critical values coming from strata of dimension > 0.

- There are $\sum_{1 \le i \le k} {n \choose i}$ strata of dimension > 0. Thus, there are ${n \choose k-1}(O(d))^k$ critical values coming from strata of dimension > 0.
- There are $\binom{n}{k}O(d)^k$ critical values from vertices (strata of dimension 0).

- There are $\sum_{1 \le i \le k} {n \choose i}$ strata of dimension > 0. Thus, there are ${n \choose k-1}(O(d))^k$ critical values coming from strata of dimension > 0.
- There are $\binom{n}{k}O(d)^k$ critical values from vertices (strata of dimension 0).

Ideas behind the proofs (cont):

 Recipe from stratified Morse theory tells us that the sum of the Betti numbers go up by at most one as we go past a critical value.

Ideas behind the proofs (cont):

 Recipe from stratified Morse theory tells us that the sum of the Betti numbers go up by at most one as we go past a critical value.

 For vertices toplogical change only occurs at "good" vertices, where the number of components go up by one.

Ideas behind the proofs (cont):

 Recipe from stratified Morse theory tells us that the sum of the Betti numbers go up by at most one as we go past a critical value.

 For vertices toplogical change only occurs at "good" vertices, where the number of components go up by one. • This bounds the number of good vertices by

$$\binom{n}{k-1}O(d)^k.$$

This bounds the number of good vertices by

$$\binom{n}{k-1}O(d)^k.$$

• The bound on the number of good vertices plays an essential role in the proof of Theorem 7.

Different bounds for different Betti numbers

 Consider the union of n convex sets in R^k. The nerve lemma gives us a bound on the individual Betti numbers of the union.

Different bounds for different Betti numbers

- Consider the union of n convex sets in R^k. The nerve lemma gives us a bound on the individual Betti numbers of the union.
- The homology groups of the union is isomorphic to the homology groups of the nerve complex. The nerve complex has n vertices and thus the *i*-th Betti number is bounded by $\binom{n}{i+1}$.

Different bounds for different Betti numbers

- Consider the union of n convex sets in R^k. The nerve lemma gives us a bound on the individual Betti numbers of the union.
- The homology groups of the union is isomorphic to the homology groups of the nerve complex. The nerve complex has n vertices and thus the *i*-th Betti number is bounded by $\binom{n}{i+1}$.

 What if the intersections are not acyclic but have bounded topology ?

Betti numbers for union

Theorem 3. Let $S \subset R^k$ be the set defined by the disjunction of n inequalities, $P_1 \ge 0, \ldots, P_n \ge 0, P_i \in R[X_1, \ldots, X_k], deg(P_i) \le d, 1 \le i \le n$. Then,

 $\beta_i(S) \le n^{i+1} O(d)^k.$

Note that, a special case of the above theorem is the situation when S is the union of n sets each defined by $-P_i^2 \ge 0$.

Betti numbers for intersections

Theorem 4. Let $S \subset R^k$ be the set defined by the conjunction of n inequalities,

 $P_1 \ge 0, \dots, P_n \ge 0, P_i \in R[X_1, \dots, X_k],$ $deg(P_i) \le d, 1 \le i \le n.$ $eta_i(S) \le n^{k-i}O(d)^k.$

Then,

Let $A, B \subset \mathbb{R}^k$ be compact semi-algebraic sets. Mayer-Vietoris exact sequence:

 $0 \to H_{k-1}(A \cap B) \to H_{k-1}(A) \oplus H_{k-1}(B) \to H_{k-1}(A \cup B) \to$ $H_{k-2}(A \cap B) \to \cdots \to H_{i+1}(A \cup B) \to H_i(A \cap B) \to$ $H_i(A) \oplus H(B) \to H_i(A \cup B) \to \cdots$

A preliminary lemma

Lemma 5. Let $S_1, \ldots, S_n \subset R^k$ be compact semialgebraic sets, such that,

$$\sum_{i} \beta_i (S_{i_1} \cup \cdots \cup S_{i_\ell}) \le M,$$

for all $1 \le i_1 \le \dots \le i_\ell \le n, \ell \le k-i$ (that is the sum of the Betti numbers of the union of any ℓ of the sets for all $\ell \le k-i$ is bounded by M). Let $S = \bigcap_{1 \le j \le n} S_j$. Then,

 $\beta_i(S) \le n^{k-i}M.$

Proof:

Let $T_j = \bigcap_{1 \le i \le j} S_i$. Hence, $T_n = S$.

Proof:

Let $T_j = \bigcap_{1 \le i \le j} S_i$. Hence, $T_n = S$. Recall the Mayer-Vietoris exact sequence of homologies:

$$0 \to H_{k-1}(T_{n-1} \cap S_n) \to H_{k-1}(T_{n-1}) \oplus H_{k-1}(S_n)$$

 $\rightarrow H_{k-1}(T_{n-1} \cup S_n) \rightarrow H_{k-2}(T_{n-1} \cap S_n) \rightarrow \cdots$ $\rightarrow H_{i+1}(T_{n-1} \cup S_n) \rightarrow H_i(T_{n-1} \cap S_n) \rightarrow$ $H_i(T_{n-1}) \oplus H_i(S_n) \rightarrow H_i(T_{n-1} \cup S_n) \rightarrow \cdots$

Proof (cont):

 β_{k-1}(T_n) = β_{k-1}(T_{n-1} ∩ S_n) ≤ β_{k-1}(T_{n-1}) + β_{k-1}(S_n). Unwinding the first term of right hand side we obtain that β_{k-1}(S) ≤ nM.

Proof (cont):

- $\beta_{k-1}(T_n) = \beta_{k-1}(T_{n-1} \cap S_n) \leq \beta_{k-1}(T_{n-1}) + \beta_{k-1}(S_n)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq nM$.
- Again from the Mayer-Vietoris sequence we get that,

 $\beta_i(S) \leq \beta_{i+1}(T_{n-1} \cup S_n) + \beta_i(T_{n-1}) + \beta_i(S_n).$

Proof (cont):

- $\beta_{k-1}(T_n) = \beta_{k-1}(T_{n-1} \cap S_n) \leq \beta_{k-1}(T_{n-1}) + \beta_{k-1}(S_n)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq nM$.
- Again from the Mayer-Vietoris sequence we get that,

 $\beta_i(S) \leq \beta_{i+1}(T_{n-1} \cup S_n) + \beta_i(T_{n-1}) + \beta_i(S_n).$

• $T_{n-1} \cup S_n = \bigcap_{1 \le i \le n-1} (S_i \cup S_n)$. The n-1 sets $S_i \cup S_n$ satisfies the assumption on at most (k-i-1)-ary unions and we can apply the induction hypothesis.

- T_{n-1} ∪ S_n = ∩_{1≤i≤n-1}(S_i ∪ S_n). The n − 1 sets S_i ∪ S_n satisfies the assumption on at most (k−i−1)-ary unions and we can apply the induction hypothesis.
- Thus, we have that $\beta_i(S) \leq (n-1)^{k-i-1}M + (n-1)^{k-i}M + M \leq n^{k-i}M$.

Dual lemma

Lemma 6. Let $S_1, \ldots, S_n \subset R^k$ be compact semialgebraic sets, such that,

$$\sum_{i} \beta_i (S_{i_1} \cap \dots \cap S_{i_\ell}) \le M,$$

for all $1 \leq i_1 \leq \cdots \leq i_\ell \leq n, \ell \leq i+1$. Let $S = \bigcup_{1 \leq j \leq n} S_j$. Then,

 $\beta_i(S) \le n^{i+1}M.$

Sets defined by few inequalities:

Lemma 7. Let $P_1, \ldots, P_l \in R[X_1, \ldots, X_k], deg(P_i) \leq d$, and $l \leq k$. Let S be the set defined by the conjunction of the inequalities $P_i \geq 0$. Let S be bounded. Then, $\sum_i \beta_i(S) = O(d)^k$.

Sets defined by few inequalities:

Lemma 7. Let $P_1, \ldots, P_l \in R[X_1, \ldots, X_k], deg(P_i) \leq d$, and $l \leq k$. Let S be the set defined by the conjunction of the inequalities $P_i \geq 0$. Let S be bounded. Then, $\sum_i \beta_i(S) = O(d)^k$.

Lemma 8. Let $P_1, \ldots, P_l \in R[X_1, \ldots, X_k], deg(P_i) \leq d$, and $l \leq k$. Let S be the set defined by the disjunction of the inequalities $P_i \geq 0$. Then, $\sum_i \beta_i(S) = O(d)^k$.