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Arrangements of Surface Patches

• Each surface patch Si is a closed semi-algebraic set of

constant description size.

• A cell is a maximal connected subset of the intersection

of a fixed (possibly empty) subset of surface patches

that avoids all other surface patches.

• The combinatorial complexity of an `-dimensional cell

C is the number of cells in the relative boundary of C.
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Known Results

1. For k = 2:

•: Complexity of the whole arrangement : O(n2).
•: Complexity of a single cell : O(nα(n)) (Guibas,

Sifrony, Sharir).

2. For k = 3:

•: Complexity of the whole arrangement : O(n3).
•: Complexity of a single cell : O(n2+ε)
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3. Conjecture:
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3. Conjecture: Combinatorial complexity of a single cell is

bounded by O(nk−1β(n)).
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Topological Complexity of Semi-Algebraic
Sets

Oleinik and Petrovsky (1949) Thom (1964) and Milnor

(1965) proved that the sum of the Betti numbers of a

semi-algebraic set S ⊂ Rk, defined by

P1 ≥ 0, . . . , Pn ≥ 0, deg(Pi) ≤ d, 1 ≤ i ≤ s,

is bounded by (O(nd))k.
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• It is easy to construct a basic semi-algebraic set such

that it has one connected component whose other Betti

numbers sum to Ω(nd)k−1.

• Let

Pi = (X2
k + L2

i,1) · · · (X2
k + L2

i,bd/2c)− ε,

where the Lij ∈ R[X1, . . . , Xk−1] are generic linear

polynomials and ε > 0 and sufficiently small. The set

S defined by P1 ≥ 0, . . . , Ps ≥ 0 has one connected

component with
∑

i βi(S) = Ω(nd)k−1.
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New Results

Theorem 1. (B98) Let C1, . . . , Cm ⊂ Rk be m different

connected components of a basic semi-algebraic set

defined by P1 ≥ 0, . . . , Pn ≥ 0, with the degrees of

the polynomials Pi bounded by d. Then
∑

i,j βi(Cj) is

bounded by m+
(
n
k−1

)
O(d)k.
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New Results

Theorem 2. (B98) Let C be a k-dimensional cell in

an arrangement of n surface patches S1, . . . , Sn in Rk.

Then the combinatorial complexity of C is bounded by

O(nk−1+ε) for every ε > 0.
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• There are
∑

1≤i≤k
(
n
i

)
strata of dimension > 0. Thus,

there are
(
n
k−1

)
(O(d))k critical values coming from strata

of dimension > 0.
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• Recipe from stratified Morse theory tells us that the
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Ideas behind the proofs (cont):

• Recipe from stratified Morse theory tells us that the

sum of the Betti numbers go up by at most one as we

go past a critical value.

• For vertices toplogical change only occurs at “good”

vertices, where the number of components go up by

one.
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• This bounds the number of good vertices by(
n

k − 1

)
O(d)k.
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• This bounds the number of good vertices by(
n

k − 1

)
O(d)k.

• The bound on the number of good vertices plays an

essential role in the proof of Theorem 7.
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• What if the intersections are not acyclic but have

bounded topology ?
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Betti numbers for union

Theorem 3. Let S ⊂ Rk be the set defined by the

disjunction of n inequalities, P1 ≥ 0, . . . , Pn ≥ 0, Pi ∈
R[X1, . . . , Xk], deg(Pi) ≤ d, 1 ≤ i ≤ n. Then,

βi(S) ≤ ni+1O(d)k.

Note that, a special case of the above theorem is the

situation when S is the union of n sets each defined by

−P 2
i ≥ 0.
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Betti numbers for intersections

Theorem 4. Let S ⊂ Rk be the set defined by the

conjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0, Pi ∈ R[X1, . . . , Xk],

deg(Pi) ≤ d, 1 ≤ i ≤ n.
Then,

βi(S) ≤ nk−iO(d)k.
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Ideas behind the proofs:

Let A,B ⊂ Rk be compact semi-algebraic sets.

Mayer-Vietoris exact sequence:

0→ Hk−1(A∩B)→ Hk−1(A)⊕Hk−1(B)→ Hk−1(A∪B)→

Hk−2(A ∩B)→ · · · → Hi+1(A ∪B)→ Hi(A ∩B)→
Hi(A)⊕H(B)→ Hi(A ∪B)→ · · ·
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A preliminary lemma

Lemma 5. Let S1, . . . , Sn ⊂ Rk be compact semi-

algebraic sets, such that,∑
i

βi(Si1 ∪ · · · ∪ Si`) ≤M,

for all 1 ≤ i1 ≤ · · · ≤ i` ≤ n, ` ≤ k− i (that is the sum of

the Betti numbers of the union of any ` of the sets for all

` ≤ k − i is bounded by M). Let S = ∩1≤j≤nSj. Then,

βi(S) ≤ nk−iM.
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Proof:

Let Tj = ∩1≤i≤jSi. Hence, Tn = S.
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Proof:

Let Tj = ∩1≤i≤jSi. Hence, Tn = S. Recall the

Mayer-Vietoris exact sequence of homologies:

0→ Hk−1(Tn−1 ∩ Sn)→ Hk−1(Tn−1)⊕Hk−1(Sn)

→ Hk−1(Tn−1 ∪ Sn)→ Hk−2(Tn−1 ∩ Sn)→ · · ·
→ Hi+1(Tn−1 ∪ Sn)→ Hi(Tn−1 ∩ Sn)→
Hi(Tn−1)⊕Hi(Sn)→ Hi(Tn−1 ∪ Sn)→ · · ·
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Proof (cont):

• βk−1(Tn) = βk−1(Tn−1 ∩ Sn) ≤ βk−1(Tn−1) + βk−1(Sn).
Unwinding the first term of right hand side we obtain

that βk−1(S) ≤ nM.
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• Tn−1 ∪ Sn = ∩1≤i≤n−1(Si ∪ Sn). The n− 1 sets Si ∪ Sn
satisfies the assumption on at most (k−i−1)-ary unions

and we can apply the induction hypothesis.
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• Tn−1 ∪ Sn = ∩1≤i≤n−1(Si ∪ Sn). The n− 1 sets Si ∪ Sn
satisfies the assumption on at most (k−i−1)-ary unions

and we can apply the induction hypothesis.

• Thus, we have that βi(S) ≤ (n − 1)k−i−1M + (n −
1)k−iM +M ≤ nk−iM.
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Dual lemma

Lemma 6. Let S1, . . . , Sn ⊂ Rk be compact semi-

algebraic sets, such that,∑
i

βi(Si1 ∩ · · · ∩ Si`) ≤M,

for all 1 ≤ i1 ≤ · · · ≤ i` ≤ n, ` ≤ i+1. Let S = ∪1≤j≤nSj.

Then,

βi(S) ≤ ni+1M.
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Sets defined by few inequalities:

Lemma 7. Let P1, . . . , Pl ∈ R[X1, . . . , Xk], deg(Pi) ≤
d, and l ≤ k. Let S be the set defined by the conjunction

of the inequalities Pi ≥ 0. Let S be bounded. Then,∑
i βi(S) = O(d)k.
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Lemma 8. Let P1, . . . , Pl ∈ R[X1, . . . , Xk], deg(Pi) ≤
d, and l ≤ k. Let S be the set defined by the disjunction

of the inequalities Pi ≥ 0. Then,
∑

i βi(S) = O(d)k.


