Combinatorial and Topological Complexity in Computational Geometry

Saugata Basu

School of Mathematics
Georgia Institute of Technology.

Arrangements of Lines and Hyperplanes

1. Arrangement of n lines in R^{2}.

Arrangements of Lines and Hyperplanes

1. Arrangement of n lines in R^{2}.

- Total combinatorial complexity : $O\left(n^{2}\right)$.

Arrangements of Lines and Hyperplanes

1. Arrangement of n lines in R^{2}.

- Total combinatorial complexity : $O\left(n^{2}\right)$.
- Combinatorial complexity of a single cell : $O(n)$.

Arrangements of Lines and Hyperplanes

1. Arrangement of n lines in R^{2}.

- Total combinatorial complexity : $O\left(n^{2}\right)$.
- Combinatorial complexity of a single cell : $O(n)$.

2. Arrangement of n hyperplanes in R^{k}.

Arrangements of Lines and Hyperplanes

1. Arrangement of n lines in R^{2}.

- Total combinatorial complexity : $O\left(n^{2}\right)$.
- Combinatorial complexity of a single cell : $O(n)$.

2. Arrangement of n hyperplanes in R^{k}.

- Total combinatorial complexity : $O\left(n^{k}\right)$.

Arrangements of Lines and Hyperplanes

1. Arrangement of n lines in R^{2}.

- Total combinatorial complexity : $O\left(n^{2}\right)$.
- Combinatorial complexity of a single cell : $O(n)$.

2. Arrangement of n hyperplanes in R^{k}.

- Total combinatorial complexity : $O\left(n^{k}\right)$.
- Combinatorial complexity of a single cell : $O\left(n^{\left\lfloor\frac{k}{2}\right\rfloor}\right)$. (Consequence of the Upper Bound Theorem).

Arrangements of Lines and Hyperplanes

1. Arrangement of n lines in R^{2}.

- Total combinatorial complexity : $O\left(n^{2}\right)$.
- Combinatorial complexity of a single cell : $O(n)$.

2. Arrangement of n hyperplanes in R^{k}.

- Total combinatorial complexity : $O\left(n^{k}\right)$.
- Combinatorial complexity of a single cell : $O\left(n^{\left\lfloor\frac{k}{2}\right\rfloor}\right)$. (Consequence of the Upper Bound Theorem).

Arrangements of Surface Patches

- Each surface patch S_{i} is a closed semi-algebraic set of constant description size.

Arrangements of Surface Patches

- Each surface patch S_{i} is a closed semi-algebraic set of constant description size.
- A cell is a maximal connected subset of the intersection of a fixed (possibly empty) subset of surface patches that avoids all other surface patches.

Arrangements of Surface Patches

- Each surface patch S_{i} is a closed semi-algebraic set of constant description size.
- A cell is a maximal connected subset of the intersection of a fixed (possibly empty) subset of surface patches that avoids all other surface patches.
- The combinatorial complexity of an ℓ-dimensional cell C is the number of cells in the relative boundary of C.

Known Results

1. For $k=2$:

Known Results

1. For $k=2$:
-: Complexity of the whole arrangement : $O\left(n^{2}\right)$.

Known Results

1. For $k=2$:

- Complexity of the whole arrangement : $O\left(n^{2}\right)$.
- Complexity of a single cell : $O(n \alpha(n))$ (Guibas, Sifrony, Sharir).

Known Results

1. For $k=2$:

- Complexity of the whole arrangement : $O\left(n^{2}\right)$.
- Complexity of a single cell : $O(n \alpha(n))$ (Guibas, Sifrony, Sharir).

2. For $k=3$:

Known Results

1. For $k=2$:

- Complexity of the whole arrangement : $O\left(n^{2}\right)$.
- Complexity of a single cell : $O(n \alpha(n))$ (Guibas, Sifrony, Sharir).

2. For $k=3$:

- Complexity of the whole arrangement : $O\left(n^{3}\right)$.

Known Results

1. For $k=2$:

- Complexity of the whole arrangement : $O\left(n^{2}\right)$.
- Complexity of a single cell : $O(n \alpha(n))$ (Guibas, Sifrony, Sharir).

2. For $k=3$:

- Complexity of the whole arrangement : $O\left(n^{3}\right)$.
- Complexity of a single cell : $O\left(n^{2+\epsilon}\right)$

3. Conjecture:
4. Conjecture: Combinatorial complexity of a single cell is bounded by $O\left(n^{k-1} \beta(n)\right)$.

Topological Complexity of Semi-Algebraic

Sets

Oleinik and Petrovsky (1949) Thom (1964) and Milnor (1965) proved that the sum of the Betti numbers of a semi-algebraic set $S \subset R^{k}$, defined by

$$
P_{1} \geq 0, \ldots, P_{n} \geq 0, \operatorname{deg}\left(P_{i}\right) \leq d, 1 \leq i \leq s
$$

is bounded by $(O(n d))^{k}$.

What about a single connected component

- Oleinik-Petrovsky-Thom-Milnor technique does not give anything better.

What about a single connected component

- Oleinik-Petrovsky-Thom-Milnor technique does not give anything better.
- In analogy to the single cell results computational geometry, one might conjecture that the sum of the Betti numbers of a single connected component of a basic semi-algebraic set is bounded by $n^{k-1} O(d)^{k}$.

What about a single connected component

- Oleinik-Petrovsky-Thom-Milnor technique does not give anything better.
- In analogy to the single cell results computational geometry, one might conjecture that the sum of the Betti numbers of a single connected component of a basic semi-algebraic set is bounded by $n^{k-1} O(d)^{k}$.
- It is easy to construct a basic semi-algebraic set such that it has one connected component whose other Betti numbers sum to $\Omega(n d)^{k-1}$.
- Let

$$
P_{i}=\left(X_{k}^{2}+L_{i, 1}^{2}\right) \cdots\left(X_{k}^{2}+L_{i,\lfloor d / 2\rfloor}^{2}\right)-\epsilon,
$$

where the $L_{i j} \in R\left[X_{1}, \ldots, X_{k-1}\right]$ are generic linear polynomials and $\epsilon>0$ and sufficiently small. The set S defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$ has one connected component with $\sum_{i} \beta_{i}(S)=\Omega(n d)^{k-1}$.

New Results

Theorem 1. (B98) Let $C_{1}, \ldots, C_{m} \subset R^{k}$ be m different connected components of a basic semi-algebraic set defined by $P_{1} \geq 0, \ldots, P_{n} \geq 0$, with the degrees of the polynomials P_{i} bounded by d. Then $\sum_{i, j} \beta_{i}\left(C_{j}\right)$ is bounded by $m+\binom{n}{k-1} O(d)^{k}$.

New Results

Theorem 2. (B98) Let C be a k-dimensional cell in an arrangement of n surface patches S_{1}, \ldots, S_{n} in R^{k}. Then the combinatorial complexity of C is bounded by $O\left(n^{k-1+\epsilon}\right)$ for every $\epsilon>0$.

Ideas behind the proofs:

- Make perturbations to go to general position without destroying the homotopy type.

Ideas behind the proofs:

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.

Ideas behind the proofs:

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.
- Sweep hyperplane in the X_{1} direction and keep track of $C \cap\left(X_{1} \leq x\right)$ (moving the wall).

Ideas behind the proofs:

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.
- Sweep hyperplane in the X_{1} direction and keep track of $C \cap\left(X_{1} \leq x\right)$ (moving the wall).
- Topological change occurs at the critical values of the projection map restricted to the various strata.

Ideas behind the proofs:

- Make perturbations to go to general position without destroying the homotopy type.
- Use Morse theory for singular spaces.
- Sweep hyperplane in the X_{1} direction and keep track of $C \cap\left(X_{1} \leq x\right)$ (moving the wall).
- Topological change occurs at the critical values of the projection map restricted to the various strata.
- There are $\sum_{1 \leq i \leq k}\binom{n}{i}$ strata of dimension >0. Thus, there are $\binom{n}{k-1}(O(d))^{k}$ critical values coming from strata of dimension >0.
- There are $\sum_{1 \leq i \leq k}\binom{n}{i}$ strata of dimension >0. Thus, there are $\binom{n}{k-1}(\bar{O}(d))^{k}$ critical values coming from strata of dimension >0.
- There are $\binom{n}{k} O(d)^{k}$ critical values from vertices (strata of dimension 0).
- There are $\sum_{1 \leq i \leq k}\binom{n}{i}$ strata of dimension >0. Thus, there are $\binom{n}{k-1}(\bar{O}(d))^{k}$ critical values coming from strata of dimension >0.
- There are $\binom{n}{k} O(d)^{k}$ critical values from vertices (strata of dimension 0).

Ideas behind the proofs (cont):

- Recipe from stratified Morse theory tells us that the sum of the Betti numbers go up by at most one as we go past a critical value.

Ideas behind the proofs (cont):

- Recipe from stratified Morse theory tells us that the sum of the Betti numbers go up by at most one as we go past a critical value.
- For vertices toplogical change only occurs at "good" vertices, where the number of components go up by one.

Ideas behind the proofs (cont):

- Recipe from stratified Morse theory tells us that the sum of the Betti numbers go up by at most one as we go past a critical value.
- For vertices toplogical change only occurs at "good" vertices, where the number of components go up by one.
- This bounds the number of good vertices by

$$
\binom{n}{k-1} O(d)^{k} .
$$

- This bounds the number of good vertices by

$$
\binom{n}{k-1} O(d)^{k}
$$

- The bound on the number of good vertices plays an essential role in the proof of Theorem 7.

Different bounds for different Betti numbers

- Consider the union of n convex sets in R^{k}. The nerve lemma gives us a bound on the individual Betti numbers of the union.

Different bounds for different Betti

 numbers- Consider the union of n convex sets in R^{k}. The nerve lemma gives us a bound on the individual Betti numbers of the union.
- The homology groups of the union is isomorphic to the homology groups of the nerve complex. The nerve complex has n vertices and thus the i-th Betti number is bounded by $\binom{n}{i+1}$.

Different bounds for different Betti

 numbers- Consider the union of n convex sets in R^{k}. The nerve lemma gives us a bound on the individual Betti numbers of the union.
- The homology groups of the union is isomorphic to the homology groups of the nerve complex. The nerve complex has n vertices and thus the i-th Betti number is bounded by $\binom{n}{i+1}$.
- What if the intersections are not acyclic but have bounded topology?

Betti numbers for union

Theorem 3. Let $S \subset R^{k}$ be the set defined by the disjunction of n inequalities, $P_{1} \geq 0, \ldots, P_{n} \geq 0, P_{i} \in$ $R\left[X_{1}, \ldots, X_{k}\right], \operatorname{deg}\left(P_{i}\right) \leq d, 1 \leq i \leq n$. Then,

$$
\beta_{i}(S) \leq n^{i+1} O(d)^{k} .
$$

Note that, a special case of the above theorem is the situation when S is the union of n sets each defined by $-P_{i}^{2} \geq 0$.

Betti numbers for intersections

Theorem 4. Let $S \subset R^{k}$ be the set defined by the conjunction of n inequalities,

$$
\begin{gathered}
P_{1} \geq 0, \ldots, P_{n} \geq 0, P_{i} \in R\left[X_{1}, \ldots, X_{k}\right] \\
\operatorname{deg}\left(P_{i}\right) \leq d, 1 \leq i \leq n .
\end{gathered}
$$

Then,

$$
\beta_{i}(S) \leq n^{k-i} O(d)^{k} .
$$

Ideas behind the proofs:

Let $A, B \subset R^{k}$ be compact semi-algebraic sets.
Mayer-Vietoris exact sequence:

$$
\begin{gathered}
0 \rightarrow H_{k-1}(A \cap B) \rightarrow H_{k-1}(A) \oplus H_{k-1}(B) \rightarrow H_{k-1}(A \cup B) \rightarrow \\
H_{k-2}(A \cap B) \rightarrow \cdots \rightarrow H_{i+1}(A \cup B) \rightarrow H_{i}(A \cap B) \rightarrow \\
H_{i}(A) \oplus H(B) \rightarrow H_{i}(A \cup B) \rightarrow \cdots
\end{gathered}
$$

A preliminary lemma

Lemma 5. Let $S_{1}, \ldots, S_{n} \subset R^{k}$ be compact semialgebraic sets, such that,

$$
\sum_{i} \beta_{i}\left(S_{i_{1}} \cup \cdots \cup S_{i_{\ell}}\right) \leq M
$$

for all $1 \leq i_{1} \leq \cdots \leq i_{\ell} \leq n, \ell \leq k-i$ (that is the sum of the Betti numbers of the union of any ℓ of the sets for all $\ell \leq k-i$ is bounded by M). Let $S=\cap_{1 \leq j \leq n} S_{j}$. Then,

$$
\beta_{i}(S) \leq n^{k-i} M .
$$

Proof:

Let $T_{j}=\cap_{1 \leq i \leq j} S_{i}$. Hence, $T_{n}=S$.

Proof:

Let $T_{j}=\cap_{1 \leq i \leq j} S_{i}$. Hence, $T_{n}=S$. Recall the Mayer-Vietoris exact sequence of homologies:

$$
\begin{aligned}
0 \rightarrow & H_{k-1}\left(T_{n-1} \cap S_{n}\right) \rightarrow H_{k-1}\left(T_{n-1}\right) \oplus H_{k-1}\left(S_{n}\right) \\
\rightarrow & H_{k-1}\left(T_{n-1} \cup S_{n}\right) \rightarrow H_{k-2}\left(T_{n-1} \cap S_{n}\right) \rightarrow \cdots \\
& \rightarrow H_{i+1}\left(T_{n-1} \cup S_{n}\right) \rightarrow H_{i}\left(T_{n-1} \cap S_{n}\right) \rightarrow \\
& H_{i}\left(T_{n-1}\right) \oplus H_{i}\left(S_{n}\right) \rightarrow H_{i}\left(T_{n-1} \cup S_{n}\right) \rightarrow \cdots
\end{aligned}
$$

Proof (cont):

- $\beta_{k-1}\left(T_{n}\right)=\beta_{k-1}\left(T_{n-1} \cap S_{n}\right) \leq \beta_{k-1}\left(T_{n-1}\right)+\beta_{k-1}\left(S_{n}\right)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq n M$.

Proof (cont):

- $\beta_{k-1}\left(T_{n}\right)=\beta_{k-1}\left(T_{n-1} \cap S_{n}\right) \leq \beta_{k-1}\left(T_{n-1}\right)+\beta_{k-1}\left(S_{n}\right)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq n M$.
- Again from the Mayer-Vietoris sequence we get that,

$$
\beta_{i}(S) \leq \beta_{i+1}\left(T_{n-1} \cup S_{n}\right)+\beta_{i}\left(T_{n-1}\right)+\beta_{i}\left(S_{n}\right)
$$

Proof (cont):

- $\beta_{k-1}\left(T_{n}\right)=\beta_{k-1}\left(T_{n-1} \cap S_{n}\right) \leq \beta_{k-1}\left(T_{n-1}\right)+\beta_{k-1}\left(S_{n}\right)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq n M$.
- Again from the Mayer-Vietoris sequence we get that,

$$
\beta_{i}(S) \leq \beta_{i+1}\left(T_{n-1} \cup S_{n}\right)+\beta_{i}\left(T_{n-1}\right)+\beta_{i}\left(S_{n}\right)
$$

- $T_{n-1} \cup S_{n}=\cap_{1 \leq i \leq n-1}\left(S_{i} \cup S_{n}\right)$. The $n-1$ sets $S_{i} \cup S_{n}$ satisfies the assumption on at most $(k-i-1)$-ary unions and we can apply the induction hypothesis.
- $T_{n-1} \cup S_{n}=\cap_{1 \leq i \leq n-1}\left(S_{i} \cup S_{n}\right)$. The $n-1$ sets $S_{i} \cup S_{n}$ satisfies the assumption on at most ($k-i-1$)-ary unions and we can apply the induction hypothesis.
- Thus, we have that $\beta_{i}(S) \leq(n-1)^{k-i-1} M+(n-$ 1) ${ }^{k-i} M+M \leq n^{k-i} M$.

Dual lemma

Lemma 6. Let $S_{1}, \ldots, S_{n} \subset R^{k}$ be compact semialgebraic sets, such that,

$$
\sum_{i} \beta_{i}\left(S_{i_{1}} \cap \cdots \cap S_{i_{\ell}}\right) \leq M,
$$

for all $1 \leq i_{1} \leq \cdots \leq i_{\ell} \leq n, \ell \leq i+1$. Let $S=\cup_{1 \leq j \leq n} S_{j}$. Then,

$$
\beta_{i}(S) \leq n^{i+1} M .
$$

Sets defined by few inequalities:

Lemma 7. Let $P_{1}, \ldots, P_{l} \in R\left[X_{1}, \ldots, X_{k}\right], \operatorname{deg}\left(P_{i}\right) \leq$ d, and $l \leq k$. Let S be the set defined by the conjunction of the inequalities $P_{i} \geq 0$. Let S be bounded. Then, $\sum_{i} \beta_{i}(S)=O(d)^{k}$.

Sets defined by few inequalities:

Lemma 7. Let $P_{1}, \ldots, P_{l} \in R\left[X_{1}, \ldots, X_{k}\right], \operatorname{deg}\left(P_{i}\right) \leq$ d, and $l \leq k$. Let S be the set defined by the conjunction of the inequalities $P_{i} \geq 0$. Let S be bounded. Then, $\sum_{i} \beta_{i}(S)=O(d)^{k}$.

Lemma 8. Let $P_{1}, \ldots, P_{l} \in R\left[X_{1}, \ldots, X_{k}\right], \operatorname{deg}\left(P_{i}\right) \leq$ d, and $l \leq k$. Let S be the set defined by the disjunction of the inequalities $P_{i} \geq 0$. Then, $\sum_{i} \beta_{i}(S)=O(d)^{k}$.

