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Arrangements of Lines and Hyperplanes
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e Each surface patch S; is a closed semi-algebraic set of
constant description size.

e A cellis a maximal connected subset of the intersection
of a fixed (possibly empty) subset of surface patches
that avoids all other surface patches.

e The combinatorial complexity of an /-dimensional cell
C' is the number of cells in the relative boundary of C.
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3. Conjecture: Combinatorial complexity of a single cell is
bounded by O(n*~18(n)).



Oleinik and Petrovsky (1949) Thom (1964) and Milnor
(1965) proved that the sum of the Betti numbers of a
semi-algebraic set S C R”, defined by

P, >0,...,P,>0,deg(P,) <d,1 <1 <s,

is bounded by (O(nd))".
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e It Is easy to construct a basic semi-algebraic set such
that it has one connected component whose other Betti
numbers sum to Q(nd)" 1.

o Let
P= (Xi+Liy) - (Xi+ Ligp) — 6

where the L;; € R[Xj,...,X;_1] are generic linear
polynomials and ¢ > 0 and sufficiently small. The set
S defined by P, > 0,..., P, > 0 has one connected
component with Y. 3;(S) = Q(nd)* .



Theorem 1. (B98) Let C,,...,C,, C R* be m different
connected components of a basic semi-algebraic set
defined by P, > 0,..., P, > 0, with the degrees of
the polynomials P; bounded by d. Then } ;. [3;,(C;) is
bounded by m + (") O(d)".



Theorem 2. (B98) Let C be a k-dimensional cell in
an arrangement of n surface patches Si,...,S, in RF.
Then the combinatorial complexity of C' is bounded by
O(n*=1%¢) for every € > 0.
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e This bounds the number of good vertices by

(k 5 1>O(d)k.

e The bound on the number of good vertices plays an
essential role in the proof of Theorem 7.
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e What if the intersections are not acyclic but have
bounded topology ?



Theorem 3. Let S C R"* be the set defined by the
disjunction of n inequalities, P, > 0,...,. P, > 0, P, €
R|Xq,..., X, deg(P;) < d,1 <1i<mn. Then,

Note that, a special case of the above theorem is the

situation when S is the union of n sets each defined by
—P? > 0.



Theorem 4. Let S C R"* be the set defined by the
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Let A, B C R* be compact semi-algebraic sets.
Mayer-Vietoris exact sequence:

0— Hk_l(AﬂB) — Hk_l(A)@Hk_l(B) — Hk_l(AUB) —

H, s(AnB)—---— H;.\1(AUB) - H(ANB) —
H;(A)@® HB) — Hi(AUB) — ---



Lemma b. Let Sy,...,S, C RF be compact semi-
algebraic sets, such that,

Zﬂz‘(sz'l U---uUS;,) < M,

foralll1 <iy <--- <1y <n,l<k—1i (that is the sum of
the Betti numbers of the union of any ¢ of the sets for all
¢ <k —1is bounded by M ). Let S = Ni<;j<,S;. Then,

62(5) < nk_iM.






Let T; = Ni<i<;S;. Hence, T;, = S. Recall the
Mayer-Vietoris exact sequence of homologies:

0— Hyp 1(T,-1NS,) = Hi1(Th—1) & Hi—1(5,)

— Hy 1(T,-1US,) — Hy_o(T,_1NS,) — - -
7 ’H—l(Tn—l U Sn) — H’i(Tn—l M Sn) >
H{(T,_1) ® H;(S,) — Hi(T,_.1US,) — - -
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o _1US, = ﬂlgign_l(si U Sn) The n—1 sets S; U .S,
satisfies the assumption on at most (k—%—1)-ary unions
and we can apply the induction hypothesis.

e Thus, we have that £;(S) < (n — 1)* 1M + (n —
VI M + M < nb~iM.



Lemma 6. Let Si,...,S, C R* be compact semi-
algebraic sets, such that,

Zﬂz‘(sil N---NS;,) < M,

for all 1 S il S s e S ig S n,€ S 1+1. Let S = UlSanSj.
Then,
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Lemma 8. Let P,,..., P, € R|Xy,..., X}, deg(P;) <
d, and | < k. Let S be the set defined by the disjunction
of the inequalities P, > 0. Then, > . 3:(S) = O(d)*.



