Betti numbers of semi-algebraic sets defined by partly quadratic polynomials

Saugata Basu
(joint work with Dima Pasechnik and Marie-Francoise Roy)

Georgia Tech
EPFL, April 25, 2008

Outline

(1) Introduction
 - Semi-algebraic sets

Quantitative Bounds
 - Quantitative Bounds on Betti Numbers - Old and New

(3) Proof of the main theorem

4 Algorithmic Implications

Saugata Basu (joint work with Dima Pasechnik and Marie-Frz Betti numbers of semi-algebraic sets defined by partly quadri

Outline

(1) Introduction

- Semi-algebraic sets
(2) Quantitative Bounds
- Quantitative Bounds on Betti Numbers - Old and New
(3) Proof of the main theorem
(4) Algorithmic Implications

Outline

(1) Introduction

- Semi-algebraic sets
(2) Quantitative Bounds
- Quantitative Bounds on Betti Numbers - Old and New
(3) Proof of the main theorem

Algorithmic Implications

Outline

(1) Introduction

- Semi-algebraic sets
(2) Quantitative Bounds
- Quantitative Bounds on Betti Numbers - Old and New
(3) Proof of the main theorem

4 Algorithmic Implications

Outline

(9) Introduction
 - Semi-algebraic sets

(2) Quantitative Bounds

- Quantitative Bounds on Betti Numbers - Old and New
(3) Proof of the main theorem

4 Algorithmic Implications

Saugata Basu (joint work with Dima Pasechnik and Marie-Fre Betti numbers of semi-algebraic sets defined by partly quadr

Semi-algebraic sets

- Let R be a real closed field, for example the field \mathbb{R} of the real numbers.
- A semi-algebraic set, $S \subset R^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, we call S a \mathcal{P}-semi-algebraic set.
- If the atoms of the Boolean formula are of the form $P \geq 0, P \leq 0, P \in \mathcal{P}$, and there are no negations, then we call S a \mathcal{P}-closed semi-algebraic set.

Semi-algebraic sets

- Let R be a real closed field, for example the field \mathbb{R} of the real numbers.
- A semi-algebraic set, $S \subset \mathrm{R}^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to $\mathcal{P} \subset R\left[X_{1}, \ldots, X_{k}\right]$ we call S a \mathcal{P}-semi-algebraic set.
- If the atoms of the Boolean formula are of the form $P \geq 0, P \leq 0, P \in \mathcal{P}$, and there are no negations, then we call S a \mathcal{P}-closed semi-algebraic set.

Semi-algebraic sets

- Let R be a real closed field, for example the field \mathbb{R} of the real numbers.
- A semi-algebraic set, $S \subset \mathrm{R}^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, we call S a \mathcal{P}-semi-algebraic set.
- If the atoms of the Boolean formula are of the form $P \geq 0, P \leq 0, P \in \mathcal{P}$, and there are no negations, then we call S a \mathcal{P}-closed semi-algebraic set.

Semi-algebraic sets

- Let R be a real closed field, for example the field \mathbb{R} of the real numbers.
- A semi-algebraic set, $S \subset \mathrm{R}^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, we call S a \mathcal{P}-semi-algebraic set.
- If the atoms of the Boolean formula are of the form $P \geq 0, P \leq 0, P \in \mathcal{P}$, and there are no negations, then we call S a \mathcal{P}-closed semi-algebraic set.

Quantitative Questions

- Let $\mathcal{P} \subset \mathrm{R}\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{k}}\right]$ with $\# \mathcal{P}=\mathbf{s}$ and $\max _{\mathbf{P} \in \mathcal{P}} \operatorname{deg}(\mathbf{P})=\mathbf{d}$.
- If $S \subset R^{k}$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?
- How many of the possible 3^{s} sign patterns in $\{0,+,-\}^{P}$ can be possibly realized by points in R^{k} ?
- Into how many regions do the sign patterns decompose R^{k} ? How large can be the sum of the Betti numbers of all the sets in this decomposition?
- If $f: X \rightarrow Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(\mathbf{y}), \mathbf{y} \in Y$.

Quantitative Questions

- Let $\mathcal{P} \subset R\left[\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{k}}\right]$ with $\# \mathcal{P}=\mathbf{s}$ and $\max _{\mathbf{P} \in \mathcal{P}} \operatorname{deg}(\mathbf{P})=\mathbf{d}$.
- If $S \subset \mathrm{R}^{k}$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?
- How many of the possible 3^{S} sign patterns in $\{0,+,-\}^{\mathcal{P}}$ can be possibly realized by points in R^{k} ?
- Into how many regions do the sign natterns decompose R^{k} ? How large can be the sum of the Betti numbers of all the sets in this decomposition ?
- If $f: X \rightarrow Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(\mathbf{y}), \mathbf{y} \in Y$.

Quantitative Questions

- Let $\mathcal{P} \subset \mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathbf{X}_{\mathbf{k}}\right]$ with $\# \mathcal{P}=\mathbf{s}$ and $\max _{\mathbf{P} \in \mathcal{P}} \operatorname{deg}(\mathbf{P})=\mathbf{d}$.
- If $S \subset R^{k}$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?
- How many of the possible 3^{s} sign patterns in $\{0,+,-\}^{\mathcal{P}}$ can be possibly realized by points in R^{k} ?
- Into how many regions do the sign patterns decompose R^{k} ? How large can be the sum of the Betti numbers of all the sets in this decomposition?
- If $f: X \rightarrow Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(\mathbf{y}), \mathbf{y} \in Y$.

Quantitative Questions

- Let $\mathcal{P} \subset \mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathbf{X}_{\mathbf{k}}\right]$ with $\# \mathcal{P}=\mathbf{s}$ and $\max _{\mathbf{P} \in \mathcal{P}} \operatorname{deg}(\mathbf{P})=\mathbf{d}$.
- If $S \subset R^{k}$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?
- How many of the possible 3^{s} sign patterns in $\{0,+,-\}^{\mathcal{P}}$ can be possibly realized by points in R^{k} ?
- Into how many regions do the sign patterns decompose R^{k} ? How large can be the sum of the Betti numbers of all the sets in this decomposition?
- If $f: X \rightarrow Y$ is a semi-algebraic map, defined in terms of \mathcal{P}
then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(\mathbf{y}), \mathbf{y} \in Y$.

Quantitative Questions

- Let $\mathcal{P} \subset \mathrm{R}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathbf{k}}\right]$ with $\# \mathcal{P}=\mathbf{s}$ and $\max _{\mathbf{P} \in \mathcal{P}} \operatorname{deg}(\mathbf{P})=\mathbf{d}$.
- If $S \subset R^{k}$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?
- How many of the possible 3^{s} sign patterns in $\{0,+,-\}^{\mathcal{P}}$ can be possibly realized by points in R^{k} ?
- Into how many regions do the sign patterns decompose R^{k} ? How large can be the sum of the Betti numbers of all the sets in this decomposition?
- If $f: X \rightarrow Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(\mathbf{y}), \mathbf{y} \in Y$.

Outline

(1) Introduction

- Semi-algebraic sets
(2) Quantitative Bounds
- Quantitative Bounds on Betti Numbers - Old and New
(3) Proof of the main theorem

4 Algorithmic Implications

Quantitative bounds - Singly exponential

- Classical result (Oleinik, Petrovsky, Thom, Milnor): If S is defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$, then,

$$
\sum_{0 \leq i \leq k} b_{i}(S) \leq(O(s d))^{k}
$$

- The same bound extends (with a different constant) if S is \mathcal{P}-closed semi-algebraic set (B 99).

Quantitative bounds - Singly exponential

- Classical result (Oleinik, Petrovsky, Thom, Milnor): If S is defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$, then,

$$
\sum_{0 \leq i \leq k} b_{i}(S) \leq(O(s d))^{k}
$$

- The same bound extends (with a different constant) if S is \mathcal{P}-closed semi-algebraic set (B 99).

Extension to arbitrary

set

- Extension to arbitrary \mathcal{P} - semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov $(2005,2007)$ (with a slight worsening of the bound).
- If S is a \mathcal{P}-semi-algebraic set then
- All the above bounds are singly exponential in the number of variables k and polynomial in s and d.
- This single exponential dependence is unavoidable.

Extension to arbitrary

set

- Extension to arbitrary \mathcal{P} - semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov $(2005,2007)$ (with a slight worsening of the bound).
- If S is a \mathcal{P}-semi-algebraic set then

$$
\sum_{0 \leq i \leq k} b_{i}(S) \leq \min \left(\left(O\left(s^{2} d\right)\right)^{k},(O(s k d))^{k}\right)
$$

- All the above bounds are singly exponential in the number of variables k and polynomial in s and d. - This single exponential dependence is unavoidable.

Extension to arbitrary

set

- Extension to arbitrary \mathcal{P}-semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov $(2005,2007)$ (with a slight worsening of the bound).
- If S is a \mathcal{P}-semi-algebraic set then

$$
\sum_{0 \leq i \leq k} b_{i}(S) \leq \min \left(\left(O\left(s^{2} d\right)\right)^{k},(O(s k d))^{k}\right)
$$

- All the above bounds are singly exponential in the number of variables k and polynomial in s and d.
- This single exponential dependence is unavoidable.

Extension to arbitrary

set

- Extension to arbitrary \mathcal{P}-semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov $(2005,2007)$ (with a slight worsening of the bound).
- If S is a \mathcal{P}-semi-algebraic set then

$$
\sum_{0 \leq i \leq k} b_{i}(S) \leq \min \left(\left(O\left(s^{2} d\right)\right)^{k},(O(s k d))^{k}\right)
$$

- All the above bounds are singly exponential in the number of variables k and polynomial in s and d.
- This single exponential dependence is unavoidable.

Quadratic Case

- Let $S \subset \mathrm{R}^{\ell}$ be a semi-algebraic set defined by $Q_{1} \geq 0, \ldots, Q_{m} \geq 0$, with $\operatorname{deg}\left(Q_{i}\right) \leq 2,1 \leq i \leq m$.

- As in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.

Quadratic Case

- Let $S \subset \mathrm{R}^{\ell}$ be a semi-algebraic set defined by $Q_{1} \geq 0, \ldots, Q_{m} \geq 0$, with $\operatorname{deg}\left(Q_{i}\right) \leq 2,1 \leq i \leq m$.
- As in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.

satisfies $b_{0}(S)=2^{\ell}$

Quadratic Case

- Let $S \subset \mathrm{R}^{\ell}$ be a semi-algebraic set defined by $Q_{1} \geq 0, \ldots, Q_{m} \geq 0$, with $\operatorname{deg}\left(Q_{i}\right) \leq 2,1 \leq i \leq m$.
- As in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.

Example

The set $S \subset \mathrm{R}^{\ell}$ defined by

$$
Y_{1}\left(Y_{1}-1\right) \geq 0, \ldots, Y_{\ell}\left(Y_{\ell}-1\right) \geq 0
$$

satisfies $b_{0}(S)=2^{\ell}$.

Bounds on Betti Numbers of Sets Defined by Quadratic Inequalities

Theorem (Barvinok (1997))

Let $S \subset \mathrm{R}^{\ell}$ be defined by

$$
Q_{1} \geq 0, \ldots, Q_{m} \geq 0
$$

$$
\operatorname{deg}\left(Q_{i}\right) \leq 2,1 \leq i \leq m . \text { Then }
$$

$$
\sum_{i \geq 0} b_{i}(S) \leq \ell^{O(m)} .
$$

Unlike the previous bound this bound is polynomial in ℓ and

Bounds on Betti Numbers of Sets Defined by Quadratic Inequalities

Theorem (Barvinok (1997))

Let $S \subset \mathrm{R}^{\ell}$ be defined by

$$
Q_{1} \geq 0, \ldots, Q_{m} \geq 0
$$

$$
\operatorname{deg}\left(Q_{i}\right) \leq 2,1 \leq i \leq m . \text { Then }
$$

$$
\sum_{i \geq 0} b_{i}(S) \leq \ell^{O(m)} .
$$

Unlike the previous bound this bound is polynomial in ℓ and

Bounds on Betti Numbers of Sets Defined by Quadratic Inequalities

Theorem (Barvinok (1997))

Let $S \subset \mathrm{R}^{\ell}$ be defined by

$$
Q_{1} \geq 0, \ldots, Q_{m} \geq 0
$$

$$
\operatorname{deg}\left(Q_{i}\right) \leq 2,1 \leq i \leq m . \text { Then }
$$

$$
\sum_{i \geq 0} b_{i}(S) \leq \ell^{O(m)}
$$

Unlike the previous bound this bound is polynomial in ℓ and exponential in m.

Other classes with polynomial bounds ?

- The bound depends crucially on the assumption that the degrees of the polynomials Q_{1}, \ldots, Q_{m} are at most two.
For instance, the semi-algebraic set defined by a single polynomial of degree 4 can have Betti numbers exponentially large in ℓ. For instance the semi-algebraic set $S \subset \mathrm{R}^{\ell}$ defined by

has $b_{0}(S)=2^{l}$

Other classes with polynomial bounds ?

- The bound depends crucially on the assumption that the degrees of the polynomials Q_{1}, \ldots, Q_{m} are at most two.
- For instance, the semi-algebraic set defined by a single polynomial of degree 4 can have Betti numbers exponentially large in ℓ. For instance the semi-algebraic set $S \subset \mathrm{R}^{\ell}$ defined by

$$
\sum_{i=0}^{\ell} Y_{i}^{2}\left(Y_{i}-1\right)^{2} \leq 0 .
$$

has $b_{0}(S)=2^{\ell}$.

Bounds for partly quadratic systems

Then

In particular, for $m \leq \ell$, we have $b(S)$

Saugata Basu (joint work with Dima Pasechnik and Marie-Fre Betti numbers of semi-algebraic sets defined by partly quadr

Bounds for partly quadratic systems

Then

\square
In particular, for $m \leq \ell$, we have $b(S)$

Bounds for partly quadratic systems

$$
\begin{aligned}
& \text { Theorem (B.,Pasechnik, Roy, 2007) } \\
& \text { Let } \\
& \text { - } \mathcal{Q} \subset \mathrm{R}\left[Y_{1}, \ldots, Y_{\ell}, X_{1}, \ldots, X_{k}\right] \text { with } \\
& \operatorname{deg}_{Y}(Q) \leq 2, \operatorname{deg}_{X}(Q) \leq d, Q \in \mathcal{Q}, \#(\mathcal{Q})=m ; \\
& \text { - } \mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right] \text { with } \operatorname{deg}_{X}(P) \leq d, P \in \mathcal{P}, \#(\mathcal{P})=s \text {; } \\
& \text { S } \subset \mathbb{R}^{\text {Pk }} \text { a }(\mathcal{P} \cup \mathcal{Q} \text {-closed semi-algebraic set. }
\end{aligned}
$$

Then

\square

Bounds for partly quadratic systems

Theorem (B.,Pasechnik, Roy, 2007)

Let

- $\mathcal{Q} \subset \mathrm{R}\left[Y_{1}, \ldots, Y_{\ell}, X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{Y}(Q) \leq 2, \operatorname{deg}_{X}(Q) \leq d, Q \in \mathcal{Q}, \#(\mathcal{Q})=m ;$
- $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{X}(P) \leq d, P \in \mathcal{P}, \#(\mathcal{P})=s$;
- $S \subset \mathrm{R}^{\ell+k} a(\mathcal{P} \cup \mathcal{Q})$-closed semi-algebraic set.

Then

\square

Bounds for partly quadratic systems

Theorem (B.,Pasechnik, Roy, 2007)

Let

- $\mathcal{Q} \subset \mathrm{R}\left[Y_{1}, \ldots, Y_{\ell}, X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{Y}(Q) \leq 2, \operatorname{deg}_{X}(Q) \leq d, Q \in \mathcal{Q}, \#(\mathcal{Q})=m ;$
- $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{X}(P) \leq d, P \in \mathcal{P}, \#(\mathcal{P})=s$;
- $S \subset \mathrm{R}^{\ell+k} a(\mathcal{P} \cup \mathcal{Q})$-closed semi-algebraic set.

Then

\square

Bounds for partly quadratic systems

Theorem (B.,Pasechnik, Roy, 2007)

Let

- $\mathcal{Q} \subset \mathrm{R}\left[Y_{1}, \ldots, Y_{\ell}, X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{Y}(Q) \leq 2, \operatorname{deg}_{X}(Q) \leq d, Q \in \mathcal{Q}, \#(\mathcal{Q})=m ;$
- $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{X}(P) \leq d, P \in \mathcal{P}, \#(\mathcal{P})=s$;
- $S \subset \mathrm{R}^{\ell+k} a(\mathcal{P} \cup \mathcal{Q})$-closed semi-algebraic set.

Then

$$
b(S) \leq \ell^{2}(O(s+\ell+m) \ell d)^{k+2 m} .
$$

In particular, for $m \leq \ell$, we have $b(S)$

Bounds for partly quadratic systems

Theorem (B.,Pasechnik, Roy, 2007)

Let

- $\mathcal{Q} \subset \mathrm{R}\left[Y_{1}, \ldots, Y_{\ell}, X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{Y}(Q) \leq 2, \operatorname{deg}_{X}(Q) \leq d, Q \in \mathcal{Q}, \#(\mathcal{Q})=m ;$
- $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}_{X}(P) \leq d, P \in \mathcal{P}, \#(\mathcal{P})=s$;
- $S \subset \mathrm{R}^{\ell+k} a(\mathcal{P} \cup \mathcal{Q})$-closed semi-algebraic set.

Then

$$
b(S) \leq \ell^{2}(O(s+\ell+m) \ell d)^{k+2 m}
$$

In particular, for $m \leq \ell$, we have $b(S) \leq \ell^{2}(O(s+\ell) \ell d)^{k+2 m}$.

Generalization of the previous bounds

Notice that the previous Theorem is a common generalization of the previous theorems in the sense that we recover similar bounds (that is bounds having the same shape) by setting ℓ and m (respectively, s, d and k) to $O(1)$.

Bound for semi-algebraic sets defined over a quadratic map

Corollary

Let $Q=\left(Q_{1}, \ldots, Q_{k}\right): \mathrm{R}^{\ell} \rightarrow \mathrm{R}^{k}$ be a quadratic map. and $V \subset R^{k}$ be a \mathcal{P}-closed semi-algebraic with $\#(\mathcal{P})=s$ and $\operatorname{deg}(P) \leq d, P \in \mathcal{P}$. Let $S=Q^{-1}(V)$. Then,

$$
b(S) \leq \ell^{2}(O(s+\ell+k) \ell d)^{3 k} .
$$

Homogeneous Case

We denote by:

- \mathcal{Q}^{h} the family of polynomials obtained by homogenizing \mathcal{Q} with respect to the variables Y, i.e.
- Φ a formula defining a \mathcal{P}-closed semi-algebraic set V,

Homogeneous Case

We denote by:

- \mathcal{Q}^{h} the family of polynomials obtained by homogenizing \mathcal{Q} with respect to the variables Y, i.e.
- Φ a formula defining a \mathcal{P}-closed semi-algebraic set V,

Homogeneous Case

We denote by:

- \mathcal{Q}^{h} the family of polynomials obtained by homogenizing \mathcal{Q} with respect to the variables Y, i.e.
- Φ a formula defining a \mathcal{P}-closed semi-algebraic set V,

$$
A^{h}=\bigcup_{Q \in \mathcal{Q}^{h}}\{(y, x)| | y \mid=1 \wedge Q(y, x) \leq 0 \wedge \Phi(x)\}
$$

Homogeneous Case

We denote by:

- \mathcal{Q}^{h} the family of polynomials obtained by homogenizing \mathcal{Q} with respect to the variables Y, i.e.
- Φ a formula defining a \mathcal{P}-closed semi-algebraic set V,
-

$$
A^{h}=\bigcup_{Q \in \mathcal{Q}^{h}}\{(y, x)| | y \mid=1 \wedge Q(y, x) \leq 0 \wedge \Phi(x)\}
$$

-

$$
W^{h}=\bigcap_{Q \in \mathcal{Q}^{h}}\{(y, x)| | y \mid=1 \wedge Q(y, x) \leq 0 \wedge \Phi(x)\} .
$$

Result in a very special case

Proposition

$$
b\left(A^{h}\right), b\left(W^{h}\right) \leq \ell^{2}(O((s+\ell+m) \ell d))^{m+k}
$$

Auxillary construction

- Let $\Omega=\left\{\omega \in \mathrm{R}^{m}| | \omega \mid=1, \omega_{i} \leq 0,1 \leq i \leq m\right\}$.

Auxillary construction

- Let $\Omega=\left\{\omega \in \mathrm{R}^{m}| | \omega \mid=1, \omega_{i} \leq 0,1 \leq i \leq m\right\}$.
- For $\omega \in \Omega$ let $\left\langle\omega, \mathcal{Q}^{h}\right\rangle \in \mathrm{R}\left[Y_{0}, \ldots, Y_{\ell}, X_{1}, \ldots, X_{k}\right]$ be defined by

$$
\left\langle\omega, \mathcal{Q}^{h}\right\rangle=\sum_{i=1}^{m} \omega_{i} Q_{i}^{h}
$$

Auxillary construction

- Let $\Omega=\left\{\omega \in \mathrm{R}^{m}| | \omega \mid=1, \omega_{i} \leq 0,1 \leq i \leq m\right\}$.
- For $\omega \in \Omega$ let $\left\langle\omega, \mathcal{Q}^{h}\right\rangle \in \mathrm{R}\left[Y_{0}, \ldots, Y_{\ell}, X_{1}, \ldots, X_{k}\right]$ be defined by

$$
\left\langle\omega, \mathcal{Q}^{h}\right\rangle=\sum_{i=1}^{m} \omega_{i} Q_{i}^{h} .
$$

- For $(\omega, x) \in \Omega \times V$ let $\left\langle\omega, \mathcal{Q}^{h}\right\rangle(\cdot, x)$ be the quadratic form in Y_{0}, \ldots, Y_{ℓ} obtained from $\left\langle\omega, \mathcal{Q}^{h}\right\rangle$ by specializing $X_{i}=x_{i}, 1 \leq i \leq k$.

Auxillary construction (cont).

Let $B \subset \Omega \times \mathbf{S}^{\ell} \times V$ be the semi-algebraic set defined by

$$
B=\left\{(\omega, y, x) \mid \omega \in \Omega, y \in \mathbf{S}^{\ell}, x \in V,\left\langle\omega, \mathcal{Q}^{h}\right\rangle(y, x) \geq 0\right\}
$$

We have the following diagram.

Auxillary construction (cont).

Let $B \subset \Omega \times \mathbf{S}^{\ell} \times V$ be the semi-algebraic set defined by

$$
B=\left\{(\omega, y, x) \mid \omega \in \Omega, y \in \mathbf{S}^{\ell}, x \in V,\left\langle\omega, \mathcal{Q}^{h}\right\rangle(y, x) \geq 0\right\}
$$

We have the following diagram.

Proposition

> The semi-algebraic set B is homotopy equivalent to $\varphi_{2}(B)=A^{h}$.

Filtration by index

- For a quadratic form Q let $\lambda_{i}(Q), 0 \leq i \leq \ell$ be the eigenvalues of Q in non-decreasing order, i.e.

$$
\lambda_{0}(Q) \leq \lambda_{1}(Q) \leq \cdots \leq \lambda_{\ell}(Q)
$$

- It is clear that each F_{j} is a closed semi-algebraic subset of F and

Filtration by index

- For a quadratic form Q let $\lambda_{i}(Q), 0 \leq i \leq \ell$ be the eigenvalues of Q in non-decreasing order, i.e.

$$
\lambda_{0}(Q) \leq \lambda_{1}(Q) \leq \cdots \leq \lambda_{\ell}(Q)
$$

- For $F=\Omega \times V$ let

$$
F_{j}=\left\{(\omega, x) \in F \quad \mid \operatorname{index}\left(\left\langle\omega, \mathcal{Q}^{h}\right\rangle(\cdot, x)\right) \leq j\right\}
$$

- It is clear that each F_{j} is a closed semi-algebraic subset of F and

Filtration by index

- For a quadratic form Q let $\lambda_{i}(Q), 0 \leq i \leq \ell$ be the eigenvalues of Q in non-decreasing order, i.e.

$$
\lambda_{0}(Q) \leq \lambda_{1}(Q) \leq \cdots \leq \lambda_{\ell}(Q)
$$

- For $F=\Omega \times V$ let

$$
F_{j}=\left\{(\omega, x) \in F \quad \mid \operatorname{index}\left(\left\langle\omega, \mathcal{Q}^{h}\right\rangle(\cdot, x)\right) \leq j\right\}
$$

- It is clear that each F_{j} is a closed semi-algebraic subset of F and

$$
F_{0} \subset F_{1} \subset \cdots \subset F_{\ell+1}=F .
$$

Morse Lemma

Lemma

The fibre of the map φ_{1} over a point $(\omega, x) \in F_{j} \backslash F_{j-1}$ has the homotopy type of a sphere of dimension $\ell-j$.

In fact by simultaneous retraction of the fibers to the positive eigenspace we actually obtain a $\mathbf{S}^{\ell-j}$ bundle C^{j} over $F_{j} \backslash F_{j-1}$

Morse Lemma

Lemma

The fibre of the map φ_{1} over a point $(\omega, x) \in F_{j} \backslash F_{j-1}$ has the homotopy type of a sphere of dimension $\ell-j$.

In fact by simultaneous retraction of the fibers to the positive eigenspace we actually obtain a $\mathbf{S}^{\ell-j}$ bundle C^{j} over $F_{j} \backslash F_{j-1}$

Morse Lemma

Lemma

The fibre of the map φ_{1} over a point $(\omega, x) \in F_{j} \backslash F_{j-1}$ has the homotopy type of a sphere of dimension $\ell-j$.

In fact by simultaneous retraction of the fibers to the positive eigenspace we actually obtain a $\mathbf{S}^{\ell-j}$ bundle C^{j} over $F_{j} \backslash F_{j-1}$.

Example

Example

In this example $m=2, \ell=3, k=0$, and $\mathcal{Q}^{h}=\left\{Q_{1}^{h}, Q_{2}^{h}\right\}$ with

$$
\begin{aligned}
& Q_{1}^{h}=-Y_{0}^{2}-Y_{1}^{2}-Y_{2}^{2} \\
& Q_{2}^{h}=Y_{0}^{2}+2 Y_{1}^{2}+3 Y_{2}^{2}
\end{aligned}
$$

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F=\Omega$ in this case. We display the fibers of the map $\varphi_{1}^{-1}(\omega) \subset B$ for a sequence of values of ω starting from $(-1,0)$ and ending at $(0,-1)$. We also show the spheres, $C \cap \varphi_{1}^{-1}(\omega)$, of dimensions 0,1 , and 2, that these fibers retract to.

Example

Example

In this example $m=2, \ell=3, k=0$, and $\mathcal{Q}^{h}=\left\{Q_{1}^{h}, Q_{2}^{h}\right\}$ with

$$
\begin{aligned}
& Q_{1}^{h}=-Y_{0}^{2}-Y_{1}^{2}-Y_{2}^{2} \\
& Q_{2}^{h}=Y_{0}^{2}+2 Y_{1}^{2}+3 Y_{2}^{2}
\end{aligned}
$$

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F=\Omega$ in this case. We display the fibers of the map $\varphi_{1}^{-1}(\omega) \subset B$ for a sequence of values of ω starting from $(-1,0)$ and ending at $(0,-1)$. We also show the spheres, $C \cap \varphi_{1}^{-1}(\omega)$, of dimensions 0,1 , and 2, that these fibers retract to.

Example

Example

In this example $m=2, \ell=3, k=0$, and $\mathcal{Q}^{h}=\left\{Q_{1}^{h}, Q_{2}^{h}\right\}$ with

$$
\begin{aligned}
& Q_{1}^{h}=-Y_{0}^{2}-Y_{1}^{2}-Y_{2}^{2} \\
& Q_{2}^{h}=Y_{0}^{2}+2 Y_{1}^{2}+3 Y_{2}^{2}
\end{aligned}
$$

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F=\Omega$ in this case. We display the fibers of the
map $\varphi_{1}^{-1}(\omega) \subset B$ for a sequence of values of ω starting from
$(-1,0)$ and ending at $(0,-1)$. We also show the spheres,
$C \cap \varphi_{1}^{-1}(\omega)$, of dimensions 0,1 , and 2 , that these fibers retract to.

Example

Example

In this example $m=2, \ell=3, k=0$, and $\mathcal{Q}^{h}=\left\{Q_{1}^{h}, Q_{2}^{h}\right\}$ with

$$
\begin{aligned}
& Q_{1}^{h}=-Y_{0}^{2}-Y_{1}^{2}-Y_{2}^{2} \\
& Q_{2}^{h}=Y_{0}^{2}+2 Y_{1}^{2}+3 Y_{2}^{2}
\end{aligned}
$$

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F=\Omega$ in this case. We display the fibers of the map $\varphi_{1}^{-1}(\omega) \subset B$ for a sequence of values of ω starting from $(-1,0)$ and ending at $(0,-1)$. We also show the spheres, $C \cap \varphi_{1}^{-1}(\omega)$, of dimensions 0,1 , and 2 , that these fibers retract to.

Picture

Figure: Type change: $\emptyset \rightarrow \mathbf{S}^{0} \rightarrow \mathbf{S}^{1} \rightarrow \mathbf{S}^{2} . \emptyset$ is not shown.

Outline of the remaining argument

- Each C_{j} is a $\mathbf{S}^{\ell-j}$-bundle over $F_{j} \backslash F_{j-1}$ under the map φ_{1}, and $C=\cup_{0 \leq j \leq \ell} C_{j}$.
- Since we have good bounds on the number as well as the degrees of polynomials used to define the bases, $F_{j} \backslash F_{j-1}$ we are able to bound the Betti numbers of each C_{j} by the following proposition:

Outline of the remaining argument

- Each C_{j} is a $\mathbf{S}^{\ell-j}$-bundle over $F_{j} \backslash F_{j-1}$ under the map φ_{1}, and $C=\cup_{0 \leq j \leq \ell} C_{j}$.
- Since we have good bounds on the number as well as the degrees of polynomials used to define the bases, $F_{j} \backslash F_{j-1}$, we are able to bound the Betti numbers of each C_{j} by the following proposition:

Proposition
\square
Let $B \subset \mathrm{R}^{k}$ be a closed and bounded semi-algebraic set and let

$\pi: E$$B$ be a semi-algebraic sphere bundle with base B.

[^0]
Outline of the remaining argument

- Each C_{j} is a $\mathbf{S}^{\ell-j}$-bundle over $F_{j} \backslash F_{j-1}$ under the map φ_{1}, and $C=\cup_{0 \leq j \leq \ell} C_{j}$.
- Since we have good bounds on the number as well as the degrees of polynomials used to define the bases, $F_{j} \backslash F_{j-1}$, we are able to bound the Betti numbers of each C_{j} by the following proposition:

Proposition

Let $B \subset \mathrm{R}^{k}$ be a closed and bounded semi-algebraic set and let $\pi: E \rightarrow B$ be a semi-algebraic sphere bundle with base B. Then

$$
b\left(E, \mathbb{Z}_{2}\right) \leq 2 \cdot b\left(B, \mathbb{Z}_{2}\right)
$$

Outline (cont.)

- However, the C_{j} 's could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_{j} does not immediately produce a bound on Betti numbers of C.
In order to get around this difficulty, we consider certain
closed subsets, $F_{j}^{\prime} \subset F$, where each F_{j}^{\prime} is an infinitesimal
deformation of $F_{j} \backslash F_{j-1}$, and form the base of a
$S^{\ell-j}$-bundle C_{j}^{\prime}.
Additionally, the C_{j}^{\prime} are glued to each other along sphere
bundles over $F_{j}^{\prime} \cap F_{j-1}^{\prime}$, and their union, C^{\prime}, is homotopy
equivalent to C.
Now we can use Mayer-Vietoris inequalities to bound the
Betti numbers of C^{\prime}, which in turn are equal to the Betti
numbers of C.

Outline (cont.)

- However, the C_{j} 's could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_{j} does not immediately produce a bound on Betti numbers of C.
- In order to get around this difficulty, we consider certain closed subsets, $F_{j}^{\prime} \subset F$, where each F_{j}^{\prime} is an infinitesimal deformation of $F_{j} \backslash F_{j-1}$, and form the base of a $\mathbf{S}^{\ell-j}$-bundle C_{j}^{\prime}.
- Additionally, the C' are glued to each other along sphere bundles over $F_{j}^{\prime} \cap F_{j-1}^{\prime}$, and their union, C^{\prime}, is homotopy equivalent to C.
Now we can use Mayer-Vietoris inequalities to bound the Betti numbers of C^{\prime}, which in turn are equal to the Betti numbers of C.

Outline (cont.)

- However, the C_{j} 's could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_{j} does not immediately produce a bound on Betti numbers of C.
- In order to get around this difficulty, we consider certain closed subsets, $F_{j}^{\prime} \subset F$, where each F_{j}^{\prime} is an infinitesimal deformation of $F_{j} \backslash F_{j-1}$, and form the base of a $\mathbf{S}^{\ell-j}$-bundle C_{j}^{\prime}.
- Additionally, the C_{j}^{\prime} are glued to each other along sphere bundles over $F_{j}^{\prime} \cap F_{j-1}^{\prime}$, and their union, C^{\prime}, is homotopy equivalent to C.
Now we can use Mayer-Vietoris inequalities to bound the Betti numbers of C^{\prime}, which in turn are equal to the Betti numbers of C.

Outline (cont.)

- However, the C_{j} 's could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_{j} does not immediately produce a bound on Betti numbers of C.
- In order to get around this difficulty, we consider certain closed subsets, $F_{j}^{\prime} \subset F$, where each F_{j}^{\prime} is an infinitesimal deformation of $F_{j} \backslash F_{j-1}$, and form the base of a $\mathbf{S}^{\ell-j}$-bundle C_{j}^{\prime}.
- Additionally, the C_{j}^{\prime} are glued to each other along sphere bundles over $F_{j}^{\prime} \cap F_{j-1}^{\prime}$, and their union, C^{\prime}, is homotopy equivalent to C.
- Now we can use Mayer-Vietoris inequalities to bound the Betti numbers of C^{\prime}, which in turn are equal to the Betti numbers of C.

Complexity of the bases

- Let $\Lambda \in \mathrm{R}\left[Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{k}, T\right]$ be the polynomial defined by

$$
\begin{aligned}
\Lambda & =\operatorname{det}\left(T \cdot \operatorname{Id}_{\ell+1}-M_{Z \cdot \mathcal{Q}^{n}}\right) \\
& =T^{\ell+1}+D_{\ell} T^{\ell}+\cdots+D_{0}
\end{aligned}
$$

where each $D_{i} \in \mathrm{R}\left[Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{k}\right]$.

- It then follows from Descartes' rule of signs that for each $(\omega, x) \in \Omega \times \mathrm{R}^{k}, \operatorname{index}\left(\left\langle\omega, \mathcal{Q}^{h}\right\rangle(\cdot, x)\right)$ is determined by the sign vector

Complexity of the bases

- Let $\Lambda \in \mathrm{R}\left[Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{k}, T\right]$ be the polynomial defined by

$$
\begin{aligned}
\Lambda & =\operatorname{det}\left(T \cdot \operatorname{Id}_{\ell+1}-M_{Z \cdot \mathcal{Q}^{n}}\right) \\
& =T^{\ell+1}+D_{\ell} T^{\ell}+\cdots+D_{0}
\end{aligned}
$$

where each $D_{i} \in \mathrm{R}\left[Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{k}\right]$.

- It then follows from Descartes' rule of signs that for each $(\omega, x) \in \Omega \times \mathrm{R}^{k}$, index $\left(\left\langle\omega, \mathcal{Q}^{h}\right\rangle(\cdot, x)\right)$ is determined by the sign vector

$$
\left(\operatorname{sign}\left(D_{\ell}(\omega, x)\right), \ldots, \operatorname{sign}\left(D_{0}(\omega, x)\right)\right)
$$

Complexity of the bases (cont.)

- Denoting

$$
\mathcal{D}=\left\{D_{0}, \ldots, D_{\ell}\right\} \subset \mathrm{R}\left[Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{k}\right]
$$

we have

Lemma

F_{j} is the intersection of F with a \mathcal{D}-closed semi-algebraic set for each 0

- Note that

Complexity of the bases (cont.)

- Denoting

$$
\mathcal{D}=\left\{D_{0}, \ldots, D_{\ell}\right\} \subset \mathrm{R}\left[Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{k}\right]
$$

we have

Lemma

F_{j} is the intersection of F with a \mathcal{D}-closed semi-algebraic set for each $0 \leq j \leq \ell+1$.

- Note that

Complexity of the bases (cont.)

- Denoting

$$
\mathcal{D}=\left\{D_{0}, \ldots, D_{\ell}\right\} \subset \mathrm{R}\left[Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{k}\right]
$$

we have

Lemma

F_{j} is the intersection of F with a \mathcal{D}-closed semi-algebraic set for each $0 \leq j \leq \ell+1$.

- Note that

$$
\begin{gathered}
\# \mathcal{D}=\ell+1 \\
\operatorname{deg}\left(D_{j}\right) \leq(\ell+1) d
\end{gathered}
$$

Finishing the argument

- Now use the O-P-T-M type bounds to bound the Betti numbers of the various F_{j}^{\prime} and hence the C_{j}^{\prime}.
- Notice that only the adjacent $C_{j}^{\prime \prime}$ intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.
- Hence, obtain a bound on b($\left.A^{h}\right)$.
- Again Mayer-Vietoris inequalities give a bound on $b\left(W^{h}\right)$
- Reduce the general case to the basic case using standard arguments.

Finishing the argument

- Now use the O-P-T-M type bounds to bound the Betti numbers of the various F_{j}^{\prime} and hence the C_{j}^{\prime}.
- Notice that only the adjacent $C_{j}^{\text {/'s }}$ intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.
- Hence, obtain a bound on b($\left.A^{h}\right)$.
- Again Mayer-Vietoris inequalities give a bound on $b\left(W^{h}\right)$
- Reduce the general case to the basic case using standard arguments.

Finishing the argument

- Now use the O-P-T-M type bounds to bound the Betti numbers of the various F_{j}^{\prime} and hence the C_{j}^{\prime}.
- Notice that only the adjacent $C_{j}^{\text {/'s }}$ intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.
- Hence, obtain a bound on $b\left(A^{h}\right)$.
- Again Mayer-Vietoris inequalities give a bound on $b\left(W^{h}\right)$.
- Reduce the general case to the basic case using standard arquments.

Finishing the argument

- Now use the O-P-T-M type bounds to bound the Betti numbers of the various F_{j}^{\prime} and hence the C_{j}^{\prime}.
- Notice that only the adjacent $C_{j}^{\text {/'s }}$ intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.
- Hence, obtain a bound on $b\left(A^{h}\right)$.
- Again Mayer-Vietoris inequalities give a bound on $b\left(W^{h}\right)$.
- Reduce the general case to the basic case using standard arguments.

Finishing the argument

- Now use the O-P-T-M type bounds to bound the Betti numbers of the various F_{j}^{\prime} and hence the C_{j}^{\prime}.
- Notice that only the adjacent $C_{j}^{\text {/'s }}$ intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.
- Hence, obtain a bound on $b\left(A^{h}\right)$.
- Again Mayer-Vietoris inequalities give a bound on $b\left(W^{h}\right)$.
- Reduce the general case to the basic case using standard arguments.

Algorithms for computing the Euler-Poincaré characteristic and Betti numbers

Theorem

There exists an algorithm that takes as input the description of a $(\mathcal{P} \cup \mathcal{Q})$-closed semi-algebraic set S and outputs its the Euler-Poincaré characteristic $\chi(S)$. The complexity of this algorithm is bounded by $(\ell s m d)^{O(m(m+k))}$. There exists an algorithm for computing all the Betti numbers whose complexity is $(\ell s m d)^{20(m+k)}$.

The complexity of both the algorithms is polynomial for fixed m and k.

Algorithms for computing the Euler-Poincaré characteristic and Betti numbers

Theorem

There exists an algorithm that takes as input the description of a $(\mathcal{P} \cup \mathcal{Q})$-closed semi-algebraic set S and outputs its the Euler-Poincaré characteristic $\chi(S)$. The complexity of this algorithm is bounded by $(\ell s m d)^{O(m(m+k))}$. There exists an algorithm for computing all the Betti numbers whose complexity is $(\ell s m d)^{20(m+k)}$.

The complexity of both the algorithms is polynomial for fixed m and k.

Algorithms for computing the Euler-Poincaré characteristic and Betti numbers

Theorem

There exists an algorithm that takes as input the description of a $(\mathcal{P} \cup \mathcal{Q})$-closed semi-algebraic set S and outputs its the Euler-Poincaré characteristic $\chi(S)$. The complexity of this algorithm is bounded by (lsmd) ${ }^{O(m(m+k))}$. There exists an algorithm for computing all the Betti numbers whose complexity is $(\ell \text { smd })^{2^{O(m+k)}}$.

The complexity of both the algorithms is polynomial for fixed m and k.

Computational hardness

- The problem of computing the Betti numbers of semi-algebraic sets in general is a PSPACE-hard problem. The same is true for semi-algebraic sets defined by many quadratic inequalities.
> - On the other hand it was knwn before that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of quadratic inequalities is solvable in polynomial time.
> - We have shown that the problem of computing the Betti numbers of semi-alaebraic sets defined by a constant number of polynomial inequalities is solvable in polynomial time, even if we allow a small (constant sized) subset of the variables to occur with dearees larger than two in the polynomials defining the given set.

Computational hardness

- The problem of computing the Betti numbers of semi-algebraic sets in general is a PSPACE-hard problem. The same is true for semi-algebraic sets defined by many quadratic inequalities.
- On the other hand it was knwn before that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of quadratic inequalities is solvable in polynomial time.
 nolynomials defining the given set

Computational hardness

- The problem of computing the Betti numbers of semi-algebraic sets in general is a PSPACE-hard problem. The same is true for semi-algebraic sets defined by many quadratic inequalities.
- On the other hand it was knwn before that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of quadratic inequalities is solvable in polynomial time.
- We have shown that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of polynomial inequalities is solvable in polynomial time, even if we allow a small (constant sized) subset of the variables to occur with degrees larger than two in the polynomials defining the given set.

[^0]: Then

