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Semi-algebraic sets

Semi-algebraic sets

Let R be a real closed field, for example the field R of the
real numbers.
A semi-algebraic set, S ⊂ Rk , is a subset of Rk defined by
a Boolean formula whose atoms are polynomial equalities
and inequalities.
If all the polynomials involved belong to P ⊂ R[X1, . . . , Xk ],
we call S a P-semi-algebraic set.
If the atoms of the Boolean formula are of the form
P ≥ 0, P ≤ 0, P ∈ P, and there are no negations, then we
call S a P-closed semi-algebraic set.
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Semi-algebraic sets

Quantitative Questions

Let P ⊂ R[X1, . . . , Xk] with #P = s and
maxP∈P deg(P) = d.
If S ⊂ Rk is a P-semi-algebraic set, then how large can the
Betti numbers of S be ?
How many of the possible 3s sign patterns in {0,+,−}P
can be possibly realized by points in Rk ?
Into how many regions do the sign patterns decompose
Rk? How large can be the sum of the Betti numbers of all
the sets in this decomposition ?
If f : X → Y is a semi-algebraic map, defined in terms of P,
then how many topological types can occur amongst the
semi-algebraic sets, f−1(y), y ∈ Y .
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Quantitative Bounds on Betti Numbers – Old and New

Quantitative bounds – Singly exponential

Classical result (Oleinik, Petrovsky, Thom, Milnor): If S is
defined by P1 ≥ 0, . . . , Ps ≥ 0, then,∑

0≤i≤k

bi(S) ≤ (O(sd))k .

The same bound extends (with a different constant) if S is
P-closed semi-algebraic set (B 99).
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Quantitative Bounds on Betti Numbers – Old and New

Extension to arbitrary P-semi-algebraic set

Extension to arbitrary P- semi-algebraic sets is more
technical and achieved only quite recently by Gabrielov
and Vorobjov (2005, 2007) (with a slight worsening of the
bound).
If S is a P-semi-algebraic set then∑

0≤i≤k

bi(S) ≤ min((O(s2d))k , (O(skd))k ).

All the above bounds are singly exponential in the
number of variables k and polynomial in s and d .
This single exponential dependence is unavoidable.
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Quantitative Bounds on Betti Numbers – Old and New

Quadratic Case

Let S ⊂ R` be a semi-algebraic set defined by
Q1 ≥ 0, . . . , Qm ≥ 0, with deg(Qi) ≤ 2, 1 ≤ i ≤ m.

As in the case of general semi-algebraic sets, the Betti
numbers of such sets can be exponentially large.

Example

The set S ⊂ R` defined by

Y1(Y1 − 1) ≥ 0, . . . , Y`(Y` − 1) ≥ 0

satisfies b0(S) = 2`.
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Quantitative Bounds on Betti Numbers – Old and New

Bounds on Betti Numbers of Sets Defined by
Quadratic Inequalities

Theorem (Barvinok (1997))

Let S ⊂ R` be defined by

Q1 ≥ 0, . . . , Qm ≥ 0,

deg(Qi) ≤ 2, 1 ≤ i ≤ m. Then∑
i≥0

bi(S) ≤ `O(m).

Unlike the previous bound this bound is polynomial in ` and
exponential in m.
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Quantitative Bounds on Betti Numbers – Old and New

Other classes with polynomial bounds ?

The bound depends crucially on the assumption that the
degrees of the polynomials Q1, . . . , Qm are at most two.
For instance, the semi-algebraic set defined by a single
polynomial of degree 4 can have Betti numbers
exponentially large in `. For instance the semi-algebraic
set S ⊂ R` defined by

∑̀
i=0

Y 2
i (Yi − 1)2 ≤ 0.

has b0(S) = 2`.
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Quantitative Bounds on Betti Numbers – Old and New

Bounds for partly quadratic systems

Theorem (B.,Pasechnik, Roy, 2007)
Let

Q ⊂ R[Y1, . . . , Y`, X1, . . . , Xk ] with
degY (Q) ≤ 2, degX (Q) ≤ d , Q ∈ Q,#(Q) = m;
P ⊂ R[X1, . . . , Xk ] with degX (P) ≤ d , P ∈ P,#(P) = s;
S ⊂ R`+k a (P ∪Q)-closed semi-algebraic set.

Then

b(S) ≤ `2(O(s + ` + m)`d)k+2m.

In particular, for m ≤ `, we have b(S) ≤ `2(O(s + `)`d)k+2m.
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Quantitative Bounds on Betti Numbers – Old and New

Generalization of the previous bounds

Notice that the previous Theorem is a common generalization
of the previous theorems in the sense that we recover similar
bounds (that is bounds having the same shape) by setting `
and m (respectively, s, d and k ) to O(1).
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Bound for semi-algebraic sets defined over a quadratic
map

Corollary

Let Q = (Q1, . . . , Qk ) : R` → Rk be a quadratic map. and
V ⊂ Rk be a P-closed semi-algebraic with #(P) = s and
deg(P) ≤ d , P ∈ P.
Let S = Q−1(V ). Then,

b(S) ≤ `2(O(s + ` + k)`d)3k .
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Homogeneous Case

We denote by:
Qh the family of polynomials obtained by homogenizing Q
with respect to the variables Y , i.e.
Φ a formula defining a P-closed semi-algebraic set V ,

Ah =
⋃

Q∈Qh

{(y , x) | |y | = 1 ∧ Q(y , x) ≤ 0 ∧ Φ(x)},

W h =
⋂

Q∈Qh

{(y , x) | |y | = 1 ∧ Q(y , x) ≤ 0 ∧ Φ(x)}.
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Result in a very special case

Proposition

b(Ah), b(W h) ≤ `2(O((s + ` + m)`d))m+k .
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Auxillary construction

Let Ω = {ω ∈ Rm | |ω| = 1, ωi ≤ 0, 1 ≤ i ≤ m}.
For ω ∈ Ω let 〈ω,Qh〉 ∈ R[Y0, . . . , Y`, X1, . . . , Xk ] be defined
by

〈ω,Qh〉 =
m∑

i=1

ωiQh
i .

For (ω, x) ∈ Ω× V let 〈ω,Qh〉(·, x) be the quadratic form in
Y0, . . . , Y` obtained from 〈ω,Qh〉 by specializing
Xi = xi , 1 ≤ i ≤ k .
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Auxillary construction (cont).

Let B ⊂ Ω× S` × V be the semi-algebraic set defined by

B = {(ω, y , x) | ω ∈ Ω, y ∈ S`, x ∈ V , 〈ω,Qh〉(y , x) ≥ 0}.

We have the following diagram.

B

F = Ω× V S` × V

V

zzttttttttϕ1

��

$$JJJ
JJJ

JJ ϕ2

$$JJJJJJJJ

zzttt
ttt

tt
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B ∼ Ah

Proposition

The semi-algebraic set B is homotopy equivalent to
ϕ2(B) = Ah.
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Filtration by index

For a quadratic form Q let λi(Q), 0 ≤ i ≤ ` be the
eigenvalues of Q in non-decreasing order, i.e.

λ0(Q) ≤ λ1(Q) ≤ · · · ≤ λ`(Q).

For F = Ω× V let

Fj = {(ω, x) ∈ F | index(〈ω,Qh〉(·, x)) ≤ j}.

It is clear that each Fj is a closed semi-algebraic subset of
F and

F0 ⊂ F1 ⊂ · · · ⊂ F`+1 = F .
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Morse Lemma

Lemma
The fibre of the map ϕ1 over a point (ω, x) ∈ Fj \ Fj−1 has the
homotopy type of a sphere of dimension `− j .

In fact by simultaneous retraction of the fibers to the positive
eigenspace we actually obtain a S`−j bundle C j over Fj \ Fj−1 .
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Example

Example

In this example m = 2, ` = 3, k = 0, and Qh = {Qh
1 , Qh

2} with

Qh
1 =− Y 2

0 − Y 2
1 − Y 2

2 ,

Qh
2 =Y 2

0 + 2Y 2
1 + 3Y 2

2 .

The set Ω is the part of the unit circle in the third quadrant of
the plane, and F = Ω in this case. We display the fibers of the
map ϕ−1

1 (ω) ⊂ B for a sequence of values of ω starting from
(−1, 0) and ending at (0,−1). We also show the spheres,
C ∩ ϕ−1

1 (ω), of dimensions 0, 1, and 2, that these fibers retract
to.
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Picture

Figure: Type change: ∅ → S0 → S1 → S2. ∅ is not shown.
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Outline of the remaining argument

Each Cj is a S`−j -bundle over Fj \ Fj−1 under the map ϕ1,
and C = ∪0≤j≤`Cj .
Since we have good bounds on the number as well as the
degrees of polynomials used to define the bases, Fj \ Fj−1,
we are able to bound the Betti numbers of each Cj by the
following proposition:

Proposition

Let B ⊂ Rk be a closed and bounded semi-algebraic set and let
π : E → B be a semi-algebraic sphere bundle with base B.
Then

b(E , Z2) ≤ 2 · b(B, Z2).
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Outline (cont.)

However, the Cj ’s could be possibly glued to each other in
complicated ways, and thus knowing upper bounds on the
Betti numbers of each Cj does not immediately produce a
bound on Betti numbers of C.
In order to get around this difficulty, we consider certain
closed subsets, F ′

j ⊂ F , where each F ′
j is an infinitesimal

deformation of Fj \ Fj−1, and form the base of a
S`−j -bundle C′

j .
Additionally, the C′

j are glued to each other along sphere
bundles over F ′

j ∩ F ′
j−1, and their union, C′, is homotopy

equivalent to C.
Now we can use Mayer-Vietoris inequalities to bound the
Betti numbers of C′, which in turn are equal to the Betti
numbers of C.
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Complexity of the bases

Let Λ ∈ R[Z1, . . . , Zm, X1, . . . , Xk , T ] be the polynomial
defined by

Λ = det(T · Id`+1 −MZ ·Qh),

= T `+1 + D`T ` + · · ·+ D0,

where each Di ∈ R[Z1, . . . , Zm, X1, . . . , Xk ].
It then follows from Descartes’ rule of signs that for each
(ω, x) ∈ Ω× Rk , index(〈ω,Qh〉(·, x)) is determined by the
sign vector

(sign(D`(ω, x)), . . . , sign(D0(ω, x))).
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Complexity of the bases (cont.)

Denoting

D = {D0, . . . , D`} ⊂ R[Z1, . . . , Zm, X1, . . . , Xk ]

we have

Lemma

Fj is the intersection of F with a D-closed semi-algebraic set for
each 0 ≤ j ≤ ` + 1.

Note that
#D = ` + 1,

deg(Dj) ≤ (` + 1)d .
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Finishing the argument

Now use the O-P-T-M type bounds to bound the Betti
numbers of the various F ′

j and hence the C′
j .

Notice that only the adjacent C′
j ’s intersect and then use

Mayer-Vietoris inequalities to bound the Betti numbers of
C.
Hence, obtain a bound on b(Ah).
Again Mayer-Vietoris inequalities give a bound on b(W h).
Reduce the general case to the basic case using standard
arguments.
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Mayer-Vietoris inequalities to bound the Betti numbers of
C.
Hence, obtain a bound on b(Ah).
Again Mayer-Vietoris inequalities give a bound on b(W h).
Reduce the general case to the basic case using standard
arguments.
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Algorithms for computing the Euler-Poincaré
characteristic and Betti numbers

Theorem

There exists an algorithm that takes as input the description of
a (P ∪Q)-closed semi-algebraic set S and outputs its the
Euler-Poincaré characteristic χ(S). The complexity of this
algorithm is bounded by (`smd)O(m(m+k)). There exists an
algorithm for computing all the Betti numbers whose complexity
is (`smd)2O(m+k)

.

The complexity of both the algorithms is polynomial for fixed m
and k .
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Computational hardness

The problem of computing the Betti numbers of
semi-algebraic sets in general is a PSPACE-hard problem.
The same is true for semi-algebraic sets defined by many
quadratic inequalities.
On the other hand it was knwn before that the problem of
computing the Betti numbers of semi-algebraic sets
defined by a constant number of quadratic inequalities is
solvable in polynomial time.
We have shown that the problem of computing the Betti
numbers of semi-algebraic sets defined by a constant
number of polynomial inequalities is solvable in polynomial
time, even if we allow a small (constant sized) subset of the
variables to occur with degrees larger than two in the
polynomials defining the given set.
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