Betti numbers of semi-algebraic sets defined by partly quadratic polynomials

Saugata Basu
(joint work with Dima Pasechnik and Marie-Francoise Roy)

Georgia Tech

EPFL, April 25, 2008
1 Introduction
 • Semi-algebraic sets

2 Quantitative Bounds
 • Quantitative Bounds on Betti Numbers – Old and New

3 Proof of the main theorem

4 Algorithmic Implications
1 Introduction
 - Semi-algebraic sets

2 Quantitative Bounds
 - Quantitative Bounds on Betti Numbers – Old and New

3 Proof of the main theorem

4 Algorithmic Implications
Outline

1. Introduction
 - Semi-algebraic sets

2. Quantitative Bounds
 - Quantitative Bounds on Betti Numbers – Old and New

3. Proof of the main theorem

4. Algorithmic Implications
Outline

1. Introduction
 - Semi-algebraic sets

2. Quantitative Bounds
 - Quantitative Bounds on Betti Numbers – Old and New

3. Proof of the main theorem

4. Algorithmic Implications
Outline

1. Introduction
 - Semi-algebraic sets

2. Quantitative Bounds
 - Quantitative Bounds on Betti Numbers – Old and New

3. Proof of the main theorem

4. Algorithmic Implications
Let \mathbb{R} be a real closed field, for example the field \mathbb{R} of the real numbers.

A semi-algebraic set, $S \subset \mathbb{R}^k$, is a subset of \mathbb{R}^k defined by a Boolean formula whose atoms are polynomial equalities and inequalities.

If all the polynomials involved belong to $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$, we call S a \mathcal{P}-semi-algebraic set.

If the atoms of the Boolean formula are of the form $P \geq 0, P \leq 0, P \in \mathcal{P}$, and there are no negations, then we call S a \mathcal{P}-closed semi-algebraic set.
Let \(\mathbb{R} \) be a real closed field, for example the field \(\mathbb{R} \) of the real numbers.

A semi-algebraic set, \(S \subset \mathbb{R}^k \), is a subset of \(\mathbb{R}^k \) defined by a Boolean formula whose atoms are polynomial equalities and inequalities.

If all the polynomials involved belong to \(\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k] \), we call \(S \) a \(\mathcal{P} \)-semi-algebraic set.

If the atoms of the Boolean formula are of the form \(P \geq 0, P \leq 0, P \in \mathcal{P} \), and there are no negations, then we call \(S \) a \(\mathcal{P} \)-closed semi-algebraic set.
Semi-algebraic sets

- Let \mathbb{R} be a real closed field, for example the field \mathbb{R} of the real numbers.
- A semi-algebraic set, $S \subset \mathbb{R}^k$, is a subset of \mathbb{R}^k defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$, we call S a \mathcal{P}-semi-algebraic set.
- If the atoms of the Boolean formula are of the form $P \geq 0, P \leq 0, P \in \mathcal{P}$, and there are no negations, then we call S a \mathcal{P}-closed semi-algebraic set.
Let \mathbb{R} be a real closed field, for example the field \mathbb{R} of the real numbers.

A semi-algebraic set, $S \subset \mathbb{R}^k$, is a subset of \mathbb{R}^k defined by a Boolean formula whose atoms are polynomial equalities and inequalities.

If all the polynomials involved belong to $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$, we call S a \mathcal{P}-semi-algebraic set.

If the atoms of the Boolean formula are of the form $P \geq 0, P \leq 0, P \in \mathcal{P}$, and there are no negations, then we call S a \mathcal{P}-closed semi-algebraic set.
Quantitative Questions

1. Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ with $\#\mathcal{P} = s$ and $\max_{P \in \mathcal{P}} \deg(P) = d$.
2. If $S \subset \mathbb{R}^k$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?
3. How many of the possible 3^s sign patterns in $\{0, +, -\}^\mathcal{P}$ can be possibly realized by points in \mathbb{R}^k?
4. Into how many regions do the sign patterns decompose \mathbb{R}^k? How large can be the sum of the Betti numbers of all the sets in this decomposition?
5. If $f : X \to Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(y), y \in Y$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Francoise Roy)
Betti numbers of semi-algebraic sets defined by partly quadratic polynomials
Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ with $\#\mathcal{P} = s$ and $\max_{P \in \mathcal{P}} \deg(P) = d$.

If $S \subset \mathbb{R}^k$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?

How many of the possible 3^s sign patterns in $\{0, +, -\}^\mathcal{P}$ can be possibly realized by points in \mathbb{R}^k?

Into how many regions do the sign patterns decompose \mathbb{R}^k? How large can be the sum of the Betti numbers of all the sets in this decomposition?

If $f : X \to Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(y), y \in Y$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Francoise Roy)
Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ with $\#\mathcal{P} = s$ and $\max_{P \in \mathcal{P}} \deg(P) = d$.

If $S \subset \mathbb{R}^k$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?

How many of the possible 3^s sign patterns in $\{0, +, -\}^\mathcal{P}$ can be possibly realized by points in \mathbb{R}^k?

Into how many regions do the sign patterns decompose \mathbb{R}^k? How large can be the sum of the Betti numbers of all the sets in this decomposition?

If $f : X \rightarrow Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(y), y \in Y$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Francoise Roy)

Betti numbers of semi-algebraic sets defined by partly quadratic polynomials
Quantitative Questions

- Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ with $\# \mathcal{P} = s$ and $\max_{P \in \mathcal{P}} \deg(P) = d$.
- If $S \subset \mathbb{R}^k$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?
- How many of the possible 3^s sign patterns in $\{0, +, -\}^\mathcal{P}$ can be possibly realized by points in \mathbb{R}^k?
- Into how many regions do the sign patterns decompose \mathbb{R}^k? How large can be the sum of the Betti numbers of all the sets in this decomposition?
- If $f : X \rightarrow Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(y)$, $y \in Y$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Francoise Roy)

Betti numbers of semi-algebraic sets defined by partly quadratic polynomials
Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ with $\#\mathcal{P} = s$ and $\max_{P \in \mathcal{P}} \deg(P) = d$.

If $S \subset \mathbb{R}^k$ is a \mathcal{P}-semi-algebraic set, then how large can the Betti numbers of S be?

How many of the possible 3^s sign patterns in $\{0, +, -\}^\mathcal{P}$ can be possibly realized by points in \mathbb{R}^k?

Into how many regions do the sign patterns decompose \mathbb{R}^k? How large can be the sum of the Betti numbers of all the sets in this decomposition?

If $f : X \to Y$ is a semi-algebraic map, defined in terms of \mathcal{P}, then how many topological types can occur amongst the semi-algebraic sets, $f^{-1}(y), y \in Y$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Francoise Roy)
Outline

1. Introduction
 - Semi-algebraic sets

2. Quantitative Bounds
 - Quantitative Bounds on Betti Numbers – Old and New

3. Proof of the main theorem

4. Algorithmic Implications
Classical result (Oleinik, Petrovsky, Thom, Milnor): If S is defined by $P_1 \geq 0, \ldots, P_s \geq 0$, then,

$$\sum_{0 \leq i \leq k} b_i(S) \leq (O(sd))^k.$$

The same bound extends (with a different constant) if S is \mathcal{P}-closed semi-algebraic set (B 99).
Quantitative bounds – Singly exponential

- Classical result (Oleinik, Petrovsky, Thom, Milnor): If S is defined by $P_1 \geq 0, \ldots, P_s \geq 0$, then,

$$\sum_{0 \leq i \leq k} b_i(S) \leq (O(sd))^k.$$

- The same bound extends (with a different constant) if S is \mathcal{P}-closed semi-algebraic set (B 99).
Extension to arbitrary \mathcal{P}-semi-algebraic set

- Extension to arbitrary \mathcal{P}-semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov (2005, 2007) (with a slight worsening of the bound).

 - If S is a \mathcal{P}-semi-algebraic set then

 $$
 \sum_{0 \leq i \leq k} b_i(S) \leq \min((O(s^2d'))^k, (O(skd'))^k).
 $$

- All the above bounds are **singly exponential** in the number of variables k and **polynomial** in s and d.

- This single exponential dependence is unavoidable.
Extension to arbitrary \mathcal{P}-semi-algebraic set

- Extension to arbitrary \mathcal{P}-semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov (2005, 2007) (with a slight worsening of the bound).

- If S is a \mathcal{P}-semi-algebraic set then

 $$\sum_{0 \leq i \leq k} b_i(S) \leq \min((O(s^2d'))^k, (O(skd'))^k).$$

- All the above bounds are **singly exponential** in the number of variables k and **polynomial** in s and d.

- This single exponential dependence is unavoidable.
Extension to arbitrary \mathcal{P}-semi-algebraic set

- Extension to arbitrary \mathcal{P}-semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov (2005, 2007) (with a slight worsening of the bound).

- If S is a \mathcal{P}-semi-algebraic set then

$$\sum_{0 \leq i \leq k} b_i(S) \leq \min((O(s^2d))^k, (O(skd))^k).$$

- All the above bounds are **singly exponential** in the number of variables k and **polynomial** in s and d.

- This single exponential dependence is unavoidable.

Saugata Basu (joint work with Dima Pasechnik and Marie-Françoise Roy)
Extension to arbitrary \mathcal{P}-semi-algebraic set

- Extension to arbitrary \mathcal{P}-semi-algebraic sets is more technical and achieved only quite recently by Gabrielov and Vorobjov (2005, 2007) (with a slight worsening of the bound).

- If S is a \mathcal{P}-semi-algebraic set then

$$
\sum_{0 \leq i \leq k} b_i(S) \leq \min((O(s^2d))^k, (O(skd))^k).
$$

- All the above bounds are **singly exponential** in the number of variables k and **polynomial** in s and d.

- This single exponential dependence is unavoidable.
Let $S \subset \mathbb{R}^\ell$ be a semi-algebraic set defined by $Q_1 \geq 0, \ldots, Q_m \geq 0$, with $\deg(Q_i) \leq 2, 1 \leq i \leq m$.

As in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.

Example

The set $S \subset \mathbb{R}^\ell$ defined by

$$Y_1(Y_1 - 1) \geq 0, \ldots, Y_\ell(Y_\ell - 1) \geq 0$$

satisfies $b_0(S) = 2^\ell$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Françoise Roy)

Betti numbers of semi-algebraic sets defined by partly quadratic polynomials
Let \(S \subset \mathbb{R}^\ell \) be a semi-algebraic set defined by \(Q_1 \geq 0, \ldots, Q_m \geq 0 \), with \(\deg(Q_i) \leq 2 \), \(1 \leq i \leq m \).

As in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.

Example

The set \(S \subset \mathbb{R}^\ell \) defined by

\[
Y_1(Y_1 - 1) \geq 0, \ldots, Y_\ell(Y_\ell - 1) \geq 0
\]

satisfies \(b_0(S) = 2^\ell \).
Let $S \subset \mathbb{R}^\ell$ be a semi-algebraic set defined by $Q_1 \geq 0, \ldots, Q_m \geq 0$, with $\deg(Q_i) \leq 2, 1 \leq i \leq m$.

As in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.

Example

The set $S \subset \mathbb{R}^\ell$ defined by

$$Y_1(Y_1 - 1) \geq 0, \ldots, Y_\ell(Y_\ell - 1) \geq 0$$

satisfies $b_0(S) = 2^\ell$.
Bounds on Betti Numbers of Sets Defined by Quadratic Inequalities

Theorem (Barvinok (1997))

Let \(S \subset \mathbb{R}^\ell \) be defined by

\[
Q_1 \geq 0, \ldots, Q_m \geq 0,
\]

\[
\deg(Q_i) \leq 2, 1 \leq i \leq m.
\]

Then

\[
\sum_{i \geq 0} b_i(S) \leq \ell^{O(m)}.
\]

Unlike the previous bound this bound is polynomial in \(\ell \) and exponential in \(m \).
Bounds on Betti Numbers of Sets Defined by Quadratic Inequalities

Theorem (Barvinok (1997))

Let \(S \subset \mathbb{R}^\ell \) be defined by

\[
Q_1 \geq 0, \ldots, Q_m \geq 0,
\]

\[
\deg(Q_i) \leq 2, 1 \leq i \leq m.\]

Then

\[
\sum_{i \geq 0} b_i(S) \leq \ell^{O(m)}.
\]

Unlike the previous bound this bound is polynomial in \(\ell \) and exponential in \(m \).
Bounds on Betti Numbers of Sets Defined by Quadratic Inequalities

Theorem (Barvinok (1997))

Let $S \subset \mathbb{R}^\ell$ be defined by

$$Q_1 \geq 0, \ldots, Q_m \geq 0,$$

$$\deg(Q_i) \leq 2, 1 \leq i \leq m.$$ Then

$$\sum_{i \geq 0} b_i(S) \leq \ell^{O(m)}.$$

Unlike the previous bound this bound is polynomial in ℓ and exponential in m.
The bound depends crucially on the assumption that the degrees of the polynomials Q_1, \ldots, Q_m are at most two.

For instance, the semi-algebraic set defined by a single polynomial of degree 4 can have Betti numbers exponentially large in ℓ. For instance the semi-algebraic set $S \subset \mathbb{R}^\ell$ defined by

$$\sum_{i=0}^{\ell} Y_i^2(Y_i - 1)^2 \leq 0.$$

has $b_0(S) = 2^\ell$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Françoise Roy)
Other classes with polynomial bounds?

The bound depends crucially on the assumption that the degrees of the polynomials Q_1, \ldots, Q_m are at most two.

For instance, the semi-algebraic set defined by a single polynomial of degree 4 can have Betti numbers exponentially large in ℓ. For instance the semi-algebraic set $S \subset \mathbb{R}^\ell$ defined by

$$\sum_{i=0}^{\ell} Y_i^2(Y_i - 1)^2 \leq 0.$$

has $b_0(S) = 2^\ell$.
Bounds for partly quadratic systems

Theorem (B., Pasechnik, Roy, 2007)

Let
- $Q \subset \mathbb{R}[Y_1, \ldots, Y_\ell, X_1, \ldots, X_k]$ with $\deg_Y(Q) \leq 2, \deg_X(Q) \leq d, Q \in Q, \#(Q) = m;$
- $P \subset \mathbb{R}[X_1, \ldots, X_k]$ with $\deg_X(P) \leq d, P \in P, \#(P) = s;$
- $S \subset \mathbb{R}^{\ell+k}$ a $(P \cup Q)$-closed semi-algebraic set.

Then

$$b(S) \leq \ell^2 (O(s + \ell + m)\ell d)^{k+2m}.$$

In particular, for $m \leq \ell$, we have $b(S) \leq \ell^2 (O(s + \ell)\ell d)^{k+2m}$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Francoise Roy)
 Bounds for partly quadratic systems

Theorem (B., Pasechnik, Roy, 2007)

Let

- $Q \subset R[Y_1, \ldots, Y_\ell, X_1, \ldots, X_k]$ with $\deg_Y(Q) \leq 2$, $\deg_X(Q) \leq d$, $Q \in Q$, $\#(Q) = m$;
- $P \subset R[X_1, \ldots, X_k]$ with $\deg_X(P) \leq d$, $P \in P$, $\#(P) = s$;
- $S \subset R^{\ell+k}$ a $(P \cup Q)$-closed semi-algebraic set.

Then

$$b(S) \leq \ell^2 (O(s + \ell + m)\ell d)^{k+2m}.$$

In particular, for $m \leq \ell$, we have $b(S) \leq \ell^2 (O(s + \ell)\ell d)^{k+2m}$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Françoise Roy)
Theorem (B., Pasechnik, Roy, 2007)

Let

- $Q \subset \mathbb{R}[Y_1, \ldots, Y_\ell, X_1, \ldots, X_k]$ with $\deg_Y(Q) \leq 2, \deg_X(Q) \leq d$, $Q \in Q$, $\#(Q) = m$;
- $P \subset \mathbb{R}[X_1, \ldots, X_k]$ with $\deg_X(P) \leq d$, $P \in P$, $\#(P) = s$;
- $S \subset \mathbb{R}^{\ell+k}$ a $(P \cup Q)$-closed semi-algebraic set.

Then

$$b(S) \leq \ell^2 (O(s + \ell + m)\ell d)^{k+2m}.$$

In particular, for $m \leq \ell$, we have $b(S) \leq \ell^2 (O(s + \ell)\ell d)^{k+2m}$.

Saugata Basu (joint work with Dima Pasechnik and Marie-Françoise Roy)
Bounds for partly quadratic systems

Theorem (B., Pasechnik, Roy, 2007)

Let
\[Q \subset \mathbb{R}[Y_1, \ldots, Y_\ell, X_1, \ldots, X_k] \] with\n\[\text{deg}_Y(Q) \leq 2, \text{deg}_X(Q) \leq d, Q \in Q, \#(Q) = m; \]
\[P \subset \mathbb{R}[X_1, \ldots, X_k] \] with \[\text{deg}_X(P) \leq d, P \in P, \#(P) = s; \]
\[S \subset \mathbb{R}^{\ell+k} \] a \([P \cup Q]-closed\) semi-algebraic set.

Then
\[b(S) \leq \ell^2 (O(s + \ell + m)\ell d)^{k+2m}. \]

In particular, for \(m \leq \ell \), we have \[b(S) \leq \ell^2 (O(s + \ell)\ell d)^{k+2m}. \]
 Bounds for partly quadratic systems

Theorem (B., Pasechnik, Roy, 2007)

Let

- \(Q \subset \mathbb{R}[Y_1, \ldots, Y_\ell, X_1, \ldots, X_k] \) with \(\deg_Y(Q) \leq 2, \deg_X(Q) \leq d, Q \in Q, \#(Q) = m \);
- \(P \subset \mathbb{R}[X_1, \ldots, X_k] \) with \(\deg_X(P) \leq d, P \in P, \#(P) = s \);
- \(S \subset \mathbb{R}^{\ell+k} \) a \((P \cup Q)\)-closed semi-algebraic set.

Then

\[
b(S) \leq \ell^2 (O(s + \ell + m) \ell d)^{k+2m}.
\]

In particular, for \(m \leq \ell \), we have

\[
b(S) \leq \ell^2 (O(s + \ell) \ell d)^{k+2m}.
\]
Bounds for partly quadratic systems

Theorem (B., Pasechnik, Roy, 2007)

Let

- \(Q \subset \mathbb{R}[Y_1, \ldots, Y_\ell, X_1, \ldots, X_k] \) with \(\deg_Y(Q) \leq 2, \deg_X(Q) \leq d, Q \in Q, \#(Q) = m; \)
- \(P \subset \mathbb{R}[X_1, \ldots, X_k] \) with \(\deg_X(P) \leq d, P \in P, \#(P) = s; \)
- \(S \subset \mathbb{R}^{\ell+k} \) a \((P \cup Q)\)-closed semi-algebraic set.

Then

\[
b(S) \leq \ell^2 (O(s + \ell + m)\ell d)^{k+2m}.
\]

In particular, for \(m \leq \ell \), we have

\[
b(S) \leq \ell^2 (O(s + \ell)\ell d)^{k+2m}.
\]
Bounds for partly quadratic systems

Theorem (B., Pasechnik, Roy, 2007)

Let

1. \(Q \subset \mathbb{R}[Y_1, \ldots, Y_\ell, X_1, \ldots, X_k] \) with \(\deg_Y(Q) \leq 2, \deg_X(Q) \leq d, Q \in Q, \#(Q) = m; \)
2. \(P \subset \mathbb{R}[X_1, \ldots, X_k] \) with \(\deg_X(P) \leq d, P \in P, \#(P) = s; \)
3. \(S \subset \mathbb{R}^{\ell+k} \) a \((P \cup Q)\)-closed semi-algebraic set.

Then

\[b(S) \leq \ell^2 (O(s + \ell + m)ld)^{k+2m}. \]

In particular, for \(m \leq \ell \), we have \(b(S) \leq \ell^2 (O(s + \ell)ld)^{k+2m}. \)
Notice that the previous Theorem is a common generalization of the previous theorems in the sense that we recover similar bounds (that is bounds having the same shape) by setting ℓ and m (respectively, s, d and k) to $O(1)$.
Bound for semi-algebraic sets defined over a quadratic map

Corollary

Let $Q = (Q_1, \ldots, Q_k) : \mathbb{R}^\ell \to \mathbb{R}^k$ be a quadratic map and $V \subset \mathbb{R}^k$ be a \mathcal{P}-closed semi-algebraic with $\#(\mathcal{P}) = s$ and $\deg(P) \leq d$, $P \in \mathcal{P}$. Let $S = Q^{-1}(V)$. Then,

$$b(S) \leq \ell^2(O(s + \ell + k)\ell d)^{3k}.$$
Homogeneous Case

We denote by:

- Q^h the family of polynomials obtained by homogenizing Q with respect to the variables Y, i.e.
- Φ a formula defining a P-closed semi-algebraic set V,

$A^h = \bigcup_{Q \in Q^h} \{ (y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x) \}$,

$W^h = \bigcap_{Q \in Q^h} \{ (y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x) \}$.
Homogeneous Case

We denote by:

- \(Q^h \) the family of polynomials obtained by homogenizing \(Q \) with respect to the variables \(Y \), i.e.
- \(\Phi \) a formula defining a \(\mathcal{P} \)-closed semi-algebraic set \(V \),

\[
A^h = \bigcup_{Q \in Q^h} \{(y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x)\},
\]

\[
W^h = \bigcap_{Q \in Q^h} \{(y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x)\}.
\]
Homogeneous Case

We denote by:

- \(Q^h \) the family of polynomials obtained by homogenizing \(Q \) with respect to the variables \(Y \), i.e.
- \(\Phi \) a formula defining a \(\mathcal{P} \)-closed semi-algebraic set \(V \),

\[
A^h = \bigcup_{Q \in Q^h} \{(y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x)\},
\]

\[
W^h = \bigcap_{Q \in Q^h} \{(y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x)\}.
\]
Homogeneous Case

We denote by:

- Q^h the family of polynomials obtained by homogenizing Q with respect to the variables Y, i.e.
- Φ a formula defining a \mathcal{P}-closed semi-algebraic set V,

$$A^h = \bigcup_{Q \in Q^h} \{(y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x)\},$$

$$W^h = \bigcap_{Q \in Q^h} \{(y, x) \mid |y| = 1 \land Q(y, x) \leq 0 \land \Phi(x)\}.$$
Result in a very special case

Proposition

\[b(A^h), b(W^h) \leq \ell^2 (O((s + \ell + m)\ell d))^{m+k}. \]
Let $\Omega = \{ \omega \in \mathbb{R}^m \mid |\omega| = 1, \omega_i \leq 0, 1 \leq i \leq m \}$.

For $\omega \in \Omega$ let $\langle \omega, Q^h \rangle \in \mathbb{R}[Y_0, \ldots, Y_\ell, X_1, \ldots, X_k]$ be defined by

$$
\langle \omega, Q^h \rangle = \sum_{i=1}^{m} \omega_i Q^h_i.
$$

For $(\omega, x) \in \Omega \times V$ let $\langle \omega, Q^h \rangle(\cdot, x)$ be the quadratic form in Y_0, \ldots, Y_ℓ obtained from $\langle \omega, Q^h \rangle$ by specializing $X_i = x_i, 1 \leq i \leq k$.
Let \(\Omega = \{ \omega \in \mathbb{R}^m \mid |\omega| = 1, \omega_i \leq 0, 1 \leq i \leq m \} \).

For \(\omega \in \Omega \) let \(\langle \omega, Q^h \rangle \in \mathbb{R}[Y_0, \ldots, Y_\ell, X_1, \ldots, X_k] \) be defined by

\[
\langle \omega, Q^h \rangle = \sum_{i=1}^{m} \omega_i Q_i^h.
\]

For \((\omega, x) \in \Omega \times V \) let \(\langle \omega, Q^h \rangle(\cdot, x) \) be the quadratic form in \(Y_0, \ldots, Y_\ell \) obtained from \(\langle \omega, Q^h \rangle \) by specializing \(X_i = x_i, 1 \leq i \leq k \).
Let $\Omega = \{\omega \in \mathbb{R}^m \mid |\omega| = 1, \omega_i \leq 0, 1 \leq i \leq m\}$.

For $\omega \in \Omega$ let $\langle \omega, Q^h \rangle \in \mathbb{R}[Y_0, \ldots, Y_\ell, X_1, \ldots, X_k]$ be defined by

$$
\langle \omega, Q^h \rangle = \sum_{i=1}^{m} \omega_i Q^h_i.
$$

For $(\omega, x) \in \Omega \times V$ let $\langle \omega, Q^h \rangle(\cdot, x)$ be the quadratic form in Y_0, \ldots, Y_ℓ obtained from $\langle \omega, Q^h \rangle$ by specializing $X_i = x_i, 1 \leq i \leq k$.
Let $B \subset \Omega \times S^l \times V$ be the semi-algebraic set defined by

$$B = \{(\omega, y, x) \mid \omega \in \Omega, y \in S^l, x \in V, \langle \omega, Q^h \rangle(y, x) \geq 0\}.$$
Let $B \subset \Omega \times S^l \times V$ be the semi-algebraic set defined by

$$B = \{ (\omega, y, x) \mid \omega \in \Omega, y \in S^l, x \in V, \langle \omega, Q^h \rangle(y, x) \geq 0 \}.$$

We have the following diagram.
Proposition

The semi-algebraic set B is homotopy equivalent to $\varphi_2(B) = A^h$.
Filtration by index

For a quadratic form Q let $\lambda_i(Q), 0 \leq i \leq \ell$ be the eigenvalues of Q in non-decreasing order, i.e.

$$\lambda_0(Q) \leq \lambda_1(Q) \leq \cdots \leq \lambda_\ell(Q).$$

For $F = \Omega \times V$ let

$$F_j = \{(\omega, x) \in F \mid \text{index}(\langle \omega, Q^h \rangle(\cdot, x)) \leq j \}.$$

It is clear that each F_j is a closed semi-algebraic subset of F and

$$F_0 \subset F_1 \subset \cdots \subset F_{\ell+1} = F.$$
For a quadratic form Q let $\lambda_i(Q), 0 \leq i \leq \ell$ be the eigenvalues of Q in non-decreasing order, i.e.

$$\lambda_0(Q) \leq \lambda_1(Q) \leq \cdots \leq \lambda_\ell(Q).$$

For $F = \Omega \times V$ let

$$F_j = \{(\omega, x) \in F \mid \text{index}(\langle \omega, Q^h \rangle(\cdot, x)) \leq j\}.$$

It is clear that each F_j is a closed semi-algebraic subset of F and

$$F_0 \subset F_1 \subset \cdots \subset F_{\ell+1} = F.$$
Filtration by index

For a quadratic form Q let $\lambda_i(Q), 0 \leq i \leq \ell$ be the eigenvalues of Q in non-decreasing order, i.e.

$$\lambda_0(Q) \leq \lambda_1(Q) \leq \cdots \leq \lambda_\ell(Q).$$

For $F = \Omega \times V$ let

$$F_j = \{(\omega, x) \in F \mid \text{index}(\langle \omega, Q^h \rangle (\cdot, x)) \leq j\}.$$

It is clear that each F_j is a closed semi-algebraic subset of F and

$$F_0 \subset F_1 \subset \cdots \subset F_{\ell+1} = F.$$
Morse Lemma

Lemma

The fibre of the map φ_1 over a point $(\omega, x) \in F_j \setminus F_{j-1}$ has the homotopy type of a sphere of dimension $\ell - j$.

In fact by simultaneous retraction of the fibers to the positive eigenspace we actually obtain a $S^{\ell-j}$ bundle C^j over $F_j \setminus F_{j-1}$.
Morse Lemma

Lemma

The fibre of the map φ_1 over a point $(\omega, x) \in F_j \setminus F_{j-1}$ has the homotopy type of a sphere of dimension $\ell - j$.

In fact by simultaneous retraction of the fibers to the positive eigenspace we actually obtain a $S^{\ell-j}$ bundle C^j over $F_j \setminus F_{j-1}$.
Morse Lemma

Lemma

The fibre of the map φ_1 over a point $(\omega, x) \in F_j \setminus F_{j-1}$ has the homotopy type of a sphere of dimension $\ell - j$.

In fact by simultaneous retraction of the fibers to the positive eigenspace we actually obtain a $S^{\ell-j}$ bundle C^j over $F_j \setminus F_{j-1}$.
In this example $m = 2$, $\ell = 3$, $k = 0$, and $Q^h = \{Q_1^h, Q_2^h\}$ with

$$Q_1^h = -Y_0^2 - Y_1^2 - Y_2^2,$$

$$Q_2^h = Y_0^2 + 2Y_1^2 + 3Y_2^2.$$

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F = \Omega$ in this case. We display the fibers of the map $\varphi_1^{-1}(\omega) \subset B$ for a sequence of values of ω starting from $(-1, 0)$ and ending at $(0, -1)$. We also show the spheres, $C \cap \varphi_1^{-1}(\omega)$, of dimensions 0, 1, and 2, that these fibers retract to.
Example

In this example $m = 2$, $\ell = 3$, $k = 0$, and $Q^h = \{Q_1^h, Q_2^h\}$ with

$$Q_1^h = -Y_0^2 - Y_1^2 - Y_2^2,$$
$$Q_2^h = Y_0^2 + 2Y_1^2 + 3Y_2^2.$$

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F = \Omega$ in this case. We display the fibers of the map $\varphi_1^{-1}(\omega) \subset B$ for a sequence of values of ω starting from $(-1, 0)$ and ending at $(0, -1)$. We also show the spheres, $C \cap \varphi_1^{-1}(\omega)$, of dimensions 0, 1, and 2, that these fibers retract to.
Example

In this example $m = 2, \ell = 3, k = 0$, and $Q_h = \{Q_1^h, Q_2^h\}$ with

\begin{align*}
Q_1^h &= -Y_2^2 - Y_1^2 - Y_2^2, \\
Q_2^h &= Y_0^2 + 2Y_1^2 + 3Y_2^2.
\end{align*}

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F = \Omega$ in this case. We display the fibers of the map $\varphi_1^{-1}(\omega) \subset B$ for a sequence of values of ω starting from $(-1, 0)$ and ending at $(0, -1)$. We also show the spheres, $C \cap \varphi_1^{-1}(\omega)$, of dimensions 0, 1, and 2, that these fibers retract to.
Example

In this example $m = 2, \ell = 3, k = 0$, and $Q^h = \{ Q_1^h, Q_2^h \}$ with

$$Q_1^h = -Y_0^2 - Y_1^2 - Y_2^2,$$
$$Q_2^h = Y_0^2 + 2Y_1^2 + 3Y_2^2.$$

The set Ω is the part of the unit circle in the third quadrant of the plane, and $F = \Omega$ in this case. We display the fibers of the map $\varphi_1^{-1}(\omega) \subset B$ for a sequence of values of ω starting from $(-1, 0)$ and ending at $(0, -1)$. We also show the spheres, $C \cap \varphi_1^{-1}(\omega)$, of dimensions 0, 1, and 2, that these fibers retract to.
Figure: Type change: $\emptyset \rightarrow S^0 \rightarrow S^1 \rightarrow S^2$. \emptyset is not shown.
Outline of the remaining argument

Each C_j is a $S^{\ell-j}$-bundle over $F_j \setminus F_{j-1}$ under the map φ_1, and $C = \bigcup_{0 \leq j \leq \ell} C_j$.

Since we have good bounds on the number as well as the degrees of polynomials used to define the bases, $F_j \setminus F_{j-1}$, we are able to bound the Betti numbers of each C_j by the following proposition:

Proposition

Let $B \subset \mathbb{R}^k$ be a closed and bounded semi-algebraic set and let $\pi : E \to B$ be a semi-algebraic sphere bundle with base B. Then

$$b(E, \mathbb{Z}_2) \leq 2 \cdot b(B, \mathbb{Z}_2).$$
Each C_j is a $S^{\ell-j}$-bundle over $F_j \setminus F_{j-1}$ under the map φ_1, and $C = \cup_{0 \leq j \leq \ell} C_j$.

Since we have good bounds on the number as well as the degrees of polynomials used to define the bases, $F_j \setminus F_{j-1}$, we are able to bound the Betti numbers of each C_j by the following proposition:

Proposition

Let $B \subset \mathbb{R}^k$ be a closed and bounded semi-algebraic set and let $\pi : E \to B$ be a semi-algebraic sphere bundle with base B. Then

$$b(E, \mathbb{Z}_2) \leq 2 \cdot b(B, \mathbb{Z}_2).$$
Outline of the remaining argument

- Each C_j is a $S^{\ell-j}$-bundle over $F_j \setminus F_{j-1}$ under the map φ_1, and $C = \bigcup_{0 \leq j \leq \ell} C_j$.
- Since we have good bounds on the number as well as the degrees of polynomials used to define the bases, $F_j \setminus F_{j-1}$, we are able to bound the Betti numbers of each C_j by the following proposition:

Proposition

Let $B \subset \mathbb{R}^k$ be a closed and bounded semi-algebraic set and let $\pi : E \to B$ be a semi-algebraic sphere bundle with base B. Then

$$b(E, \mathbb{Z}_2) \leq 2 \cdot b(B, \mathbb{Z}_2).$$
However, the C_j’s could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_j does not immediately produce a bound on Betti numbers of C.

In order to get around this difficulty, we consider certain closed subsets, $F'_j \subset F$, where each F'_j is an infinitesimal deformation of $F_j \setminus F_{j-1}$, and form the base of a $S^{\ell-j}$-bundle C'_j.

Additionally, the C'_j are glued to each other along sphere bundles over $F'_j \cap F'_{j-1}$, and their union, C', is homotopy equivalent to C.

Now we can use Mayer-Vietoris inequalities to bound the Betti numbers of C', which in turn are equal to the Betti numbers of C.

Saugata Basu (joint work with Dima Pasechnik and Marie-Françoise Roy)
However, the C_j's could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_j does not immediately produce a bound on Betti numbers of C.

In order to get around this difficulty, we consider certain closed subsets, $F'_j \subset F$, where each F'_j is an infinitesimal deformation of $F_j \setminus F_{j-1}$, and form the base of a $S^{\ell-j}$-bundle C'_j.

Additionally, the C'_j are glued to each other along sphere bundles over $F'_j \cap F'_{j-1}$, and their union, C', is homotopy equivalent to C.

Now we can use Mayer-Vietoris inequalities to bound the Betti numbers of C', which in turn are equal to the Betti numbers of C.

Saugata Basu (joint work with Dima Pasechnik and Marie-Françoise Roy) Betti numbers of semi-algebraic sets defined by partly quadratic polynomials
However, the C_j’s could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_j does not immediately produce a bound on Betti numbers of C.

In order to get around this difficulty, we consider certain closed subsets, $F'_j \subset F$, where each F'_j is an infinitesimal deformation of $F_j \setminus F_{j-1}$, and form the base of a $S^{\ell-j}$-bundle C'_j.

Additionally, the C'_j are glued to each other along sphere bundles over $F'_j \cap F'_{j-1}$, and their union, C', is homotopy equivalent to C.

Now we can use Mayer-Vietoris inequalities to bound the Betti numbers of C', which in turn are equal to the Betti numbers of C.
However, the C_j's could be possibly glued to each other in complicated ways, and thus knowing upper bounds on the Betti numbers of each C_j does not immediately produce a bound on Betti numbers of C.

In order to get around this difficulty, we consider certain closed subsets, $F'_j \subset F$, where each F'_j is an infinitesimal deformation of $F_j \setminus F_{j-1}$, and form the base of a $S^{\ell-j}$-bundle C'_j.

Additionally, the C'_j are glued to each other along sphere bundles over $F'_j \cap F'_{j-1}$, and their union, C', is homotopy equivalent to C.

Now we can use Mayer-Vietoris inequalities to bound the Betti numbers of C', which in turn are equal to the Betti numbers of C.

Saugata Basu (joint work with Dima Pasechnik and Marie-Francoise Roy) Betti numbers of semi-algebraic sets defined by partly quadratic polynomials
Let $\Lambda \in \mathbb{R}[Z_1, \ldots, Z_m, X_1, \ldots, X_k, T]$ be the polynomial defined by

$$
\Lambda = \det(T \cdot \text{Id}_{\ell+1} - M_Z \cdot Q^h), \\
= T^{\ell+1} + D_\ell T^\ell + \cdots + D_0,
$$

where each $D_i \in \mathbb{R}[Z_1, \ldots, Z_m, X_1, \ldots, X_k]$.

It then follows from Descartes’ rule of signs that for each $(\omega, x) \in \Omega \times \mathbb{R}^k$, index($\langle \omega, Q^h \rangle(\cdot, x)$) is determined by the sign vector $(\text{sign}(D_\ell(\omega, x)), \ldots, \text{sign}(D_0(\omega, x)))$.
Let $\Lambda \in \mathbb{R}[Z_1, \ldots, Z_m, X_1, \ldots, X_k, T]$ be the polynomial defined by

$$
\Lambda = \det(T \cdot \text{Id}_{\ell+1} - M_{Z.Q^h}),
= T^{\ell+1} + D_\ell T^\ell + \cdots + D_0,
$$

where each $D_i \in \mathbb{R}[Z_1, \ldots, Z_m, X_1, \ldots, X_k]$.

It then follows from Descartes’ rule of signs that for each $(\omega, x) \in \Omega \times \mathbb{R}^k$, index$(\langle \omega, Q^h\rangle(\cdot, x))$ is determined by the sign vector

$$(\text{sign}(D_\ell(\omega, x)), \ldots, \text{sign}(D_0(\omega, x))).$$
Denoting

\[\mathcal{D} = \{D_0, \ldots, D_\ell\} \subset \mathbb{R}[Z_1, \ldots, Z_m, X_1, \ldots, X_k] \]

we have

Lemma

\(F_j \) is the intersection of \(F \) with a \(\mathcal{D} \)-closed semi-algebraic set for each \(0 \leq j \leq \ell + 1 \).

Note that

\[\#\mathcal{D} = \ell + 1, \]
\[\deg(D_j) \leq (\ell + 1)d. \]
Complexity of the bases (cont.)

Denoting

\[\mathcal{D} = \{D_0, \ldots, D_\ell\} \subset \mathbb{R}[Z_1, \ldots, Z_m, X_1, \ldots, X_k] \]

we have

Lemma

F_j is the intersection of *F* with a \(\mathcal{D}\)-closed semi-algebraic set for each \(0 \leq j \leq \ell + 1\).

Note that

\[\#\mathcal{D} = \ell + 1, \]

\[\deg(D_j) \leq (\ell + 1)d. \]
Denoting
\[D = \{ D_0, \ldots, D_{\ell} \} \subset \mathbb{R}[Z_1, \ldots, Z_m, X_1, \ldots, X_k] \]
we have

Lemma

\(F_j \) is the intersection of \(F \) with a \(D \)-closed semi-algebraic set for each \(0 \leq j \leq \ell + 1 \).

Note that
\[
\#D = \ell + 1,
\]
\[
\deg(D_j) \leq (\ell + 1)d.
\]
Now use the O-P-T-M type bounds to bound the Betti numbers of the various F'_j and hence the C'_j.

Notice that only the adjacent C'_j’s intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.

Hence, obtain a bound on $b(A^h)$.

Again Mayer-Vietoris inequalities give a bound on $b(W^h)$.

Reduce the general case to the basic case using standard arguments.
Now use the O-P-T-M type bounds to bound the Betti numbers of the various F'_j and hence the C'_j.

Notice that only the adjacent C'_j’s intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.

Hence, obtain a bound on $b(A^h)$.

Again Mayer-Vietoris inequalities give a bound on $b(W^h)$.

Reduce the general case to the basic case using standard arguments.
Now use the O-P-T-M type bounds to bound the Betti numbers of the various F'_j and hence the C'_j.

Notice that only the adjacent C'_j's intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.

Hence, obtain a bound on $b(A^h)$.

Again Mayer-Vietoris inequalities give a bound on $b(W^h)$.

Reduce the general case to the basic case using standard arguments.
Now use the O-P-T-M type bounds to bound the Betti numbers of the various F'_j and hence the C'_j.

Notice that only the adjacent C'_j’s intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.

Hence, obtain a bound on $b(A^h)$.

Again Mayer-Vietoris inequalities give a bound on $b(W^h)$.

Reduce the general case to the basic case using standard arguments.
Now use the O-P-T-M type bounds to bound the Betti numbers of the various F'_j and hence the C'_j.

Notice that only the adjacent C'_j’s intersect and then use Mayer-Vietoris inequalities to bound the Betti numbers of C.

Hence, obtain a bound on $b(A^h)$.

Again Mayer-Vietoris inequalities give a bound on $b(W^h)$.

Reduce the general case to the basic case using standard arguments.
Theorem

There exists an algorithm that takes as input the description of a \((\mathcal{P} \cup \mathcal{Q})\)-closed semi-algebraic set \(S\) and outputs its the Euler-Poincaré characteristic \(\chi(S)\). The complexity of this algorithm is bounded by \((\ell \text{smd})^{O(m(m+k))}\). There exists an algorithm for computing all the Betti numbers whose complexity is \((\ell \text{smd})^{2^{O(m+k)}}\).

The complexity of both the algorithms is polynomial for fixed \(m\) and \(k\).
There exists an algorithm that takes as input the description of a \((P \cup Q)\)-closed semi-algebraic set \(S\) and outputs its the Euler-Poincaré characteristic \(\chi(S)\). The complexity of this algorithm is bounded by \((\ell \text{smd})^{O(m(m+k))}\). There exists an algorithm for computing all the Betti numbers whose complexity is \((\ell \text{smd})^{2^{O(m+k)}}\).

The complexity of both the algorithms is polynomial for fixed \(m\) and \(k\).
There exists an algorithm that takes as input the description of a \((P \cup Q)-closed\) semi-algebraic set \(S\) and outputs its the Euler-Poincaré characteristic \(\chi(S)\). The complexity of this algorithm is bounded by \((\ell \text{smd})^{O(m(m+k))}\). There exists an algorithm for computing all the Betti numbers whose complexity is \((\ell \text{smd})^{2^{O(m+k)}}\).

The complexity of both the algorithms is polynomial for fixed \(m\) and \(k\).
Computational hardness

- The problem of computing the Betti numbers of semi-algebraic sets in general is a PSPACE-hard problem. The same is true for semi-algebraic sets defined by many quadratic inequalities.
- On the other hand it was known before that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of quadratic inequalities is solvable in polynomial time.
- We have shown that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of polynomial inequalities is solvable in polynomial time, even if we allow a small (constant sized) subset of the variables to occur with degrees larger than two in the polynomials defining the given set.
The problem of computing the Betti numbers of semi-algebraic sets in general is a PSPACE-hard problem. The same is true for semi-algebraic sets defined by many quadratic inequalities.

On the other hand it was known before that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of quadratic inequalities is solvable in polynomial time.

We have shown that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of polynomial inequalities is solvable in polynomial time, even if we allow a small (constant sized) subset of the variables to occur with degrees larger than two in the polynomials defining the given set.
The problem of computing the Betti numbers of semi-algebraic sets in general is a PSPACE-hard problem. The same is true for semi-algebraic sets defined by many quadratic inequalities.

On the other hand, it was known before that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of quadratic inequalities is solvable in polynomial time.

We have shown that the problem of computing the Betti numbers of semi-algebraic sets defined by a constant number of polynomial inequalities is solvable in polynomial time, even if we allow a small (constant sized) subset of the variables to occur with degrees larger than two in the polynomials defining the given set.