Combinatorial Complexity in O-minimal Geometry

Saugata Basu

Georgia Tech \longrightarrow Purdue University
ICMS, Edinburgh, May 8, 2008

Outline

(9) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity

O-minimal Structures and Admissible Sets

- Examples of Admissible Sets
- \mathcal{A}-sets

Results

- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.
Idea of Proofs
Bounding the number of topological types of arrangements

Outline

(9) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity
(2) O-minimal Structures and Admissible Sets
- Examples of Admissible Sets
- \mathcal{A}-sets

Results

- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.
Idea of Proofs
Bounding the number of topological types of arrangements

Outline

(1) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity
(2) O-minimal Structures and Admissible Sets
- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.
Idea of Proofs
Bounding the number of topological types of arrangements

Outline

(9) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity
(2) O-minimal Structures and Admissible Sets
- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.

4) Idea of Proofs

Bounding the number of topological types of arrangements

Outline

(9) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity
(2) O-minimal Structures and Admissible Sets
- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.

4) Idea of Proofs
(5) Bounding the number of topological types of arrangements

Outline

(1) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity

O-minimal Structures and Admissible Sets

- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.Idea of Proofs

5. Bounding the number of topological types of arrangements

The Language of Arrangements

- Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, with each $S_{i} \subset \mathrm{R}^{k}$ belonging to some "simple" class of sets (eg. hyperplanes, algebraic hypersurfaces of degree at most d, spheres, simplices etc.).
- For $I \subset\{1, \ldots, n\}$, let $\mathcal{A}(I)$ denote the set
and it is customary to call a connected component of $\mathcal{A}(I)$ a cell of the arrangement \mathcal{A} and we denote by $\mathcal{C}(\mathcal{A})$ the set of all non-empty cells of the arrangement \mathcal{A}.
- The cardinality of $\mathcal{C}(\mathcal{A})$ is called the combinatorial complexity of the arrangement \mathcal{A}.

The Language of Arrangements

- Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, with each $S_{i} \subset \mathrm{R}^{k}$ belonging to some "simple" class of sets (eg. hyperplanes, algebraic hypersurfaces of degree at most d, spheres, simplices etc.).
- For $I \subset\{1, \ldots, n\}$, let $\mathcal{A}(I)$ denote the set

and it is customary to call a connected component of $\mathcal{A}(I)$ a cell of the arrangement \mathcal{A} and we denote by $\mathcal{C}(\mathcal{A})$ the set of all non-empty cells of the arrangement \mathcal{A}.
- The cardinality of $\mathcal{C}(\mathcal{A})$ is called the combinatorial complexity of the arrangement \mathcal{A}.

The Language of Arrangements

- Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, with each $S_{i} \subset \mathrm{R}^{k}$ belonging to some "simple" class of sets (eg. hyperplanes, algebraic hypersurfaces of degree at most d, spheres, simplices etc.).
- For $I \subset\{1, \ldots, n\}$, let $\mathcal{A}(I)$ denote the set

and it is customary to call a connected component of $\mathcal{A}(I)$ a cell of the arrangement \mathcal{A} and we denote by $\mathcal{C}(\mathcal{A})$ the set of all non-empty cells of the arrangement \mathcal{A}.
- The cardinality of $\mathcal{C}(\mathcal{A})$ is called the combinatorial complexity of the arrangement \mathcal{A}.

Arrangement of circles in R^{2}

What does "simple" mean ?

- The class of sets usually considered in the study of arrangements are sets with "bounded description complexity". This means that each set in the arrangement is defined by a first order formula in the language of ordered fields involving at most a constant number polynomials whose degrees are also bounded by a constant.
- Additionally, there is often a requirement that the sets be in "general position". The precise definition of "general position" varies with context, but often involves restrictions such as: the sets in the arrangements are smooth manifolds, intersecting transversally.

What does "simple" mean ?

- The class of sets usually considered in the study of arrangements are sets with "bounded description complexity". This means that each set in the arrangement is defined by a first order formula in the language of ordered fields involving at most a constant number polynomials whose degrees are also bounded by a constant.
- Additionally, there is often a requirement that the sets be in "general position". The precise definition of "general position" varies with context, but often involves restrictions such as: the sets in the arrangements are smooth manifolds, intersecting transversally.

Bounding the number of topological types of arrangements

The Language of Semi-algebraic Geometry

- Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a set of polynomials with degrees bounded by d and $\# \mathcal{P}=n$.

The Language of Semi-algebraic Geometry

- Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a set of polynomials with degrees bounded by d and $\# \mathcal{P}=n$.
- For $\sigma \in\{0,1,-1\}^{\mathcal{P}}$, we denote by

The Language of Semi-algebraic Geometry

- Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a set of polynomials with degrees bounded by d and $\# \mathcal{P}=n$.
- For $\sigma \in\{0,1,-1\}^{\mathcal{P}}$, we denote by
- $\mathcal{R}(\sigma)=\left\{x \in \mathrm{R}^{k} \mid \operatorname{sign}(P(x))=\sigma(P), \forall P \in \mathcal{P}\right\}$, and

The Language of Semi-algebraic Geometry

- Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a set of polynomials with degrees bounded by d and $\# \mathcal{P}=n$.
- For $\sigma \in\{0,1,-1\}^{\mathcal{P}}$, we denote by
- $\mathcal{R}(\sigma)=\left\{x \in \mathrm{R}^{k} \mid \operatorname{sign}(P(x))=\sigma(P), \forall P \in \mathcal{P}\right\}$, and
- $b_{i}(\sigma)=b_{i}(\mathcal{R}(\sigma))$.

The Language of Semi-algebraic Geometry

- Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a set of polynomials with degrees bounded by d and $\# \mathcal{P}=n$.
- For $\sigma \in\{0,1,-1\}^{\mathcal{P}}$, we denote by
- $\mathcal{R}(\sigma)=\left\{x \in \mathrm{R}^{k} \mid \operatorname{sign}(P(x))=\sigma(P), \forall P \in \mathcal{P}\right\}$, and
- $b_{i}(\sigma)=b_{i}(\mathcal{R}(\sigma))$.

(B-Pollack-Roy, 2005)

The Language of Semi-algebraic Geometry

- Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ be a set of polynomials with degrees bounded by d and $\# \mathcal{P}=n$.
- For $\sigma \in\{0,1,-1\}^{\mathcal{P}}$, we denote by
- $\mathcal{R}(\sigma)=\left\{x \in \mathrm{R}^{k} \mid \operatorname{sign}(P(x))=\sigma(P), \forall P \in \mathcal{P}\right\}$, and
- $b_{i}(\sigma)=b_{i}(\mathcal{R}(\sigma))$.

(B-Pollack-Roy, 2005)

$$
\sum_{\sigma \in\{0,1,-1\}^{\mathcal{P}}} b_{i}(\sigma) \leq \sum_{j=0}^{k-i}\binom{n}{j} 4^{j} d(2 d-1)^{k-1}=n^{k-i} O(d)^{k}
$$

Complexity of Semi-algebraic Sets

- In the language of arrangements, the result in the previous slide implies (taking $i=0$) that the combinatorial complexity of an arrangement of n algebraic hypersurfaces of fixed degree in R^{k} is bounded by $O\left(n^{k}\right)$ (d and k are to be considered fixed).
- Proof based on the Oleinik-Petrovsky bound on the Betti numbers of real algebraic varieties, along with inequalities derived from the Mayer-Vietoris exact sequence.

Complexity of Semi-algebraic Sets

- In the language of arrangements, the result in the previous slide implies (taking $i=0$) that the combinatorial complexity of an arrangement of n algebraic hypersurfaces of fixed degree in R^{k} is bounded by $O\left(n^{k}\right)$ (d and k are to be considered fixed).
- Proof based on the Oleinik-Petrovsky bound on the Betti numbers of real algebraic varieties, along with inequalities derived from the Mayer-Vietoris exact sequence.

Outline

(9) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity

O-minimal Structures and Admissible Sets

- Examples of Admissible Sets
- \mathcal{A}-sets

Results

- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.Idea of Proofs
Bounding the number of topological types of arrangements

Introduction

Idea of Proofs
Bounding the number of topological types of arrangements

Arrangements

Combinatorial and Algebraic Complexity

Combinatorial Complexity

- Notice that the bound in the previous page are products of two quantities - one that depends only on n (and k), and another part which is independent of n. We refer to the first part as the combinatorial part of the complexity, and the latter as the algebraic part.
- While understanding the algebraic part of the complexity is a very important problem, in several applications, most notably in discrete and computational geometry, it is the combinatorial part of the complexity that is of interest (the algebraic part is assumed to be bounded by a constant).

Combinatorial Complexity

- Notice that the bound in the previous page are products of two quantities - one that depends only on n (and k), and another part which is independent of n. We refer to the first part as the combinatorial part of the complexity, and the latter as the algebraic part.
- While understanding the algebraic part of the complexity is a very important problem, in several applications, most notably in discrete and computational geometry, it is the combinatorial part of the complexity that is of interest (the algebraic part is assumed to be bounded by a constant).

Examples of Admissible Sets

Bounding the number of topological types of arrangements

Admissible Sets

- Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R and let $T \subset \mathrm{R}^{k+\ell}$ be a fixed definable set.

- We will call S of R^{k} to be a $\left(T, \pi_{1}, \pi_{2}\right)$-set if

for some $\mathrm{y} \in \mathrm{R}^{\ell}$

Examples of Admissible Sets

Bounding the number of topological types of arrangements

Admissible Sets

- Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R and let $T \subset \mathrm{R}^{k+\ell}$ be a fixed definable set.

- We will call S of R^{k} to be a $\left(T, \pi_{1}, \pi_{2}\right)$-set if

$$
S=T_{\mathbf{y}}=\pi_{1}\left(\pi_{2}^{-1}(\mathbf{y}) \cap T\right)
$$

for some $y \in R^{\ell}$.

Outline

(1) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity
(2) O-minimal Structures and Admissible Sets
- Examples of Admissible Sets
- \mathcal{A}-setsResults
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.Idea of Proofs
Bounding the number of topological types of arrangements

Example I

Let $\mathcal{S}(\mathrm{R})=\mathcal{S}_{\text {sa }}(\mathrm{R})$ and Let $T \subset \mathrm{R}^{2 k+1}$ be the semi-algebraic set defined by

$$
T=\left\{\left(x_{1}, \ldots, x_{k}, a_{1}, \ldots, a_{k}, b\right) \mid\langle\mathbf{a}, \mathbf{x}\rangle-b=0\right\}
$$

(where we denote $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$), and π_{1} and π_{2} are the projections onto the first k and last $k+1$ co-ordinates respectively. $\mathrm{A}\left(T, \pi_{1}, \pi_{2}\right)$-set is clearly a hyperplane in R^{k} and vice versa.

Example II

Let $\mathcal{S}(\mathbb{R})=\mathcal{S}_{\exp }(\mathbb{R})$ and

$$
\begin{aligned}
T= & \left\{\left(\mathbf{x}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{m}, a_{1}, \ldots, a_{m}\right) \mid \mathbf{x}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{m} \in \mathbb{R}^{k},\right. \\
& \left.a_{1}, \ldots, a_{m} \in \mathbb{R}, x_{1}, \ldots, x_{k}>0, \sum_{i=0}^{m} a_{i} \mathbf{x}^{\mathbf{y}_{i}}=0\right\}
\end{aligned}
$$

with $\pi_{1}: \mathbb{R}^{k+m(k+1)} \rightarrow \mathbb{R}^{k}$ and $\pi_{2}: \mathbb{R}^{k+m(k+1)} \rightarrow \mathbb{R}^{m(k+1)}$ be the projections onto the first k and the last $m(k+1)$ co-ordinates respectively. The (T, π_{1}, π_{2})-sets in this example include (amongst others) all semi-algebraic sets consisting of intersections with the positive orthant of all real algebraic sets defined by a polynomial having at most m monomials (different sets of monomials are allowed to occur in different polynomials).

Examples of Admissible Sets A-sets

Outline

(1)

Introduction

- Arrangements
- Combinatorial and Algebraic Complexity
(2) O-minimal Structures and Admissible Sets
- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.Idea of Proofs
(5)

Bounding the number of topological types of arrangements

Examples of Admissible Sets
\mathcal{A}-sets

Bounding the number of topological types of arrangements

\mathcal{A}-sets I

Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, such that each $S_{i} \subset \mathrm{R}^{k}$ is a $\left(T, \pi_{1}, \pi_{2}\right)$-set. For $I \subset\{1, \ldots, n\}$, we let $\mathcal{A}(I)$ denote the set

$$
\begin{equation*}
\bigcap_{i \in \mid \subset[1 \ldots n]} S_{i} \cap \bigcap_{j \in[1 \ldots n] \backslash \backslash} \mathrm{R}^{k} \backslash S_{j}, \tag{1}
\end{equation*}
$$

and we will call such a set to be a basic \mathcal{A}-set. We will denote by, $\mathcal{C}(\mathcal{A})$, the set of non-empty connected components of all basic \mathcal{A}-sets.

Examples of Admissible Sets
\mathcal{A}-sets

Bounding the number of topological types of arrangements

\mathcal{A}-sets II

- We will call definable subsets $S \subset \mathrm{R}^{k}$ defined by a first order formula with atoms

$$
x \in S_{i}, 1 \leq i \leq n,
$$

y an \mathcal{A}-set. An \mathcal{A}-set is thus a union of basic \mathcal{A}-sets.

- In case T is closed and the Boolean formula contains no negation we will call S an \mathcal{A}-closed set.

Bounding the number of topological types of arrangements

A-sets II

- We will call definable subsets $S \subset \mathrm{R}^{k}$ defined by a first order formula with atoms

$$
x \in S_{i}, 1 \leq i \leq n,
$$

y an \mathcal{A}-set. An \mathcal{A}-set is thus a union of basic \mathcal{A}-sets.

- In case T is closed and the Boolean formula contains no negation we will call S an \mathcal{A}-closed set.

Introduction
O-minimal Structures and Admissible Sets
Results
Idea of Proofs
Bounding the number of topological types of arrangements

Bounds on Betti Numbers

Cylindrical Definable Cell Decomposition
Combinatorial Application: Generalization of a Theorem due t

Outline

(1) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity

O-minimal Structures and Admissible Sets

- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.Idea of Proofs
(5)

Bounding the number of topological types of arrangements

Introduction

Bounds on Betti Numbers I

Theorem

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R and let $T \subset \mathrm{R}^{k+\ell}$ be a closed definable set. Then, there exists a constant $C=C(T)>0$ depending only on T, such that for any (T, π_{1}, π_{2})-family $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$ of subsets of R^{k} the following holds. For every $i, 0 \leq i \leq k$,

$$
\sum_{D \in \mathcal{C}(\mathcal{A})} b_{i}(D) \leq C \cdot n^{k-i} .
$$

In particular, the combinatorial complexity of \mathcal{A}, is at most $C \cdot n^{k}$. The topological complexity of any m cells in the arrangement \mathcal{A} is bounded by $m+C \cdot n^{k-1}$.

Bounds on Betti Numbers

Lower dimensional

Theorem

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R and let $T \subset \mathrm{R}^{k+\ell}, V \subset \mathrm{R}^{k}$ be closed definable sets with $\operatorname{dim}(V)=k^{\prime}$. Then, there exists a constant $C=C(T, V)>0$ depending only on T and V, such that for any $\left(T, \pi_{1}, \pi_{2}\right)$-family, $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, of subsets of R^{k}, and for every $i, 0 \leq i \leq k^{\prime}$,

$$
\sum_{D \in \mathcal{C}(\mathcal{A}, V)} b_{i}(D) \leq C \cdot n^{k^{\prime}-i}
$$

In particular, the combinatorial complexity of \mathcal{A} restricted to V, is bounded by $C \cdot n^{k^{\prime}}$.

Introduction

Idea of Proofs
Bounding the number of topological types of arrangements

Bounds on Betti Numbers

Topological Complexity of \mathcal{A}-sets

Theorem

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R , and let $T \subset \mathrm{R}^{k+\ell}$ be a definable set. Then, there exists a constant $C=C(T, V)>0$ such that for any $\left(T, \pi_{1}, \pi_{2}\right)$-family, \mathcal{A} with $\# \mathcal{A}=n$, and an \mathcal{A}-set $S \subset \mathrm{R}^{k}$,

$$
\sum_{i \geq 0} b_{i}(S) \leq C \cdot n^{k}
$$

Introduction

Idea of Proofs
of arrangements
Bounding the number of topological types of arrangements

Bounds on Betti Numbers

Topological Complexity of Projections

Theorem (Topological Complexity of Projections)

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure, and let $T \subset \mathrm{R}^{k+\ell}$ be a definable, closed and bounded set. Let $k=k_{1}+k_{2}$ and let $\pi_{3}: \mathrm{R}^{k} \rightarrow \mathrm{R}^{k_{2}}$ denote the projection map on the last k_{2} co-ordinates.
Then, there exists a constant $C=C(T)>0$ such that for any $\left(T, \pi_{1}, \pi_{2}\right)$-family, \mathcal{A}, with $|\mathcal{A}|=n$, and an \mathcal{A}-closed set $S \subset \mathrm{R}^{k}$,

$$
\sum_{i=0}^{k_{2}} b_{i}\left(\pi_{3}(S)\right) \leq C \cdot n^{\left(k_{1}+1\right) k_{2}}
$$

Introduction
O-minimal Structures and Admissible Sets
Results
Idea of Proofs
Bounding the number of topological types of arrangements

Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Combinatorial Application: Generalization of a Theorem due t

Outline

(1) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity

O-minimal Structures and Admissible Sets

- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.Idea of Proofs
Bounding the number of topological types of arrangements

Definition of cdcd

A cdcd of R^{k} is a finite partition of R^{k} into definable sets $\left(C_{i}\right)_{i \in I}$ (called the cells of the cdcd) satisfying the following properties. If $k=1$ then a cdcd of R is given by a finite set of points $a_{1}<\cdots<a_{N}$ and the cells of the cdcd are the singletons $\left\{a_{i}\right\}$ as well as the open intervals, $\left(\infty, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{N}, \infty\right)$. If $k>1$, then a cdcd of R^{k} is given by a cdcd, $\left(C_{i}^{\prime}\right)_{i \in l^{\prime}}$, of R^{k-1} and for each $i \in I^{\prime}$, a collection of cells, \mathcal{C}_{i} defined by,

$$
\mathcal{C}_{i}=\left\{\phi_{i}\left(C_{i}^{\prime} \times D_{j}\right) \mid j \in J_{i}\right\},
$$

Definition II

where

$$
\phi_{i}: C_{i}^{\prime} \times \mathrm{R} \rightarrow \mathrm{R}^{k}
$$

is a definable homemorphism satisfying $\pi \circ \phi=\pi,\left(D_{j}\right)_{j \in J_{i}}$ is a cdcd of R , and $\pi: \mathrm{R}^{k} \rightarrow \mathrm{R}^{k-1}$ is the projection map onto the first $k-1$ coordinates. The cdcd of R^{k} is then given by

$$
\bigcup_{i \in l^{\prime}} \mathcal{C}_{i} .
$$

Given a family of definable subsets $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$ of R^{k}, we say that a cdcd is adapted to \mathcal{A}, if each S_{i} is a union of cells of the given cdcd.

Introduction
O-minimal Structures and Admissible Sets
Results
Idea of Proofs

Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Combinatorial Application: Generalization of a Theorem due t

Bounding the number of topological types of arrangements

Easier to understand with a picture .

Introduction

Idea of Proofs
of arrangements

Quantitative cylindrical definable cell decomposition I

Theorem (Quantitative cylindrical definable cell decomposition)

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R , and let $T \subset \mathrm{R}^{k+\ell}$ be a closed definable set. Then, there exist constants $C_{1}, C_{2}>0$ depending only on T, and definable sets,

$$
\left\{T_{i}\right\}_{i \in I}, \quad T_{i} \subset \mathrm{R}^{k} \times \mathrm{R}^{2\left(2^{k}-1\right) \cdot \ell}
$$

depending only on T, with $|I| \leq C_{1}$, such that for any
(T, π_{1}, π_{2})-family, $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$ with
$S_{i}=T_{\mathbf{y}_{i}}, \mathbf{y}_{i} \in \mathrm{R}^{\ell}, 1 \leq i \leq n$, some sub-collection of the sets

Idea of Proofs

Bounding the number of topological types of arrangements

Quantitative cylindrical definable cell decomposition II

Theorem (Quantitative cylindrical definable cell decomposition)

$$
\begin{gathered}
\pi_{k+2\left(2^{k}-1\right) \cdot \ell}^{\leq k}\left(\pi_{k+2\left(2^{k}-1\right) \cdot \ell}^{>k}\left(\mathbf{y}_{i}, \ldots, \mathbf{y}_{\left.i_{2\left(2^{k}-1\right)}\right)}\right) \cap T_{i}\right), \\
i \in I, 1 \leq i_{1}, \ldots, i_{2\left(2^{k}-1\right)} \leq n,
\end{gathered}
$$

form a cdcd of R^{k} compatible with \mathcal{A}. Moreover, the cdcd has at most $C_{2} \cdot n^{2\left(2^{k}-1\right)}$ cells.

An important point (in combinatorial applications) is that each cell in the cdcd defined above depends on at most $2\left(2^{k}\right.$ the elements of \mathcal{A}.

Quantitative cylindrical definable cell decomposition II

Theorem (Quantitative cylindrical definable cell decomposition)

$$
\begin{gathered}
\pi_{k+2\left(2^{k}-1\right) \cdot \ell}^{\leq k}\left(\pi_{k+2\left(2^{k}-1\right) \cdot \ell}^{>k}\left(\mathbf{y}_{i}, \ldots, \mathbf{y}_{\left.i_{2(2}-1\right)}\right) \cap T_{i}\right), \\
i \in I, 1 \leq i_{1}, \ldots, i_{2\left(2^{k}-1\right)} \leq n,
\end{gathered}
$$

form a cdcd of R^{k} compatible with \mathcal{A}. Moreover, the $c d c d$ has at most $C_{2} \cdot n^{2\left(2^{k}-1\right)}$ cells.

An important point (in combinatorial applications) is that each cell in the cdcd defined above depends on at most $2\left(2^{k}-1\right)$ of the elements of \mathcal{A}.

Introduction
O-minimal Structures and Admissible Sets
Results
Idea of Proofs
Bounding the number of topological types of arrangements

Bounds on Betti Numbers

Cylindrical Definable Cell Decomposition
Combinatorial Application: Generalization of a Theorem due t

$$
\text { If } k=2 \text { then } 2\left(2^{k}-1\right)=6
$$

Introduction

Idea of Proofs
Bounding the number of topological types of arrangements

Outline

(1) Introduction

- Arrangements
- Combinatorial and Algebraic Complexity

(2)
O-minimal Structures and Admissible Sets

- Examples of Admissible Sets
- \mathcal{A}-sets
(3) Results
- Bounds on Betti Numbers
- Cylindrical Definable Cell Decomposition
- Combinatorial Application: Generalization of a Theorem due to Alon, Pach, Sharir etal.Idea of Proofs
Bounding the number of topological types of arrangements

Ramsey-type Theorem

Theorem

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R , and let $T \subset \mathrm{R}^{k+\ell}$ be a definable set. Then, there exists a constant $1>\varepsilon=\varepsilon(T)>0$ depending only on T, such that for any $\left(T, \pi_{1}, \pi_{2}\right)$-family, $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, there exists two subfamilies $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$, with $\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right| \geq \varepsilon n$, and either,

Ramsey-type Theorem

Theorem

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R , and let $T \subset \mathrm{R}^{k+\ell}$ be a definable set. Then, there exists a constant $1>\varepsilon=\varepsilon(T)>0$ depending only on T, such that for any $\left(T, \pi_{1}, \pi_{2}\right)$-family, $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, there exists two subfamilies $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$, with $\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right| \geq \varepsilon n$, and either,

- for all $S_{i} \in \mathcal{A}_{1}$ and $S_{j} \in \mathcal{A}_{2}, S_{i} \cap S_{j} \neq \emptyset$, OR

Ramsey-type Theorem

Theorem

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over a real closed field R , and let $T \subset \mathrm{R}^{k+\ell}$ be a definable set. Then, there exists a constant $1>\varepsilon=\varepsilon(T)>0$ depending only on T, such that for any $\left(T, \pi_{1}, \pi_{2}\right)$-family, $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$, there exists two subfamilies $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$, with $\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right| \geq \varepsilon n$, and either,

- for all $S_{i} \in \mathcal{A}_{1}$ and $S_{j} \in \mathcal{A}_{2}, S_{i} \cap S_{j} \neq \emptyset$, OR
- for all $S_{i} \in \mathcal{A}_{1}$ and $S_{j} \in \mathcal{A}_{2}, S_{i} \cap S_{j}=\emptyset$.

Unions of definable families

Suppose that $T_{1}, \ldots, T_{m} \subset \mathrm{R}^{k+\ell}$ are closed, definable sets, $\pi_{1}: \mathrm{R}^{k+\ell} \rightarrow \mathrm{R}^{k}$ and $\pi_{2}: \mathrm{R}^{k+\ell} \rightarrow \mathrm{R}^{\ell}$ the two projections.

Lemma

For any collection of $\left(T_{i}, \pi_{1}, \pi_{2}\right)$ families $\mathcal{A}_{i}, 1 \leq i \leq m$, the family $\cup_{1 \leq i \leq m} \mathcal{A}_{i}$ is a $\left(T^{\prime}, \pi_{1}^{\prime}, \pi_{2}^{\prime}\right)$ family where,

$$
T^{\prime}=\bigcup_{i=1}^{m} T_{i} \times\left\{e_{i}\right\} \subset \mathrm{R}^{k+\ell+m},
$$

with e_{i} the i-th standard basis vector in R^{m}, and $\pi_{1}^{\prime}: \mathrm{R}^{k+\ell+m} \rightarrow \mathrm{R}^{k}$ and $\pi_{2}^{\prime}: \mathrm{R}^{k+\ell+m} \rightarrow \mathrm{R}^{\ell+m}$, the projections onto the first k and the last $\ell+m$ coordinates respectively.

Hardt's Triviality Theorem

Theorem (Hardt, 1980)

Given any definable set $S \subset \mathrm{R}^{k_{1}+k_{2}}$, there exists a finite partition of $\mathrm{R}^{k_{2}}$ into definable sets $\left\{T_{i}\right\}_{i \in 1}$ such that S is definably trivial over each T_{i}.

This means that for each $i \in I$ and any point $z \in T_{i}$, the pre-image $\pi_{S}^{-1}\left(T_{i}\right)$ is definably homeomorphic to $\pi_{S}^{-1}(\mathbf{z}) \times T_{i}$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_{S}^{-1}(z), z \in T_{i}$ are definably homeomorphic.

Hardt's Triviality Theorem

Theorem (Hardt, 1980)

Given any definable set $S \subset \mathrm{R}^{k_{1}+k_{2}}$, there exists a finite partition of $\mathrm{R}^{k_{2}}$ into definable sets $\left\{T_{i}\right\}_{i \in 1}$ such that S is definably trivial over each T_{i}.

This means that for each $i \in I$ and any point $z \in T_{i}$, the pre-image $\pi_{S}^{-1}\left(T_{i}\right)$ is definably homeomorphic to $\pi_{S}^{-1}(\mathbf{z}) \times T_{i}$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_{S}^{-1}(z), z \in T_{i}$ are definably homeomorphic.

Hardt's Triviality Theorem

Theorem (Hardt, 1980)

Given any definable set $S \subset \mathrm{R}^{k_{1}+k_{2}}$, there exists a finite partition of $\mathrm{R}^{k_{2}}$ into definable sets $\left\{T_{i}\right\}_{i \in 1}$ such that S is definably trivial over each T_{i}.

This means that for each $i \in I$ and any point $\mathbf{z} \in T_{i}$, the pre-image $\pi_{s}^{-1}\left(T_{i}\right)$ is definably homeomorphic to $\pi_{s}^{-1}(\mathbf{z}) \times T_{i}$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_{S}^{-1}(\mathbf{z}), \mathbf{z} \in T_{i}$ are definably homeomorphic.

Notation

Given closed definable sets $X \subset V \subset \mathrm{R}^{k}$, and $\varepsilon>0$, we denote

$$
\begin{aligned}
& \operatorname{OT}(X, V, \varepsilon)=\left\{\mathbf{x} \in V \quad \mid \quad d_{X}(\mathbf{x})<\varepsilon\right\}, \\
& \operatorname{CT}(X, V, \varepsilon)=\left\{\mathbf{x} \in V \quad \mid \quad d_{X}(\mathbf{x}) \leq \varepsilon\right\}, \\
& \operatorname{BT}(X, V, \varepsilon)=\left\{\mathbf{x} \in V \quad \mid \quad d_{X}(\mathbf{x})=\varepsilon\right\},
\end{aligned}
$$

and finally for $\varepsilon_{1}>\varepsilon_{2}>0$ we define

$$
\begin{aligned}
& \operatorname{Ann}\left(X, V, \varepsilon_{1}, \varepsilon_{2}\right)=\left\{\mathbf{x} \in V \mid \varepsilon_{2}<d_{X}(\mathbf{x})<\varepsilon_{1}\right\} \\
& \overline{\operatorname{Ann}}\left(X, V, \varepsilon_{1}, \varepsilon_{2}\right)=\left\{\mathbf{x} \in V \mid \varepsilon_{2} \leq d_{X}(\mathbf{x}) \leq \varepsilon_{1}\right\}
\end{aligned}
$$

Key Proposition

Proposition

Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$ be a collection of closed definable subsets of R^{k} and let $V \subset \mathrm{R}^{k}$ be a closed, and bounded definable set. Then, for all sufficiently small $1 \gg \varepsilon_{1} \gg \varepsilon_{2}>0$ the following holds. For any connected component, C, of $\mathcal{A}(I) \cap V, I \subset[1 \ldots n]$, there exists a connected component, D, of the definable set,

$$
\bigcap_{1 \leq i \leq n} \operatorname{Ann}\left(S_{i}, \varepsilon_{1}, \varepsilon_{2}\right)^{c} \cap V
$$

such that D is definably homotopy equivalent to C.

Idea of Proofs
Bounding the number of topological types of arrangements

Picture

Idea of Proofs
Bounding the number of topological types of arrangements

Picture

Idea of Proofs
Bounding the number of topological types of arrangements

Proof of Theorem on Topological Complexity

- For $1 \leq i \leq n$, let $\mathbf{y}_{i} \in \mathrm{R}^{\ell}$ such that

$$
S_{i}=T_{\mathbf{y}_{i}}
$$

and let

$$
A_{i}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\operatorname{Ann}\left(S_{i}, \varepsilon_{1}, \varepsilon_{2}\right)^{c} \cap V
$$

- Applying Mayer-Vietoris inequalities we have for $0 \leq i \leq k^{\prime}$,

Idea of Proofs
Bounding the number of topological types of arrangements

Proof of Theorem on Topological Complexity

- For $1 \leq i \leq n$, let $\mathbf{y}_{i} \in \mathrm{R}^{\ell}$ such that

$$
S_{i}=T_{\mathbf{y}_{i}}
$$

and let

$$
A_{i}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\operatorname{Ann}\left(S_{i}, \varepsilon_{1}, \varepsilon_{2}\right)^{c} \cap V
$$

- Applying Mayer-Vietoris inequalities we have for $0 \leq i \leq k^{\prime}$,

$$
b_{i}\left(\bigcap_{j=1}^{n} A_{j}\left(\varepsilon_{1}, \varepsilon_{2}\right)\right) \leq b_{k^{\prime}}(V)+\sum_{j=1}^{k^{\prime}-i} \sum_{J \subset\{1, \ldots, n\}, \#(J)=j}\left(b_{i+j-1}\left(A^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)\right)\right.
$$

where $A^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\cup_{j \in J} A_{j}\left(\varepsilon_{1}, \varepsilon_{2}\right)$.

Idea of Proofs
Bounding the number of topological types of arrangements

Proof of Theorem on Topological Complexity (cont).

- Notice that each $\operatorname{Ann}\left(S_{i}, \varepsilon_{1}, \varepsilon_{2}\right)^{c}, 1 \leq i \leq n$, is a $\left(\operatorname{Ann}\left(T, \varepsilon_{1}, \varepsilon_{2}\right)^{c}, \pi_{1}, \pi_{2}\right)$-set and moreover,

$$
\operatorname{Ann}\left(S_{i}, \varepsilon_{1}, \varepsilon_{2}\right)^{c}=T_{\mathbf{y}_{i}} \cap \operatorname{Ann}\left(T, \varepsilon_{1}, \varepsilon_{2}\right)^{c} ; 1 \leq i \leq n
$$

- For $J \subset[1$ n], we denote

There are only a finite number (depending on T) of topological types amongst $S^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)$. Restricting all the sets to V in the above argument, we obtain that there are only finitely many (depending on T and V) of topological

Idea of Proofs

Proof of Theorem on Topological Complexity (cont).

- Notice that each $\operatorname{Ann}\left(S_{i}, \varepsilon_{1}, \varepsilon_{2}\right)^{c}, 1 \leq i \leq n$, is a $\left(\operatorname{Ann}\left(T, \varepsilon_{1}, \varepsilon_{2}\right)^{c}, \pi_{1}, \pi_{2}\right)$-set and moreover,

$$
\operatorname{Ann}\left(S_{i}, \varepsilon_{1}, \varepsilon_{2}\right)^{c}=T_{\mathbf{y}_{i}} \cap \operatorname{Ann}\left(T, \varepsilon_{1}, \varepsilon_{2}\right)^{c} ; 1 \leq i \leq n
$$

- For $J \subset[1 \ldots n]$, we denote

$$
S^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\bigcup_{j \in J} \operatorname{Ann}\left(S_{j}, \varepsilon_{1}, \varepsilon_{2}\right)^{c}
$$

There are only a finite number (depending on T) of topological types amongst $S^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)$. Restricting all the sets to V in the above argument, we obtain that there are only finitely many (depending on T and V) of topological types amongst the sets $A^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)=S^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right) \cap V$.

Idea of Proofs
Bounding the number of topological types of arrangements

Proof of Theorem on topological complexity(cont).

- Thus, there exists a constant $C(T, V)$ such that

$$
C(T, V) \geq \max _{J \subset\{1, \ldots, n\}}\left(b_{i+j-1}\left(A^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)\right)+b_{k^{\prime}}(V)\right)+b_{k^{\prime}}(V)
$$

- It follows from the previous Proposition that

Proof of Theorem on topological complexity(cont).

- Thus, there exists a constant $C(T, V)$ such that

$$
C(T, V) \geq \max _{J \subset\{1, \ldots, n\}}\left(b_{i+j-1}\left(A^{J}\left(\varepsilon_{1}, \varepsilon_{2}\right)\right)+b_{k^{\prime}}(V)\right)+b_{k^{\prime}}(V) .
$$

- It follows from the previous Proposition that

$$
\sum_{D \in \mathcal{C}(\mathcal{A}, V)} b_{i}(D) \leq C \cdot n^{k^{\prime}-i} .
$$

Idea of Proofs
Bounding the number of topological types of arrangements

Proof of Theorem for \mathcal{A}-sets

Key proposition:

Proposition

Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{n}\right\}$ be a collection of closed definable subsets of R^{k} and let $V \subset \mathrm{R}^{k}$ be a closed, and bounded definable set and let S be an (\mathcal{A}, V)-closed set. Then, for all sufficiently small $1 \gg \varepsilon_{1} \gg \varepsilon_{2} \cdots \gg \varepsilon_{n}>0$,

$$
b(S) \leq \sum_{D \in \mathcal{C}(\mathcal{B}, V)} b(D)
$$

where

$$
\mathcal{B}=\bigcup_{i=1}^{n}\left\{S_{i}, \operatorname{BT}\left(S_{i}, \varepsilon_{i}\right), \mathrm{OT}\left(S_{i}, 2 \varepsilon_{i}\right)^{c}\right\}
$$

Proof of Theorem on projections

Notice that for each $p, 0 \leq p \leq k_{2}$, and any \mathcal{A}-closed set $S \subset \mathrm{R}^{k_{1}+k_{2}}, W_{\pi_{3}}^{p}(S) \subset \mathrm{R}^{(p+1) k_{1}+k_{2}}$ is an \mathcal{A}^{p}-closed set where,

$$
\begin{aligned}
\mathcal{A}^{p} & =\bigcup_{j=0}^{p} \mathcal{A}^{p, j} \\
\mathcal{A}^{p, j} & =\bigcup_{i=1}^{n}\left\{S_{i}^{p, j}\right\},
\end{aligned}
$$

where $S_{i}^{p, j} \subset \mathrm{R}^{(p+1) k_{1}+k_{2}}$ is defined by,

$$
S_{i}^{p, j}=\left\{\left(\mathbf{x}_{0}, \ldots, \mathbf{x}_{p}, \mathbf{y}\right) \mid \mathbf{x}_{j} \in \mathrm{R}^{k_{1}}, \mathbf{y} \in \mathrm{R}^{k_{2}},\left(\mathbf{x}_{j}, \mathbf{y}\right) \in S_{i}\right\} .
$$

and $W_{f}^{i}(X)=\left\{\left(\mathbf{x}_{0}, \ldots, \mathbf{x}_{i}\right) \in X^{i+1} \mid f\left(\mathbf{x}_{0}\right)=\cdots ; f\left(\mathbf{x}_{i}\right)\right\}$.

Idea of Proofs
Bounding the number of topological types of arrangements

Proof of Theorem on Projections (cont).

- Also, note that $\mathcal{A}^{p, j}$ is a $\left(T^{p, j}, \pi_{1}^{p}, \pi_{2}^{p}\right)$ family, where

$$
\begin{gathered}
T^{p, j}=\left\{\left(\mathbf{x}_{0}, \ldots, \mathbf{x}_{p}, \mathbf{y}, \mathbf{z}\right) \mid \mathbf{x}_{j} \in \mathrm{R}^{k_{1}}, \mathbf{y} \in \mathrm{R}^{k_{2}}, \mathbf{z} \in \mathrm{R}^{\ell},\left(\mathbf{x}_{j}, \mathbf{y}, \mathbf{z}\right) \in T,\right. \\
\text { for some } j, 0 \leq j \leq p\} .
\end{gathered}
$$

$$
\text { and } \pi_{1}^{p}: \mathrm{R}^{(p+1) k_{1}+k_{2}+\ell} \rightarrow \mathrm{R}^{(p+1) k_{1}+k_{2}}, \text { and }
$$

$$
\pi_{2}^{p}: \mathrm{R}^{(p+1) k_{1}+k_{2}+\ell} \rightarrow \mathrm{R}^{\ell} \text { are the appropriate projections. }
$$

- Since each $T^{p . j}$ is determined by T, we have using previous lemma that \mathcal{A}^{p} is a $\left(T^{\prime}, \pi_{1}^{\prime}, \pi_{2}^{\prime}\right)$-family for some definable T^{\prime} determined by T.

Idea of Proofs

Proof of Theorem on Projections (cont).

- Also, note that $\mathcal{A}^{p, j}$ is a $\left(T^{p, j}, \pi_{1}^{p}, \pi_{2}^{p}\right)$ family, where

$$
\begin{gathered}
T^{p, j}=\left\{\left(\mathbf{x}_{0}, \ldots, \mathbf{x}_{p,}, \mathbf{y}, \mathbf{z}\right) \mid \mathbf{x}_{j} \in \mathrm{R}^{k_{1}}, \mathbf{y} \in \mathrm{R}^{k_{2}}, \mathbf{z} \in \mathrm{R}^{\ell},\left(\mathbf{x}_{j}, \mathbf{y}, \mathbf{z}\right) \in T,\right. \\
\text { for some } j, 0 \leq j \leq p\} .
\end{gathered}
$$

$$
\text { and } \pi_{1}^{p}: \mathrm{R}^{(p+1) k_{1}+k_{2}+\ell} \rightarrow \mathrm{R}^{(p+1) k_{1}+k_{2}} \text {, and }
$$

$$
\pi_{2}^{p}: \mathrm{R}^{(p+1) k_{1}+k_{2}+\ell} \rightarrow \mathrm{R}^{\ell} \text { are the appropriate projections. }
$$

- Since each $T^{p, j}$ is determined by T, we have using previous lemma that \mathcal{A}^{p} is a $\left(T^{\prime}, \pi_{1}^{\prime}, \pi_{2}^{\prime}\right)$-family for some definable T^{\prime} determined by T.

Idea of Proofs

Proof of Theorem on projections (cont).

Now $W_{\pi_{3}}^{p}(S) \subset \mathrm{R}^{(p+1) k_{1}+k_{2}}$ is a \mathcal{A}^{p}-closed set and $\# \mathcal{A}^{p}=(p+1) n$. Applying previous theorem we get, for each p and $j, 0 \leq p, j<k_{2}$,

$$
b_{j}\left(W_{\pi_{3}}^{p}(S)\right) \leq C_{1}(T) \cdot n^{(p+1) k_{1}+k_{2}}
$$

The theorem now follows, since for each $q, 0 \leq q<k_{2}$,

$$
b_{q}\left(\pi_{3}(S)\right) \leq \sum_{i+j=q} b_{j}\left(W_{\pi_{3}}^{i}(S)\right) \leq C_{2}(T) \cdot n^{(q+1) k_{1}+k_{2}} \leq C(T) \cdot n^{\left(k_{1}+1\right) k_{2}} .
$$

Fibers of a definable map

- Let $S \subset \mathrm{R}^{k_{1}+k_{2}}$ be a definable set, and let $\pi: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}$ be the projection map on the last k_{2} co-ordinates. We denote by $\pi_{s}=\left.\pi\right|_{s}$.
- For $z \in R^{k_{2}}$, let $S_{z}=S \cap \pi^{-1}(z)$.
- Question: How many "topological types" occur amongst the S_{z} 's as \mathbf{z} varies over $\mathrm{R}^{k_{2}}$?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in k variables ?

Fibers of a definable map

- Let $S \subset \mathrm{R}^{k_{1}+k_{2}}$ be a definable set, and let $\pi: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}$ be the projection map on the last k_{2} co-ordinates. We denote by $\pi_{s}=\left.\pi\right|_{s}$.
- For $\mathbf{z} \in \mathrm{R}^{k_{2}}$, let $S_{\mathbf{z}}=S \cap \pi^{-1}(\mathbf{z})$.
- Question: How many "topological types" occur amongst the S_{z} 's as z varies over $R^{k_{2}}$?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d ' in k variables ?

Fibers of a definable map

- Let $S \subset \mathrm{R}^{k_{1}+k_{2}}$ be a definable set, and let $\pi: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}$ be the projection map on the last k_{2} co-ordinates. We denote by $\pi_{s}=\left.\pi\right|_{s}$.
- For $\mathbf{z} \in \mathrm{R}^{k_{2}}$, let $S_{\mathbf{z}}=S \cap \pi^{-1}(\mathbf{z})$.
- Question: How many "topological types" occur amongst the S_{z} 's as \mathbf{z} varies over $\mathrm{R}^{k_{2}}$?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in k variables ?

Fibers of a definable map

- Let $S \subset \mathrm{R}^{k_{1}+k_{2}}$ be a definable set, and let $\pi: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}$ be the projection map on the last k_{2} co-ordinates. We denote by $\pi_{s}=\left.\pi\right|_{s}$.
- For $\mathbf{z} \in \mathrm{R}^{k_{2}}$, let $S_{\mathbf{z}}=S \cap \pi^{-1}(\mathbf{z})$.
- Question: How many "topological types" occur amongst the S_{z} 's as \mathbf{z} varies over $\mathrm{R}^{k_{2}}$?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in k variables ?

Definable map

Complexity of the Hardt partition

- Hardt's theorem is a corollary of the existence of cylindrical cell decompositions for definable sets.
- This implies a double exponential (in $k_{1} k_{2}$) upper bound on the cardinality of I.
- Onen problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of π_{s}.

Complexity of the Hardt partition

- Hardt's theorem is a corollary of the existence of cylindrical cell decompositions for definable sets.
- This implies a double exponential (in $k_{1} k_{2}$) upper bound on the cardinality of l.

Complexity of the Hardt partition

- Hardt's theorem is a corollary of the existence of cylindrical cell decompositions for definable sets.
- This implies a double exponential (in $k_{1} k_{2}$) upper bound on the cardinality of l.
- Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of π_{S}.

The Semi-algebraic Case

The Semi-algebraic Case

Theorem (B., Vorobjov, 2007)

Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k_{1}}, Y_{1}, \ldots, Y_{k_{2}}\right]$, with deg $(P) \leq d$ for each $P \in \mathcal{P}$ and $\# \mathcal{P}=n$, and let $\pi: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}$ be the projection map on the Y-cordinates. Then, for any fixed \mathcal{P}-semi-algebraic set S the number of different homotopy types of fibers $\pi^{-1}(\mathbf{y}) \cap S, \mathbf{y} \in \pi(S)$ is bounded by

$$
\left(2^{k_{1}} n k_{2} d\right)^{O\left(k_{1} k_{2}\right)} .
$$

Open Problem: Can one prove a single exponential bound like the one above on the number of homeomorphism types

The Semi-algebraic Case

Theorem (B., Vorobjov, 2007)

Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k_{1}}, Y_{1}, \ldots, Y_{k_{2}}\right]$, with deg $(P) \leq d$ for each $P \in \mathcal{P}$ and $\# \mathcal{P}=n$, and let $\pi: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}$ be the projection map on the Y-cordinates. Then, for any fixed \mathcal{P}-semi-algebraic set S the number of different homotopy types of fibers $\pi^{-1}(\mathbf{y}) \cap S, \mathbf{y} \in \pi(S)$ is bounded by

$$
\left(2^{k_{1}} n k_{2} d\right)^{O\left(k_{1} k_{2}\right)} .
$$

Open Problem: Can one prove a single exponential bound like the one above on the number of homeomorphism types

The Semi-algebraic Case

Theorem (B., Vorobjov, 2007)

Let $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k_{1}}, Y_{1}, \ldots, Y_{k_{2}}\right]$, with deg $(P) \leq d$ for each $P \in \mathcal{P}$ and $\# \mathcal{P}=n$, and let $\pi: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}$ be the projection map on the Y-cordinates. Then, for any fixed \mathcal{P}-semi-algebraic set S the number of different homotopy types of fibers $\pi^{-1}(\mathbf{y}) \cap S, \mathbf{y} \in \pi(S)$ is bounded by

$$
\left(2^{k_{1}} n k_{2} d\right)^{O\left(k_{1} k_{2}\right)} .
$$

Open Problem: Can one prove a single exponential bound like the one above on the number of homeomorphism types?

Bounding the number of topological types of arrangements

The o-minimal case

Let $\mathcal{S}(\mathrm{R})$ be an o-minimal structure over $\mathrm{R}, T \subset \mathrm{R}^{k_{1}+k_{2}+\ell} \mathrm{a}$ closed definable set, and

$$
\begin{gathered}
\pi_{1}: \mathrm{R}^{k_{1}+k_{2}+\ell} \rightarrow \mathrm{R}^{k_{1}+k_{2}} \\
\pi_{2}: \mathrm{R}^{k_{1}+k_{2}+\ell} \rightarrow \mathrm{R}^{\ell} \\
\pi_{3}: \mathrm{R}^{k_{1}+k_{2}} \rightarrow \mathrm{R}^{k_{2}}
\end{gathered}
$$

the projection maps as depicted below.

Bounding the number of homotopy types

Theorem (B. 2007)

For any collection $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ of subsets of $\mathrm{R}^{k_{1}+k_{2}}$, and $\mathbf{z} \in \mathrm{R}^{k_{2}}$, let $\mathcal{A}_{\mathbf{z}}$ denote the collection of subsets of $\mathrm{R}^{k_{1}}$,

$$
\left\{A_{1, z}, \ldots, A_{n, z}\right\},
$$

where $A_{i, \mathbf{z}}=A_{i} \cap \pi_{3}^{-1}(\mathbf{z}), 1 \leq i \leq n$. Then, there exists a constant $C=C(T)>0$, such that for any family
$\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ of definable sets, where each
$A_{i}=\pi_{1}\left(T \cap \pi_{2}^{-1}\left(\mathbf{y}_{i}\right)\right)$, for some $\mathbf{y}_{i} \in \mathrm{R}^{\ell}$, and any fixed \mathcal{A}-set S, the number of homotopy types of the fibers
$S \cap \pi_{3}-1(\mathbf{z}), \mathbf{z} \in \mathrm{R}^{k_{2}}$, is bounded by $C \cdot n^{\left(k_{1}+3\right) k_{2}}$.

Some Open problems

(1) Try to prove all the known results on combinatorial complexity of arrangements in the o-minimal setting. (Note that we are not allowed to use "general position" assumptions such as transversality etc., or other tricks such as "linearization" which strongly depend on the semi-algebraicity of the objects.)
(2) Prove a singly exponential upper bound on the number of
homeomorphism types (not just homotopy types) of the
fibers of a definable map. This would be interesting in the
special cases of semi-algebraic or semi-Pfaffian sets.

Some Open problems

(1) Try to prove all the known results on combinatorial complexity of arrangements in the o-minimal setting. (Note that we are not allowed to use "general position" assumptions such as transversality etc., or other tricks such as "linearization" which strongly depend on the semi-algebraicity of the objects.)
(2) Prove a singly exponential upper bound on the number of homeomorphism types (not just homotopy types) of the fibers of a definable map. This would be interesting in the special cases of semi-algebraic or semi-Pfaffian sets.

